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SOME FIXED POINT RESULTS FOR MAPPINGS
IN G-METRIC SPACES

Abstract. We prove a common fixed point theorem for a pair of self mappings
satisfying a generalized contractive type condition in a complete G-metric space. We also
deal with other fixed point results for a self mapping in the setting of generalized metric
space. Our results generalize some recent results in the literature.

1. Introduction
Metric fixed point theory is playing an increasing role in mathematics

and applied sciences. Over the past two decades a considerable amount
of research work for the development of fixed point theory have executed
by several authors. There have been a number of generalizations of metric
spaces, such as Gähler r4, 5s (called 2-metric spaces) and Dhage r2, 3s (called
D-metric spaces). Different authors proved that the results obtained by
Gähler in 2-metric spaces are independent rather than generalizations of the
corresponding results in metric spaces. However, Mustafa and Sims in [13]
have pointed out that most of the results claimed by Dhage and others in
D-metric spaces are incorrect. They also introduced an appropriate concept
of generalized metric space, called G-metric space [9] and developed a new
fixed point theory for various mappings in this new structure. Our aim in
this study is to obtain some fixed point results in complete G-metric spaces.
These results generalize some results of [11] and [14].

2. Preliminaries
We begin by briefly recalling some basic definitions and important results

for G-metric spaces which will be needed in the sequel. Throughout this
paper, we denote by N the set of positive integers.
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Definition 2.1. (see [9]) Let X be a nonempty set, and let G : XˆXˆX
Ñ R` be a function satisfying the following axioms:
pG1q Gpx, y, zq “ 0 if x “ y “ z,

pG2q 0 ă Gpx, x, yq, for all x, y P X, with x ­“ y,

pG3q Gpx, x, yq ≤ Gpx, y, zq, for all x, y, z P X, with z ­“ y,

pG4q Gpx, y, zq “ Gpx, z, yq “ Gpy, z, xq “ ¨ ¨ ¨ (symmetry in all three vari-
ables),

pG5q Gpx, y, zq ≤ Gpx, a, aq ` Gpa, y, zq, for all x, y, z, a P X, (rectangle
inequality).

Then the function G is called a generalized metric, or, more specifically,
a G-metric on X, and the pair pX,Gq is called a G-metric space.

Proposition 2.1. (see [9]) Let pX,Gq be a G-metric space. Then for any
x, y, z, and a P X, it follows that

(1) if Gpx, y, zq “ 0, then x “ y “ z,
(2) Gpx, y, zq ≤ Gpx, x, yq `Gpx, x, zq,
(3) Gpx, y, yq ≤ 2Gpy, x, xq,
(4) Gpx, y, zq ≤ Gpx, a, zq `Gpa, y, zq,
(5) Gpx, y, zq ≤ 2

3 pGpx, y, aq `Gpx, a, zq `Gpa, y, zqq,
(6) Gpx, y, zq ≤ Gpx, a, aq `Gpy, a, aq `Gpz, a, aq.

Definition 2.2. (see [9]) Let pX,Gq be a G-metric space, let pxnq
be a sequence of points of X, we say that pxnq is G-convergent to x if
limn,mÑ8Gpx, xn, xmq “ 0; that is , for any ε ą 0, there exists n0 P N
such that Gpx, xn, xmq ă ε, for all n,m ≥ n0. We call x as the limit of the
sequence pxnq and write xn Ñ x.

Definition 2.3. (see [9]) Let pX,Gq be a G-metric space, a sequence pxnq
is called G-Cauchy if given ε ą 0, there is n0 P N such that Gpxn, xm, xlq ă ε,
for all n,m, l ≥ n0; that is, if Gpxn, xm, xlq Ñ 0 as n,m, lÑ8.

Definition 2.4. (see [9]) AG-metric space pX,Gq is said to beG-complete
(or a complete G-metric space) if every G-Cauchy sequence in pX,Gq is
G-convergent in pX,Gq.

Proposition 2.2. In a G-metric space pX,Gq, the following are equiva-
lent.

(1) The sequence pxnq is G-Cauchy.
(2) For every ε ą 0, there exists n0 P N such that Gpxn, xm, xmq ă ε, for all

n,m ≥ n0.

Definition 2.5. (see [9]) Let pX,Gq and pX 1

, G
1

q be G-metric spaces and
let f : pX,Gq Ñ pX

1

, G
1

q be a function, then f is said to beG-continuous at a
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point a P X if given ε ą 0, there exists δ ą 0 such that x, y P X; Gpa, x, yq ă
δ implies G1

pfpaq, fpxq, fpyqq ă ε. A function f is G-continuous on X if and
only if it is G-continuous at all a P X.

Proposition 2.3. (see [9]) Let pX,Gq and pX 1

, G
1

q be G-metric spaces,
then a function f : X Ñ X

1 is G-continuous at a point x P X if and only if
it is G-sequentially continuous at x; that is, whenever pxnq is G-convergent
to x, pfpxnqq is G-convergent to fpxq.

Proposition 2.4. (see [9]) Let pX,Gq be a G-metric space, then the func-
tion Gpx, y, zq is jointly continuous in all three of its variables.

3. Main results
Theorem 3.1. Let pX,Gq be a complete G-metric space. Suppose the
mappings S, T : X Ñ X satisfy

(3.1) max

$

&

%

GpSpxq, T pyq, T pyqq,

GpT pxq, Spyq, Spyqq

,

.

-

≤ a1Gpx, y, yq

` a2min

$

&

%

Gpx, T pyq, T pyqq `Gpy, Spxq, Spxqq,

Gpx, Spyq, Spyqq `Gpy, T pxq, T pxqq

,

.

-

` a3min

$

&

%

Gpx, Spxq, Spxqq `Gpy, T pyq, T pyqq,

Gpx, T pxq, T pxqq `Gpy, Spyq, Spyqq

,

.

-

,

for all x, y P X, where a1, a2, a3 ≥ 0 with a1 ` 2a2 ` 2a3 ă 1. Then S and
T have a unique common fixed point in X.

Proof. Let x0 P X be arbitrary and define a sequence pxnq by

xn “

#

Spxn´1q, if n is odd,
T pxn´1q, if n is even.

For any odd positive integer n P N , we have by p3.1q

Gpxn, xn`1, xn`1q “ GpSpxn´1q, T pxnq, T pxnqq

≤ max

$

&

%

GpSpxn´1q, T pxnq, T pxnqq,

GpT pxn´1q, Spxnq, Spxnqq

,

.

-
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≤ a1Gpxn´1, xn, xnq

` a2min

$

&

%

Gpxn´1, T pxnq, T pxnqq `Gpxn, Spxn´1q, Spxn´1qq,

Gpxn´1, Spxnq, Spxnqq `Gpxn, T pxn´1q, T pxn´1qq

,

.

-

` a3min

$

&

%

Gpxn´1, Spxn´1q, Spxn´1qq `Gpxn, T pxnq, T pxnqq,

Gpxn´1, T pxn´1q, T pxn´1qq `Gpxn, Spxnq, Spxnqq

,

.

-

.

Thus,

Gpxn, xn`1, xn`1q ≤ a1Gpxn´1, xn, xnq

` a2tGpxn´1, T pxnq, T pxnqq`Gpxn, Spxn´1q, Spxn´1qqu

` a3tGpxn´1, Spxn´1q, Spxn´1qq`Gpxn, T pxnq, T pxnqqu

“ a1Gpxn´1, xn, xnq

` a2 tGpxn´1, xn`1, xn`1q `Gpxn, xn, xnqu

` a3 tGpxn´1, xn, xnq `Gpxn, xn`1, xn`1qu

≤ a1Gpxn´1, xn, xnq

` a2 tGpxn´1, xn, xnq `Gpxn, xn`1, xn`1qu

` a3 tGpxn´1, xn, xnq `Gpxn, xn`1, xn`1qu ,

which gives that

Gpxn, xn`1, xn`1q ≤
a1 ` a2 ` a3
1´ a2 ´ a3

Gpxn´1, xn, xnq.

If n is even then by p3.1q, we have

Gpxn, xn`1, xn`1q “ GpT pxn´1q, Spxnq, Spxnqq

≤ max

#

GpSpxn´1q, T pxnq, T pxnqq,

GpT pxn´1q, Spxnq, Spxnqq

+

≤ a1Gpxn´1, xn, xnq

` a2min

#

Gpxn´1, T pxnq, T pxnqq `Gpxn, Spxn´1q, Spxn´1qq,

Gpxn´1, Spxnq, Spxnqq `Gpxn, T pxn´1q, T pxn´1qq

+

` a3min

#

Gpxn´1, Spxn´1q, Spxn´1qq `Gpxn, T pxnq, T pxnqq,

Gpxn´1, T pxn´1q, T pxn´1qq `Gpxn, Spxnq, Spxnqq

+

≤ a1Gpxn´1, xn, xnq

` a2 tGpxn´1, Spxnq, Spxnqq `Gpxn, T pxn´1q, T pxn´1qqu

` a3 tGpxn´1, T pxn´1q, T pxn´1qq `Gpxn, Spxnq, Spxnqqu .
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Thus,

Gpxn, xn`1, xn`1q ≤ a1Gpxn´1, xn, xnq

` a2 tGpxn´1, xn`1, xn`1q `Gpxn, xn, xnqu

` a3 tGpxn´1, xn, xnq `Gpxn, xn`1, xn`1qu

≤ a1Gpxn´1, xn, xnq

` a2 tGpxn´1, xn, xnq `Gpxn, xn`1, xn`1qu

` a3 tGpxn´1, xn, xnq `Gpxn, xn`1, xn`1qu ,

which implies that

Gpxn, xn`1, xn`1q ≤
a1 ` a2 ` a3
1´ a2 ´ a3

Gpxn´1, xn, xnq.

Thus, for any positive integer n,

p3.2q Gpxn, xn`1, xn`1q ≤
a1 ` a2 ` a3
1´ a2 ´ a3

Gpxn´1, xn, xnq.

Let r “ a1`a2`a3
1´a2´a3

, then 0 ≤ r ă 1 since a1, a2, a3 ≥ 0 with a1`2a2`2a3 ă 1.
Thus, p3.2q becomes

p3.3q Gpxn, xn`1, xn`1q ≤ r Gpxn´1, xn, xnq.

By repeated application of p3.3q, we obtain

p3.4q Gpxn, xn`1, xn`1q ≤ rnGpx0, x1, x1q.

Then, by repeated use of the rectangle inequality and (3.4), we have that,
for all n,m P N , n ă m,

Gpxn, xm, xmq ≤ Gpxn, xn`1, xn`1q `Gpxn`1, xn`2, xn`2q

`Gpxn`2, xn`3, xn`3q ` ¨ ¨ ¨ `Gpxm´1, xm, xmq

≤
`

rn ` rn`1 ` ¨ ¨ ¨ ` rm´1
˘

Gpx0, x1, x1q

≤ rn

1´ r
Gpx0, x1, x1q.

Then, limGpxn, xm, xmq “ 0, as n,m Ñ 8, since lim rn

1´r Gpx0, x1, x1q “ 0,
as n,mÑ8. For n,m, l P N , pG5q implies that

Gpxn, xm, xlq ≤ Gpxn, xm, xmq `Gpxl, xm, xmq,

taking limit as n,m, lÑ8, we get Gpxn, xm, xlq Ñ 0. So pxnq is a G-Cauchy
sequence. By completeness of pX,Gq, there exists u P X such that pxnq is
G-convergent to u.
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Further, by rectangle inequality and p3.1q, we have

Gpu, T puq, T puqq ≤ Gpu, x2n`1, x2n`1q `Gpx2n`1, T puq, T puqq

“ Gpu, x2n`1, x2n`1q `GpSpx2nq, T puq, T puqq

≤ Gpu, x2n`1, x2n`1q `max

$

&

%

GpSpx2nq, T puq, T puqq,

GpT px2nq, Spuq, Spuqq

,

.

-

≤ Gpu, x2n`1, x2n`1q ` a1Gpx2n, u, uq

` a2min

$

&

%

Gpx2n, T puq, T puqq `Gpu, Spx2nq, Spx2nqq,

Gpx2n, Spuq, Spuqq `Gpu, T px2nq, T px2nqq

,

.

-

` a3min

$

&

%

Gpx2n, Spx2nq, Spx2nqq `Gpu, T puq, T puqq,

Gpx2n, T px2nq, T px2nqq `Gpu, Spuq, Spuqq

,

.

-

≤ Gpu, x2n`1, x2n`1q ` a1Gpx2n, u, uq

` a2 tGpx2n, T puq, T puqq `Gpu, Spx2nq, Spx2nqqu

` a3 tGpx2n, Spx2nq, Spx2nqq `Gpu, T puq, T puqqu .

Thus, we have

Gpu, T puq, T puqq ≤ Gpu, x2n`1, x2n`1q ` a1Gpx2n, u, uq

` a2 tGpx2n, T puq, T puqq `Gpu, x2n`1, x2n`1qu

` a3 tGpx2n, x2n`1, x2n`1q `Gpu, T puq, T puqqu ,

taking the limit as nÑ8, and using the fact that the function G is contin-
uous on its variables, we have

Gpu, T puq, T puqq ≤ pa2 ` a3qGpu, T puq, T puqq.

Since 0 ≤ pa2 ` a3q ă 1,

Gpu, T puq, T puqq “ 0,

which implies that, u “ T puq.
Similarly, we can show that Spuq “ u. Thus, u is a common fixed point

of S and T .
To prove uniqueness, suppose that there exists another point v in X such

that v “ Spvq “ T pvq. Then,

Gpu, v, vq “ GpSpuq, T pvq, T pvqq

≤ max

$

&

%

GpSpuq, T pvq, T pvqq,

GpT puq, Spvq, Spvqq

,

.

-
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≤ a1Gpu, v, vq

` a2min

$

&

%

Gpu, T pvq, T pvqq `Gpv, Spuq, Spuqq,

Gpu, Spvq, Spvqq `Gpv, T puq, T puqq

,

.

-

` a3min

$

&

%

Gpu, Spuq, Spuqq `Gpv, T pvq, T pvqq,

Gpu, T puq, T puqq `Gpv, Spvq, Spvqq

,

.

-

“ a1Gpu, v, vq

` a2 tGpu, v, vq `Gpv, u, uqu

` a3 tGpu, u, uq `Gpv, v, vqu ,

which gives that,

Gpu, v, vq ≤ a2
1´ a1 ´ a2

Gpv, u, uq.

Again by the same argument, we will find that

Gpv, u, uq ≤ a2
1´ a1 ´ a2

Gpu, v, vq.

Hence,

Gpu, v, vq ≤
ˆ

a2
1´ a1 ´ a2

˙2

Gpu, v, vq,

which implies that u “ v, since 0 ≤ a2
1´a1´a2

ă 1.

Theorem 3.2. Let pX,Gq be a complete G-metric space. Suppose the
mappings S, T : X Ñ X satisfy

max

$

&

%

GpSpxq, T pyq, T pyqq,

GpT pxq, Spyq, Spyqq

,

.

-

≤ a1Gpx, y, yq

` a2min

$

&

%

Gpx, x, T pyqq `Gpy, y, Spxqq,

Gpx, x, Spyqq `Gpy, y, T pxqq

,

.

-

` a3min

$

&

%

Gpx, x, Spxqq `Gpy, y, T pyqq,

Gpx, x, T pxqq `Gpy, y, Spyqq

,

.

-

,

for all x, y P X, where a1, a2, a3 ≥ 0 with a1 ` 2a2 ` 2a3 ă 1. Then S and
T have a unique common fixed point in X.
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Proof. Let x0 P X be arbitrary and define a sequence pxnq by

xn “

#

Spxn´1q, if n is odd,
T pxn´1q, if n is even.

Then by the argument similar to that used in Theorem 3.1, we have for any
positive integer n,

p3.5q Gpxn, xn, xn`1q ≤ rnGpx0, x0, x1q.

Then, by repeated use of the rectangle inequality and p3.5q, we have that,
for all n,m P N , n ă m

Gpxm, xn, xnq ≤ Gpxm, xm´1, xm´1q `Gpxm´1, xm´2, xm´2q

`Gpxm´2, xm´3, xm´3q ` ¨ ¨ ¨ `Gpxn`1, xn, xnq

≤
`

rn ` rn`1 ` ¨ ¨ ¨ ` rm´1
˘

Gpx0, x0, x1q

≤ rn

1´ r
Gpx0, x0, x1q.

So, pxnq becomes a G-Cauchy sequence. By completeness of pX,Gq, there
exists u P X such that pxnq is G-convergent to u.

As in the proof of Theorem 3.1, we can show that

Gpu, u, T puqq ≤ pa2 ` a3qGpu, u, T puqq.

Thus, the desired conclusion follows from the same argument used in Theo-
rem 3.1.

Combining Theorems 3.1 and 3.2, we state the following theorem:

Theorem 3.3. Let pX,Gq be a complete G-metric space. Suppose the
mappings S, T : X Ñ X satisfying one of the following conditions:

(3.6) max

$

&

%

GpSpxq, T pyq, T pyqq,

GpT pxq, Spyq, Spyqq

,

.

-

≤ a1Gpx, y, yq

` a2min

$

&

%

Gpx, T pyq, T pyqq `Gpy, Spxq, Spxqq,

Gpx, Spyq, Spyqq `Gpy, T pxq, T pxqq

,

.

-

` a3min

$

&

%

Gpx, Spxq, Spxqq `Gpy, T pyq, T pyqq,

Gpx, T pxq, T pxqq `Gpy, Spyq, Spyqq

,

.

-
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or

(3.7) max

$

&

%

GpSpxq, T pyq, T pyqq,

GpT pxq, Spyq, Spyqq

,

.

-

≤ a1Gpx, y, yq ` a2min

#

Gpx, x, T pyqq `Gpy, y, Spxqq,

Gpx, x, Spyqq `Gpy, y, T pxqq

+

` a3min

$

&

%

Gpx, x, Spxqq `Gpy, y, T pyqq,

Gpx, x, T pxqq `Gpy, y, Spyqq

,

.

-

,

for all x, y P X, where a1, a2, a3 ≥ 0 with a1 ` 2a2 ` 2a3 ă 1. Then S and
T have a unique common fixed point in X.

As an application of Theorem 3.3, we have the following corollary.

Corollary 3.1. Let pX,Gq be a complete G-metric space, and let
T : X Ñ X be a mapping satisfying one of the following conditions:

GpT pxq, T pyq, T pyqq ≤ a1Gpx, y, yq`a2tGpx, T pyq, T pyqq`Gpy, T pxq, T pxqqu

` a3tGpx, T pxq, T pxqq`Gpy, T pyq, T pyqqu

or

GpT pxq, T pyq, T pyqq ≤ a1Gpx, y, yq ` a2 tGpx, x, T pyqq `Gpy, y, T pxqqu

` a3 tGpx, x, T pxqq `Gpy, y, T pyqqu ,

for all x, y P X, where a1, a2, a3 ≥ 0 with a1 ` 2a2 ` 2a3 ă 1. Then T has
a unique fixed point in X.

Proof. Put S “ T in Theorem 3.3.

Remark 3.1. Putting a1 “ a3 “ 0 in Corollary 3.1, we obtain Theorem 2.9
from [11].

Theorem 3.4. Let pX,Gq be a complete G-metric space, and let T : X Ñ

X be such that for each positive integer n,

p3.8q GpTnpxq, Tnpyq, Tnpyqq ≤ anGpx, y, yq,

for all x, y P X, where an ą 0 is independent of x, y. If the series
ř8

n“1 an
is convergent, then T has a unique fixed point in X.

Proof. Let x0 P X be arbitrary and define a sequence pxnq by

xn “ T pxn´1q “ Tnpx0q, for n “ 1, 2, 3, . . . .

Then, by repeated use of the rectangle inequality and p3.8q, we have that,
for all n,m P N , n ă m
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Gpxn, xm, xmq ≤ Gpxn, xn`1, xn`1q `Gpxn`1, xn`2, xn`2q(3.9)
`Gpxn`2, xn`3, xn`3q ` ¨ ¨ ¨ `Gpxm´1, xm, xmq

“

m´1
ÿ

r“n

Gpxr, xr`1, xr`1q

“

m´1
ÿ

r“n

GpT rpx0q, T
rpx1q, T

rpx1qq

≤
´

m´1
ÿ

r“n

ar

¯

Gpx0, x1, x1q.

If x1 “ x0, then a fixed point is obtained. Therefore, we assume that x1 ­“ x0.
Let k be a positive integer such that k ą Gpx0, x1, x1q. Since the series
ř8

n“1 an is convergent, for ε ą 0 arbitrary, there exists a positive integer n0
such that

m´1
ÿ

r“n

ar ă
ε

k
, for m ą n ≥ n0.

Then, for m ą n ≥ n0, we have from p3.9q

Gpxn, xm, xmq ≤
ε

k
Gpx0, x1, x1q ă ε.

By Proposition 2.2, the sequence pxnq becomes a G-Cauchy sequence. Using
the completeness of pX,Gq, there exists u P X such that pxnq is G-convergent
to u.

But by pG5q and p3.8q, we have

Gpu, T puq, T puqq ≤ Gpu, xn`1, xn`1q `Gpxn`1, T puq, T puqq

“ Gpu, xn`1, xn`1q `GpT pxnq, T puq, T puqq

≤ Gpu, xn`1, xn`1q ` a1Gpxn, u, uq,

taking the limit as nÑ8, and using the fact that the function G is contin-
uous on its variables, we have

Gpu, T puq, T puqq “ 0,

which implies that u “ T puq and u becomes a fixed point of T .
For uniqueness, suppose that v ­“ u is such that T pvq “ v. Then for any

positive integer n, we have

Gpu, v, vq “ GpTnpuq, Tnpvq, Tnpvqq ≤ anGpu, v, vq.

Since by G2, Gpu, v, vq ą 0, it must be the case that an ≥ 1 for all n. So, an
can not tend to zero and this contradiction shows that u “ v.

As an application of Theorem 3.4, we have the following Corollary.
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Corollary 3.2. (see [14]) Let pX,Gq be a complete G-metric space, and
let T : X Ñ X be a mapping satisfying the following condition for all
x, y P X,

p3.10q GpT pxq, T pyq, T pyqq ≤ k Gpx, y, yq,

where 0 ≤ k ă 1. Then T has a unique fixed point in X.

Proof. For x, y P X, we obtain from p3.10q that

GpT 2pxq, T 2pyq, T 2pyqq ≤ k GpT pxq, T pyq, T pyqq ≤ k2Gpx, y, zq.

Similarly, for any positive integer n,

GpTnpxq, Tnpyq, Tnpyqq ≤ knGpx, y, yq, for all x, y P X.

But, the series
ř8

n“1 k
n is convergent. Now, Theorem 3.4 applies to

obtain a unique fixed point of T .

Theorem 3.5. Let pX,Gq be a complete G-metric space, and let T : X Ñ

X be G-continuous. Suppose that there exists a mapping Q : X Ñ r0,8q
such that

p3.11q Gpx, T pxq, T pxqq ≤ Qpxq ´QpT pxqq,

for all x P X. Then T has a fixed point in X.

Proof. Let x0 P X be arbitrary and define a sequence pxnq by

xn “ T pxn´1q, for n “ 1, 2, 3, . . . .

Then, for any positive integer r, we have by using p3.11q that

Gpxr, xr`1, xr`1q “ Gpxr, T pxrq, T pxrqq

≤ Qpxrq ´QpT pxrqq “ Qpxrq ´Qpxr`1q.

Therefore,
n´1
ÿ

r“0

Gpxr, xr`1, xr`1q ≤
n´1
ÿ

r“0

rQpxrq ´Qpxr`1qs

“ Qpx0q ´Qpxnq ≤ Qpx0q.

So, the series
ř8

r“0Gpxr, xr`1, xr`1q is convergent. Then, for all n,m P N ,
n ă m, we have by repeated use of the rectangle inequality that

Gpxn, xm, xmq ≤ Gpxn, xn`1, xn`1q `Gpxn`1, xn`2, xn`2q(3.12)
`Gpxn`2, xn`3, xn`3q ` ¨ ¨ ¨ `Gpxm´1, xm, xmq

“

m´1
ÿ

r“n

Gpxr, xr`1, xr`1q.
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The convergence of the series
ř8

r“0Gpxr, xr`1, xr`1q gives, for arbitrary ε ą
0, there exists a positive integer n0 such that

m´1
ÿ

r“n

Gpxr, xr`1, xr`1q ă ε for m ą n ≥ n0.

Then, for m ą n ≥ n0, we have from p3.12q that

Gpxn, xm, xmq ă ε.

By Proposition 2.2, the sequence pxnq becomes a G-Cauchy sequence. Using
the completeness of pX,Gq, there exists u P X such that pxnq is G-convergent
to u. G-continuity of T implies that

T puq “ lim
n
T pxnq “ lim

n
xn`1 “ u.

Thus, u is a fixed point of T .

Remark 3.2. A fixed point of T , in the above theorem, is not unique. The
identity mapping I satisfies the condition p3.11q but a fixed point of I is not
unique.
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