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THE EXPLICIT DETERMINATIONS OF DUAL PLANE
CURVES AND DUAL HELICES IN TERMS OF ITS DUAL
CURVATURE AND DUAL TORSION

Abstract. In this paper, we give the explicit determinations of dual plane curves,
general dual helices and dual slant helices in terms of its dual curvature and dual torsion
as a fundamental theory of dual curves in a dual 3-space.

1. Introduction

Study of a theory of plane curves in differential geometry is the most
elementary and classical topic. A theory of plane curves plays a fundamental
role in a theory of the general curves. It is well-known that a plane curve
in Euclidean space is completely determined by a function called by the
curvature. Moreover, the position vector of a curve with a given curvature
function is well-known and this is very useful.

In a theory of space curves, especially, a helix is the most elementary
and interesting topic. A helix, moreover, pays attention to natural scientists
as well as mathematicians because of its various applications, for example,
DNA, carbon nanotube, a-helix, and so on.

A helix in a Euclidean 3-space is defined as a regular curve with constant
curvature and constant torsion, and a helix has the properties that its tangent
(principal normal, respectively) vector field makes constant angle with some
fixed line. These properties of a helix have led its generalizations, called by
a general heliz and slant heliz. A famous Lancret theorem states that general
helices are characterized by the constant ratio of curvature and torsion. Also,
slant helices are characterized by a differential equation of curvature and

2010 Mathematics Subject Classification: 53C25, 53C50.
Key words and phrases: dual curves, slant helix, dual slant helix, dual curvature and
torsion.

DOI: 10.2478 /dema-2014-0013
@ Copyright by Faculty of Mathematics and Information Science, Warsaw University of Technology



The explicit determinations of dual plane curves and dual delices. . . 157

torsion (|4]) which is

2

K T\'/
-3 (—) = constant.
K+ T K

Moreover, the position vectors of general helices and slant helices in a Eu-
clidean 3-space are also studied (see, [1}, 2]).

Recently, mathematicians studied a theory of curves in a 3-dimensional
dual space motivated by E. Study mapping (see [3, 6-8|). E. Study mapping
is the corresponding between a dual spherical curve and a ruled surface in
a Euclidean 3-space.

On the other hand, a 3-dimensional dual space D? can be considered as
a 6-dimensional space containing a Euclidean 3-space E3. Thus, a curve in
D? is a natural extension of a curve in E3.

In this paper, we study a fundamental theory of dual plane curves, general
dual helices and dual slant helices in D3. Also, we give characterizations of
these dual curves in terms of its dual curvature and dual torsion. In §2,
we give some basic facts of the dual number, the functions, the dual space
and the dual space curves. Afterwards, we study the dual plane curves
together with a explicit determination of a dual plane curve in terms of its
dual curvature in §3. Lastly, we give the Lancret theorem of the general dual
helices in D3 and classifications of the general dual helices and the dual slant
helices in §4.

2. Preliminaries

Dual numbers were introduced by W. K. Clifford in 1873. A dual number
has the form a = a + ea™ where a and a* are real numbers and ¢ stands for
the dual unit, subjected to the ruleds:

€0, 0e=e0=0, le=cl=¢ € =0.
As a complex number, the composition rules for dual numbers is defined as
the definitions;
1. Equality : @ = b if and only if a = b and a* = b*.
2. Addition : (a + ea™) + (b+ €b*) = (a + b) + €(a* + b*).
3. Multiplication : (a + ea®)(b+ eb®) = ab + e(ab* + a™b).
Let D denote the set of dual numbers;
D={a=a+ea"|a,a* R}

It is well-known that dual numbers form a ring over the real numbers,

but not field. In fact, the pure dual numbers are zero divisors.

Dual function of dual number presents a mapping of a dual numbers
space on itself. The analytic condition for dual function
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f(z+ex®) = flz + ex®) + ef*(z + ex™)
is
afrt _of
ox* Oz
and the derivative of f with respect to a dual variable is
d (5 * *
f@) o, o
dz ox* ox
A differentiable function f(Z) can be expressed by

fl@+ex®) = f(zx) + ex™ f'(x),
df('i‘) ! E /)
= = (z) + ex™ f"(z),

where f’(z) is the derivative of f.

from which

An ordered triple of dual numbers (21, T2, Z3) is called a dual vector and
the set of dual vectors is denotedy by

D3 =D xDxD={X% = (21 + ex},zo + ex}, x3 + ex})
= (x1 + z2 + x3) + €(a], 25, 23)
=x 4 ex*, x,x* € E3}.

For any dual number A = A+ e\* and any X = x+ex*, y = y +ey* € D3,
we define:

*

1. Equality : x =y if and only if x = y and x* = y*.
2. Scalar multiplication : AX = Ax + €(Ax* + \*x).
3. Scalar product : (X,y) = (x,y) + e({x,y*) + {x*,y)).
4. Cross product : X Xy =x Xy + €(x x y* +x* X y).
In this definition, the notions ¢, -) and x mean the standard scalar product
and the standard cross product of E3, respectively.
If x # 0, the norm of a dual vector x is defined by
x,¥%)

[1%[| = [[x[| + € :
1]

A dual vector X with norm 1 is called a dual unit vector. Let X = x+ex* € D3,
Then the set

S? = {x =x + ex* | |%]| = (1,0); x,x* € E3}

is called the dual unit sphere.
The angle 6 = 0 + €6* between two dual unit vectors X and y is called a
dual angle and defined by

(x,y) = cos(f) = cos(#) — e0* sin(6).
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Let 4(t) = (11(6),72(8), 3(1)) and 7*(8) = (v1(2), 43 (), 75 (1)) be real
valued curves in the Euclidean space E3. The 7(t) = (t) + ey*(t) is a curve
in the dual space D? and is called a dual space curve. If the real valued
functions v;(t) and ~(t) are differentiable, then the dual space curve

y:I—D?
t—(t) = (71(t) + i (1), 12(t) + €3 (1), v3(t) + ev3 (1))
=(t) + ev*(t)

is differentiable in D3. We call the real part 7 the inicatriz of 5(t). The dual
arc length of the dual space curve 7(t) from ¢; to ¢ is defined by

1) 5 = HW@W+#XM¢@Wﬁ=wHﬁ
t1 t1

where t is a unit tangent vector of v(¢). From now on, we will take the arc
length s of (t) as the parameter instead of ¢.

Denote by {t, ﬁ,f)} the moving dual Frenet frame along the dual space
curve 7(s) in the dual space D3. Then t, fi and b are the dual tangent,
the dual principal normal and the dual binormal vector fields, respectively.
Then for the curve 7, the Frenet formulae are given by

J t kn + e(k*n + kn*) O]t
PF n|=|-rst+7b+e(—k*"t—rt*+7"b+7b*)[=|—-K 0 7| |0|,
b —n — €(7¥n + 7n*) 0 —70]| |b

where & = k+€ex™ is nowhere pure dual curvature and 7 = 7+ e7™ is nowhere
pure dual torsion. The above formulae are called the Frenet formulae of dual
curve in D3 |7].

3. Dual plane curves

For two real valued functions f and g, it is well-known that if f and
g hold f(t)? + g(t)? = 1, then there exists a function @ from R to R such
that f(¢) = cos(6(t)) and ¢(t) = sin(6(¢)). Similarly, we have the following
lemma.

LEMMA 3.1. Let f and g be two differentiable dual functions satisfying

[f(f)]2 +[g(1)]*> = 1. Then, there exists a function 0 from D to D such that
t

f(t) = cos(0(t)) and g(t) = sin(0(t)).
Proof. Put t = t 4+ et*. Then, the functions f and g are given by
(2) f(E) = f(t) +et™f'(t) and g(f) = g(t) + et*g' (1),
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where f’(t) and ¢/(t) are the derivations of f and g. Since f(£)? + g(#)? =
FO2+gt)?+2et*(f(t) f'(t) +g(t)g' (t)) = 1, it follows that f(t)2+g(t)> =0
and t*(f(t)f'(t) + g(t)g'(t)) = 0. From the result of real valued functions,
there is a real function 6 such that f(¢) = cos(6(t)) and g(t) = sin(6(t)). The

function 6 can be extended as a dual function 6(t) = 6(t) + et*0'(t), from

which, we have f(f) = cos(0(f)) and g(Z) = sin(6(t)).
Now, we can have the explicit determination of a dual plane curve in
terms of its curvature.

THEOREM 3.2. A dual plane curve 5(3) = (x(3),y(3)) € D? with the dual
curvature R(8) is locally expressed by

3) (3) = chos(ﬁj%(ﬁ) dﬁ)df, y(3) = fsm(gk(ﬁ) dﬁ)df.

Proof. Let t(5) be the unit dual tangent vector of 4. Then, from Lemma 2.1,
we can set

(4) 6(5) = (cos(0(5)),sin(6(3))).

for a dual function 6(3). The dual Frenet equation implies that & = df/d3

with the principal normal vector field n(3) given by

(5) f(3) = (— sin(é(g)),cos(é(g))).

By a suitable choice of a coordinate system, we can assume the initial point

7(0) = (0,0) and the initial tangent vector t(0) = (1,0). Hence, together

with 6(0) = 0, the curve J(§) is expressed by (3)). =

EXAMPLE 3.3. (Circle with the dual radius 1/k) In (3), we put % by a dual

number k = k + ek*. Then, the dual components z(5) and y(5) are given by
1 ~ 1 ~ 1

(6) z(8) = z sin(k3) and y(38) = -z cos(k3) + =

By putting § = s + €f(s) in , @ is rewritten as

x(s) = %sin(k‘s) + € <(f(s) + k:s) cos(ks) — :: sin(k:s))

1 * *

k
y(s) = z (1 —cos(ks)) + € <(f(s) + ?s) sin(ks) — 2 (1— cos(ks))) .
In other words, a dual circle in D? with the dual radius 1/(k + €k*) is ex-
pressed by a product curve of z(s) € D and y(s) € D. Fig. 1 represents a
curve with k = 1 + €55 and f(s) = s.
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Fig. 1. A dual circle is a product curve of above two curves in D.

EXAMPLE 3.4. (Dual Cornu spiral in D?) In Euclidean space, a plane curve
whose the curvature « is a linear function of the arc-length parameter s is
called Cornu spiral. We call a dual plane curve whose curvature & is a linear
function of the dual arc-length parameter s, a dual Cornu spiral. From
Theorem 3.2, the dual Cornu spiral with the curvature &(§) = 25 is

(7) z(s) = JS cos(t?)dt + f(s) cos(s?), y(s) = f

| sin(t2)dt + f(s) sin(82),

0 0
where f(s) = s* in (see Fig. 2).
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Fig. 2. A dual spiral is a product curve of above two curves in D.
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4. Dual helices and dual slant helices

DEFINITION 4.1. Let (3) be a dual Frenet curve in D? with non-zero
dual curvature &. The curve 7(3§) is called a general dual heliz if its tangent
vector field makes a constant dual angle with a dual fixed line (. We call the
direction of £ by azis of a general dual helix A(8).

Consider a dual unit vector field V(3) along 4(3) given by
(8) V(8) = a(3)(s) + b(3)n(s) + &(3)b(s),

where a(3), b(3) and ¢(3) are dual functions. By taking the derivative of
with respect to §, V(§) is a constant vector along 7(5) if and only if

[ %2(5) ~ b)k(3) =0,
) $ L 5) 4 a5)r(6) - 6)76) =
© ) + 37 =0.

Let 7(5) be a general dual helix in D? with unit axis V and 6 a constant
dual angle between the tangent vector field of 7(5) and the axis V. Then,
from and @, V' is given by

(10) V(5) = cos(A)t(s) + sin(6)b(s)
and it satisfies that
(11) ; — tan(f).

Conversely, if (11) holds for a constant dual number tan(f) then the
vector is a constant dual vector along a dual Frenet curve 4(3§) satisfying
&, V) = cos( )).

Thus, we have the Lancret theorem in dual 3-space D? as follows:

THEOREM 4.2. (Lancret Theorem in D3) A dual Frenet curve in D? is a
general dual helix if and only if there exists a constant dual number ¢ such
that T = ¢k.

PROPOSITION 4.3. Let 4y(5) = (Z(3),
D? = D? with non-zero dual curvature io(

§
is an integral curve of — cos(0)ng(8) + sin(
heliz in D3.

5),0) be a dual plane curve in

y(
5) and by = (0,0,1) € D®. If 5(3)
0

)b, then 4(8) is a general dual

Proof. By the definition of integral curve, the tangent vector field 1~:(§2 of
7(5) is given by — cos(A)ng(5) + sin(f)bg. By taking the derivative of t in
terms of §, we have the dual curvature (3) = cos(f)ko(5) and the principal
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normal vector field fi(3) = to(3) of (). Also, the binormal vector field b(3)
of ¥(8) is given by

(12) b(3)

£(3) x ( )
[ )+ Sln(H)f)O] x to(5)
sin (H)n ( ) + cos(6)by.

The differentiation of b(s) leads the dual torsion 7(5) = sin(f)&o of 7(5),
from which we have our assertion. =

In the proof of Proposition 4.3, the dual principal normal vector field n
of the curve 7(3) is calculated by to. This means that 70(3) is an integral
curve of the principal normal vector field n along 4(3). Hence, the converse
of Proposition 4.3 can be stated as follows:

PROPOSITION 4.4. Let 7(3) be a general dual heliz in D3. An integral
curve 4o(8) of the principal normal vector field n along 7(3) is a dual plane
curve in D?.

Proof. For a non-zero dual number ¢, assume that 7 = ¢&. Put V(5) =
¢t(3) + b(3). Then V is a constant vector along 4 and is orthogonal to tg
for all 5. This means that 4p lies in a dual plane curve orthogonal to V' in
D3. m

Together with Theorem 3.2, from Propositions 4.3 and 4.4, we have the
explicit determanation of a general dual helix in D? as follows:

THEOREM 4.5. A general dual heliz 7 := 5(3) in D with ¥ = ¢& can be
expressed by

(13) % (L sin <|A| L& %(f)cﬁ) dé, — L cos (|A| f: R(E)df) dé, a§> ,
where A = ++/1 + .

Proof. Let 4y(3) be an integral curve of the principal normal vector field n
along 4(S). Then, 7y(3) is a dual plane curve with the dual curvature Ro($
given by

d .

— |#t — 7b| = &|[t — éb| = V1 + &2&(3).

Thus, from Theorem 3.2 and Proposition 4.3, we have the position vec-

tor ((13)). =

COROLLARY 4.6. Let (x(5),y(5),0) be a unit speed dual plane curve and a
and b dual numbers satisfying a>+b* = 1. Then 7(3) = (ay(3), —ax(5), b3) is
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a dual slant heliz in D3. Moreover, its curvature & and torsion T are respec-
. . . ) 2 ) 2 = N ) 2
tively given by |a|\/(%x(s)) + (£y(3))” and b\/(%x(s)) + (£y(3)".
From Example 3.3 and Corollary 4.6, we can give an example of a dual
slant helix in D3.

EXAMPLE 4.7. (Dual circular helix) Putting § = 6 + €6*, @ = cos(f) and

a = sin(f), a dual circle (z(s),y(s)) in Example 2.3 induces a general dual

helix 4 given by (cos(0)y(s),— cos(f)z(s),sin(f)(s + €f(s))). The position
vector (X (s),Y(s),Z(s)) of 4 is expressed by

X(s) = % cos(0) sin(ks)

te [_]10* sin(ks) + cos(6) ((f(s) + %*) cos(ks) — ]/%Z Sin(ks))} ’

Y(s) = %cos(@) cos(ks)

k k2
Z(s) = ssin(0) + € (sin(f) f(s) + 0% scos(h)) .

e [_29* cos(ks) + cos(6) ((f(S) 2yt — 1 COS(kS))] |

Moreover, its dual curvature & and dual torsion 7 are given by | cos(6)|k and
sin(é)l;:, respectively. This curve is called a dual circular helix with constant
dual curvature and constant dual torsion. Also, this curve is a triple product
curve of three curves X(s), Y(s) and Z(s) in D. Fig. 3 represents a dual
circular helix with f(s) = cos(s).

051

\ \ . '
\ \\ )
PEUTTTT DU PN \
—04 02 02|04 R o
\ 04 02 2 04
\ \
\ 1L
05| \ . ~ p

—

. . , .
4 ) 2 4

ys
-15F

Fig. 3. A dual circular helix is a triple product curve of above three curves in D.
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For a given dual curve 4(5) in D? with the dual Frenet frame {t,n, b},
an integral curve I'(§) of

— cos (JO %dé) (3) + sin <JO %d§> b(3)

is called a principal-donor curve of 4(5). Also, ¥(5) is called a principal-
direction curve of T'(5).

REMARK 4.8. We can check easily that ¥(8) is an integral curve of the
principal normal vector field along I'(3).

DEFINITION 4.9. Let 7(3) be a dual Frenet curve in D3 with non-zero dual
curvature £ and non-zero dual torsion 7. The curve (§) is called a dual
slant heliz if its principal normal vector field makes a constant dual angle
with a dual fixed line £. We call the direction of ¢ by slant azis of a dual
slant helix 5(3).

A characterization of the dual slant helices by its dual curvature and dual
torsion is the same as that of the slant helices in E3.

THEOREM 4.10. [5] Let 5 be a unit speed dual space curve with k(8) # 0.
Then 7 is a slant dual heliz if and only if

i 7\
— (~) = constant.
(R2 +72)2 \F

From Remark 4.8, the following is clear.

PROPOSITION 4.11. A dual curve 5(8) in D3 is a general dual heliz if and
only if its principal-donor curve T'(8) is a dual slant heliz.

From Theorem 4.5 and Proposition 4.11, we can have the explicit deter-
mination of a dual slant helix. For this, we need the following lemma.

LEMMA 4.12. If a dual space curve f(~) in D? is a principal-donor curve
of a dual space curve ¥(3) with the dual curvature k(5) and the dual torsion
7(3), then the dual curvature K (3) and the dual torsion T(3) of the curve T

are given by
cos U ~(§)d§>‘ and T(3) = &(8)sin < f %(g)ds‘) .

Moreover, it satisfies that
N o= ) -y gs el T(3)
(15)  R(5) =V K?2+T? and | 7(5)ds =sin = =
K(3)2 +T(5)?
Proof. From the definition of the principal-donor curve, the tangent vector
field T of I is given by

(14)  K(3) =/(3)
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— cos <f %dé) n(3) + sin U %d§> b(3).

By taking the derivative of T with respect to § and using the Frenet formulae
of the dual curves in D3, it follows that

K(5)N(8) = #(3) cos (J%d§> t(5),

from which, K(3) = #(3)| cos (§ 7d3) | and N = t. Also, the binormal vector
field B is given by

TxN {—cos U%d§> fi(3) + sin (deS) } {t(3)}
sin ( f %d§> n(3) + cos U %d§> b(3).

By taking the derivative of B with respect to § and using the Frenet formulae
of the dual curves in D3, we have the last assertion of . We can easily
check . Thus, the proof is completed. m

THEOREM 4.13. Let ['(3) be a dual slant heliz with the dual curvature K
and the dual torsion T. Then T'(3) = (X (5),Y(5), Z(5)) can be expressed by

- fj \/%cos (|A| Jo& \ K ()2 + T(f)%lf)
+ CT( ) - sin <|A|J \/ﬁc@ da,

(16)

(17) Y(é)z—r K( ) sin <\A|J VE@®? + T 2dt>
- TE) oo <|A| JO 4/K(E)2+T(E)2df> d5,

and

(18) 5) = 1F T() d&
Al JkG2+T@E)2

for a dual number ¢, where A = ++/1 + 2.
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Proof. From Proposition 4.11, we construct a dual slant helix in D? using

in Theorem 4.5. The dual Frenet frame of a general dual helix is
calculated by

- o [ 0) o109 )
w1 (o [ 498 () ).
l~)(§)=<—cs1n<A|J dt) ccos<|A]j )1)

Since a dual slant helix T (8) is a principal-donor curve of a general dual helix,
the tangent vector field T(5) of I'(3) is

A

- cos( JO : %dg)ﬁ(g) + sin(f: %dé)f)(é).

Thus, T'(3) can be expressed by

~—~
)
=)
S~—
~
—~
wm
SN—
[l
|
S W
o
o
n
N\
(e 2]
Q
N
—
2
SN—
QL
~
~__
@

B
N
=
S 9

&(E)di)
~ ~— %sin U: %(f)df) cos (]A\ f R(f)df) do,
(21) Z(3) = ;JO sin (f: %(E)df) dé.

By applying into X (8), Y(5) and Z(8), we get our assertion. m

Lastly, we give an example dual slant helix T in D3.

EXAMPLE 4.14. (Dual circular slant helix) In Example 4.7, we showed
a circular dual helix in D? which is a principal-donor curve of a dual circle
in D2. When a dual slant helix I’ in D3 is a principal-donor curve of a dual
circular helix 4, we call the curve I a dual circular slant heliz. Since the
dual circular helix 4 has the constant dual curvature k and the constant
dual torsion 7 = ¢k for a dual number ¢, from , and , we can
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give the position vector of I as follows:

X(3)
= —f cos( cka ) cos (\/ 1+ c2kza> m sin( ck‘o’ ) sin (\/ 1+ c2k0)
¢

—E n (k&) cos (\/ 1+ 62/{70’) - \}ic% cos(éké) sin (\/ 1+ c2k:0)
+c

= —J cos( cka ) sin <\/ 1+ c%o) —
= 2}; sin( cka ) sin (\/ 1+c2k0>
1+ 2¢2
+ec {cos ck:a ) cos (\/1+02k0> + 1}

\/T sin( Ck‘a ) cos (\/ 1+ 62]{30')

VT @k
and
2(5) = ——— J in(ehe)ds — ——— {cos(&l%§+ 1)}.
Vi+&J 1+ &k

If ¢=1and k = 1 + ¢, the dual circular slant T is given by

X (s + ef(s)) = 2sin(s) cos(v2s) — \% cos(s) sin(v/2s)

+e {(2 ~ 3 (s + £(s)) (cos(s) cos(v/2s) — v/2sin(s) sin(ﬁs))

S

) 3 .
—2cos(v/2s) sin(s) + 7 cos(s) sm(\/is)} ,

. . 3
Y (s +ef(s)) = 2sin(s) sin(v/2s) + 7 (cos(s) cos(v/2s) — 1)

+€ {(s + f(s)) (sin(ﬁs) cos(s) — \f sin(s) cos(x/ﬁs))
—2sin(s) sin(v/2s) — 55 (cos(s) cos(v/2s) — 1)}

and
Z(s+e€f(s)) = \}5 (1 —cos(s)) + % {cos(s) =1+ (s + f(s))sin(s)}.

If we put f(s) = s, the curve I is represented in Fig. 4.
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Fig. 4. A dual circular slant helix is a triple product curve of above three curves in D.
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