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ON THE COMPLETE CONVERGENCE OF RANDOMLY
WEIGHTED SUMS OF RANDOM FIELDS

Abstract. Let tXn, n P V Ď Ndu be a d-dimensional random field indexed by some
subset V of lattice Nd, which are stochastically dominated by a random variable X. Let
tan,i, n, i P V u be a 2d-dimensional random field independent of tXn, n P V u and such
that |an,i| ă M,n, i P V for some constant M . In this paper, we give conditions under
which the following series

ÿ

nPV

|n|
tP

„

|
ř

iPV an,iXi|

|n|1{p
ą ε



,

is convergent for some real t, some fixed p ą 0 and all ε ą 0. Here |n| is used for
śd
i“1 ni.

The randomly indexed sums of field tXn, n P V u are considered too.

1. Introduction
Let Nd denotes the positive integer d-dimensional lattice points and let

tXn, n P V Ď Ndu be a set of random variables indexed by some subset
V of lattice Nd. We use the notation n ă m if ni ă mi, i “ 1, 2, . . . d,
and similarly n ≤ m. The symbol |n| denotes

śd
i“1 ni. The divergence

n Ñ 8 is interpreted as ni Ñ 8, i “ 1, 2, . . . d. Let tan,i, n, i P V Ď Ndu
be a 2d-dimensional random field independent of tXn, n P V u and such that
|an,i| ăM, a.s. n, i P V for some constantM . We say that the random field
tXn, n P V u is stochastically dominated by the random variable X iff

(1) P r|Xn| ą xs ≤ CP r|X| ą xs, for all x ą 0, and all n P V.

For n P V we will write SnpV q “
ř

iPV, i≤nXi and SpnqpV q “
ř

iPV, |i|≤nXi.
If it doesn’t lead to any misunderstanding we will omit argument and write
short Sn and Spnq, respectively.
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In this paper, we consider the following complete convergence of random
moving averages of random fields

(2) @εą0

ÿ

nPV

|n|tP

„

|
ř

iPV an,iXi|

|n|1{p
ą ε



ă 8,

for some fixed p ą 0, t P R.
The complete convergence of random sequences was introduced and first

investigated by Hsu, Robbins [7] and Erdös [1]. Their results were extended
by Baum and Katz [2] to establish a rate of convergence in the sense of
Marcinkiewicz-Zygmund’s strong law of large numbers. This result has rich
generalizations, e.g. Hu, Móricz and Taylor [9] extended complete conver-
gence on arrays of rowwise independent random variables. We refer to Gut [3]
for a rich survey on complete convergence related to strong laws results.
The complete convergence and the convergence rate of randomly indexed
partial sums were considered by Gut [4] and additionally for multidimen-
sional indices by Gut [5]. In 1998, Hsu et al. [10] proved the complete
convergence theorem for arrays of rowwise independent random variables.
This result was generalized by Sung [14], who proved the following theo-
rem:

Theorem 1.1. Let tXn, n ≥ 1u be a sequence of random variables which
are stochastically dominated by a random variable X satisfying E|X|ppt`β`1q
ă 8, where ppt ` β ` 1q ą 0, β, t P R and p ą 0. Let tan,i, n, i ≥ 1u be
a bounded array of real numbers such that

8
ÿ

i“1

|an,i|
q “ Opnβq,

for some q ă ppt`β`1q. Assume that one of the following conditions holds:

(i) 0 ă ppt` β ` 1q ă 1,
(ii) 1 ≤ ppt`β`1q ă 2, tXn, n ≥ 1u is the sequence of independent random

variables with EXn “ 0, n ≥ 1,
(iii) 2 ≤ ppt ` β ` 1q, tXn, n ≥ 1u is the sequence of independent random

variables with EXn “ 0, n ≥ 1 and
ř8
i“1 a

2
n,i “ Opnαq, for some α ă 2

p ,

then for all ε ą 0,
8
ÿ

n“1

ntP

„

|
ř8
i“1 an,iXi|

n1{p
ą ε



ă 8.

On the other hand, the almost sure and complete convergence for ran-
domly weighted sums of arrays of rowwise independent Banach space valued
random elements were investigated by Thanh and Yin [16].
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In this paper, we generalize the Theorem 1.1 in the following directions:

(i) We consider the d-dimensional random field of independent random
variables.

(ii) In a random field, we consider some cases of summation index V .
(iii) We allow that constants tan,i, n, i P V u (cf. Theorem 1.1) are random

variables independent of tXn, n P V u. This situation allows us to obtain
the complete convergence result for randomly indexed random sums of
the field.

The notations, main results and examples of applications are given in
section 2, whereas some lemmas and proofs in section 3. In the whole paper
C denotes the generic constants different in different places, maybe. By the
IrAs we will denote the indicator of event A as well as the characteristic
function and by log` x we will understand maxtlog x, 1u, where log x is the
natural logarithm.

2. Main results
We will consider two kind of subsets Nd and Vc “ tn : 1

cni ă nj ă cni, for
1 ≤ i ă j ≤ d, ni, nj P Nzt0u, i, j “ 1, 2, . . . , du for some c ą 1, of positive
integer d-dimensional lattice Nd(for some positive integer d).

Considering the results, which are true for both of them we will write
shortly V . We note, in all paper,

τ “ τpV, dq “

#

1, if V “ Vc,

d, if V “ Nd.
(3)

The geometry of lattice V plays the big role in the evaluation of the
complete convergence. Following Smythe [13], we introduce some notions:

Definition 2.1. For arbitrary subset V of d-dimensional lattice Nd we
define

(i) dV pjq “ cardtn P V : |n| “ ju, j “ 1, 2, 3, . . . .

(ii) MV pxq “

#

ř

j≤x dV pjq, x ≥ 1, x P R,
1, 0 ≤ x ă 1.

For the additional information on MV and dV cf. Lemmas 3.5 and 3.6.

Theorem 2.1. Let tXn, n P V u be a field of random variables which are
stochastically dominated by a random variable X such that

E|X|ppt`β`1qplog` |X|q
τ´1 ă 8,

where ppt ` β ` 1q ą 0, β, t P R and p ą 0. In the case ppt ` β ` 1q ≥ 1,
we always assume that EXn “ 0, n P V, and that tXn, n P V u is the field
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of independent random variables. Let tan,i, i, n P V u be a field of random
variables independent of field tXn, n P V u and such that

|an,i| “ Op1q, i, n P V, a.s.,(4)
ÿ

iPV

E|an,i|
q “ Op|n|βq,(5)

for some q ă ppt` β ` 1q.

(i) If 0 ă ppt` β ` 1q ă 2, ppt` β ` 1q ‰ 1, then p2q holds.
(ii) If ppt` β ` 1q “ 1 and one of the following conditions is satisfied:

(a)
ř

iPV |an,i|
q “ Op|n|βq, a.s.

(b)
ř

iPV E|an,i ´ Ean,i| “ Op |n|β

logτ`γ` |n|
q, for some γ ą 0,

(c) E|X|plogτ`γ` |X|q ă 8, for some γ ą 0,

then p2q holds.
(iii) if ppt` β ` 1q ≥ 2 and

p6q E
´

ÿ

iPV

a2n,i

¯J
“ Op|n|αJq,

for some J ą 2, α ă 2{p and Jp2{p´ αq ´ t ą 1, then p2q holds.

Corollary 2.1. Let tXn, n P V u and constants p, t, β be such as in The-
orem 2.1.

(a) Let tNn, n P V u be a field of random indices independent of the field
tXn, n P V u and such that EMV pNnq “ Op|n|βq.

If (i) 0 ă ppt` β ` 1q ă 2, ppt` β ` 1q ‰ 1,

or (ii) ppt` β ` 1q “ 1, and

EMV pNnq “ Op |n|β

logτ`γ` |n|
q for some γ ą 0,

or
E|X|plogτ`γ` |X|q ă 8 for some γ ą 0,

or (iii) ppt` β ` 1q ≥ 2, and EpMV pNnqq
J “ Op|n|αJq

for some α ă 2{p, J ą 2 and Jp2{p´ αq ´ t ą 1,

then
@εą0

ÿ

nPV

|n|tP r|SpNnq| ą ε|n|1{ps ă 8.

(b) Let tNn, n P V u be a d-dimensional random field independent of the
field tXn, n P V u and such that E|Nn| “ Op|n|βq. If the assumptions of
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point (a) hold with MV pNnq replaced by |Nn|, then

@εą0

ÿ

nPV

|n|tP r|SNn
| ą ε|n|1{ps ă 8.

Corollary 2.2. Let tXn, n P V u and constants p, t, β be such as in The-
orem 2.1.

(a) Let tεn, n P V u be a field of random variables such that
P rεn “ 1s “ 1 ´ P rεn “ 0s “ p̂, n P V and independent of the field
tXn, n P V u. Assume that β ą 1. Then

@εą0

ÿ

nPV

|n|tP r
ÿ

iPV ,i≤n
|εiXi| ą ε|n|1{ps ă 8.

(b) Let tεn,i, n, i P V u be a 2d-dimensional fields of random variables such
that P rεn,i “ 1s “ 1 ´ P rεn,i “ 0s “ p̂n,i, where tp̂n,i, n, i P V u is
2d-dimensional field of numbers and

ÿ

iPV

p̂n,i “ Op|n|βq.

If ppt` β ` 1q “ 1 we assume additionally that for some γ ą 0

ÿ

iPV

p̂n,i “ O

ˆ

|n|β

logτ`γ` |n|

˙

,

whereas if ppt`β`1q ≥ 2, we assume that for integer J ą 2 and α ă 2{p
such that Jp2{p´ αq ´ t ą 1

´

ÿ

iPV

p̂n,i

¯J{2
“ Op|n|αJq,

then
@εą0

ÿ

nPV

|n|tP
”

ÿ

iPV

|εn,iXi| ą ε|n|1{p
ı

ă 8.

Example 2.1. Let tYn, n P N2u be an iid random field with the stable law
(Gα1,β1,γ1,cpq) i.e. with the characteristic function

EeitY1 “ exptitγ1 ´ c|t|α
1

t1` iβ1signptqωpt, α1quu, t P R,
where

ωpt, α1q “

#

2
π log t, if α1 “ 1,

tanpπ2α
1q, otherwise.

Furthermore, let tNn, n P N2u and tUn, n P N2u be random fields of 2-
dimensional vectors with the laws

P rNn “ ks “ e´λn1´λn2
λk1n1

λk2n2

k1!k2!
, k P N2,
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and

P rUn “ ks “

#

1
|k| , if k ≤ n,
0, otherwise,

respectively. We assume that tUn, n P N2u is independent of tYn, n P N2u.
Furthermore, let tXn “ YUn , n P V u, then for every x ą 0 we have

P r|Xn| ą xs “ P r|Y1| ą xs “ 1´Gα1,β1,γ1,cpxq,

and for all s ă α1 we have E|Xn|
s “ E|Yn|

s ă 8, n P V. Let 0 ă β ă
α1

p ´ t´ 1, and

λn “

$

’

’

&

’

’

%

Opnβq, if V “ Vc, ppt` β ` 1q ‰ 1,

Op nβ

logτ`δ` n
q, if V “ Vc, ppt` β ` 1q “ 1,

Opn
β

1`δ q, if V “ N2,

for some δ ą 0. If 0 ă ppt` β ` 1q ă 1 then

@εą0

ÿ

nPV

|n|tP
”ˇ

ˇ

ˇ

ÿ

1≤k≤Nn

Xk

ˇ

ˇ

ˇ
ą ε|n|1{p

ı

ă 8,

whereas if 1 ≤ ppt` β ` 1q then

@εą0

ÿ

nPV

|n|tP
”ˇ

ˇ

ˇ

ÿ

1≤k≤Nn

Yk

ˇ

ˇ

ˇ
ą ε|n|1{p

ı

ă 8.

3. Auxiliary results and proofs
Let us introduce the ordering in V by the “diagonal method”:

pk ≺ nq ðñ p|k| ă |n|q _ pp|k| “ |n|q ^ pkipk,nq ă nipk,nqqq,

where we put ipk, nq “ mint1 ≤ i ≤ d : ki ‰ niu for k ‰ n and ipk, kq “ d.
This order stands the linear order of d-dimensional vectors. Let us de-
note ordV pnq “ cardtk P V : k ≺ n _ k “ nu (for eg. ordN2pp3, 2qq “
13, ordV2pp3, 2qq “ 4).

For proof, we need the following auxiliary results:

Lemma 3.1. Let tXi, i P V u denotes the field of independent random vari-
ables with EXi “ 0, i P V. Then for arbitrary subset S Ď V there exists a
positive constant Cp depending only on p ą 2 such that:

E
ˇ

ˇ

ˇ

ÿ

iPS

Xi

ˇ

ˇ

ˇ

p
≤ Cp

!

ÿ

iPS

E|Xi|
p `

´

ÿ

iPS

EX2
i

¯p{2)

.
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Lemma 3.2. Let tXi, i P V u denote the field of independent random vari-
ables with EXi “ 0, i P V, then for arbitrary integer j ≥ 1, and t ą 0:

(7) P
”
ˇ

ˇ

ˇ

ÿ

iPV

Xi

ˇ

ˇ

ˇ
ą 6jt

ı

≤ CjP
“

sup
iPV

|Xi| ą t{4j´1
‰

`Dj sup
kPN

”

P
“ˇ

ˇ

k
ÿ

l“1

Xord´1
V plq

ˇ

ˇ ą t{4j
‰

ı2j

,

where ord´1V pq denotes the inverse function of ordV pq and Cj , Dj are positive
constants.

Applying the described above renumeration, we obtain Lemma 3.1 from
Rosenthal’s inequality [12] and Lemma 3.2 from proof of equation (3.3),
p. 164 in [6] and Hoffmann-Jørgensen’s Proposition 6.7 in [11]. We only
remark that

sup
i≥1

ˇ

ˇ

ˇ
Xord´1

V piq

ˇ

ˇ

ˇ
“ sup

kPV
|Xk|,

but in general the second term on the right hand side of (7) can’t be similarly
written.

Lemma 3.3. Let tXn, n P V u be the field of independent random variables
with EXn “ 0, EX2

n ă 8, n P V, stochastically dominated by the random
variable X, and let tβn, n P V u be the field of numbers bounded by M , then
for arbitrary J ≥ 2, η, ε, p ą 0 and β, t P R such that ppt ` β ` 1q ą 1 ` η
we have

(8)
ÿ

nPV

|n|tP
”

ˇ

ˇ

ÿ

iPV

βiXi

ˇ

ˇ ą ε|n|1{p
ı

≤ C
ÿ

nPV

|n|t´2J{p
´

ÿ

iPV

β2i

¯J
` C

ÿ

nPV

|n|´β´1´η{p
ÿ

iPV

E|βiXiIr|Xi|

≤ |n|1{ps|ppt`β`1q`η

` C
ÿ

nPV

|n|´β´1`η{p
ÿ

iPV

E|βiXiIr|Xi|ą|n|
1{ps|ppt`β`1q´η.

Proof. Let us define

X
1

i “ XiI
´

|βiXi| ≤
ε|n|1{p

24j ¨ 36

¯

,

X
2

i “ XiI
`

|βiXi| ą δ|n|1{p
˘

,

X
3

i “ XiI
´ ε|n|1{p

24j ¨ 36
ă |βiXi| ≤ δ|n|1{p

¯

,

where j is integer such that 2j ≥ J and ε, without loss of generality consid-
erations, is ε ≤ δ. Then
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P
”

ˇ

ˇ

ÿ

iPV

βiXi

ˇ

ˇ ą ε|n|1{p
ı

≤ P
”

ˇ

ˇ

ÿ

iPV

βipX
1
i ´ EX

1
iq
ˇ

ˇą
ε|n|1{p

4

ı

` P
”

ˇ

ˇ

ÿ

iPV

βipEX
1
i ` EX

3
i q

ˇ

ˇ ą
ε|n|1{p

4

ı

` P
”

ˇ

ˇ

ÿ

iPV

βiX
2
i

ˇ

ˇ ą
ε|n|1{p

4

ı

` P
”

ˇ

ˇ

ÿ

iPV

βipX
3
i ´ EX

3
i q

ˇ

ˇ ą
ε|n|1{p

4

ı

“ I1 ` I2 ` I3 ` I4, say.

To evaluate I1 we use Lemma 3.2 to the field of random variables
|n|´1{pβipX

1

i ´ EX
1

iq, i.e.

I1 ≤ CjP
”

sup
iPV

|βipX
1

i ´ EX
1

iq| ą
ε|n|1{p

24j

ı

`Dj sup
kPN

”

P
“
ˇ

ˇ

k
ÿ

l“1

βord´1
V plqpX

1

ord´1
V plq

´ EX 1
ord´1

V plq
q
ˇ

ˇ ą
ε|n|1{p

24j ¨ 4

‰

ı2j

.

Furthermore, because

|βiX
1
i| ≤

ε|n|1{p

24j ¨ 36
, thus |βiEX

1
i| ≤

ε|n|1{p

24j ¨ 36
, |β2iX

12
i | ≤

ε2|n|2{p

242j ¨ 362
,

and because V arpXq ≤ EX2 for arbitrary random variable X, therefore:

P
”

sup
iPV

ˇ

ˇβipX
1
i ´ EX

1
iq
ˇ

ˇ ą
ε|n|1{p

24j

ı

≤ P
”

sup
iPV

ˇ

ˇβiX
1
i

ˇ

ˇ` sup
iPV

ˇ

ˇβiEX
1
i

ˇ

ˇ ą
ε|n|1{p

24j

ı

≤ P
”

sup
iPV

ˇ

ˇβiX
1
i

ˇ

ˇ ą
ε|n|1{p

24j ¨ 2

ı

` P
”

sup
iPV

ˇ

ˇβiEX
1
i

ˇ

ˇ ą
ε|n|1{p

24j ¨ 2

ı

“ 0

and by Markov’s inequality, we have

I1 ≤ Dj

´24j ¨ 4

ε

¯2J
sup
kPN

”

k
ÿ

l“1

β2
ord´1

V plq
V arpX 1

ord´1
V plq

q

ıJ
|n|´2J{p(9)

≤ Dj

´24j ¨ 4

ε

¯2J”ÿ

iPV

β2i EX
2
i

ıJ
|n|´2J{p ≤ C|n|´2J{p

`

ÿ

iPV

β2i
˘J
.
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Using the facts:

EXiIrβiXi| ≤ δ|n|1{ps “ ´EXiIr|βiXi| ą δ|n|1{ps,

Xi “ XiIr|Xi| ą |n|
1{ps `XiIr|Xi| ≤ |n|1{ps,

IrX ` Y ą γs ≤ IrX ą
γ

2
s ` IrY ą

γ

2
s,

Ir|X| ą |Y |s ≤
ˇ

ˇ

ˇ

X

Y

ˇ

ˇ

ˇ

γ
, for all γ ą 0,

we get

p10q I2 “ P
”

ˇ

ˇ

ÿ

iPV

EXiβiIr|βiXi| ≤ δ|n|1{ps
ˇ

ˇ ą
ε|n|1{p

4

ı

“ P
”
ˇ

ˇ

ˇ
´
ÿ

iPV

EXiβiIr|βiXi| ą δ|n|1{ps
´

Ir|Xi| ą |n|
1{ps`Ir|Xi| ≤ |n|1{ps

¯
ˇ

ˇ

ˇ

ą
ε|n|1{p

4

ı

≤ P
”

ÿ

iPV

E
ˇ

ˇXiβiIr|Xi| ą |n|
1{ps

ˇ

ˇIr|βiXiIr|Xi| ą |n|
1{ps| ą δ|n|1{ps ą

ε|n|1{p

8

ı

`P
”

ÿ

iPV

E
ˇ

ˇXiβiIr|Xi| ≤ |n|1{ps
ˇ

ˇIr|βiXiIr|Xi| ≤ |n|1{ps| ą δ|n|1{psą
ε|n|1{p

8

ı

≤ P
”

ÿ

iPV

`

δp|n|
˘´t´β´1`1{p`η{p

E
ˇ

ˇβiXiIr|Xi| ą |n|
1{ps

ˇ

ˇ

ppt`β`1q´η
ą
ε|n|1{p

8

ı

`P
”

ÿ

iPV

`

δp|n|
˘´t´β´1`1{p´η{p

E
ˇ

ˇβiXiIr|Xi| ≤ |n|1{ps
ˇ

ˇ

ppt`β`1q`η
ą
ε|n|1{p

8

ı

≤ C
ÿ

iPV

|n|´t´β´1´η{pE|βiXiIr|Xi| ≤ |n|1{ps|ppt`β`1q`η

`C
ÿ

iPV

|n|´t´β´1`η{pE|βiXiIr|Xi| ą |n|
1{ps|ppt`β`1q´η “ K, say,

for arbitrary 0 ă η ă ppt` β ` 1q ´ 1.
Let us remark that
ÿ

iPV

P r|βiXi| ≥ C|n|1{ps

≤
ÿ

iPV

P r|βiXi|Ir|Xi| ≤ |n|1{ps ≥ C|n|1{p{2s

`
ÿ

iPV

P r|βiXi|Ir|Xi| ą |n|
1{ps ≥ C|n|1{p{2s
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≤ C
ÿ

iPV

|n|´t´β´1´η{pE|βiXiIr|Xi| ≤ |n|1{ps|ppt`β`1q`η

` C
ÿ

iPV

|n|´t´β´1`η{pE|βiXiIr|Xi| ą |n|
1{ps|ppt`β`1q´η “ K.

On the other hand

(11) I3 ≤
ÿ

iPV

P r|βiXi| ≥ δ|n|1{ps “ K.

Moreover, from Lemma 3.1, Markov’s inequality and evaluation I1 and I3
we have

I4 ≤
!

C
ÿ

iPV

P r|βiXi|(12)

ą
ε|n|1{p

36 ¨ 24j
s ` C|n|´2J{p

´

ÿ

iPV

β2i EX
2
i Ir|βiXi| ≤ δ|n|1{ps

¯J)

≤ K ` C|n|´2J{p
´

ÿ

iPV

β2i

¯J
,

such that (9)–(12) ends the proof of Lemma 3.3.

The following Lemma is well known and its proof is standard:

Lemma 3.4. Let tXn, n P V u be a field of random variables which are
stochastically dominated by a random variable X. For any α ą 0 and b ą 0,
the following statements hold:

(i) E|Xn|
αIr|Xn| ≤ bs ≤ CtE|X|αIr|X| ≤ bs ` bαP p|X| ą bqu,

(ii) E|Xn|
αIr|Xn| ą bs ≤ CE|X|αIr|X| ą bs.

The following easy lemma may be found in [13] (cf. Examples 2.3 and 2.5):

Lemma 3.5. We have

MV pxq “ Opxplog` xq
τ´1q, where τ is defined in p3q.

dV pxq “ opxδq, for each δ ą 0, as xÑ8.

Lemma 3.6. For some δ ą 0, the following evaluations hold:
ř

|n|≥i,nPV

1
|n|β

“
ř

j≥i

dV pjq
jβ

≤ Cβ
β´1 i

1´βplog` iq
τ´1, for β ą 1,

ř

|n|≥i,nPV

1
|n| logτ`δ` |n|

“
ř

j≥i

dV pjq

j logτ`δ` j
≤ C

δ plog` iq
´δ,

ř

|n|≤i,nPV

1
|n|β

“
ř

j≤i

dV pjq
jβ

≤

$

&

%

C
|1´β|

`

2_ i1´βplog` iq
τ´1

˘

, for β‰1,

Cplog` iq
τ , for β“1.
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Sketch of the proof of Lemma 3.6. We apply Lemma 3.5 and use
Cauchy-Maclaurin’s Theorem ([17], p. 71) and Lagrange’s Theorem ([17],
§5.42, p 96). For example, for some θ P r0, 1s:
ÿ

j≥i

dNdpjq

j logd`δ` j
≤

ÿ

j≥i

MNdpjq ´MNdpj ´ 1q

j logd`δ` j

≤
ÿ

j≥i
MNdpjq

´ 1

j logd`δ j
´

1

pj`1q logd`δpj`1q

¯

´
MNdpi´ 1q

i logd`δpiq

≤
ÿ

j≥i
MNdpjq

´ logd`δ` pj ` 1q ` pd`δqj
j`θ logd`δ´1` pj ` θq

jpj ` 1q logd`δ` pjq logd`δ` pj ` 1q

¯

≤ C
ÿ

j≥i

´ j logd´1` pjq

jpj ` 1q logd`δ` pjq

¯

≤ C
ÿ

j≥i

1

j log1`δ` pjq
≤ C 1

logδ`piq
.

The proof in other cases runs similarly.

In the case of multidimensional indexes, the Lemma 2 ([14]) may be
expressed as

Lemma 3.7. Let X be a random variable and let r, δ, p ą 0 be arbitrary.
Then the following statements hold:

(i)
ř

nPV
1

|n|1`δ{p
E|X|r`δIr|X|≤ |n|1{ps ≤ Cppδ`1qp

τ´1E|X|rplog` |X|q
τ´1,

(ii)
ř

nPV
1

|n|1´δ{p
E|X|r´δIr|X| ą |n|1{ps

≤ C p
δE|X|

rplog` |X|q
τ´1ppτ´1 _ 2q,

(iii)
ř

nPV
1

|n|1´r{p
P r|X| ą |n|1{ps

≤ Cp
r pE|X|

rplog` |X|q
τ´1pτ´1 _ 2P p|X| ą 1qq.

Proof of Lemma 3.7. We have

(13)
ÿ

nPV

1

|n|1`δ{p
E|X|r`δ Ir|X| ≤ |n|1{ps

“

8
ÿ

j“1

1

j1`δ{p
dV pjqE|X|

r`δ Ir|X|p ≤ js

“

8
ÿ

j“1

1

j1`δ{p
dV pjq

j
ÿ

i“1

E|X|r`δ Iri´ 1 ă |X|p ≤ is

“

8
ÿ

i“1

E|X|r`δIri´ 1 ă |X|p ≤ is
8
ÿ

j“i

dV pjq

j1`δ{p
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in case (i),

(14)
ÿ

nPV

1

|n|1´δ{p
E|X|r´δ Ir|X| ą |n|1{ps

“
ÿ

nPV

1

|n|1´δ{p

8
ÿ

i“|n|

E|X|r´δ Iri1{p ă |X| ≤ pi` 1q1{ps

“

8
ÿ

i“1

E|X|r´δ Iri1{p ă |X| ≤ pi` 1q1{ps
ÿ

n PV
|n|≤i

1

|n|1´δ{p
,

in case (ii) and
ÿ

nPV

1

|n|1´r{p
P r|X| ą |n|1{ps “

ÿ

nPV

1

|n|1´r{p

8
ÿ

i“|n|

P ri ă |X|p ≤ i` 1s(15)

“

8
ÿ

i“1

P ri ă |X|p ≤ i` 1s
ÿ

nPV
|n|≤i

1

|n|1´r{p

in the last case.
Now, taking into account Lemma 3.6 and (13–15), we get

ÿ

nPNd

1

|n|1`δ{p
E|X|r`δ Ir|X| ≤ |n|1{ps

≤ C
ˆ

p

δ
` 1

˙ 8
ÿ

i“1

E|X|r`δIri´ 1 ă |X|p ≤ isi´δ{pplog` iqd´1

≤ C
ˆ

p

δ
` 1

˙

pd´1E|X|rplog` |X|q
d´1,

and
ÿ

nPVc

1

|n|1`δ{p
E|X|r`δ Ir|X| ≤ |n|1{ps

≤ C
ˆ

p

δ
` 1

˙ 8
ÿ

i“1

E|X|r`δIri´ 1 ă |X|p ≤ isi´δ{p ≤ C
ˆ

p

δ
` 1

˙

E|X|r.

Similarly, we get
ÿ

nPNd

1

|n|1´δ{p
E|X|r´δ Ir|X| ą |n|1{ps ≤ Cp

δ
E|X|rplog` |X|q

d´1ppd´1 _ 2q,

ÿ

nPVc

1

|n|1´δ{p
E|X|r´δ Ir|X| ą |n|1{ps ≤ 2C

p

δ
E|X|r,
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ÿ

nPNd

1

|n|1´r{p
P r|X| ą |n|1{ps| ≤ Cp

r
pE|X|rplog` |X|q

d´1pd´1_2P p|X|ą1qq,

ÿ

nPVc

1

|n|1´r{p
P r|X| ą |n|1{ps ≤ Cp

r
pE|X|r _ 2P p|X| ą 1qq,

which ends the proof.
Lemma 3.8. Let tXn, n P V u be a field of random variables which are
stochastically dominated by a random variable X satisfying

E|X|ppt`β`1qplog` |X|q
τ´1 ă 8,

where ppt` β ` 1q ą 0, β, t P R and p ą 0. Let tan,i, i, n P V u be a field of
random variables independent of field tXn, n P V u and such that

|an,i| “ Op1q, i, n P V , a.s.,
ÿ

iPV

E|an,i|
q “ Op|n|βq,

for some q ă ppt` β ` 1q. Then for any δ ą 0
ÿ

nPV

|n|t
ÿ

iPV

E||n|´1{pan,iXiIr|Xi|

≤ |n|1{ps|ppt`β`1q`δ ≤ CE|X|ppt`β`1qplog` |X|qτ´1,
and for any positive δ such that ppt`β`1q´ δ ≥ q and ppt`β`1q´ δ ą 0,
we have

ÿ

nPV

|n|t
ÿ

iPV

E||n|´1{pan,iXiIr|Xi| ą |n|
1{ps|ppt`β`1q´δ

≤ CE|X|ppt`β`1qplog` |X|qτ´1.
Proof. Applying Lemma 3.4, we obtain

ÿ

nPV

|n|t
ÿ

iPV

E
ˇ

ˇ|n|´1{pan,iXiIr|Xi| ≤ |n|1{ps
ˇ

ˇ

ppt`β`1q`δ

≤ C
ÿ

nPV

|n|´β´1´δ{p
´

ÿ

iPV

E|an,i|
q
¯

ˆ
`

E|X|ppt`β`1q`δIr|X| ≤ |n|1{ps ` |n|pppt`β`1q`δq{pP r|X| ą |n|1{ps
˘

and
ÿ

nPV

|n|t
ÿ

iPV

E
ˇ

ˇ|n|´1{pan,iXiIr|Xi| ą |n|
1{ps

ˇ

ˇ

ppt`β`1q´δ

≤ C
ÿ

nPV

|n|´β´1`δ{p
`

ÿ

iPV

E|an,i|
q
˘`

E|X|ppt`β`1q´δIr|X| ą |n|1{ps
˘

,

Now Lemma 3.7 finishes the proof.
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Lemma 3.9. Let X “ tXk, k P V u be the random field independent of the
random field Y “ tYk, k P V u. Let µX, µY, µX,Y be probability measures of
fields X,Y and pX,Yq, respectively. Let tAi, i P V u be the family of compact
sets in <. Let gpx,yq and hpx,yq be two measurable Borel functions such
that for every field of numbers y P tAi, i P V u:

EgpX,yq ≤ EhpX,yq ă C,

Yi P Ai, a.s., i P V,

then

(16) EgpX,Yq ≤ EhpX,Yq.

Proof. From the independency of X and Y and the Fubini’s Theorem, we
have

EgpX,Yq “
ż

gpx,yqdµX,Y “

żż

gpx,yqdµXdµY

“

ż

yPtAi,iPV u

EgpX,yqdµY ≤
ż

yPtAi,iPV u

EhpX,yqdµY

“ EhpX,Yq.

Proof of Theorem 2.1.
(I) For any δ ą 0 such that ppt`β`1q`δ ≤ 1, using Markov’s inequality

and Lemma 3.8, we get

(17)
ÿ

nPV

|n|tP
´

ˇ

ˇ

ÿ

iPV

|n|´1{pan,iXiIr|Xi| ≤ |n|1{ps
ˇ

ˇą ε
¯

≤ 1

εppt`β`1q`δ

ÿ

nPV

|n|t
ÿ

iPV

E
ˇ

ˇ

ˇ
|n|´1{pan,iXiIr|Xi| ≤ |n|1{ps

ˇ

ˇ

ˇ

ppt`β`1q`δ
ă 8.

Similarly, taking δ ą 0 such that ppt` β ` 1q ´ δ ≥ q and
ppt` β ` 1q ´ δ ą 0, we have

(18)
ÿ

nPV

|n|tP
´

ˇ

ˇ

ÿ

iPV

|n|´1{pan,iXiIr|Xi| ą |n|
1{ps

ˇ

ˇ ą ε
¯

≤ 1

εppt`β`1q´δ

ÿ

nPV

|n|t
ÿ

iPV

E
ˇ

ˇ

ˇ
|n|´1{pan,iXiIr|Xi| ą |n|

1{ps

ˇ

ˇ

ˇ

ppt`β`1q´δ
ă 8.

From (17) and (18), we obtain (2) in the case 0 ă ppt` β ` 1q ă 1.
(II) Consider the case ppt ` β ` 1q ă 2. Taking δ ą 0 such that ppt `

β ` 1q ` δ ≤ 2, we get by Markov’s inequality, Marcinkiewicz–Zygmund’s
inequality, the cr-inequality and Jensen’s inequality for arbitrary family of
real numbers tβn, n P V u such that 0 ≤ βn ≤ C, arbitrary m P R, similarly
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as in [14]:

P
”ˇ

ˇ

ˇ

ÿ

iPV

βi

´

XiIr|Xi| ≤ ms ´ EXiIr|Xi| ≤ ms
¯ˇ

ˇ

ˇ
ą εm

ı

(19)

≤ 1

pmεqppt`β`1q`δ
E
ˇ

ˇ

ˇ

ÿ

iPV

βi
`

XiIr|Xi| ≤ ms´EXiIr|Xi| ≤ ms
˘

ˇ

ˇ

ˇ

ppt`β`1q`δ

≤ C 1

mppt`β`1q`δ

ÿ

iPV

E
ˇ

ˇβiXiIr|Xi| ≤ ms
ˇ

ˇ

ppt`β`1q`δ
.

Now putting

gptαiu, tβiuq “ I
”ˇ

ˇ

ˇ

ÿ

iPV

βi
`

αiIr|αi| ≤ ms ´ EXiIr|Xi| ≤ ms
˘

ˇ

ˇ

ˇ
ą εm

ı

,

hptαiu, tβiuq “ C
1

mppt`β`1q`δ

ÿ

iPV

ˇ

ˇβiαiIr|αi| ≤ ms
ˇ

ˇ

ppt`β`1q`δ

from (19), we see that EgptXiu, tβiuq ≤ EhptXiu, tβiuq such that Lemma
3.9 implies for arbitrary n

(20) P
”ˇ

ˇ

ˇ

ÿ

iPV

an,ipXiIr|Xi| ≤ |n|1{ps ´ EXiIr|Xi| ≤ |n|1{psq
ˇ

ˇ

ˇ
ą ε|n|1{p

ı

≤ C|n|´t´β´1´δ{p
ÿ

iPV

E|an,iXi|
ppt`β`1q`δIr|Xi| ≤ |n|1{ps.

Now multiplying both two sides (20) by |n|t, summing on n P V and applying
Lemma 3.8, we get

(21)
ÿ

nPV

|n|tP
”
ˇ

ˇ

ˇ

ÿ

iPV

an,i
`

XiIr|Xi| ≤ |n|1{ps ´ EXiIr|Xi| ≤ |n|1{ps
˘

ˇ

ˇ

ˇ
ą ε|n|1{p

ı

≤ C
ÿ

nPV

|n|´β´1´δ{p
ÿ

iPV

E|an,iXi|
ppt`β`1q`δIr|Xi| ≤ |n|1{ps

≤ CE|X|ppt`β`1qplog` |X|qτ´1 ă 8.

(III) Now, in the case 1 ă ppt ` β ` 1q ≤ 2, taking δ ą 0 such that
ppt` β ` 1q ´ δ ≥ maxtq, 1u and using Markov’s inequality, Marcinkiewicz–
Zygmund’s inequality, the cr-inequality and Jensen’s inequality for arbitrary
family of real numbers tβn, n P V u like in [14], we get
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(22) P
”
ˇ

ˇ

ˇ

ÿ

iPV

βi

´

XiIr|Xi| ą ms ´ EXiIr|Xi| ą ms
¯
ˇ

ˇ

ˇ
ą εm

ı

≤ 1

pmεqppt`β`1q´δ
E
ˇ

ˇ

ˇ

ÿ

iPV

βi
`

XiIr|Xi| ą ms´EXiIr|Xi| ą ms
˘

ˇ

ˇ

ˇ

ppt`β`1q´δ

≤ C 1

mppt`β`1q´δ

ÿ

iPV

E
ˇ

ˇβiXiIr|Xi| ą ms
ˇ

ˇ

ppt`β`1q´δ
.

In this case, we put

gptαiu, tβiuq “ I
”
ˇ

ˇ

ˇ

ÿ

iPV

βi
`

αiIr|αi| ą ms ´ EXiIr|Xi| ą ms
˘

ˇ

ˇ

ˇ
ą εm

ı

,

hptαiu, tβiuq “ C
1

mppt`β`1q´δ

ÿ

iPV

ˇ

ˇβiαiIr|αi
ˇ

ˇ ą ms|ppt`β`1q´δ

and use Lemma 3.9 to obtain that

(23) P
”
ˇ

ˇ

ˇ

ÿ

iPV

an,i
`

XiIr|Xi| ą |n|
1{ps ´ EXiIr|Xi| ą |n|

1{ps
˘

ˇ

ˇ

ˇ
ą ε|n|1{p

ı

≤ C|n|´t´β´1`δ{p
ÿ

iPV

E|an,iXi|
ppt`β`1q´δIr|Xi| ą |n|

1{ps.

Finally, we have

(24)
ÿ

nPV

|n|tP
”ˇ

ˇ

ˇ

ÿ

iPV

an,i
`

XiIr|Xi| ą |n|
1{ps ´ EXiIr|Xi| ą |n|

1{ps
˘

ˇ

ˇ

ˇ
≤ ε|n|1{p

ı

≤ C
ÿ

nPV

|n|´β´1`δ{p
ÿ

iPV

E|an,iXi|
ppt`β`1q´δIr|Xi| ą |n|

1{ps

≤ CE|X|ppt`β`1qplog`|X|qr´1 ă 8.

Since EXn “ 0, (2) holds by (21) and (24) when 1 ă ppt` β ` 1q ă 2.
(IV) Let us consider the case ppt ` β ` 1q “ 1 and t ≥ ´1 (otherwise

the proof is obvious). Since, from Lemma 3.4(ii), (4), (5), and the fact that
E|X| ă 8 in both cases of definition V , we have:

E|Xn|Ir|Xn| ą bs ≤ D1E|X|Ir|X| ą bs,(25)
ÿ

iPV

E|an,i| ≤ D2|n|
β, for n P V,(26)

E|X|Ir|X| ą Ks ≤ ε

16D1D2
for sufficiently large K,(27)
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then for n such that |n| ą Kp, we have

(28)
ˇ

ˇ

ˇ

ÿ

iPV

|n|´1{pEan,iXiIr|Xi| ą |n|
1{ps

ˇ

ˇ

ˇ
≤ ε

16
.

Furthermore, because EXn “ 0, n P V,

P
”
ˇ

ˇ

ˇ

ÿ

iPV

an,iXi

ˇ

ˇ

ˇ
ą ε|n|1{p

ı

≤ P
”ˇ

ˇ

ˇ

ÿ

iPV

an,i
`

XiIr|Xi| ≤ |n|1{ps ´ EXiIr|Xi| ≤ |n|1{ps
˘

ˇ

ˇ

ˇ
ą
ε

2
|n|1{p

ı

` P
”ˇ

ˇ

ˇ

ÿ

iPV

an,iXiIr|Xi| ą |n|
1{ps

ˇ

ˇ

ˇ
ą
ε

4
|n|1{p

ı

` P
”ˇ

ˇ

ˇ

ÿ

iPV

an,iEXiIr|Xi| ą |n|
1{ps

ˇ

ˇ

ˇ
ą
ε

4
|n|1{p

ı

“ Hn,1 `Hn,2 `Hn,3, say.

On the other hand, the term
ř

nPV |n|
tHn,1 on the right hand side is evalu-

ated in (21), whereas the term
ř

nPV |n|
tHn,2 may be bounded by

C
ÿ

nPV

|n|tE
ˇ

ˇ

ˇ

ÿ

iPV

|n|´1{pan,iXiIr|Xi| ą |n|
1{ps

ˇ

ˇ

ˇ

ppt`β`1q´δ

≤ CE|X|ppt`β`1qplog`|X|qτ´1 ă 8.

In the case of (a),
ˇ

ˇ

ˇ

ÿ

iPV

an,iEXiIr|Xi| ą |n|
1{ps

ˇ

ˇ

ˇ
≤

ÿ

iPV

|an,i|D1E|X|Ir|X| ą |n|
1{ps ≤ ε

4
|n|1{p,

such that Hn,3 “ 0 for |n| ą Kp.
For the proof of Theorem 2.1(ii)(b) we consider first the case |n| ą Kp,

too. Because from (28),

P
”ˇ

ˇ

ˇ

ÿ

iPV

Ean,iEXiIr|Xi| ą |n|
1{ps

ˇ

ˇ

ˇ
ą

ε

16
|n|1{p

ı

“ 0,

we have

Hn,3 ≤ P
”
ˇ

ˇ

ˇ

ÿ

iPV

pan,i ´ Ean,iqEXiIr|Xi| ą |n|
1{ps

ˇ

ˇ

ˇ
ą

ε

16
|n|1{p

ı

.

From (b) there exists constant D3 such that
ř

iPV E|an,i ´ Ean,i| ≤
D3

|n|β

logτ`γ` |n|
, such that using Markov’s inequality, (25) and Lemma 3.6, we

get
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ÿ

nPV :|n|ąKp

|n|tHn,3

≤
ÿ

nPV :|n|ąKp

16D1|n|
t´1{p

ε

ÿ

iPV

E|an,i ´ Ean,i|E|X|Ir|X| ą |n|
1{ps

≤
ÿ

nPV :|n|ąKp

16D1D3

ε

|n|t`β´1{p

logτ`γ` |n|
E|X|

≤ 16D1D3

ε
E|X|

ÿ

nPV :|n|ąKp

1

|n| logτ`γ` |n|

≤ 16CD1D3

γε
E|X|plog`Kq

´γ ă 8.

In both cases (a) and (b), from Lemma 3.6, we have additionally
ÿ

nPV :|n|≤Kp

|n|tP
”ˇ

ˇ

ˇ

ÿ

iPV

an,iXi

ˇ

ˇ

ˇ
ą ε|n|1{p

ı

≤

#

C
|1`t|K

p1`tqp logτ´1` K, if t ą ´1,

C logτ`K, if t “ ´1,
ă 8.

If the condition (c) holds, we obtain
ÿ

nPV

|n|tHn,3 ≤ D1
4

ε

ÿ

nPV

|n|t´1{p
ÿ

iPV

E|an,i|E|X|Ir|X| ą |n|
1{ps

≤ D1D2
4

ε

ÿ

nPV

|n|t`β´1{pE|X|Ir|X| ą |n|1{ps

≤ D1D2
4

ε

ÿ

nPV

|n|´1E|X|Ir|X| ą |n|1{ps

≤ D1D2
4

ε

ÿ

nPV

|n|´1
E|X| logτ`γ` |X|
`

1
p

˘τ`γ
logτ`γ` |n|

ă 8,

which ends the proof of Theorem 2.1 in the case ppt` β ` 1q “ 1.
(V) Let tβn,i, n, i P V u be a field of real numbers bounded by M. From

Lemma 3.3, we obtain
ÿ

nPV

|n|tP r|
ÿ

iPV

βn,iXi| ą ε|n|1{ps ≤ C
ÿ

nPV

|n|t´2J{p
`

ÿ

iPV

β2n,i
˘J

` C
ÿ

nPV

|n|´β´1´η{p
ÿ

iPV

E|βn,iXiIr|Xi| ≤ |n|1{ps|ppt`β`1q`η

` C
ÿ

nPV

|n|´β´1`η{p
ÿ

iPV

E|βn,iXiIr|Xi| ą |n|
1{ps|ppt`β`1q´η.
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Putting

gptXiu, tβn,iuq “ Ir
ˇ

ˇ

ÿ

iPV

βn,iXi

ˇ

ˇ ą ε|n|1{ps,

hptXiu, tβn,iuq “ C|n|´2J{p
`

ÿ

iPV

β2n,i
˘J

` C
1

|n|t`1`β`η{p

ÿ

iPV

ˇ

ˇβn,iXiIr|Xi| ≤ |n|1{ps|ppt`β`1q`η

` C
1

|n|t`1`β´η{p

ÿ

iPV

|βn,iXiIr|Xi| ą |n|
1{ps|ppt`β`1q´η,

applying Lemma 3.9, multiplying both two sides by |n|t and summing on
n P V , we get

ÿ

nPV

|n|tP
´ˇ

ˇ

ˇ

ÿ

iPV

an,iXi

ˇ

ˇ

ˇ
ą ε|n|1{p

¯

≤ C
ÿ

nPV

|n|t´2J{pE
´

ÿ

iPV

a2n,i

¯J

` C
ÿ

nPV

1

|n|1`β`η{p
E
´

ÿ

iPV

ˇ

ˇan,iXiIr|Xi| ≤ |n|1{ps
ˇ

ˇ

ppt`β`1q`η
¯

` C
ÿ

nPV

1

|n|1`β´η{p
E
´

ÿ

iPV

ˇ

ˇan,iXiIr|Xi| ą |n|
1{ps

ˇ

ˇ

ppt`β`1q´η
¯

.

Finally, using Lemma 3.8 and (6), we have
ÿ

nPV

|n|tP
´ˇ

ˇ

ˇ

ÿ

iPV

an,iXi

ˇ

ˇ

ˇ
ą ε|n|1{p

¯

≤ C
ÿ

nPV

|n|t´2J{pE
`

ÿ

iPV

a2n,i
˘J

` CE|X|ppt`β`1q
`

log` |X|
˘τ´1

` CE|X|ppt`β`1q
`

log` |X|
˘τ´1

ă 8,

which ends the proof of Theorem 2.1 in case ppt` β ` 1q ≥ 2.
Thus Theorem 2.1(i) follows from (I), (II) and (III), Theorem 2.1(ii)

from (II) and (IV) and Theorem 2.1(iii) is the consequence of (V).

Proofs of Corollaries 2.1 and 2.2. For proofs we put in Theorem 2.1
an,i “ IrNn ≥ |i|s and an,i “ IrNn ≥ is in items (a) and (b), respectively.
We only remark, that

ÿ

iPV

P rNn ≥ |i|s “ EMV pNnq,

E
`

ÿ

iPV

IrNn ≥ |i|s
˘J
“ E

`

MV pNnq
˘J
,

ÿ

iPV

P rNn ≥ is ≤ E|Nn|,
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E
`

ÿ

iPV

IrNn ≥ is
˘J ≤ E

ˇ

ˇNn

ˇ

ˇ

J
.

Whereas for proof of Corollary 2.2, we put

an,i “

#

εi, 1 ≤ i ≤ n,
0, otherwise,

and an,i “ εn,i

in items (a) and (b), respectively. Furthermore, from Lemma 3.1 and
Lemma 3.5:

ÿ

iPV ,i≤n
P rεi “ 1s “ p̂MV p|n|q “ O

`

|n|plog` |n|q
τ´1

˘

,

E
`

ÿ

iPV ,i≤n
ε2i
˘J ≤ C

´

ÿ

iPV ,i≤n
P rεi “ 1s `

´

ÿ

iPV ,i≤n
P rεi “ 1s

¯J{2¯

≤ 2Cp̂J{2M
J{2
V p|n|q “ O

`

|n|J{2
`

log` |n|
˘Jpτ´1q{2˘

,

E
`

ÿ

iPV

ε2n,i
˘J ≤ 2C

`

ÿ

iPV

p̂n,i
˘J{2

.
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