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POSITIVE DEFINITE NORM DEPENDENT MATRICES
IN STOCHASTIC MODELING

Abstract. Positive definite norm dependent matrices are of interest in stochastic
modeling of distance/norm dependent phenomena in nature. An example is the application
of geostatistics in geographic information systems or mathematical analysis of varied
spatial data. Because the positive definiteness is a necessary condition for a matrix to be
a valid correlation matrix, it is desirable to give a characterization of the family of the
distance/norm dependent functions that form a valid (positive definite) correlation matrix.
Thus, the main reason for writing this paper is to give an overview of characterizations
of norm dependent real functions and consequently norm dependent matrices, since this
information is somehow hidden in the theory of geometry of Banach spaces.

1. Introduction
Modeling natural phenomena using probability theory has increased over

last years. From the mathematical point of view, the most convenient in such
modeling turned out to be constructions based on independent random vari-
ables. However, real physical processes demand modeling dependent events
and using dependent random variables in a variety of constructions. One
of the examples would be modeling spatial data where the correlation be-
tween random variables depends on the distance between them. An exten-
sive discussion on statistical theory for spatial data analysis can be found
in Cressie [8], who mostly used the standard Euclidean norm to represent
the distance measure. The interest in modeling non-Euclidean distance mea-
sure emerges for instance in geostatistics where travel costs, travel duration
and/or other issues are involved in the description of proximity relationships
among spatial locations. For more practical problems involving the use of
non-Euclidean distance measures in geostatistics see Curriero [9].
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This paper is organized as follows. Section 2 presents definitions of a pos-
itive definite matrix and a positive definite function. Next, the connection
between the positive definite matrices and positive definite functions is given.
Section 3 highlights some of the main results regarding positive definite norm
dependent real functions to which the history of proofs (some results where
proven independently by different mathematicians) is given. Section 3 is
divided into 2 subsections. The first one considers an exponential function
depending on the `p norm to the power q. The next one describes the neces-
sary conditions for the function to be positive definite given dependency on
`1 or `2 norm. Section 4 shows some examples of random fields generated
with a norm dependent positive definite real functions.

2. Positive definiteness condition
One of the possible dependency structures for a random vector is based

on the covariance (or correlation) matrix

Σ “ pCovpXi, Xjqqi,j , < “ pρpXi, Xjqqi,j .

The problem is creating such matrices, or checking whether a given matrix
can be considered as a covariance matrix of a random vector because of the
complexity of the positive definiteness condition. Next, we show some meth-
ods for creating positive definite norm (or quasi-norm)-dependent matrices
based on a characterization of norm dependent characteristic functions.

Definition 1. An nˆn matrix Σ “ pσijq
n
ij“1, σij P R, is positive definite

if for every c “ pc1, . . . , cnq P Rn, we have cΣcT ě 0.

Definition 2. A function f defined on Rd taking values in the complex
plane is positive definite if for every n P N every choice of complex numbers
c1, . . . , cn and every choice of x1, . . . , xn P Rd, we have

n
ÿ

i,j“1

cicjfpxi ´ xjq ě 0.

The following, very well known, fact describes the connection between
positive definite real matrices and positive definite real functions. It is crucial
for the whole paper. It shows that building norm dependent positive definite
matrices one has to know the theory of norm dependent positive definite
functions (i.e. characteristic functions after proper normalization) since some
norms do not allow existence of such functions. Consequently, not for every
norm the required positive definite norm dependent matrix can exist.

Note that if the function f is real and fp´xq “ fpxq then it is enough to
consider real constants cj , j “ 1, . . . , n.
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Fact. Let f be a function on Rd taking values in R such that fp´xq “ fpxq.
The function f is positive definite if and only if, for every n P N and every
choice of x1, . . . , xn P Rd, the matrix

Σ “
`

fpxi ´ xjq
˘n

i,j“1
“

»

—

—

—

—

–

fp0q fpx1 ´ x2q . . . fpx1 ´ xnq

fpx2 ´ x1q fp0q . . . fpx2 ´ xnq

. . . . . . . . . . . .

fpxn ´ x1q fpxn ´ x2q . . . fp0q

fi

ffi

ffi

ffi

ffi

fl

is positive definite.

Proof. It is enough to notice that positive definiteness of the matrix Σ
means that for every vector c “ pc1, . . . , cnq P Rn, we have

cΣcT “
n
ÿ

i,j“1

cicjfpxi ´ xjq,

which explains the equivalence.

This Fact can be of great help for constructing positive definite matrices
(for example a covariance matrix) or for verifying whether a given matrix of
the form defined in the Fact is positive definite.

3. What is known about positive definite norm
dependent functions
In this section, we are describing what is known about positive definite

norm dependent functions together with the history of main results. Note
that some proofs are the results of more than 50 years of hard work of many
mathematicians. And, we still know very little in this area.

We give these results in their simplest version, since it is evident that if
a real-valued function f on r0,8q is such that fp}x}q is positive definite on
Rd and A is a linear operator on Rd then also fp}Apxq}q is positive definite
on Rd. This statement holds true for every norm (or even a quasi-norm) } ¨ }
on Rd.

3.1. Exponential function and `p norm to the power q. First, consider
the following function defined on Rd:

fp,qpxq “ exp

"

´

´

d
ÿ

k“1

|xk|
p
¯q{p

*

“ exp
!

´}x}qp

)

.

Theorem 3. Assume that for each d P N, the function fp}x}pq is positive
definite on Rd. Then p P p0, 2s and there exists a probability measure λ on
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r0,8q such that

fp}x}pq “

ż 8

0
fp,ppxsqλpdsq.

Moreover, for every d P N and every finite symmetric measure ν on the unit
sphere Sd´1 in Rd, the function fp}x}p,νq is positive definite on Rd, where

}x}pp,ν “

ż

Sd´1

|xx,uy|p νpduq.

Proof. In this formulation, the theorem was proven by Bretagnolle, Da-
cunha-Castelle and Krivine in 1967 (see [5]). For the weakest possible as-
sumptions and dependence on `p-norms see also the paper of Christensen and
Ressel [7] written in 1976 and the paper of Misiewicz and Scheffer [22, Sec-
tion 5], written in 1991.

Theorem 4. The function fp,qpxq is positive definite on Rd if and only if
one of the following conditions hold

1q d “ 2, 0 ă q ď p ď 2 or p P p2,8s and q ď 1;
2q d ě 3, 0 ă q ď p ď 2.

History of the proof. Notice first that if the function fp,qpxq is positive
definite then it is a characteristic function of a symmetric q-stable random
vector X in Rd since the condition defining symmetric stable characteristic
function

fp,qpaxqfp,qpbxq “ fp,qpp|a|
q ` |b|qq1{qxq

holds for all a, b P R. The condition q ď 2 is a student exercise based on the
connection between moments of the variable ă x,X ą and the derivatives
of the corresponding characteristic function. It is enough to notice that in
this case the second derivative of fp,q treated as a characteristic function of
the first coordinate X1 of X is zero at the origin, thus X1 and }X}p shall be
constant in contradiction to our assumptions.

Observe also that if fp,q is positive definite, then every its scale mixture
is positive definite and consequently fp,s is positive definite for every 0 ă sq
since

fp,spxq “

ż 8

0
fp,qpxtqγs{qpdtq,

where γs{q is s{q-stable distribution on the positive half-line with the Laplace
transform e´t

s{q .
This shows that the sufficiency of the condition 1) holds in Rd for every

d ě 2. This fact was known already in 1937 to P. Lévy [17].
For further considerations we need to know that fp,q is positive definite

on Rd if and only if the space pRd, } }pq embeds isometrically into a space
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pRd, } }Lqpνqq in the sense that there exists a finite measure ν on Rd (for the
uniqueness we shall assume that ν has support in Sd´1 Ă Rd) such that

}x}qp “

ż

Rd
| ă x,y ą |qνpdyq.

This is a simple implication from the general representation of the charac-
teristic function for symmetric stable random vector. One can find it e.g.
in [16], Th. 2.4.3 stating that ϕ is a characteristic function of a symmet-
ric α-stable random vector in Rd with α P p0, 2s if and only if there exists
a unique symmetric finite measure ν on Sd´1 Ă Rd such that

ϕpxq “ exp

"

´

ż

Sd´1

| ă x,y ą |ανpdyq

*

.

This result can be expressed also in the following form: expt´}¨}qu is a char-
acteristic function on Rd if and only if there exists a finite measure ν on Sd´1
such that } ¨ } “ } ¨ }q,ν , or equivalently, if and only if pRd, } ¨ }q embeds iso-
metrically into some Lq-space (for example, into LqpSd´1, νq).

Now we can describe the proof of necessity of the condition 1). It has
a long history going back to first investigations of symmetric stable random
vectors [17], and the first Schoenberg problem [25] (see also Introduction).
In 1963, Herz [14] proved that if 1 ă q ă 2 and `np embeds isometrically
into some Lq-space then q ≤ p ≤ qpq ´ 1q´1. In 1973, Witsenhausen [26]
proved that if p ą 2.7, n ≥ 3, then `np does not embeds isometrically into
L1-space. In 1976, Dor [10] (see also [5]) proved that if p, q P r1,8q and
`np embeds isometrically into some Lq-space then 1 ≤ q ≤ p ≤ 2. In 1991,
Koldobsky [15] proved that if p ą 2, and if n ≥ 3 then `np does not embed
isometrically into any Lq-space, q ≤ 2. Note that the result of Koldob-
sky solves finally, after 53 years, the first Schoenberg question. And in
1995, Grząślewicz and Misiewicz [12] noticed that all the previous consider-
ations does not include all the cases when p ă 1 or q ă 1. They proved
that if 0 ă p ă q ≤ 2 then `2p does not embed isometrically into any Lq-
space.

We continue with the case p ą 2. In Theorem 2.1 of [10], Dor proved
that the function fp,q is not positive definite if 1 ă q ă 2 ă p. In the case
when p ą 1 and q “ 1 (and consequently for each q ă 1), positive defi-
niteness of the function fp,qpxq on R2 follows from the well known theorem
stating that every two-dimensional Banach space (e.g. pR2, } ¨ }pq) embeds
isometrically into some L1-space. This theorem has been proven by several
authors in different ways in different areas of mathematics; see e.g. Ferguson
1962 [11], Herz 1963 [14], Lindenstrauss 1964 [18], Assouad 1979–1980 [2–4]
or Misiewicz and Ryll-Nardzewski 1989 [21].
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Important remark. We have seen that for each p ď 2, every q ď p
and every symmetric finite measure on Sd´1 the function expt´} }qLppνqu is
positive definite on Rd. However, not every norm can be written in this form
and for some norms none norm-dependent function can be positive definite.
In particular, we know that if the function fp}x}pq for some p P p2,8s is
positive definite on Rd, d ě 3, then f ” 1. This was shown in the following
papers: In 1989, Misiewicz [20] proved that if the function fp}x}8q is positive
definite on Rd, d ě 3 then f ” 1. The similar result for the norm } ¨ }p,
p P p2,8q, was proven independently by two authors: Lisitsky in 1991 [19]
and Zastawny in 1991 [28].

3.2. `2 and `1-norm dependent positive definite functions. Of course
sometimes we want to consider functions other than exponentials. Unfortu-
nately, we know very little about the characterization of the norm dependent
positive definite continuous functions, and we know even less when these func-
tions are not continuous. The only exceptions are `2 and `1 norms in Rd,
and the full characterization of the functions f such that fp} ¨ }2q is positive
definite on Rd, and the functions f such that fp} ¨ }1q is positive definite
on Rd, respectively, are known. These exceptions are described below.

3.2.1. `2-norm dependent functions. Consider the function Ωd defined
in the following way:

Ωdprq “
2Γpd{2q

Γppd´ 1q{2qΓp1{2q

ż π{2

0
cos

´

r sinϕ
¯

cosd´2pϕq dϕ

“ Γ
´d

2

¯´2

r

¯
d
2
´1
J d´2

2
prq,

where Jνprq is a Bessel function of the first kind. In 1938, Schoenberg [23]
gave the full characterization of `2-norm dependent characteristic functions
in the language of the function Ωd. The function Ωd is the characteristic
function of one-dimensional projection of the uniform distribution ωd on
the unit sphere in Rd. If Updq “ pU1, . . . , Udq has distribution ωd then its
characteristic function is given by

E exptă x,Updq ąu “ Ωd p}x}2q .

Theorem 5. The function ϕpxq “ fp}x}2q is a characteristic function on
Rd if and only if there exists a probability measure λ on r0,8q such that

fprq “

ż 8

0
Ωdprsqλpdrq.

This result can be also formulated in the following form: a symmetric
random vector X in Rd is spherically generated (rotationally invariant), i.e.
has the characteristic function of the form ϕpxq “ fp}x}2q if and only if
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X
d
“ UpdqQ, for a nonnegative variable Q with distribution λ independent

of Updq. Here d
“ denotes equality of distributions.

With the exponential functions fp,q, we can only obtain correlation ma-
trices with all elements positive and sometimes it is necessary to consider
negative correlations between some variables. This can be done by using the
function Ωdp} ¨ }2q, but, as we can see on Figure 1 below presenting graphs
of functions Ωd, d “ 2, 3, 4, not all negative values are available.

0 10 20 30 40 50
−0.5

0

0.5

1

argument

Ωd Kernels

 

 

d = 2
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d = 4

Fig. 1. Ωd for d “ 2, 3, 4.

The characteristic functions of the form fp}x}2q are the characteristic
functions of spherically invariant random vectors. We can see that not every
symmetric positive definite function ϕ on R with ϕp0q “ 1 has the property
that ϕp} ¨ }2q is a characteristic function of an elliptically contoured random
vector. They all have to be scale mixtures of the function Ωd. This property
is not easy to verify. One of the verifying methods is using the following
Askey result (for details see [1]):

Theorem 6. Let d ě 2 and let ϕ : r0,8q ÞÑ R be continuous and such that

1q ϕp0q “ 1, limtÑ8 ϕptq “ 0;
2q p´1qkϕpkqptq ě 0 is convex for k “ rd2 s.

Then, for every positive definite n ˆ n-matrix <, ϕ
`

pxx,<xyq1{2
˘

is the
characteristic function of some elliptically contoured random vector.

3.2.2. `1-norm dependent functions. In 1983, S. Cambanis, R. Keener
and G. Simons [6] found all the extreme points for `1-dependent distributions
on Rd, i.e. distributions having the characteristic functions of the form
fp}x}1q. This result was based on the following, surprisingly general, definite
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integral identity:
ż π{2

0
f

ˆ

s2

sin2 θ
`

t2

cos2 θ

˙

dθ “

ż π{2

0
f

ˆ

p|s| ` |t|q2

sin2 θ

˙

dθ,

which holds for each s, t P R and every function f for which the integrals
make sense. The result of Cambanis, Keener and Simons can be formulated
in the following way:

Theorem 7. The function fp}x}1q is positive definite on Rd if and only if
there exists a probability measure λ on r0,8q such that

fprq “

ż 8

0
ϕdprxqλpdxq,

where

ϕdprq “
2Γpd2q

?
πΓpd´12 q

ż 8

1
Ωdpurqu

´d`1pu2 ´ 1qpd´3q{2du

“
2Γpd2q

?
πΓpd´12 q

ż 1

0
Ωdpr{uqp1´ u

2qpd´3q{2du,

for Ωdp}x}2q the characteristic function of the vector Updq.
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Fig. 2. ϕd for d “ 2, 3, 4.

Figure 2 shows the graphs of the function ϕd, for d “ 2, 3, 4. As we can
see all the possible positive values are admissible for the function ϕd, but
when d grows the set of admissible negative values is getting smaller. It is
known, that ϕdpRq Ñ r0, 1s if dÑ8.
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4. Norm dependent standard normal random fields with computer
realizations
For the purpose of this paper, we only consider zero mean Gaussian ran-

dom fields. We want to show, at least in a graphical way, the differences
between norm dependent random fields with different norms or quasi-norms
and different correlation functions. We simulate Gaussian random fields on
R2 with correlation functions dependent on the norm of the distance be-
tween the points indexing random variables i.e. ρpXx, Xyq “ fp}x ´ y}q.
We present the exponential correlation function f “ fp,q for different param-
eters p and q and a norm }x}pν,p as defined in Theorem 4, the correlation
function f “ Ω2 and finally, we present an example using }x}1 norm and
corresponding correlation function f “ ϕ2.

Consider a closed convex, bounded set E Ă R2 and any fixed norm
(or quasi-norm) q on R2. For each admissible function f : r0,8q Ñ r0,8q
(i.e. such a function that fpqp¨qq is positive definite), fp0q “ 1, by a pq, fq-
dependent random field FpE, q, fq we consider a collection of second order
random variables

FpE, q, fq “ tXx : x P Eu

such that
ρ pXx, Xyq “

CovpXx, Xyq
a

VarXxVarXy
“ f

`

qpx´ yq
˘

.

For convenience, we assume that the expected value of the generated field is
zero, but in general we can have

mpxq :“ E pXxq

as an arbitrary function m : E Ñ R.
Each random field presented in the examples below is generated on a ma-

trix domain (discrete version of the set E) using Matlab programming lan-
guage and the script in Listing 1. The parameters of the StandNormal
-RandField function are explained in the script.

`2 norm dependent Ω2 correlation function:
First we consider the `2 norm and Ω2 function which for dimension 2 (random
field on R2) is:

Ω2prq “ J0prq,

where Jν is a Bessel function of the first kind. The StandNormalRandField
function parameter call determines which example is being calculated and
in this case it is ’Omega’. We consider two examples for the Omega correla-
tion function. First one with coefficient of correlation d “ 1 (no distance scal-
ing) and second one with coefficient of correlation d “ 0.6 (scaled distance;
original distance of 1 is now 0.6). Figure 3 shows the two examples where



220 S. P. Kuniewski, J. K. Misiewicz

each is presented in two graphs; left is the 3D plot using meash function in
Matlab of the random field and right is the colormap (colors represent differ-
ent values of random variables) using pcolor function in Matlab. The result-
ing pattern observed on the random fields is due to the Omega correlation
function changing in the first 10 units of its argument correlation from posi-
tive to negative twice, see Fig. 3. To generate a random field with Omega cor-
relation run StandNormalRandField(’Omega’,50,50,[],[],1,[],[],[],
’File’). Additionally, one may consider a scale mixture of the function
f “ Ω2p} ¨ }2q because Theorem 5 guaranties that it is positive definite. An
example is the ϕ function defined in Theorem 7.
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Fig. 3. f “ Ω2 and }x}2-dependent random field.

`1 norm dependent ϕ2 correlation function:
ϕ2p} ¨ }1q or every scale mixture of the function ϕ2p} ¨ }1q is positive definite,
Theorem 7. In StandNormalRandField we define the ϕ2 function as an
integral from 0 to 1 which can be found to be:

(1) ϕ2prq “
2

π

ż 1

u“0
Ω2pr{uq

du
?

1´ u2
,

and represent it as Int_phi function. The resulting random field generated
by running
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StandNormalRandField(’phi’,50,50,[],[],.1,[],[],[],’file’)
with coefficient of correlation d “ 0.1 is presented in Figure 4. Because of
the `1 norm we can see stronger dependence along vertices.
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Fig. 4. f “ ϕ2 and }x}1-dependent random field.

`qp norm dependent exp correlation function fp,q:
In Figure 5, we present simulation of } ¨ }p-dependent Gaussian random field
FpE, } ¨ }p, fp,pq for p “ 0.3. Note that } ¨ }p for p ă 1 is only a quasi-norm
for which the triangular inequality takes the form:

}x` y}p ≤ 2
1
p
´1
p}x}p ` }y}pq ,

where the constant 2
1
p
´1
“ 27{3 « 5.04 is the smallest possible for p “ 0.3.

The corresponding unit sphere is presented on the left graph in Figure 5
from where we can see that the strong correlation is almost only preserved
on the axis x and y. The corresponding random field with the mesh plot
(middle graph) and the pcolor plot (right graph) is also shown. To generate
a similar random filed with the same specifications use
StandNormalRandField(’Exp’,50,50,.3,.3,.01,[],[],[],’file’).
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Fig. 5. The exponential correlation function fp,q with p “ 0.3 and q “ 0.3.

Next, Figure 6 presents an example of the computer simulation of } ¨ }1
dependent random field FpE, } ¨ }1, f1,qq. The `1 norm, for which the unit
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circle is shown on the left of Figure 6 is used. To generate a similar example
use StandNormalRandField(’Exp’,50,50,1,1,.01,[],[],[],’file’).
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Fig. 6. The exponential correlation function fp,q with p “ 1 and q “ 1.

Figure 7 shows two examples of the computer simulation of a } ¨ }2-
dependent Gaussian random field FpE, } ¨ }2, f2,qq. In the first case, the
power of the `2 norm q “ 1 is used. This means that all the distances are
original Euclidian distances. In the second example, q “ 2 is considered in
which case all the distances within the unit circle are decreased and all the
distances outside the unit circle are increased ultimately affecting correla-
tions and the resulting random field. To generate the example use
StandNormalRandField(’Exp’,50,50,2,q,.05,[],[],[],’file’).
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Fig. 7. The exponential correlation function fp,q with p “ 2 and q “ 1 (three upper
pictures), p “ 2 and q “ 2 (three lower pictures).

Finally, Figure 8 presents the simulation of } ¨ }p-dependent random field
FpE, } ¨ }p, fp,qq for p ą 2. Note that this is possible only in the case of E
being a subset of R2. In the first figure we have p “ 10, q “ 1, and in the
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Fig. 8. The exponential correlation function fp,q with p “ 10 and q “ 1 (three upper
pictures), p “ 8 and q “ 1 (three lower pictures).

second p “ 8 and q “ 1. Both unit spheres for } ¨ }p-norms (first pictures
on the left) are very close to the unit square causing stronger diagonal de-
pendency in both random fields. To generate the example use
StandNormalRandField(’Exp’,50,50,p,1,.01,[],[],[],’file’), for
p “ inf or p “ 10.

Mixed norm dependent exp correlation function fp,p:
From Theorem 4, we know that if a function fp,q is positive definite on

R2 then it has to be a mixture of the exponential function fp,p where the
norm }x}p for p P p0, 2s can be redefined by:

}x}pν,p
def
“

ż

S1

| ă x,u ą |pνpduq,

an integral with respect to a finite symmetric measure ν defined on the unit
circle S1 in R2. The restriction that ν has a unit circle (S1 Ă R2) as a
support guaranties only the uniqueness of this measure given all the values
of the norm }x}pν,p ă 8. For our purpose the uniqueness of ν is irrelevant,
thus we can take any ν symmetric with compact support.

Next example is generated using the exponential correlation function and
the norm }x}p redefined using a discrete symmetric measure ν defined on R2

by:
ν »

ÿ

i,jPt´1,0,1u

δi,j ,

where δx is the Dirac delta measure. Note that not all chosen points in the
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delta Dirac measure above belong to the unit sphere. Essentially we would
get the same norm given by:

}x}qν,p
def
“ p|x|p ` |y|p ` |x´ y|p ` |x` y|pqq{p,

if we were to use δ
t`´

?
2,`´

?
2u instead of δt`´1,`´1u. Using

StandNormalRandField(’ExpDiscreteNorm’,50,50,.5,.5,.01,[],[],
[],’file’) we can generate random fields like shown in Figure 9.
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Fig. 9. The exponential correlation function fp,q with p “ 0.5 and q “ 0.5 and the norm
constructed as described above.

In the last example, we define a continuous, finite and symmetric measure
ν proportional to maxt0, sinpcθqu for a constant c “ 4 ˚ n and integer n ≥ 1.
The resulting norm is given by:

(2) }x}pν,p
def
“

ż 2π

0

ˇ

ˇx cos θ ` y sin θ
ˇ

ˇ

p
maxt0, sinpcθqu dθ.

We generate two random fields using the exponential correlation function
fp,p for p “ 1.3 and the norm defined in equation 1. In the first one, the norm
}x}pν,p is used and in the second one, the following additional linear operator
A “

`

4 0
0 1

˘

is applied. This is because if A : Rd ÞÑ Rd is a linear operator and
fp}x}q is a positive definite function on Rd then fp}Apxq}q is also positive
definite. The resulting computer simulation of the random fields using
StandNormalRandField(’ExpIntNorm’,50,50,1.3,[],.1,a_{1,1}
,a_{2,2},4,’file’) function are presented in Figure 10 where is the first
case a1,1 “ 1 and a2,2 “ 1 and in the second case a1,1 “ 4 and a2,2 “ 1.

As we can see applying linear transformation rascals the original distance.
The unit circle of defined norm is plotted for both cases on the left side in
Figure 10.

In general, regarding the exponential correlation function on R2 if } ¨ } is
a norm (but not quasi-norm) then expt´} ¨ }u is positive definite.
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Fig. 10. The exponential correlation function fp,p with p “ 1.3 and the norm }x}pν,p (above)
and }Apxq}pν,p.

5. Conclusions
Positive definiteness condition is a necessary condition for a random vec-

tor or random field to be generated. In this paper, we have shown what
kind of functions one can use as a correlation function in order to produce
a valid positive definite correlation matrix. List of theorems with some ad-
ditional facts on the history of proves is given to highlight the possibilities
and the graphical presentation is considered to visualize the impact of using
different norms and correlation functions on generated random field. For
higher flexibility, we also add a Matlab program to generate other exam-
ples of norm dependent random fields using different norms and correlation
functions. The Matlab script can be found in Appendix.

6. Appendix
A script written in Matlab programming language to generate Standard

Normal random fields with exponential, Ω2 and ϕ2 functions, is presented in
Listing 1 below. For exponential function the script supports `p norm to the
power q for p and q parameters as described in Theorem 4, integral norm
defined in equation 2 for measure µ defined in MeasureNU function at the
end of the script where any finite symmetric measure on a unit circle may
be used instead of maxp0, sinpcθqq for c “ 4n and integer n ≥ 1. For other
measure, replace the maxp0, sinpcθqq in MeasureNU. Last norm defined by
discrete points on a unit circle and presented in example in Figure 9 also
uses exponential function. Other correlation functions are Ω2 correlation
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function defined for `2 and ϕ2 defined for `1 norms.
Please note that when coping the script to Matlab correct error messages

on lines 53, 126, 129 and 153.

Listing 1. Normal norm dependent random fields

function StandNormalRandField( c a l l , k1 , k2 , p , q , d , a , b , c , f i l ename )

% Generates Standard Normal random f i e l d on a rectangu lar
% domain matrix (k1 , k2 ) with cor re l a t i on funct ion chosen
% by input c a l l and various norms for instance
% l_{p , q}( x)=((x_1^p+x_2^p)^(1/p))^q norm.
%
% INPUTS
% ca l l ´ s t r i n g with the cor re l a t i on funct ion and norm to use :
% ’Exp ’ ´ Exponential co r re l a t i on funct ion with l_p to
% the power q norm;
% ’Omega’ ´ Omega corre l a t i on funct ion with norm l_2
% ’ phi ’ ´ phi cor re l a t i on funct ion with norm l_1
% ’ExpIntNorm ’ ´ Exponential co r re l a t i on funct ion
% with norm def ined by IntNorm
% funct ion and measure @measure_nu
% ’ExpDiscreteNorm ’ ´ Exponential co r re l a t i on funct ion
% with norm def ined by
% k1 ´ rows of the rectangu lar domain matrix (k1 , k2 )
% k2 ´ columns of the rectangu lar domain matrix (k1 , k2 )
% norm parameters p q bounds : 0<q<=p<=2 or p>2 and q <=1
% p ´ norm parameter : p=in f ´ max norm
% q ´ power of the norm
% d ´ c o e f f i c i e n t of cor re l a t i on
% a ´ sca lar for x dis tance (IntNorm)
% b ´ sca lar for y dis tance (IntNorm)
% c ´ sca lar in the MeasureNU
% fi lename ´ name of f i l e s to r ing the random f i e l d
%% input check
i f ~k1==f loor ( k1 )

error ( ’ k1␣must␣be␣ i n t e g e r ␣ ( dimension ␣ o f ␣ the ␣random␣ f i e l d ) ’ ) ;
e l s e i f ~k2==f loor ( k2 )

error ( ’ k2␣must␣be␣ i n t e g e r ␣ ( dimension ␣ o f ␣ the ␣random␣ f i e l d ) ’ ) ;
e l s e i f d<=0

error ( ’The␣ s c a l a r ␣parameter ␣d␣must␣be␣ p o s i t i v e : ␣d>0 ’ ) ;
end
%% i n i t i a l i z i n g random f i e l d
% the sur face of random f i e l d
MgC=zeros ( k1 , k2 ) ;
% vector s i z e / Corre lat ion matrix
n=k1∗k2 ;
% indexing the rows ( i i ) and columns ( j j ) of MgC
[ i i , j j ]= find (MgC==MgC) ;
% def in ing the cor re l a t i on matrix sigma
msig1=zeros (n , n ) ;
msig2=msig1 ;
% indexing the rows (k_ms1) and columns (w_ms2) of msig1
[ k_ms1 ,w_ms2]= find ( msig1==msig1 ) ;
%% Exponential co r re l a t i on funct ion
i f strcmpi ( c a l l , ’Exp ’ )

i f ~((q>0 && q <=2 && p>=q && p<=2) | | (q>0 && q <=1 && p>2))
error ( ’The␣norm␣and␣power␣ parameters ␣ (p , q ) ␣must␣ s a t i s f y :

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣0<q<=p<=2␣or ␣p>2␣and␣q␣<=1 ’ ) ;
end
i f p==i n f % max norm

% def in ing the abso lu te d i s tances d1 and d2 in the MgC
% matrix
msig1 ( 1 : n^2)=(abs ( i i (k_ms1)´ i i (w_ms2 ) ) ) ; % d1 dis tance :
% i i (k_ms1)´ i i (w_ms2)
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msig2 ( 1 : n^2)=(abs ( j j (k_ms1)´ j j (w_ms2 ) ) ) ; % d2 dis tance :
% j j (k_ms1)´ j j (w_ms2)
% corre l a t i on matrix sigma
sigma=exp(´d∗(max(msig1 , msig2 ) .^ q ) ) ;

else
% def in ing the abso lu te d i s tances d1 and d2 in the MgC
% matrix
msig1 ( 1 : n^2)=abs ( i i (k_ms1)´ i i (w_ms2) ) . ^ p ; % d1 dis tance :
% i i (k_ms1)´ i i (w_ms2)
msig2 ( 1 : n^2)=abs ( j j (k_ms1)´ j j (w_ms2) ) . ^ p ; % d2 dis tance :
% j j (k_ms1)´ j j (w_ms2)
% corre l a t i on matrix sigma
sigma=exp(´d∗(msig1+msig2 ) .^ ( q/p ) ) ;

end
%% Omega corre l a t i on funct ion
e l s e i f strcmpi ( c a l l , ’Omega ’ )

% def in ing the abso lu te d i s tances d1 and d2 in the MgC
% matrix
msig1 ( 1 : n^2)=abs ( i i (k_ms1)´ i i (w_ms2) ) . ^ 2 ; % d1 dis tance :
% i i (k_ms1)´ i i (w_ms2)
msig2 ( 1 : n^2)=abs ( j j (k_ms1)´ j j (w_ms2) ) . ^ 2 ; % d2 dis tance :
% j j (k_ms1)´ j j (w_ms2)
% l_2 norm
x=d∗(msig1+msig2 ) . ^ ( 1 / 2 ) ;
sigma=ones ( s ize ( x ) ) ;

% look ing for d i s t i n c t x ’ s
[ y ] = sort ( x ( 1 : end ) ) ;
t = ( d i f f ( y ) == 0 ) ;
i f any( t )

y ( t ) = [ ] ; % containg a l l d i s t i n c t x ’ s
end
% corre l a t i on matrix omega for d=2 ( dimentions )
sigma (x==0)=1;
for i =2: length ( y )
sigma (x==y( i ))= b e s s e l j (0 , y ( i ) ) ;
% f i l l i n g in the sigma matrix at a l l x=y( i )

end
%% phi cor re l a t i on funct ion
e l s e i f strcmpi ( c a l l , ’ phi ’ )

% def in ing the abso lu te d i s tances d1 and d2 in the MgC
% matrix
msig1 ( 1 : n^2)=abs ( i i (k_ms1)´ i i (w_ms2 ) ) ; % d1 dis tance :
% i i (k_ms1)´ i i (w_ms2)
msig2 ( 1 : n^2)=abs ( j j (k_ms1)´ j j (w_ms2 ) ) ; % d2 dis tance :
% j j (k_ms1)´ j j (w_ms2)
% l_1 norm
x=d∗(msig1+msig2 ) ;
sigma=ones ( s ize ( x ) ) ;
% look ing for d i s t i n c t x ’ s
[ y ] = sort ( x ( 1 : end ) ) ;
t = ( d i f f ( y ) == 0 ) ;
i f any( t )

y ( t ) = [ ] ; % containg a l l d i s t i n c t x ’ s
end
% corre l a t i on matrix
sigma (x==0)=1;
for i =2: length ( y )
sigma (x==y( i ))= Int_phi ( y ( i ) ) ;
% f i l l i n g in the sigma matrix at a l l x=y( i )

end
%% ExpIntNorm corre l a t i on funct ion
e l s e i f strcmpi ( c a l l , ’ ExpIntNorm ’ )

i f p>2 | | p<0
error ( ’The␣norm␣parameter ␣p␣must␣ s a t i s f y : ␣␣0<p<=2 ’ ) ;

e l s e i f isempty ( a ) | | isempty (b)
error ( ’ S ca l i ng ␣parameters ␣ o f ␣x␣and␣y␣ d i s t ance

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ (a , b) ␣must␣be␣ s p e c i f i e d ’ ) ;
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e l s e i f isempty ( c )
error ( ’ S ca l i ng ␣parameters ␣c␣ o f ␣ the ␣measure

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣MeasureNU␣must␣be␣ s p e c i f i e d ’ ) ;
end
% def in ing the d i s tances d1 and d2 in the MgC
% matrix
msig1 ( 1 : n^2)=( i i (k_ms1)´ i i (w_ms2 ) ) ; % d1 dis tance :
% i i (k_ms1)´ i i (w_ms2)
msig2 ( 1 : n^2)=( j j (k_ms1)´ j j (w_ms2 ) ) ; % d2 dis tance :
% j j (k_ms1)´ j j (w_ms2)
% norm
norm=zeros (n , n ) ;
e1=´(k1 ´1 ) : 1 : ( k1´1);
e2=´(k2 ´1 ) : 1 : ( k2´1);
for i =1: length ( e1 )

for j =1: length ( e2 )
norm( msig1==e1 ( i ) & msig2==e2 ( j ) ) = . . .

IntNorm ( e1 ( i ) , e2 ( j ) , a , b , p , 500 ,@MeasureNU , c ) ;
end

end
% corre l a t i on matrix sigma
sigma=exp(´d∗norm ) ; % norm i s n x n matrix

%% ExpDiscreteNorm corre l a t i on funct ion
e l s e i f strcmpi ( c a l l , ’ ExpDiscreteNorm ’ )

i f ~((q>0 && q <=2 && p>=q && p<=2) | | (q>0 && q <=1 && p>2))
error ( ’The␣norm␣and␣power␣parameters ␣ (p , q ) ␣must␣ s a t i s f y :

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣0<q<=p<=2␣or ␣p>2␣and␣q␣<=1 ’ ) ;
end
msig12=msig1 ;
msig13=msig1 ;
% def in ing the abso lu te d i s tances d1 and d2 in the MgC
% matrix
msig1 ( 1 : n^2)=abs ( i i (k_ms1)´ i i (w_ms2) ) . ^ p ; % d1 dis tance :
% i i (k_ms1)´ i i (w_ms2)
msig2 ( 1 : n^2)=abs ( j j (k_ms1)´ j j (w_ms2) ) . ^ p ; % d2 dis tance :
% j j (k_ms1)´ j j (w_ms2)
msig12 ( 1 : n^2)=(abs ( i i (k_ms1)´ i i (w_ms2)+ . . .

j j (k_ms1)´ j j (w_ms2) ) ) . ^ p ; % x+y
msig13 ( 1 : n^2)=(abs ( i i (k_ms1)´ i i (w_ms2) ´ . . .

( j j (k_ms1)´ j j (w_ms2) ) ) ) . ^ p ; % x´y
% corre l a t i on matrix sigma
sigma=exp(´d∗(msig1+msig2+msig12+msig13 ) .^ ( q/p ) ) ;

else
error ( ’ Ca l l ␣ i s ␣not␣ c o r r e c t ’ ) ;

end
%% generat ing standard mult i normal vector Z with cor re l a t i on sigma
Z = mvnrnd( zeros (1 , n ) , sigma ) ;
% Putting Z into the matrix MgC
MgC(1 : n)=Z ;
% saving the random f i e l d in fi lename .mat
save ( f i l ename , ’MgC’ )
% p lo t
f igure % norm
xmin=´1; xmax=1; ymin=´1; ymax=1;
% [ x from ´1 to 1 y from ´1 to 1]

hold on
ezp l o t (@(x , y ) plotnorm (x , y , p , a , b , c , c a l l ) , [ xmin xmax ymin ymax ] )
T i t l e ( ’ Unit ␣ c i r c l e ’ )
grid on ;

% saving the uni t c i r c l e p l o t
saveas ( gcf , f i l ename , ’ f i g ’ )
f igure % random f i e l d

mesh(MgC)
f igure % random f i e l d in a colormap

pcolor (MgC)
shading f l a t
colorbar
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%% Plot ing norm
function z = plotnorm (x , y , p , a , b , c , c a l l )
% Solut ion (x , y ) of the equation below i s the Unit Circ le the norm
i f strcmpi ( c a l l , ’Exp ’ )

i f p==i n f
z=max(abs ( x ) , abs ( y )) ´1;

else
z = (abs ( x ) .^p + abs ( y ) .^p ) .^(1/p) ´ 1 ;

end
e l s e i f strcmpi ( c a l l , ’Omega ’ )

z = (abs ( x ) .^2 + abs ( y ) .^2 ) .^ ( 1/2 ) ´ 1 ;
e l s e i f strcmpi ( c a l l , ’ phi ’ )

z = (abs ( x ) + abs ( y ) ) ´ 1 ;
e l s e i f strcmpi ( c a l l , ’ ExpIntNorm ’ )

z = IntNorm (x , y , a , b , p ,1000 ,@MeasureNU , c )´1;
e l s e i f strcmpi ( c a l l , ’ ExpDiscreteNorm ’ )

z = (abs ( x ) .^p + abs ( y ) .^p+abs (x´y ) .^p+abs ( x+y ) .^p) ´ 1 ;
end
%% phi i n t e g r a l
function out=Int_phi ( r )
% r ´ dis tance vector : r=abs ( x)+abs (y)
l r=length ( r ) ;
out=zeros (1 , l r ) ;

u=0 . 0001 : 0 . 0 001 : . 9 9999 ;
for i =1: l r

Omegan=gamma( 2 /2 )∗ ( 2 . / ( r ( i ) . / u )) .^(2/2 ´1) .∗ b e s s e l j (0 , r ( i ) . / u ) ;
uf =1./ sqrt(1´u . ^ 2 ) ;
% in t e g r a l approximation using t rape zo ida l ru l e
out ( i )=trapz (u ,Omegan .∗ uf ) ;

end
out=2/pi∗out ;

%% norm in t e g r a l
function out=IntNorm (x , y , a , b , p , s i zeu ,MeasureNU, c )
% array over an angle of a uni t c i r c l e ( parametryzation )
u=l inspace (0 ,2∗pi , s i z e u ) ;
% in t e g r a l approximation using t rape zo ida l ru l e
nu=MeasureNU(u , c ) ;
out=trapz (u , abs ( a∗x .∗ cos (u)+b∗y .∗ sin (u ) ) . ^ p .∗nu ) ;
%% continuous symmetric measure on a unit c i r c l e
function out=MeasureNU(x , c )
% nu measure : continuous f i n i t e symmetric measure
% on the unit c i r c l e
% c ´ rea l constant chosen such tha t the measure
% nu i s symetric on the uni t c i r c l e ( or R^2) ! ! !
% that i s : c=4∗n (n´in t eger )
% measure nu : must be symmetric
out=max(0 , sin ( c∗x ) ) ;
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