

S. K. Mohanta, Srikanta Mohanta

SOME FIXED POINT RESULTS FOR MAPPINGS IN G -METRIC SPACES

Abstract. We prove a common fixed point theorem for a pair of self mappings satisfying a generalized contractive type condition in a complete G -metric space. We also deal with other fixed point results for a self mapping in the setting of generalized metric space. Our results generalize some recent results in the literature.

1. Introduction

Metric fixed point theory is playing an increasing role in mathematics and applied sciences. Over the past two decades a considerable amount of research work for the development of fixed point theory have executed by several authors. There have been a number of generalizations of metric spaces, such as Gähler [4, 5] (called 2-metric spaces) and Dhage [2, 3] (called D -metric spaces). Different authors proved that the results obtained by Gähler in 2-metric spaces are independent rather than generalizations of the corresponding results in metric spaces. However, Mustafa and Sims in [13] have pointed out that most of the results claimed by Dhage and others in D -metric spaces are incorrect. They also introduced an appropriate concept of generalized metric space, called G -metric space [9] and developed a new fixed point theory for various mappings in this new structure. Our aim in this study is to obtain some fixed point results in complete G -metric spaces. These results generalize some results of [11] and [14].

2. Preliminaries

We begin by briefly recalling some basic definitions and important results for G -metric spaces which will be needed in the sequel. Throughout this paper, we denote by N the set of positive integers.

2010 *Mathematics Subject Classification*: 54H25, 47H10.

Key words and phrases: G -metric space, G -Cauchy sequence, G -continuity, fixed point.

DEFINITION 2.1. (see [9]) Let X be a nonempty set, and let $G : X \times X \times X \rightarrow R^+$ be a function satisfying the following axioms:

- (G_1) $G(x, y, z) = 0$ if $x = y = z$,
- (G_2) $0 < G(x, x, y)$, for all $x, y \in X$, with $x \neq y$,
- (G_3) $G(x, x, y) \leq G(x, y, z)$, for all $x, y, z \in X$, with $z \neq y$,
- (G_4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \dots$ (symmetry in all three variables),
- (G_5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$, for all $x, y, z, a \in X$, (rectangle inequality).

Then the function G is called a generalized metric, or, more specifically, a G -metric on X , and the pair (X, G) is called a G -metric space.

PROPOSITION 2.1. (see [9]) Let (X, G) be a G -metric space. Then for any x, y, z , and $a \in X$, it follows that

- (1) if $G(x, y, z) = 0$, then $x = y = z$,
- (2) $G(x, y, z) \leq G(x, x, y) + G(x, x, z)$,
- (3) $G(x, y, y) \leq 2G(y, x, x)$,
- (4) $G(x, y, z) \leq G(x, a, z) + G(a, y, z)$,
- (5) $G(x, y, z) \leq \frac{2}{3}(G(x, y, a) + G(x, a, z) + G(a, y, z))$,
- (6) $G(x, y, z) \leq G(x, a, a) + G(y, a, a) + G(z, a, a)$.

DEFINITION 2.2. (see [9]) Let (X, G) be a G -metric space, let (x_n) be a sequence of points of X , we say that (x_n) is G -convergent to x if $\lim_{n, m \rightarrow \infty} G(x, x_n, x_m) = 0$; that is, for any $\epsilon > 0$, there exists $n_0 \in N$ such that $G(x, x_n, x_m) < \epsilon$, for all $n, m \geq n_0$. We call x as the limit of the sequence (x_n) and write $x_n \rightarrow x$.

DEFINITION 2.3. (see [9]) Let (X, G) be a G -metric space, a sequence (x_n) is called G -Cauchy if given $\epsilon > 0$, there is $n_0 \in N$ such that $G(x_n, x_m, x_l) < \epsilon$, for all $n, m, l \geq n_0$; that is, if $G(x_n, x_m, x_l) \rightarrow 0$ as $n, m, l \rightarrow \infty$.

DEFINITION 2.4. (see [9]) A G -metric space (X, G) is said to be G -complete (or a complete G -metric space) if every G -Cauchy sequence in (X, G) is G -convergent in (X, G) .

PROPOSITION 2.2. In a G -metric space (X, G) , the following are equivalent.

- (1) The sequence (x_n) is G -Cauchy.
- (2) For every $\epsilon > 0$, there exists $n_0 \in N$ such that $G(x_n, x_m, x_m) < \epsilon$, for all $n, m \geq n_0$.

DEFINITION 2.5. (see [9]) Let (X, G) and (X', G') be G -metric spaces and let $f : (X, G) \rightarrow (X', G')$ be a function, then f is said to be G -continuous at a

point $a \in X$ if given $\epsilon > 0$, there exists $\delta > 0$ such that $x, y \in X$; $G(a, x, y) < \delta$ implies $G'(f(a), f(x), f(y)) < \epsilon$. A function f is G -continuous on X if and only if it is G -continuous at all $a \in X$.

PROPOSITION 2.3. (see [9]) *Let (X, G) and (X', G') be G -metric spaces, then a function $f : X \rightarrow X'$ is G -continuous at a point $x \in X$ if and only if it is G -sequentially continuous at x ; that is, whenever (x_n) is G -convergent to x , $(f(x_n))$ is G -convergent to $f(x)$.*

PROPOSITION 2.4. (see [9]) *Let (X, G) be a G -metric space, then the function $G(x, y, z)$ is jointly continuous in all three of its variables.*

3. Main results

THEOREM 3.1. *Let (X, G) be a complete G -metric space. Suppose the mappings $S, T : X \rightarrow X$ satisfy*

$$(3.1) \quad \max \left\{ \begin{array}{l} G(S(x), T(y), T(y)), \\ G(T(x), S(y), S(y)) \end{array} \right\} \leq a_1 G(x, y, y) \\ + a_2 \min \left\{ \begin{array}{l} G(x, T(y), T(y)) + G(y, S(x), S(x)), \\ G(x, S(y), S(y)) + G(y, T(x), T(x)) \end{array} \right\} \\ + a_3 \min \left\{ \begin{array}{l} G(x, S(x), S(x)) + G(y, T(y), T(y)), \\ G(x, T(x), T(x)) + G(y, S(y), S(y)) \end{array} \right\},$$

for all $x, y \in X$, where $a_1, a_2, a_3 \geq 0$ with $a_1 + 2a_2 + 2a_3 < 1$. Then S and T have a unique common fixed point in X .

Proof. Let $x_0 \in X$ be arbitrary and define a sequence (x_n) by

$$x_n = \begin{cases} S(x_{n-1}), & \text{if } n \text{ is odd,} \\ T(x_{n-1}), & \text{if } n \text{ is even.} \end{cases}$$

For any odd positive integer $n \in N$, we have by (3.1)

$$G(x_n, x_{n+1}, x_{n+1}) = G(S(x_{n-1}), T(x_n), T(x_n)) \\ \leq \max \left\{ \begin{array}{l} G(S(x_{n-1}), T(x_n), T(x_n)), \\ G(T(x_{n-1}), S(x_n), S(x_n)) \end{array} \right\}$$

$$\begin{aligned}
&\leq a_1 G(x_{n-1}, x_n, x_n) \\
&\quad + a_2 \min \left\{ \begin{array}{l} G(x_{n-1}, T(x_n), T(x_n)) + G(x_n, S(x_{n-1}), S(x_{n-1})), \\ G(x_{n-1}, S(x_n), S(x_n)) + G(x_n, T(x_{n-1}), T(x_{n-1})) \end{array} \right\} \\
&\quad + a_3 \min \left\{ \begin{array}{l} G(x_{n-1}, S(x_{n-1}), S(x_{n-1})) + G(x_n, T(x_n), T(x_n)), \\ G(x_{n-1}, T(x_{n-1}), T(x_{n-1})) + G(x_n, S(x_n), S(x_n)) \end{array} \right\}.
\end{aligned}$$

Thus,

$$\begin{aligned}
G(x_n, x_{n+1}, x_{n+1}) &\leq a_1 G(x_{n-1}, x_n, x_n) \\
&\quad + a_2 \{G(x_{n-1}, T(x_n), T(x_n)) + G(x_n, S(x_{n-1}), S(x_{n-1}))\} \\
&\quad + a_3 \{G(x_{n-1}, S(x_{n-1}), S(x_{n-1})) + G(x_n, T(x_n), T(x_n))\} \\
&= a_1 G(x_{n-1}, x_n, x_n) \\
&\quad + a_2 \{G(x_{n-1}, x_{n+1}, x_{n+1}) + G(x_n, x_n, x_n)\} \\
&\quad + a_3 \{G(x_{n-1}, x_n, x_n) + G(x_n, x_{n+1}, x_{n+1})\} \\
&\leq a_1 G(x_{n-1}, x_n, x_n) \\
&\quad + a_2 \{G(x_{n-1}, x_n, x_n) + G(x_n, x_{n+1}, x_{n+1})\} \\
&\quad + a_3 \{G(x_{n-1}, x_n, x_n) + G(x_n, x_{n+1}, x_{n+1})\},
\end{aligned}$$

which gives that

$$G(x_n, x_{n+1}, x_{n+1}) \leq \frac{a_1 + a_2 + a_3}{1 - a_2 - a_3} G(x_{n-1}, x_n, x_n).$$

If n is even then by (3.1), we have

$$\begin{aligned}
G(x_n, x_{n+1}, x_{n+1}) &= G(T(x_{n-1}), S(x_n), S(x_n)) \\
&\leq \max \left\{ \begin{array}{l} G(S(x_{n-1}), T(x_n), T(x_n)), \\ G(T(x_{n-1}), S(x_n), S(x_n)) \end{array} \right\} \\
&\leq a_1 G(x_{n-1}, x_n, x_n) \\
&\quad + a_2 \min \left\{ \begin{array}{l} G(x_{n-1}, T(x_n), T(x_n)) + G(x_n, S(x_{n-1}), S(x_{n-1})), \\ G(x_{n-1}, S(x_n), S(x_n)) + G(x_n, T(x_{n-1}), T(x_{n-1})) \end{array} \right\} \\
&\quad + a_3 \min \left\{ \begin{array}{l} G(x_{n-1}, S(x_{n-1}), S(x_{n-1})) + G(x_n, T(x_n), T(x_n)), \\ G(x_{n-1}, T(x_{n-1}), T(x_{n-1})) + G(x_n, S(x_n), S(x_n)) \end{array} \right\} \\
&\leq a_1 G(x_{n-1}, x_n, x_n) \\
&\quad + a_2 \{G(x_{n-1}, S(x_n), S(x_n)) + G(x_n, T(x_{n-1}), T(x_{n-1}))\} \\
&\quad + a_3 \{G(x_{n-1}, T(x_{n-1}), T(x_{n-1})) + G(x_n, S(x_n), S(x_n))\}.
\end{aligned}$$

Thus,

$$\begin{aligned}
G(x_n, x_{n+1}, x_{n+1}) &\leq a_1 G(x_{n-1}, x_n, x_n) \\
&\quad + a_2 \{G(x_{n-1}, x_{n+1}, x_{n+1}) + G(x_n, x_n, x_n)\} \\
&\quad + a_3 \{G(x_{n-1}, x_n, x_n) + G(x_n, x_{n+1}, x_{n+1})\} \\
&\leq a_1 G(x_{n-1}, x_n, x_n) \\
&\quad + a_2 \{G(x_{n-1}, x_n, x_n) + G(x_n, x_{n+1}, x_{n+1})\} \\
&\quad + a_3 \{G(x_{n-1}, x_n, x_n) + G(x_n, x_{n+1}, x_{n+1})\},
\end{aligned}$$

which implies that

$$G(x_n, x_{n+1}, x_{n+1}) \leq \frac{a_1 + a_2 + a_3}{1 - a_2 - a_3} G(x_{n-1}, x_n, x_n).$$

Thus, for any positive integer n ,

$$(3.2) \quad G(x_n, x_{n+1}, x_{n+1}) \leq \frac{a_1 + a_2 + a_3}{1 - a_2 - a_3} G(x_{n-1}, x_n, x_n).$$

Let $r = \frac{a_1 + a_2 + a_3}{1 - a_2 - a_3}$, then $0 \leq r < 1$ since $a_1, a_2, a_3 \geq 0$ with $a_1 + 2a_2 + 2a_3 < 1$. Thus, (3.2) becomes

$$(3.3) \quad G(x_n, x_{n+1}, x_{n+1}) \leq r G(x_{n-1}, x_n, x_n).$$

By repeated application of (3.3), we obtain

$$(3.4) \quad G(x_n, x_{n+1}, x_{n+1}) \leq r^n G(x_0, x_1, x_1).$$

Then, by repeated use of the rectangle inequality and (3.4), we have that, for all $n, m \in \mathbb{N}$, $n < m$,

$$\begin{aligned}
G(x_n, x_m, x_m) &\leq G(x_n, x_{n+1}, x_{n+1}) + G(x_{n+1}, x_{n+2}, x_{n+2}) \\
&\quad + G(x_{n+2}, x_{n+3}, x_{n+3}) + \cdots + G(x_{m-1}, x_m, x_m) \\
&\leq (r^n + r^{n+1} + \cdots + r^{m-1}) G(x_0, x_1, x_1) \\
&\leq \frac{r^n}{1-r} G(x_0, x_1, x_1).
\end{aligned}$$

Then, $\lim G(x_n, x_m, x_m) = 0$, as $n, m \rightarrow \infty$, since $\lim \frac{r^n}{1-r} G(x_0, x_1, x_1) = 0$, as $n, m \rightarrow \infty$. For $n, m, l \in \mathbb{N}$, (G_5) implies that

$$G(x_n, x_m, x_l) \leq G(x_n, x_m, x_m) + G(x_l, x_m, x_m),$$

taking limit as $n, m, l \rightarrow \infty$, we get $G(x_n, x_m, x_l) \rightarrow 0$. So (x_n) is a G -Cauchy sequence. By completeness of (X, G) , there exists $u \in X$ such that (x_n) is G -convergent to u .

Further, by rectangle inequality and (3.1), we have

$$\begin{aligned}
G(u, T(u), T(u)) &\leq G(u, x_{2n+1}, x_{2n+1}) + G(x_{2n+1}, T(u), T(u)) \\
&= G(u, x_{2n+1}, x_{2n+1}) + G(S(x_{2n}), T(u), T(u)) \\
&\leq G(u, x_{2n+1}, x_{2n+1}) + \max \left\{ \begin{array}{l} G(S(x_{2n}), T(u), T(u)), \\ G(T(x_{2n}), S(u), S(u)) \end{array} \right\} \\
&\leq G(u, x_{2n+1}, x_{2n+1}) + a_1 G(x_{2n}, u, u) \\
&\quad + a_2 \min \left\{ \begin{array}{l} G(x_{2n}, T(u), T(u)) + G(u, S(x_{2n}), S(x_{2n})), \\ G(x_{2n}, S(u), S(u)) + G(u, T(x_{2n}), T(x_{2n})) \end{array} \right\} \\
&\quad + a_3 \min \left\{ \begin{array}{l} G(x_{2n}, S(x_{2n}), S(x_{2n})) + G(u, T(u), T(u)), \\ G(x_{2n}, T(x_{2n}), T(x_{2n})) + G(u, S(u), S(u)) \end{array} \right\} \\
&\leq G(u, x_{2n+1}, x_{2n+1}) + a_1 G(x_{2n}, u, u) \\
&\quad + a_2 \{G(x_{2n}, T(u), T(u)) + G(u, S(x_{2n}), S(x_{2n}))\} \\
&\quad + a_3 \{G(x_{2n}, S(x_{2n}), S(x_{2n})) + G(u, T(u), T(u))\}.
\end{aligned}$$

Thus, we have

$$\begin{aligned}
G(u, T(u), T(u)) &\leq G(u, x_{2n+1}, x_{2n+1}) + a_1 G(x_{2n}, u, u) \\
&\quad + a_2 \{G(x_{2n}, T(u), T(u)) + G(u, x_{2n+1}, x_{2n+1})\} \\
&\quad + a_3 \{G(x_{2n}, x_{2n+1}, x_{2n+1}) + G(u, T(u), T(u))\},
\end{aligned}$$

taking the limit as $n \rightarrow \infty$, and using the fact that the function G is continuous on its variables, we have

$$G(u, T(u), T(u)) \leq (a_2 + a_3) G(u, T(u), T(u)).$$

Since $0 \leq (a_2 + a_3) < 1$,

$$G(u, T(u), T(u)) = 0,$$

which implies that, $u = T(u)$.

Similarly, we can show that $S(u) = u$. Thus, u is a common fixed point of S and T .

To prove uniqueness, suppose that there exists another point v in X such that $v = S(v) = T(v)$. Then,

$$\begin{aligned}
G(u, v, v) &= G(S(u), T(v), T(v)) \\
&\leq \max \left\{ \begin{array}{l} G(S(u), T(v), T(v)), \\ G(T(u), S(v), S(v)) \end{array} \right\}
\end{aligned}$$

$$\begin{aligned}
&\leq a_1 G(u, v, v) \\
&\quad + a_2 \min \left\{ \begin{array}{l} G(u, T(v), T(v)) + G(v, S(u), S(u)), \\ G(u, S(v), S(v)) + G(v, T(u), T(u)) \end{array} \right\} \\
&\quad + a_3 \min \left\{ \begin{array}{l} G(u, S(u), S(u)) + G(v, T(v), T(v)), \\ G(u, T(u), T(u)) + G(v, S(v), S(v)) \end{array} \right\} \\
&= a_1 G(u, v, v) \\
&\quad + a_2 \{G(u, v, v) + G(v, u, u)\} \\
&\quad + a_3 \{G(u, u, u) + G(v, v, v)\},
\end{aligned}$$

which gives that,

$$G(u, v, v) \leq \frac{a_2}{1 - a_1 - a_2} G(v, u, u).$$

Again by the same argument, we will find that

$$G(v, u, u) \leq \frac{a_2}{1 - a_1 - a_2} G(u, v, v).$$

Hence,

$$G(u, v, v) \leq \left(\frac{a_2}{1 - a_1 - a_2} \right)^2 G(u, v, v),$$

which implies that $u = v$, since $0 \leq \frac{a_2}{1 - a_1 - a_2} < 1$. ■

THEOREM 3.2. *Let (X, G) be a complete G-metric space. Suppose the mappings $S, T : X \rightarrow X$ satisfy*

$$\begin{aligned}
\max \left\{ \begin{array}{l} G(S(x), T(y), T(y)), \\ G(T(x), S(y), S(y)) \end{array} \right\} &\leq a_1 G(x, y, y) \\
&\quad + a_2 \min \left\{ \begin{array}{l} G(x, x, T(y)) + G(y, y, S(x)), \\ G(x, x, S(y)) + G(y, y, T(x)) \end{array} \right\} \\
&\quad + a_3 \min \left\{ \begin{array}{l} G(x, x, S(x)) + G(y, y, T(y)), \\ G(x, x, T(x)) + G(y, y, S(y)) \end{array} \right\},
\end{aligned}$$

for all $x, y \in X$, where $a_1, a_2, a_3 \geq 0$ with $a_1 + 2a_2 + 2a_3 < 1$. Then S and T have a unique common fixed point in X .

Proof. Let $x_0 \in X$ be arbitrary and define a sequence (x_n) by

$$x_n = \begin{cases} S(x_{n-1}), & \text{if } n \text{ is odd,} \\ T(x_{n-1}), & \text{if } n \text{ is even.} \end{cases}$$

Then by the argument similar to that used in Theorem 3.1, we have for any positive integer n ,

$$(3.5) \quad G(x_n, x_n, x_{n+1}) \leq r^n G(x_0, x_0, x_1).$$

Then, by repeated use of the rectangle inequality and (3.5), we have that, for all $n, m \in N$, $n < m$

$$\begin{aligned} G(x_m, x_n, x_n) &\leq G(x_m, x_{m-1}, x_{m-1}) + G(x_{m-1}, x_{m-2}, x_{m-2}) \\ &\quad + G(x_{m-2}, x_{m-3}, x_{m-3}) + \cdots + G(x_{n+1}, x_n, x_n) \\ &\leq (r^n + r^{n+1} + \cdots + r^{m-1}) G(x_0, x_0, x_1) \\ &\leq \frac{r^n}{1-r} G(x_0, x_0, x_1). \end{aligned}$$

So, (x_n) becomes a G -Cauchy sequence. By completeness of (X, G) , there exists $u \in X$ such that (x_n) is G -convergent to u .

As in the proof of Theorem 3.1, we can show that

$$G(u, u, T(u)) \leq (a_2 + a_3) G(u, u, T(u)).$$

Thus, the desired conclusion follows from the same argument used in Theorem 3.1. ■

Combining Theorems 3.1 and 3.2, we state the following theorem:

THEOREM 3.3. *Let (X, G) be a complete G -metric space. Suppose the mappings $S, T : X \rightarrow X$ satisfying one of the following conditions:*

$$(3.6) \quad \max \left\{ \begin{array}{l} G(S(x), T(y), T(y)), \\ G(T(x), S(y), S(y)) \end{array} \right\} \leq a_1 G(x, y, y) \\ + a_2 \min \left\{ \begin{array}{l} G(x, T(y), T(y)) + G(y, S(x), S(x)), \\ G(x, S(y), S(y)) + G(y, T(x), T(x)) \end{array} \right\} \\ + a_3 \min \left\{ \begin{array}{l} G(x, S(x), S(x)) + G(y, T(y), T(y)), \\ G(x, T(x), T(x)) + G(y, S(y), S(y)) \end{array} \right\}$$

or

$$\begin{aligned}
 (3.7) \quad & \max \left\{ \begin{array}{l} G(S(x), T(y), T(y)), \\ G(T(x), S(y), S(y)) \end{array} \right\} \\
 & \leq a_1 G(x, y, y) + a_2 \min \left\{ \begin{array}{l} G(x, x, T(y)) + G(y, y, S(x)), \\ G(x, x, S(y)) + G(y, y, T(x)) \end{array} \right\} \\
 & \quad + a_3 \min \left\{ \begin{array}{l} G(x, x, S(x)) + G(y, y, T(y)), \\ G(x, x, T(x)) + G(y, y, S(y)) \end{array} \right\},
 \end{aligned}$$

for all $x, y \in X$, where $a_1, a_2, a_3 \geq 0$ with $a_1 + 2a_2 + 2a_3 < 1$. Then S and T have a unique common fixed point in X .

As an application of Theorem 3.3, we have the following corollary.

COROLLARY 3.1. *Let (X, G) be a complete G -metric space, and let $T : X \rightarrow X$ be a mapping satisfying one of the following conditions:*

$$\begin{aligned}
 G(T(x), T(y), T(y)) & \leq a_1 G(x, y, y) + a_2 \{G(x, T(y), T(y)) + G(y, T(x), T(x))\} \\
 & \quad + a_3 \{G(x, T(x), T(x)) + G(y, T(y), T(y))\}
 \end{aligned}$$

or

$$\begin{aligned}
 G(T(x), T(y), T(y)) & \leq a_1 G(x, y, y) + a_2 \{G(x, x, T(y)) + G(y, y, T(x))\} \\
 & \quad + a_3 \{G(x, x, T(x)) + G(y, y, T(y))\},
 \end{aligned}$$

for all $x, y \in X$, where $a_1, a_2, a_3 \geq 0$ with $a_1 + 2a_2 + 2a_3 < 1$. Then T has a unique fixed point in X .

Proof. Put $S = T$ in Theorem 3.3. ■

REMARK 3.1. Putting $a_1 = a_3 = 0$ in Corollary 3.1, we obtain Theorem 2.9 from [11].

THEOREM 3.4. *Let (X, G) be a complete G -metric space, and let $T : X \rightarrow X$ be such that for each positive integer n ,*

$$(3.8) \quad G(T^n(x), T^n(y), T^n(y)) \leq a_n G(x, y, y),$$

for all $x, y \in X$, where $a_n > 0$ is independent of x, y . If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then T has a unique fixed point in X .

Proof. Let $x_0 \in X$ be arbitrary and define a sequence (x_n) by

$$x_n = T(x_{n-1}) = T^n(x_0), \quad \text{for } n = 1, 2, 3, \dots$$

Then, by repeated use of the rectangle inequality and (3.8), we have that, for all $n, m \in N$, $n < m$

$$\begin{aligned}
(3.9) \quad G(x_n, x_m, x_m) &\leq G(x_n, x_{n+1}, x_{n+1}) + G(x_{n+1}, x_{n+2}, x_{n+2}) \\
&\quad + G(x_{n+2}, x_{n+3}, x_{n+3}) + \cdots + G(x_{m-1}, x_m, x_m) \\
&= \sum_{r=n}^{m-1} G(x_r, x_{r+1}, x_{r+1}) \\
&= \sum_{r=n}^{m-1} G(T^r(x_0), T^r(x_1), T^r(x_1)) \\
&\leq \left(\sum_{r=n}^{m-1} a_r \right) G(x_0, x_1, x_1).
\end{aligned}$$

If $x_1 = x_0$, then a fixed point is obtained. Therefore, we assume that $x_1 \neq x_0$. Let k be a positive integer such that $k > G(x_0, x_1, x_1)$. Since the series $\sum_{n=1}^{\infty} a_n$ is convergent, for $\epsilon > 0$ arbitrary, there exists a positive integer n_0 such that

$$\sum_{r=n}^{m-1} a_r < \frac{\epsilon}{k}, \quad \text{for } m > n \geq n_0.$$

Then, for $m > n \geq n_0$, we have from (3.9)

$$G(x_n, x_m, x_m) \leq \frac{\epsilon}{k} G(x_0, x_1, x_1) < \epsilon.$$

By Proposition 2.2, the sequence (x_n) becomes a G -Cauchy sequence. Using the completeness of (X, G) , there exists $u \in X$ such that (x_n) is G -convergent to u .

But by (G_5) and (3.8), we have

$$\begin{aligned}
G(u, T(u), T(u)) &\leq G(u, x_{n+1}, x_{n+1}) + G(x_{n+1}, T(u), T(u)) \\
&= G(u, x_{n+1}, x_{n+1}) + G(T(x_n), T(u), T(u)) \\
&\leq G(u, x_{n+1}, x_{n+1}) + a_1 G(x_n, u, u),
\end{aligned}$$

taking the limit as $n \rightarrow \infty$, and using the fact that the function G is continuous on its variables, we have

$$G(u, T(u), T(u)) = 0,$$

which implies that $u = T(u)$ and u becomes a fixed point of T .

For uniqueness, suppose that $v \neq u$ is such that $T(v) = v$. Then for any positive integer n , we have

$$G(u, v, v) = G(T^n(u), T^n(v), T^n(v)) \leq a_n G(u, v, v).$$

Since by G_2 , $G(u, v, v) > 0$, it must be the case that $a_n \geq 1$ for all n . So, a_n can not tend to zero and this contradiction shows that $u = v$. ■

As an application of Theorem 3.4, we have the following Corollary.

COROLLARY 3.2. (see [14]) *Let (X, G) be a complete G-metric space, and let $T : X \rightarrow X$ be a mapping satisfying the following condition for all $x, y \in X$,*

$$(3.10) \quad G(T(x), T(y), T(y)) \leq k G(x, y, y),$$

where $0 \leq k < 1$. Then T has a unique fixed point in X .

Proof. For $x, y \in X$, we obtain from (3.10) that

$$G(T^2(x), T^2(y), T^2(y)) \leq k G(T(x), T(y), T(y)) \leq k^2 G(x, y, z).$$

Similarly, for any positive integer n ,

$$G(T^n(x), T^n(y), T^n(y)) \leq k^n G(x, y, y), \quad \text{for all } x, y \in X.$$

But, the series $\sum_{n=1}^{\infty} k^n$ is convergent. Now, Theorem 3.4 applies to obtain a unique fixed point of T . ■

THEOREM 3.5. *Let (X, G) be a complete G-metric space, and let $T : X \rightarrow X$ be G-continuous. Suppose that there exists a mapping $Q : X \rightarrow [0, \infty)$ such that*

$$(3.11) \quad G(x, T(x), T(x)) \leq Q(x) - Q(T(x)),$$

for all $x \in X$. Then T has a fixed point in X .

Proof. Let $x_0 \in X$ be arbitrary and define a sequence (x_n) by

$$x_n = T(x_{n-1}), \quad \text{for } n = 1, 2, 3, \dots$$

Then, for any positive integer r , we have by using (3.11) that

$$\begin{aligned} G(x_r, x_{r+1}, x_{r+1}) &= G(x_r, T(x_r), T(x_r)) \\ &\leq Q(x_r) - Q(T(x_r)) = Q(x_r) - Q(x_{r+1}). \end{aligned}$$

Therefore,

$$\begin{aligned} \sum_{r=0}^{n-1} G(x_r, x_{r+1}, x_{r+1}) &\leq \sum_{r=0}^{n-1} [Q(x_r) - Q(x_{r+1})] \\ &= Q(x_0) - Q(x_n) \leq Q(x_0). \end{aligned}$$

So, the series $\sum_{r=0}^{\infty} G(x_r, x_{r+1}, x_{r+1})$ is convergent. Then, for all $n, m \in N$, $n < m$, we have by repeated use of the rectangle inequality that

$$\begin{aligned} (3.12) \quad G(x_n, x_m, x_m) &\leq G(x_n, x_{n+1}, x_{n+1}) + G(x_{n+1}, x_{n+2}, x_{n+2}) \\ &\quad + G(x_{n+2}, x_{n+3}, x_{n+3}) + \dots + G(x_{m-1}, x_m, x_m) \\ &= \sum_{r=n}^{m-1} G(x_r, x_{r+1}, x_{r+1}). \end{aligned}$$

The convergence of the series $\sum_{r=0}^{\infty} G(x_r, x_{r+1}, x_{r+1})$ gives, for arbitrary $\epsilon > 0$, there exists a positive integer n_0 such that

$$\sum_{r=n}^{m-1} G(x_r, x_{r+1}, x_{r+1}) < \epsilon \text{ for } m > n \geq n_0.$$

Then, for $m > n \geq n_0$, we have from (3.12) that

$$G(x_n, x_m, x_m) < \epsilon.$$

By Proposition 2.2, the sequence (x_n) becomes a G -Cauchy sequence. Using the completeness of (X, G) , there exists $u \in X$ such that (x_n) is G -convergent to u . G -continuity of T implies that

$$T(u) = \lim_n T(x_n) = \lim_n x_{n+1} = u.$$

Thus, u is a fixed point of T . ■

REMARK 3.2. A fixed point of T , in the above theorem, is not unique. The identity mapping I satisfies the condition (3.11) but a fixed point of I is not unique.

References

- [1] R. Chugh, T. Kadian, A. Rani, B. E. Rhoades, *Property P in G-metric spaces*, Fixed Point Theory and Applications, vol. 2010, Article ID 401684, 12 pages, 2010.
- [2] B. C. Dhage, *Generalised metric spaces and mappings with fixed point*, Bull. Calcutta Math. Soc. 84(4) (1992), 329–336.
- [3] B. C. Dhage, *Generalised metric spaces and topological structure – I*, An. Stiint. Univ. "Al. I. Cuza" Iasi Mat. 46(1) (2000), 3–24.
- [4] S. Gahler, *2-metrische Räume und ihre topologische Struktur*, Math. Nachr. 26 (1963), 115–148.
- [5] S. Gahler, *Zur geometric 2-metrische räume*, Rev. Roumaine Math. Pures Appl. 40 (1966), 664–669.
- [6] L. Gajić, Z. Lozanov-Crvenković, *A fixed point result for mappings with contractive iterate at a point in G-metric spaces*, Filomat 25(2) (2011), 53–58.
- [7] K. S. Ha, Y. J. Cho, A. White, *Strictly convex and strictly 2-convex 2-normed spaces*, Math. Japon. 33(3) (1988), 375–384.
- [8] S. K. Mohanta, *Property P of Ćirić operators in G-metric spaces*, Internat. J. Math. Sci. Engg. Appl. 5 (2011), 353–367.
- [9] Z. Mustafa, B. Sims, *A new approach to generalized metric spaces*, J. Nonlinear Convex Anal. 7(2) (2006), 289–297.
- [10] Z. Mustafa, B. Sims, *Fixed point theorems for contractive mappings in complete G-metric spaces*, Fixed Point Theory and Applications, vol. 2009, Article ID 917175, 10 pages, 2009.
- [11] Z. Mustafa, H. Obiedat, F. Awawdeh, *Some fixed point theorem for mapping on complete G-metric spaces*, Fixed Point Theory and Applications, vol. 2008, Article ID 189870, 12 pages, 2008.

- [12] Z. Mustafa, W. Shatanawi, M. Bataineh, *Existence of fixed point results in G -metric spaces*, Int. J. Math. Math. Sci., vol. 2009, Article ID 283028, 10 pages, 2009.
- [13] Z. Mustafa, B. Sims, *Some remarks concerning D -metric spaces*, in Proceedings of the International Conference on Fixed Point Theory and Applications, pp. 189–198, Valencia, Spain, July 2004.
- [14] Z. Mustafa, *A new structure for generalized metric spaces with applications to fixed point theory*, Ph. D. thesis, The University of Newcastle, Callaghan, Australia, 2005.
- [15] Z. Mustafa, H. Obiedat, *A fixed points theorem of Reich in G -metric spaces*, CUBO A Mathematical Journal 12(01) (2010), 83–93.
- [16] Z. Mustafa, F. Awawdeh, W. Shatanawi, *Fixed point theorem for expansive mappings in G -metric spaces*, Int. J. Contemp. Math. Sci. 5(50) (2010), 2463–2472.
- [17] S. V. R. Naidu, K. P. R. Rao, N. S. Rao, *On the concept of balls in a D -metric space*, Int. J. Math. Math. Sci. 1 (2005), 133–141.
- [18] W. Shatanawi, *Fixed point theory for contractive mappings satisfying ϕ -maps in G -metric spaces*, Fixed Point Theory and Applications, vol. 2010, Article ID 181650, 9 pages, 2010.

DEPARTMENT OF MATHEMATICS,
WEST BENGAL STATE UNIVERSITY,
BARASAT, 24 PARGANS (NORTH),
WEST BENGAL, KOLKATA 700126, INDIA
E-mail: smwbes@yahoo.in

Received May 20, 2011; revised version February 2, 2012.