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SOME FIXED POINT RESULTS FOR MAPPINGS
IN G-METRIC SPACES

Abstract. We prove a common fixed point theorem for a pair of self mappings
satisfying a generalized contractive type condition in a complete G-metric space. We also
deal with other fixed point results for a self mapping in the setting of generalized metric
space. Our results generalize some recent results in the literature.

1. Introduction

Metric fixed point theory is playing an increasing role in mathematics
and applied sciences. Over the past two decades a considerable amount
of research work for the development of fixed point theory have executed
by several authors. There have been a number of generalizations of metric
spaces, such as Géhler [4, 5] (called 2-metric spaces) and Dhage [2, 3] (called
D-metric spaces). Different authors proved that the results obtained by
Géhler in 2-metric spaces are independent rather than generalizations of the
corresponding results in metric spaces. However, Mustafa and Sims in [13|
have pointed out that most of the results claimed by Dhage and others in
D-metric spaces are incorrect. They also introduced an appropriate concept
of generalized metric space, called G-metric space |9] and developed a new
fixed point theory for various mappings in this new structure. Our aim in
this study is to obtain some fixed point results in complete G-metric spaces.
These results generalize some results of [11]| and [14].

2. Preliminaries

We begin by briefly recalling some basic definitions and important results
for G-metric spaces which will be needed in the sequel. Throughout this
paper, we denote by N the set of positive integers.
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DEFINITION 2.1. (see [9]) Let X be a nonempty set, and let G : X x X x X
— R™ be a function satisfying the following axioms:

(G1) G(z,y,2) =0ifz =y =z,

(G2) 0 < G(x,z,y), for all x,y € X, with = # y,

(G3) (IE,IE,y) < G(l‘,y, Z)a for all r,Y,z € X, with z =*: Y,
(Ga)

G4) G(z,y,2) = G(z,z,y) = G(y,z,x) = -+ (symmetry in all three vari-
ables),

(G5) G(z,y,2) < G(x,a,a) + G(a,y, 2), for all z,y,z,a € X, (rectangle
inequality).

Then the function G is called a generalized metric, or, more specifically,
a G-metric on X, and the pair (X, G) is called a G-metric space.

PROPOSITION 2.1. (see [9]) Let (X, G) be a G-metric space. Then for any
x,y,z, and a € X, it follows that

(1) if G(x,y,2) =0, thenx =y = z,

(2) G(z,y,2) < G(z,2,y) + G(z,z,2),

(3) G(z,y,y) < 2G(y,x,x),

(4) G(z,y,2) < G(x,a,2) + G(a,y, 2),

(5) G(z,y,2) < 5 (G(x,y,a) + G(z,a,2) + G(a,y, 2)),
(6) G(x,y,2) < G(z,a,a) + G(y,a,a) + G(z,a,a).

DEFINITION 2.2. (see [9]) Let (X,G) be a G-metric space, let (x,)
be a sequence of points of X, we say that (z,) is G-convergent to x if
limy, o0 G(, Tp, ) = 0; that is , for any € > 0, there exists ng € N
such that G(x, zp, xm) < € for all n,m > ng. We call  as the limit of the
sequence (z,,) and write x,, — .

DEFINITION 2.3. (see [9]) Let (X, G) be a G-metric space, a sequence (x,)

is called G-Cauchy if given € > 0, there is ng € N such that G(xy,, T, ;) < €,

for all n,m,l > ng; that is, if G(zy, T, ;) — 0 as n,m,l — .

DEFINITION 2.4. (see [9]) A G-metric space (X, G) is said to be G-complete

(or a complete G-metric space) if every G-Cauchy sequence in (X,G) is

G-convergent in (X, G).

PROPOSITION 2.2. In a G-metric space (X, G), the following are equiva-

lent.

(1) The sequence (zy,) is G-Cauchy.

(2) For every € > 0, there exists ng € N such that G(xy, T, Tm) < €, for all
n,m > ng.

DEFINITION 2.5. (see [9]) Let (X,G) and (X', G') be G-metric spaces and

let f: (X,G) — (X', G’) be a function, then f is said to be G-continuous at a
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point a € X if given € > 0, there exists 6 > 0 such that z,y € X; G(a,z,y) <
¢ implies G (f(a), f(x), f(y)) < €. A function f is G-continuous on X if and
only if it is G-continuous at all ¢ € X.

PROPOSITION 2.3. (see [9]) Let (X, Q) and (X ,G') be G-metric spaces,
then a function f: X — X is G-continuous at a point x € X if and only if
it 1s G-sequentially continuous at x; that is, whenever (x,) is G-convergent
to z, (f(zy)) is G-convergent to f(x).

PROPOSITION 2.4. (see [9]) Let (X, G) be a G-metric space, then the func-
tion G(z,y, z) is jointly continuous in all three of its variables.

3. Main results

THEOREM 3.1. Let (X,G) be a complete G-metric space. Suppose the
mappings S, T : X — X satisfy

(31)  max G(S(z), T(y), T(y)), < 0 Glap.y)
G(T(x),S(y),S(y))
e omin { Gz, T(y), T(y)) + Gly, S(x), S(x)).
G(z,5(y). S() + G(y, T(x), T(x))
+ aymin | G 5@ 5@) + 6. TG T |
G(z,T(2),T(z)) + Gly, S(y), S(v))

for all x,y € X, where ay,as,a3 > 0 with a; + 2a2 + 2a3 < 1. Then S and
T have a unique common fized point in X.

Proof. Let 29 € X be arbitrary and define a sequence (z,,) by

. S(rp—1), if nis odd,
"\ T(xn_1), ifnis even.

For any odd positive integer n € N, we have by (3.1)
G(xna mTH-l? x’fl-i-l) = G(S<x7Z—1>7 T(.Z'n), T(xn))
G(S(xn—1)7 T(xn)7 T(xn))u
G(T(xzp-1),S(xy),S

< max
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<ap G(xn—la Tn, xn)
| { G(@n—1,T(@n), T(w0)) + G2, S(xn-1), S(@n-1
+ as min

S
n), S(xn)) + G(an, T(xn-1),T(2n1

T(

G( S(
+a3min{ G(zp-1,5(zpn-1),S(xn-1)) + G(xpn, T(zy), T
Gltn 1, T(n-1), Tt 1)) + Glam S(zn), S

Tn—1,

Tn—1,
Thus,
G(Xn, Tni1, Tni1) < a1 G(Tp—1, Tn, Tn)
+ a2{G(xp_1,T(xp), T(xn))+G(xn, S(xn-1),S(xn-1))}
+ a3{G(zn-1,5(xn-1),S(xn-1))+G(zn, T (n), T (xs))}
= a1 G(Tp_1,Tn, Ty)
+ a2 {G(Xp-1,Tni1, Tnt1) + G(Tp, Tn, p)}
+ a3 {G(Tp-1,Tn, Tn) + G(Tpn, Tni1, Tnt1)}
< a1 G(xp—1,Tn, Ty)
+ ag {G(xp—1,Tn,xn) + G(Tn, Tn+1, Tn+1)}
+ a3 {G(Xp-1,%n, xn) + G(Tn, Tn+1, Tn+1)}

which gives that

a1 + ag + as
G(ﬂfn, Tn+1, anrl) < —

< G(fnflaxmxn»
1-— ag — as

If n is even then by (3.1), we have
G(l‘n, Tn+1, 517n+1) = G(T(l'nfl)v S(xn)7 S(:L'n))
{ G(S(@n-1), T (n), T(xn)), }
G(T(xn-1),S(2n), S(2n))
<a G(xn—la Tn,y xn)

. { G(mn—la T xn)7 T(xn)) + G(xm S(mn—l)v (xn—l
+ a9 min

< max

< a G(xn—la T, xn)
+ ag {G(xp—1,5(xn), S(zy)) + G(xpn, T (xn-1), T(xn-1))}
+ a3 {G(zn-1,T(xn-1), T(¥n-1)) + G(2n, S(n), S(xn))} -
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Thus,

G(xn, Tni1, Tny1) < a1 G(Tp—1, Ty, Tn)
+ a2 {G(Tn—1,Tn+1, Tnt1) + G(Tpn, Tn, Tn)}
+ a3 {G(Tp-1,Tn, Tn) + G(Tpn, Tni1, Tnt1)}
< a1 G(xp—1,Tn, Ty)
+ a2 {G(xp—1,Tn,xn) + G(Tn, Tn+1, Tn+1)}
+ a3 {G(Tp—1,Tn, Tn) + G(Tpn, Tni1, Tnt1)},

which implies that

a1 + ag + as
G(xna$n+1a$n+1) < T

=1 ay—as G($n717$n7xn)~

Thus, for any positive integer n,

ar + a2 +a
(3.2) G(Tpn, Tnt1, Tpy1) < e R

e P, G(fnflal'n»xn»

Let r = %, then 0 < r < 1since aq, as, ag > 0 with a1 +2as +2az < 1.

Thus, (3.2) becomes

(3.3) G(xp, Tpi1, Tny1) < 17 G(Tp—1, Tpn, Tpn)-
By repeated application of (3.3), we obtain

(3.4) G(Tn, Tnt1, Tnt1) < 1" G(zg, 21, 21).

Then, by repeated use of the rectangle inequality and (3.4), we have that,
foralln,me N, n <m,

G(l’n, xmal'm) < G(l‘nal'nJrlal'nJrl) + G($n+1>$n+27$n+2)
+ G(l‘n+2,xn+3,xn+3) +e G(xm—lw'fma xm)
< (4" ™) Gz, w1, 21)
n

,
1—r

< G(zg,z1,21).

Then, lim G(xy, Ty, Ty) = 0, as n,m — o0, since lim%G(:ﬂo,xl,xl) = 0,
as n,m — . For n,m,l € N, (G5) implies that
G(xn, Tm,x) < G(Tp, Ty ) + G(X, Ty Ty,

taking limit as n,m,l — o0, we get G(zy, T, z;) — 0. So (x,) is a G-Cauchy
sequence. By completeness of (X, G), there exists u € X such that (z,) is
G-convergent to u.
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Further, by rectangle inequality and (3.1), we have
G(u, T(u), T(u)) < G(u, T2ns1, Tant1) + G(w2ng1, T(u), T'(u)
= G(’U,, Ton+1, m271-"-1) + G(S<$2n)7 T(u)v T(“
G(S(z2n), T(u), T(u)),
G(T'(z2n), S(
< G(u, T2n41, Tons1) + a1 G(@2n, u, u
_ {G(@n,T( ), () + G (u, S(xan),
+ as min
S

U
G(xon, S(u

< G(u, Tont1, Tont1) + maX{

~—

( )7 S(u)) + G(U,T(xgn )

G(won, T(x2n), T (xop)) +

< G(u, Toant1, Tant+1) + a1 G(xon, u, u)
+ ag {G(x2n, T(u), T(u)) + G(u, S(x2,), S(z2n))

+ a3 {G(x2n, S(z2n), S(x2n)) + G(u, T(u), T(u))}.

, {G(mn, S(zan), S(wan)) +
+ a3z min

—~—

Thus, we have
G(u,T(u),T(u)) < G(u, Tont1, Tont1) + a1 G(Ton, u,u)
+ ag {G (220, T'(u), T'(u)) + G(u, T2n41, T2n+1)}
+ as {G($2na T2n+1, x2n+1) + G(u7 T(“)a T(“))} )

taking the limit as n — 00, and using the fact that the function G is contin-
uous on its variables, we have

Gu,T(u), T(u)) < (a2 + a3) G(u, T(u), T(u)).
Since 0 < (a2 + a3z) < 1,
G(uv T(u)’ T(u)) =0,

which implies that, u = T'(u).
Similarly, we can show that S(u) = u. Thus, u is a common fixed point
of S and T.

To prove uniqueness, suppose that there exists another point v in X such
that v = S(v) = T'(v). Then,

G(u,v,v) = G(S(u), T(v), T(v))

< G(S(u), T(v),T(v)),
- G(T(u),S(v),5(v))
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< a1 G(u,v,v)

+ a9 min

+
S
)
~—
2
£
u@
(4
S~—
_|_
Q
—~
u@
£
<
~—
—

which gives that,

G(u,v,v) < #12_@ G(v,u,u).

Again by the same argument, we will find that

G(v,u,u) < #ﬁ_@ G(u,v,v).

Hence,

G(u,v,v)§< a2 >2G(u,v,v),

1—@1—&2

ag

1 <l =
—a1—a2

which implies that u = v, since 0 <

THEOREM 3.2. Let (X,G) be a complete G-metric space. Suppose the
mappings S, T : X — X satisfy

{G@@»T@»T@»
max

<a G(ﬂi‘, Y, y)
Gammsw»ﬂw>}

+@mm{am%T@»+Gm%sm»}

Gla.2.S(1)) + Oly.v. T())

+%mm{mma5@»+aw%T@»}7
G2, T(x)) + Gy, 5))

for all x,y € X, where ay,as,a3 > 0 with a1 + 2a2 + 2a3 < 1. Then S and
T have a unique common fized point in X.
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Proof. Let xp € X be arbitrary and define a sequence (z,,) by

{S(Jinl), if n is odd,
Ty =

T(xp—1), ifn is even.

Then by the argument similar to that used in Theorem 3.1, we have for any
positive integer n,

(35) G(xnyxnvxn+1) S r' G(x()vx(]vxl)-

Then, by repeated use of the rectangle inequality and (3.5), we have that,
foralln,me N,n <m

G(l‘m, Tn, xn) < G(ﬂj‘m, Tm—1, xmfl) + G(l‘mfl, Tm—2, xmf2)
+ G(xm—27xm—37 xm—S) + 4+ G<xn+17xn7 xn)
< (Tn +r 4 Tmil) G(xo, o, 1)

T.TL

1—r

< G(zo, o, x1).

So, (x,) becomes a G-Cauchy sequence. By completeness of (X, G), there
exists u € X such that (z,,) is G-convergent to u.

As in the proof of Theorem 3.1, we can show that
G(U, u, T(U)) < ((12 + CL3) G(U, u, T(U))

Thus, the desired conclusion follows from the same argument used in Theo-
rem 3.1. m

Combining Theorems 3.1 and 3.2, we state the following theorem:
THEOREM 3.3. Let (X,G) be a complete G-metric space. Suppose the

mappings S,T : X — X satisfying one of the following conditions:

(3.6)  max <a1G(z,y,y)

+ 4y min G(z,T(y),T(y)) + Gy, S(x), S(z)),
G(z,S(y), S(y)) + Gy, T(x), T (x))
+ g min G(z,5(x), S(x)) + Gy, T(y), T(y)),
G(z,T(z),T(z)) + G(y, S(y), S(y))
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or

. ) G(z,2,T(y)) + G(y,y,S(x)),
= 01 Gleg,y) + azmin { Gla,2.S() + Cly.1, T(x) }
+ g min G(z,z,S(x)) + Gy, y, T(y)),
Gla,z,T(z)) + Gy, y,5()) |

for all x,y € X, where a1, as,as > 0 with a1 + 2a2 + 2a3 < 1. Then S and
T have a unique common fized point in X.

As an application of Theorem 3.3, we have the following corollary.

COROLLARY 3.1. Let (X,G) be a complete G-metric space, and let
T: X — X be a mapping satisfying one of the following conditions:

G(T(x), T(y), T(y)) < a1G(x,y,y)+ax{G(z, T(y), T(y)) +G(y, T(x), T(x))}
+ a3{G(z,T(z), T(z))+G(y, T(y), T'(y))}
G(T(x), T(y), T(y)) < a1 G(x,y,y) + az {G(x,2,T(y)) + G(y,y, T(x))}
+ a3 {G(z,2,T(2)) + G(y,y, T(v))},

for all x,y € X, where a1,a2,as > 0 with a1 + 2as + 2a3 < 1. Then T has
a unique fized point in X.

Proof. Put S = T in Theorem 3.3. =

REMARK 3.1. Putting a; = a3 = 0 in Corollary 3.1, we obtain Theorem 2.9
from [11].

THEOREM 3.4. Let (X,G) be a complete G-metric space, and let T : X —
X be such that for each positive integer n,

(3.8) G(T"(z), T"(y), T"(y)) < an G(z,9,y),

for all x,y € X, where a, > 0 is independent of x,y. If the series Zle G
1s convergent, then T has a unique fixed point in X.

Proof. Let 29 € X be arbitrary and define a sequence (z,,) by
Ty =T (xp—1) =T"(x9), formn=1,23,....

Then, by repeated use of the rectangle inequality and (3.8), we have that,
foralln,me N, n<m
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(3~9) G(xmxmvxm) < G(«Tmmn—i-l?xn-&-l) + G(»’Un+1a xn+27$n+2)
+ G($N+27 Tn+3, xn+3) +oee G(.’Ifm_l, Tm, .Tm)
m—1

= G(l‘r,$r+1,$r+1)
= Y G (@) T (@) T" (1))

( Z ar)G(xO,xl,xl).

r=n

IN

If 21 = x¢, then a fixed point is obtained. Therefore, we assume that x1 + xg.
Let k be a positive integer such that k& > G(xg,x1,71). Since the series
Zle an is convergent, for € > 0 arbitrary, there exists a positive integer ng
such that

m—1 €
Zar<%, for m > n > ng.
r=n

Then, for m > n > ng, we have from (3.9)

Gl s ) < T Glao,71,21) < e

By Proposition 2.2, the sequence (x,,) becomes a G-Cauchy sequence. Using
the completeness of (X, G), there exists u € X such that (z,) is G-convergent
to u.
But by (G5) and (3.8), we have
G, T(w), T(w)) < G(tty Tns1,2n11) + Glams1, T(w), T(u))
= G(U, Tn+1, xn-i—l) + G(T(l’n), T(U), T(U))
< G(U Tpt1, Tpt1) + 1 G (T, u, u),
taking the limit as n — 00, and using the fact that the function G is contin-
uous on its variables, we have

G(u, T(u),T(u)) =0,

which implies that u = T'(u) and u becomes a fixed point of T'.
For uniqueness, suppose that v £ u is such that T'(v) = v. Then for any
positive integer n, we have

G(u,v,v) = G(T"(u), T"™(v), T"(v)) < an G(u,v,v).

Since by G2, G(u,v,v) > 0, it must be the case that a,, > 1 for all n. So, a,
can not tend to zero and this contradiction shows that ©u = v. =

As an application of Theorem 3.4, we have the following Corollary.
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COROLLARY 3.2. (see [14]) Let (X,G) be a complete G-metric space, and
let T : X — X be a mapping satisfying the following condition for all
z,ye X,

(3.10) G(T(2), T(y),T(y) < kG(z,y,y),
where 0 < k < 1. Then T has a unique fixed point in X.
Proof. For z,y € X, we obtain from (3.10) that
G(T(x), T*(y), T*(y)) < kG(T(x), T(y), T(y)) < k* G(z,y, 2).
Similarly, for any positive integer n,
G(T"(x), T"(y), T"(y)) < k" G(z,y,y), forall z,ye X.

But, the series ZZOZI k™ is convergent. Now, Theorem 3.4 applies to
obtain a unique fixed point of T'. =

THEOREM 3.5. Let (X,G) be a complete G-metric space, and let T : X —
X be G-continuous. Suppose that there exists a mapping Q : X — [0,00)
such that

(3.11) G, T(2), T(x)) < Q) — Q(T(x)),
for all x € X. Then T has a fized point in X.
Proof. Let zp € X be arbitrary and define a sequence (z,,) by
xn =T(rp—1), forn=1,2,3....
Then, for any positive integer r, we have by using (3.11) that
G(zr, Try1, Tr1) = Gz, T'(zy), T (xr))
< Q(zr) — Q(T(xr)) = Qzr) — Qxr41)-

Therefore,
n—1 n—1
Z G(Tr, Tri1, Tr11) < Z [Q(xr) — Q(xr41)]
r=0 r=0

= Q(x0) — Q(zn) < Q(z0)-

So, the series > 2 G(r, Tr11, Tr11) is convergent. Then, for all n,m € N,
n < m, we have by repeated use of the rectangle inequality that

(312) G(xna LTm, xm) < G(xnv Tn+1, xTLJrl) + G('rnJrl) Tn+2, xn+2)
+ G(xn+27 Tn+3, xn+3) +-eet G(xm—h LTy xm)

m—1

= Z G(l'ra Tr+41, $r+1)-

r=n
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The convergence of the series 27?0:0 G(xp, Try1, Try1) gives, for arbitrary € >
0, there exists a positive integer ng such that

m—1
Z G(xp, Try1, Try1) < € for m >mn > ny.

r=n

Then, for m > n > ng, we have from (3.12) that

G(Zn, T,y Tm) < €.

By Proposition 2.2, the sequence (x,,) becomes a G-Cauchy sequence. Using
the completeness of (X, G), there exists u € X such that (x,) is G-convergent
to u. G-continuity of T implies that

T(u) =limT(z,) =limzy4 = u.

Thus, u is a fixed point of T'. =

REMARK 3.2. A fixed point of T, in the above theorem, is not unique. The
identity mapping I satisfies the condition (3.11) but a fixed point of I is not
unique.
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