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ON THE COMPLETE CONVERGENCE OF RANDOMLY
WEIGHTED SUMS OF RANDOM FIELDS

Abstract. Let {X,,n € V € N%} be a d-dimensional random field indexed by some
subset V of lattice N¢, which are stochastically dominated by a random variable X. Let
{@n,i,n,i € V} be a 2d-dimensional random field independent of {X,,n € V} and such
that |an:| < M,n,i € V for some constant M. In this paper, we give conditions under
which the following series

|Zz€Vaan‘
Z"P[ 7 >E]’

nev

is convergent for some real ¢, some fixed p > 0 and all € > 0. Here |n| is used for l_[le ;.
The randomly indexed sums of field {X,,n € V'} are considered too.

1. Introduction

Let N? denotes the positive integer d-dimensional lattice points and let
{X,,n € V < N be a set of random variables indexed by some subset
V of lattice N%. We use the notation n < m if n; < m;,i = 1,2,...d,
and similarly n < m. The symbol |n| denotes H‘Ll n;. The dlvergence
n — oo is interpreted as n; — o0,i = 1,2,...d. Let {ay;,n,i €V < N¢}
be a 2d-dimensional random field independent of {X,,,n € V'} and such that
lani| < M, a.s. n,i €V for some constant M. We say that the random field

{Xn,n € V} is stochastically dominated by the random variable X iff
(1) P[|X,| > z] < CP[|X]| > x|, forallz >0, and all ne V.

For n € V' we will write Sp(V) = Xicv i<, Xi and Sy (V) = Dy ij<n Xi-
If it doesn’t lead to any misunderstanding we will omit argument and write
short S, and S,,), respectively.
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In this paper, we consider the following complete convergence of random
moving averages of random fields

an,i Xi
(2) Veso Z In| P[’ZZEV | > e} < o,

|1/p
nev

for some fixed p > 0, € R.

The complete convergence of random sequences was introduced and first
investigated by Hsu, Robbins [7] and Erdos [I]. Their results were extended
by Baum and Katz [2] to establish a rate of convergence in the sense of
Marcinkiewicz-Zygmund’s strong law of large numbers. This result has rich
generalizations, e.g. Hu, Moricz and Taylor [9] extended complete conver-
gence on arrays of rowwise independent random variables. We refer to Gut [3]
for a rich survey on complete convergence related to strong laws results.
The complete convergence and the convergence rate of randomly indexed
partial sums were considered by Gut [4] and additionally for multidimen-
sional indices by Gut [5]. In 1998, Hsu et al. [I0] proved the complete
convergence theorem for arrays of rowwise independent random variables.
This result was generalized by Sung [14], who proved the following theo-
rem:

THEOREM 1.1. Let {X,, n > 1} be a sequence of random variables which
are stochastically dominated by a random variable X satisfying E|X|p(t+5+1)
< oo, where p(t + +1) > 0, B,t € R and p > 0. Let {ani,n,i > 1} be
a bounded array of real numbers such that

e}

> fanilt = O(n),

i=1
for some q < p(t+ B+1). Assume that one of the following conditions holds:

(i) 0<plt+p+1) <1,
(i) 1 <p(t+B+1) < 2,{X,,n > 1} is the sequence of independent random
variables with EX, = 0,n > 1,
(iii) 2 < p(t+ B +1),{X,,n > 1} is the sequence of independent random
variables with EX,, = 0,n > 1 and Y. = O(n%), for some o < %

then for all € > 0,

zlnz

i tP M >ecl|l <0
1 nl/p ’
n=

On the other hand, the almost sure and complete convergence for ran-

domly weighted sums of arrays of rowwise independent Banach space valued
random elements were investigated by Thanh and Yin [16].
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In this paper, we generalize the Theorem in the following directions:

(i) We consider the d-dimensional random field of independent random
variables.
(ii) In a random field, we consider some cases of summation index V.
(iii) We allow that constants {a,,n,i € V} (cf. Theorem are random
variables independent of {X,,, n € V'}. This situation allows us to obtain

the complete convergence result for randomly indexed random sums of
the field.

The notations, main results and examples of applications are given in
section 2, whereas some lemmas and proofs in section 3. In the whole paper
C denotes the generic constants different in different places, maybe. By the
ITA] we will denote the indicator of event A as well as the characteristic
function and by log, = we will understand max{log x, 1}, where logz is the
natural logarithm.

2. Main results

We will consider two kind of subsets N¢ and V,, = {n: %nz <n; < cn;, for
1 <i<j<d ni,njeN\{0}, 7,7 =1,2,...,d} for some ¢ > 1, of positive
integer d-dimensional lattice N¢(for some positive integer d).

Considering the results, which are true for both of them we will write

shortly V. We note, in all paper,

1, itV =V
3 — V’d — ) Cy
() T 7'( ) {d, iV = Nd.

The geometry of lattice V' plays the big role in the evaluation of the
complete convergence. Following Smythe [13], we introduce some notions:

DEFINITION 2.1. For arbitrary subset V of d-dimensional lattice N¢ we
define

(i) dv(j) = card{neV :|n| = j}, j =1,2,3,....
i) My(x) = JST
() My (z) 1, 0<z<l.
For the additional information on My and dy cf. Lemmas 3.5 and 3.6.

THEOREM 2.1. Let {X,,,n € V} be a field of random variables which are
stochastically dominated by a random variable X such that

E|X [Pt (log | X])! < oo,

where p(t + f+1) >0, B, t e R and p > 0. In the case p(t + [+ 1) > 1,
we always assume that EX,, = 0, n € V, and that {X,, n € V} is the field
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of independent random variables. Let {an;, i,n € V} be a field of random
variables independent of field {X,,n € V} and such that

(4) lani| = O(1), i,neV, as.,
(5) Y. Elail? = O(n|”),
eV
for some g < p(t+ B +1).
(1) fo<p(t+p+1)<2,p(t+p+1)#1, then (2) holds.
(ii) If p(t + B+ 1) = 1 and one of the following conditions is satisfied:
(a) Yiev lanil? = O(In|?), a.s.
(b) dev Elan,i — Eayi| = O( [} ), for some~y >0,

log” ™ |n|

(c) E|X|(ogh™|X|) < o0, for some y > 0,

then holds.
(ili) if p(t + B+ 1) > 2 and

J
(6) B(Y a2;)" = Ollnl™),
€V
for some J > 2, a <2/p and J(2/p —a) —t > 1, then holds.

COROLLARY 2.1. Let {X,,n €V} and constants p,t, 3 be such as in The-
orem 211

(a) Let {Np,n € V} be a field of random indices independent of the field
{Xn,n €V} and such that EMy(N,) = O(|n|?).

If i) O0<pt+B8+1)<2, pt+B8+1)+#1,
or (ii) p(t+B8+1) =1, and
EMy(N,) = O( g ) for some v > 0,

= log " |n|

or
E|X|(log’™ |X]) < o0 for some v > 0,
or (iii) p(t + B+ 1) > 2, and E(My(N,))? = O(|n|*’)
for some o < 2/p, J > 2 and J(2/p — ) —t > 1,
then
Veso Y, [nl'PISv,| > eln]'?] < .
neV

(b) Let {N,,,n € V} be a d-dimensional random field independent of the
field {Xy,n € V} and such that E|N,| = O(|n|®). If the assumptions of
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point (a) hold with My (Ny) replaced by |N,,|, then
Veso Y, In'P[|Sy, | > €ln|"?] < 0.
neV B
COROLLARY 2.2. Let {X,,,n € V} and constants p,t, 3 be such as in The-
orem 211

(a) Let {en,n eV} be a field of random variables such that
Ple, = 1] =1— Ple, = 0] = p, n € V and independent of the field
{Xn,neV}. Assume that B > 1. Then
Veso Y, [l'P[ Y. leiXil > €lnf'?] < o0,
neV i€V, i<n
(b) Let {eni,n,i € V} be a 2d-dimensional fields of random variables such
that Plen; = 1] = 1 — Plen; = 0] = pn,, where {pyi,n,i € V} is
2d-dimensional field of numbers and
3 fus = O(lal?).
€V
If p(t + B+ 1) = 1 we assume additionally that for some v > 0
. |n)? )
Pni = O(T )
i;f log’."" [n|

whereas if p(t+5+1) > 2, we assume that for integer J > 2 and o < 2/p
such that J(2/p —a) —t > 1

(X 605)"" = Ol

€V
then

Ve=0 Z |ﬂ|tP[Z ‘E&ZXd > €|E’1/P] < 0.

nev €V

EXAMPLE 2.1. Let {Y,,n € N?} be an iid random field with the stable law
(Gor 4 c()) 1.e. with the characteristic function

Ee™ — exp{ity’ — ct|* {1+ if sign(t)w(t, a')}}, t € R,

(t. o) 2logt, ifa =1,
w(t, o) = .
tan(ga’), otherwise.

where

Furthermore, let {N,,n € N?} and {U,,n € N*} be random fields of 2-

dimensional vectors with the laws
k1 \k2
P[Mn _ E] _ €_>‘"1_)‘n2 ni nz’ E c NQ,
= kq'ko!
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and

PlU,

1 .
:k]:{|k|a lfkgﬁa

0, otherwise,

respectively. We assume that {U,,n € N?} is independent of {Yy,n € N?}.
Furthermore, let {X,, = Yy, .ne V'}, then for every x > 0 we have

PllXn| > 2] = P[Y1] > 2] = 1 = Gar g c(2),

and for all s < o/ we have E|X,|° = E|Y,|° <oo,ne V.Let 0 < 8 <

O%—1&—1, and
O(n?), fV=V,plt+p+1)#1,
Mo = { OGter) iV = Veuplt + 6 +1) = 1,
O, n n
O(nis), ifV =N

for some 6 > 0. If 0 < p(t+ 5+ 1) <1 then

Ve Zmﬁp“ 3 XE‘>E|@|1/P]<OO,
nev 1<k<N

whereas if 1 < p(t + f + 1) then

Vet Zm\tPH 3 YE]>6|@|1/P]<OO.
nev’ 1<k<N.

3. Auxiliary results and proofs
Let us introduce the ordering in V' by the “diagonal method”:

(E <n) <= (& <nl) v (k] = |2]) A Fign) < nign)),

where we put i(k,n) = min{l <i < d:k; # n;} for k # n and i(k, k) = d.
This order stands the linear order of d-dimensional vectors. Let us de-
note ordy(n) = card{k € V : k < nv k = n} (for eg. ordy((3,2)) =
13, ordy,((3,2)) = 4).

For proof, we need the following auxiliary results:

LEMMA 3.1. Let {X;,i€ V} denotes the field of independent random vari-
ables with EX; = 0,1 € V. Then for arbitrary subset S < V' there exists a
positive constant Cp, depending only on p > 2 such that:

E’Z x| < Cp{;mxi\p + (;EXZ?)pﬂ}.

€S
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LEMMA 3.2. Let {X;,i € V} denote the field of independent random vari-
ables with EX; = 0,1 €V, then for arbitrary integer j > 1, and t > 0:

M Py x

€V

> 6jt]

i€V v

. k 127
< C;P[sup |X;i| > t/4~] + Djsup [PHZ Xordq(l)‘ > t/47]] ,
keN =1

where ord,;* () denotes the inverse function of ordy () and Cj, D; are positive
constants.

Applying the described above renumeration, we obtain Lemma [3.] from
Rosenthal’s inequality [12] and Lemma from proof of equation (3.3),
p. 164 in [6] and Hoffmann-Jgrgensen’s Proposition 6.7 in [1I]. We only
remark that

= sup | Xg|,

sup ‘Xord;1 (2) el

i>1
but in general the second term on the right hand side of ([7)) can’t be similarly
written. m

LEMMA 3.3. Let {X,, n € V} be the field of independent random variables
with EX,, = 0, EX?2 < w, n € V, stochastically dominated by the random
variable X, and let {B,, n € V} be the field of numbers bounded by M, then
for arbitrary J > 2,1, €, p >0 and B, t € R such that p(t + 5+ 1) > 1+
we have

®) 3 Inl'P{| 3 6:Xi| > elnl'?]

nev €V
J
<CY (Y 8) +C Y Y BB
nev eV nev €V

< |E|1/p]|p(t+5+1)+n

+C Y I[P Y BB X > |nf PO,
nev eV
Proof. Let us define

, eln|'/P
X=Xt (18040 < 7 56)
X; = XI(|8iXq| > 3n|'/P),

n 6 n 1/p

where j is integer such that 2/ > J and ¢, without loss of generality consid-
erations, is € < . Then



On the complete convergence of randomly weighted sums of random fields 239

P(|Y 8] > elnl'?| < P||Y] Bu(X; - BX))|> f’”’”"]
eV eV - B 4
[ /
+ P|EZV B@(EXé + EX;”)| - e|nll p]
1/p
+ P BiX}| > 6|”|
\ZEZV] ]
[ /
+ (IS ey - mxp) > ]

T eV
=11+ I+ I3+ 1y, say.

To evaluate I} we use Lemma [3.2] to the field of random variables
[n|=VPBi(X; — EX;), ie

. . ! ' e‘ﬂ‘l/p
I < ij[i‘él‘l/:) |Bi(X; — EX)| > 247 ]
e|n|'/P 72
+ D sup[ |Z Bord S ON EX;rd;l(l))| = 247 4]]

Furthermore, because

|/BX,| < 6|E|1/p | 6|TL| /2| |n|2/p
vl =945 . 367 th—= 945 . = 2425 . 362’

and because Var(X) < EX? for arbitrary random variable X, therefore:

thus |E , 182X

, €l
Plauplaxt = X)) > S|
/ / E|n|1/p
<P [S:UPWzXzHS;UPWzEXzP |
<P x| 27 p pxi| > oy
[333‘@ >3 24J 2] * [S“p‘ﬁl i > 241.2] -
and by Markov’s inequality, we have
247 . 4 o
(9) IlSDj<T> iENP[Z% pVarX,, . )] I

< Dj<24j- > [Z 52EX2] |n|_2J/p < Cln|” 2J/p Zﬁ

€
eV



240 A. M. Gdula, A. Krajka

Using the facts:
EXI[BiXi| < 8ln|"?] = —=EXiI[|8:X,| > 6|n['/7],
Xi = XI[|1X;] > |n"P] + X, I Xq| < |n|'7],

I[X+Y>7]§I[X>%]+I[Y>%],

X
x| > Y]] < ‘? " forall v > 0,

we get
1/
(10) I = PUZ EXiBI[|BiXq| < dln|'?]| > M]
eV
N PH_ > EXiBid[16iXi] > oln|'?] (I[IX;I > |nYP+I[|X,] < |ﬂ|1/p])‘
€V

>

e|n|'/”
]

1/p
==

< P E|XI[1X:] > [nf ) T80T Xe| > [n]"7]] > 8ln/7] >
eV
1/p
_ €ln| ]

+P[ 3 BIXAINX < |l PITTGXI[1X0] < [l ]| > o] > 95

eV

1/p
—t—B—1+1/p+n/p v A 1/p1|P(t+B8+1)—n €ln|
=P [ZV (6%1zl) E|BiXI[|X:] > ] V7] > ]
1/p
p1 [\ —t—B—1+1/p—n/p s 1 < || V/p7PUEFB+)+n €|n|
+P[ 2] E|B XX < [nl'") > ]
< C Y I[P E|BXGI[|X| < (] PP
€V
+C Y |n " PTIIPE 8 XX > |nf VPP = K say,
€V
for arbitrary 0 <np < p(t+ 5+ 1) — 1.
Let us remark that
> PlIBiXi| > Cln[7]
eV
< Y. PlBX[|Xi| < |nf'?] > C|n|'7/2]
€V
+ Y PIBiX|I[|Xi| > [n]'/P] > C|n|'7 /2]
€V
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< CZ In| AP B B XGI| Xy < || V/P]PUHAE D

€V
+ CZ m‘_t_ﬁ_Hn/pE’ﬁiXiIUXﬂ > m,l/p] ’p(t-i—ﬁ-i—l)—n — K
eV
On the other hand
(11) I < 3 PI8iXy| = 6|n|'?] = K

eV

Moreover, from Lemma Markov’s inequality and evaluation I; and I3
we have

(12) 1 < {C Y PlIg:X4

€V

1/p J
S5 p) + Ol (3 2 <o)
<K+ O (Y )"
€V

such that @D, ends the proof of Lemma "

The following Lemma is well known and its proof is standard:

LEMMA 3.4. Let {X,,n € V} be a field of random variables which are
stochastically dominated by a random vartable X. For any o > 0 and b > 0,
the following statements hold:

(i) BIX, "I X,] < b] < C{E|X|°I[|X| < b] + ¥ P(1X| > b)},
(i) BIX,oI[X,] > 0] < CE|X|°I[|X| > 0].

The following easy lemma may be found in [I3] (cf. Examples 2.3 and 2.5):
LEMMA 3.5. We have
My (z) = O(z(log, x)™ 1), where T is defined in @3-
dy (z) = o(z%), for each § >0, as x — 0.

LEMMA 3.6. For some § > 0, the following evaluations hold:

dV(J CB 1— -1
X \n\ﬁ =2, < 31t 5(10g+ i), for B> 1,
|n|>i,neV j>i
dv (J -6
%ﬂs = Z T+)5 S ri 10g+2 )

mog (2 v it Pllog, )Tt), for B#1,

ﬁ =3
T, for B=1.

|n|<ineV J<i C(log, 1)

IN
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Sketch of the proof of Lemma We apply Lemma and use
Cauchy-Maclaurin’s Theorem ([I7], p. 71) and Lagrange’s Theorem ([17],
§5.42, p 96). For example, for some 6 € [0, 1]:

ZM<ZMI\WU) MNd(j—l)

Sjlogi™j T &l jlogd*? j
. 1 1 Mya(i — 1)
< ) Mya(j) < : : >— I :
Jzzi jlog®? j (] +1)log?(j+1) ilog®9 (i)
. 10gd+5(] + 1) + (d]':_(se)] logd+5 1(] + 0)
< Z Mya(j) ( d+o d+o )
i>i J(J + 1) logi™(4) log, (] +1)
J 10g+ ( 1
<C ( ) C <C— .
; 3(j + 1) logk(5) ;z J log1+5 log?, ()

The proof in other cases runs similarly. =

In the case of multidimensional indexes, the Lemma 2 ([I4]) may be
expressed as

LEMMA 3.7. Let X be a random variable and let r,§,p > 0 be arbitrary.
Then the following statements hold:
() Spev s BIXIIIXI<1al*?) < OG5 X (g, X))~
(1) Spev s EIX 11X > [n]'7]
< CLEIX|"(log. | X|) L v 2),
(i) X pey W P[lX] > |ﬂ|1/p]
< S2(B|X|"(log,. [X])71p7 ! v 2P(IX] > 1)).

Proof of Lemma [3.7. We have

1
(13) ] WEWVMI[IX\ < |n|"/?]
neV '—

o0]

1 . . .
= Z de(])E|X| +§I[|X’p <j]
j=1

1 J , .
= Z S W 0) N BIXI Il -1 < X <]
j=1 i=1

EIXI"™Ili—1 < |X[P<d] ) T

I
s T

~
Il
—

j=i
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in case (i),

1 .
(14) ) WEle CI[IX| > |nf"/"]
neV '—

1-4/p
0
= Y i 2 BRI < X) < 6 1))
nev i=|n|

0
1
_ r—4& 11:1/p . 1/p
Z;E|X| I[P < |X[ < (i +1)7P] ; T

In| <i
in case (ii) and
o6}
(15) ) ™ ‘1 i PIX| > n|'?] = )] ™ ’1 i > Pli<|X[P <i+1]
neV neV i=|n|
- 1
=N Pli<|XPP<i+1] S -
2 2
n| <i

in the last case.

Now, taking into account Lemma and (13| , we get

1
X e BT IIX < ')
neNd '—

r+4 -4 —1
0<5+1)2E|Xy+1[ 1< |XP <i]imP(log, i)

< 0(5 " 1)pd—1E|X|’"<1og+ Xyt

and
1
> oy BT IIX] < [l
neVe '—

r+0 -—§ r
<C<5+1>;E|X| I[i—1 < | X|P <ii /P<C(5+1>E|X\

Similarly, we get

1
2 |1 gy BT IIX] > [0l 7] < OBIX (log, X)) (0" v 2),

neNd

r— P r
Z n |1 T [1—8/p E|X]| 6I[|X|>|ﬂ|1/p]§2C’gE|X|,

neVe
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1 p r 1 d—
2 WP[IXI > |n/'7]] < C(ElX] (log, [X|)*~'p?~tvaP(IX|>1)),
neNd '—

1 p )
> iRt IX1 > 7] < CE(BIX| v 2P(X| > 1),
neVe '—

which ends the proof. =

LEMMA 3.8. Let {X,,n € V} be a field of random variables which are
stochastically dominated by a random variable X satisfying

E|X [P+ (log | X])™L < oo,

where p(t + f+1) >0, 5,teR and p > 0. Let {ani,i,n e V} be a field of
random variables independent of field {X,, n €V} and such that

lani| = O(1), i,neV, as.,
Y. Elanl* = O(|n/?),
eV
for some g < p(t + B +1). Then for any 6 >0
D) " Y Ellnl ™ Pan XX

nev €V
< |ﬂ|1/p]|p(t+6+1)+6 < CE|X|p(t+ﬁ+1)(log+ |X|)T_1,

and for any positive § such that p(t+F+1)—3d > qandp(t+L8+1)—0 >0,
we have

Z n" Z E|n| P an X I[|X;| > |n|/P]pE+ED=0
nev €V
< CE|X [P+ (log . | X])™ L.

Proof. Applying Lemma [3.4] we obtain

Z m|t Z EHQ’*UP%,ZXJHXJ < m|1/p]}p(t+ﬁ+1)+5
nev €V

<C Y Il (Y) Blagl?)
nev €V
x (B X[PEHH]X] < ]! 7] + || 0S40/ P X > |nfV0])

and

2 ‘E‘t Z EHB’_l/p%,zXzIUXd > m‘l/p]}P(tJrﬂ+l)*5

neVv €V
<C Y In[ PPN Elan|?) (BIX PCHEDTOLX] > [n]'P]),
nevV eV

Now Lemma [3.7] finishes the proof. =
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LEMMA 3.9. Let X = {Xj,k € V} be the random field independent of the
random field Y = {Yy, k € V}. Let px, py, px,y be probability measures of
fields X, Y and (X,Y), respectively. Let {A;,i € V'} be the family of compact
sets in R. Let g(x,y) and h(x,y) be two measurable Borel functions such
that for every field of numbers'y € {A;,i € V}:

Eg(X,y) < EnX,y) < C,

Yie A, as., i€V,

then
(16) Eg(X,Y) < Eh(X,Y).

Proof. From the independency of X and Y and the Fubini’s Theorem, we
have

Eg(X,Y) = fg(x,y)dux,y = Ug(x,y)dﬂxduy
_ f Eg(X,y)dpy < f E(X,y)dpy
ye{A; eV} ye{A; eV}
— Eh(X,Y).
Proof of Theorem [2.11

(I) For any § > 0 such that p(t+5+1)+0 < 1, using Markov’s inequality
and Lemma [3.8] we get

an) X P Il P ans Xl [1X,] < [n]'7]]> ¢

nev €V
1 _ p(t+B8+1)+6
<~y O Il Y Bl ey XI[1XG] < lnf )| <.
neV €V
Similarly, taking § > 0 such that p(t + §+ 1) — § > g and
p(t+ S +1)—06 >0, we have
(18) Xl P(|Y Il Pan XGI(IX] > 07| > €)
neV eV
1 B p(t+p+1)—6
< —r O Il Y Bllnl ey Xl [1X] > [nf'7) <.
nev €V

From and (18)), we obtain in the case 0 < p(t+ 8+ 1) < 1.

(II) Consider the case p(t + f + 1) < 2. Taking 6 > 0 such that p(t +
B+1)+3d < 2 we get by Markov’s inequality, Marcinkiewicz—Zygmund’s
inequality, the c,-inequality and Jensen’s inequality for arbitrary family of
real numbers {f5,, n € V} such that 0 < g, < C, arbitrary m € R, similarly
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as in [14]:

(19) P|| 3 i Xul (1] < m] = EX,I[1X,| < m])| > em|

€V
: p(t+B+1)+6
< ()p(t+B+1)+6E‘Z Bi (X I[| Xi| < m]—EXI[|X;] < m])‘
me &
1 .
= CW Z BB XiI[|X;] < m]|P( +B+1)+8

€V

Now putting

o({os} 1)) = 1] |2 Bulaulllos] < m) ~ EXGI[|X| < m])| > em].

€V

h({ai}a {ﬁg}) = C; ngazfﬂad < m]|p(t+ﬁ+1)+6

mPt+B+1)+6
€V

from (19), we see that Eg({X;},{6:}) < Eh({X;},{B:}) such that Lemma
[3.9] implies for arbitrary n

) P||Y ani(GIIX,) < 7] = EXGITIXi| < |n]7])| > eln]"?]
€V
< Cluf 710003 Blay X P DI < |7,
€V

Now multiplying both two sides by |n|t, summing on n € V and applying
Lemma, we get

1)
> 10l P| | ana (T 11X < |n]7] = BXGITIX,) < [uf'7)| > eln 7|
neV €V
<C Y [l Y Blag X POII]X < [nf )
nev eV

< CE[X[PU+A+ D (log | X])™L < o0

(ITII) Now, in the case 1 < p(t + f + 1) < 2, taking § > 0 such that
p(t+ p+ 1) — 0 > max{q, 1} and using Markov’s inequality, Marcinkiewicz—
Zygmund’s inequality, the c,-inequality and Jensen’s inequality for arbitrary
family of real numbers {#,,n € V'} like in [14], we get
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(22) PHZ @(XJ[;XA > m] — EXI[|X| > m])’ > em]

€V
1 p(t+B+1)—0
< ()p(HﬁH)(;E‘Z ﬁi(XiIHXﬂ >m]—-EXI[|X;] > m])‘
me =
1 -6
< O s O EIBXNIX] > m] 7Y
€V

In this case, we put

g({ai}, {Bi}) = HZ Bi(aill|as| > m] — EXI[| X;| > m] ‘ > em]
€V
1
({al} {51}) = w Z’/Blai |az} >m |p t+5+1)
€V

and use Lemma [3.9] to obtain that

(23) P[] ans (Xl [1Xi] > 0] = EXI[IX,] > [n]'/7])| > eln]]
€V

< Oln| PP Y Blay (XY TI]XG) > |l

eV
Finally, we have
(24)
3 10l P[ | ana (Xl 1X3] > |n]7] = EXGITIX) > [nf'7)| < eln'7]
neV eV
<C Y al P Blag X PO I]X > [l
nev %

< CE|X P8+ (1og, | X))t < 0.

Since EX,, =0, holds by and when 1 <p(t+8+1) <2.

(IV) Let us consider the case p(t + 5 + ) 1 and t > —1 (otherwise
the proof is obvious). Since, from Lemma [3.4{ii), (), (5], and the fact that
E|X| < o in both cases of definition V', we have

(25) E|Xn|I[[Xn| > 0] < DiE|X|I|X] > b],
(26) Z Elani| < Da|nl?, for neV,
%
(27) E\X|I[|X]| > K] < for sufficiently large K,

16D 1Do
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then for n such that |n| > KP, we have

(28) \Ew VP Bay X,d[IXy| > |n'7]) <
€V

CTA

Furthermore, because £EX,, = 0,n eV,

s

<pH2amX1[|X|<|n|1/p] EXI|X,| < n|V7)) \> |n|1/p]
€V

+ P||Y ana Xl [1X,] > [nf"7]| > Z1n)7 |
eV

1/19]

€
4P| awsBXATX] > 0] > S|
eV
=Hp1+ Hyo + Hy, 3, say.

On the other hand, the term Z@ev In|*H,1 on the right hand side is evalu-
ated in , whereas the term Y} .y [n|' Hp 2 may be bounded by

(t+B+1)—6

C 3 Il B] Y, [0l P ay X0 X > n7])]

nev 9%

< CE|XPUHB+ ) (1og, | X])™! < c0.
In the case of (a),
€
> awsEXAX] > [2]7]] < 3 las DyEIXIITIX] > (0] 7] < §Jn)' 7,
eV eV

such that H, 3 = 0 for |n| > KP.
For the proof of Theorem 2.1(ii)(b) we consider first the case |n| > KP,
too. Because from ,

EX; ~ 1/p | Z
PHZEaﬂ&EXlIHXd > |n] ]‘ > 16|ﬂ| ] 0,

€V
we have
Hys < P[| Y (0ni — Bang EXGIIIX| > |nf'?)| > SJnl'7].
€V

From (b) there exists constant D3 such that Y i Elan; — Eap;| <
[n)” such that using Markov’s inequality, (25) and Lemma we

T+“/‘ ‘

3
og
get
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Z !tha,:a

neV:|n|>KP

16D |n|t— /P

<y DS g Bag  BIXIIX] > (0l 7]

neV:|n|>KP € eV
Z 16D1 D3 |Q|t+ﬁ_1/p

€ log}" |nf

E|X]
neV:|n|>KP

16D1 D3

1
< ——FE|X| - -
¢ neV:Zn|:>Kp |ﬂ| log:w ’ﬂ’
16CD1D
< 2B EIX|(log, K) ™7 < .
ve
In both cases (a) and (b), from Lemma we have additionally

> [nlP||Y aniXi| > elnl'7|
€V

neV:n|<KP

[T+t
Clog! K, ift=—1,

If the condition (c) holds, we obtain

4 .
Y Il Hyg < Di= Y 0l 7P Y Elay | EIX|I[IX] > [n]'/7]
neV € nev €V

4
< DiDy- 3 |nl " PTVPEIXI]|X| > |nf')

nev

4 _
< DDy >, lnl T EIX X > [n]'7]

nev

<

{ C KOP10gT VK, if £ > —1,
< 00.

BIX|log}" [X]

(5)" ogl  n]

which ends the proof of Theorem 2.1 in the case p(t + f+ 1) = 1.
(V) Let {Bn.i, n,i € V} be a field of real numbers bounded by M. From
Lemma we obtain

3 P Y BuiXil > 1 < C Y Inf 2R (Y B2 )

ﬁGV QEV QEV 1EV

+C Y PN BB X[ X < ol PP A
nev eV

+C Y P Y BB XX > [ PP,
nev eV

4
< D1Dy— -1
<D 262!@!

neVv
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Putting
9({Xi} {Bui}) = I1] Y BuiXi| > €ln['7],

eV

(X b {Bui}) = Clol =27 (Y B2,)”
€V

1
+ Oy Dl X[ < faf PP+
n eV
1 _
i OW DB X I[|X;| > |nfV/P]PU+AED=n,
- eV

applying Lemma multiplying both two sides by |n|® and summing on

neV, we get
J
> du'?) <€ Y lnl P E( Y 6k

> |ﬂ|tP(‘Z ap i Xi

neV eV nev 5
! 1/p1p(t+B+1)+n
*Cthme%ZMm&HWAﬂm ] )
neV '— %
1

+C 7}7}( XCITLX | > 1/p p(t+ﬁ+1)_n)'
1;/ |n|1+B-n/p ;Jan,z [ X5 > |n| ]|
Finally, using Lemma and @, we have

> m\tPQZ an i X;| > 6\@\1/p) <0 |n=rE(Y o2,)’
nev eV neV o

eV
+ CE|X P (1og, | X[) 7 + CE|X [P (log, |X]) 7 < oo,

which ends the proof of Theorem [2.1]in case p(t + 3+ 1) > 2.
Thus Theorem 2.1(i) follows from (I), (II) and (IIT), Theorem 2.1(ii)
from (II) and (IV) and Theorem 2.1(iii) is the consequence of (V). m

Proofs of Corollaries and For proofs we put in Theorem
ani = I[Ny > |i|]] and ap; = I[N,, > i] in items (a) and (b), respectively.
We only remark, that

PN, > |if] = EMy(N,),
eV
E(Y I[N, > |il)” = BE(Mv(N,)”,
eV
Y. P[N, > i] < E|N,,|,
5%
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E(Y 1IN, i)’ < B|N,|"

eV
Whereas for proof of Corollary we put
E7,7 l S 1 S ﬂ)
Qpjq = and Qp 4 En,i

0, otherwise,

in items (a) and (b), respectively. Furthermore, from Lemma and
Lemma 3.5}

' Ple; = 1] = pMy(|n)) = O(|nl(log, [n))™™"),

i€V i<n

B( Y <o Y Pa=1+( Y Pa=1)")

€V,i<n €V, i<n €V,i<n

< 209”2 My (nl) = O(In)”* (1og., |n])""~""%),

E(Z 5271)‘] < QC(Z ]5@,1')]/2. n

eV i€V
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