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THE EXPLICIT DETERMINATIONS OF DUAL PLANE
CURVES AND DUAL HELICES IN TERMS OF ITS DUAL

CURVATURE AND DUAL TORSION

Abstract. In this paper, we give the explicit determinations of dual plane curves,
general dual helices and dual slant helices in terms of its dual curvature and dual torsion
as a fundamental theory of dual curves in a dual 3-space.

1. Introduction
Study of a theory of plane curves in differential geometry is the most

elementary and classical topic. A theory of plane curves plays a fundamental
role in a theory of the general curves. It is well-known that a plane curve
in Euclidean space is completely determined by a function called by the
curvature. Moreover, the position vector of a curve with a given curvature
function is well-known and this is very useful.

In a theory of space curves, especially, a helix is the most elementary
and interesting topic. A helix, moreover, pays attention to natural scientists
as well as mathematicians because of its various applications, for example,
DNA, carbon nanotube, α-helix, and so on.

A helix in a Euclidean 3-space is defined as a regular curve with constant
curvature and constant torsion, and a helix has the properties that its tangent
(principal normal, respectively) vector field makes constant angle with some
fixed line. These properties of a helix have led its generalizations, called by
a general helix and slant helix. A famous Lancret theorem states that general
helices are characterized by the constant ratio of curvature and torsion. Also,
slant helices are characterized by a differential equation of curvature and
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torsion ([4]) which is

κ2

κ2 ` τ2

´τ

κ

¯1

” constant.

Moreover, the position vectors of general helices and slant helices in a Eu-
clidean 3-space are also studied (see, [1, 2]).

Recently, mathematicians studied a theory of curves in a 3-dimensional
dual space motivated by E. Study mapping (see [3, 6–8]). E. Study mapping
is the corresponding between a dual spherical curve and a ruled surface in
a Euclidean 3-space.

On the other hand, a 3-dimensional dual space D3 can be considered as
a 6-dimensional space containing a Euclidean 3-space E3. Thus, a curve in
D3 is a natural extension of a curve in E3.

In this paper, we study a fundamental theory of dual plane curves, general
dual helices and dual slant helices in D3. Also, we give characterizations of
these dual curves in terms of its dual curvature and dual torsion. In §2,
we give some basic facts of the dual number, the functions, the dual space
and the dual space curves. Afterwards, we study the dual plane curves
together with a explicit determination of a dual plane curve in terms of its
dual curvature in §3. Lastly, we give the Lancret theorem of the general dual
helices in D3 and classifications of the general dual helices and the dual slant
helices in §4.

2. Preliminaries
Dual numbers were introduced by W. K. Clifford in 1873. A dual number

has the form ã “ a` εa˚ where a and a˚ are real numbers and ε stands for
the dual unit, subjected to the ruleds:

ε ‰ 0, 0ε “ ε0 “ 0, 1ε “ ε1 “ ε, ε2 “ 0.

As a complex number, the composition rules for dual numbers is defined as
the definitions;

1. Equality : ã “ b̃ if and only if a “ b and a˚ “ b˚.
2. Addition : pa` εa˚q ` pb` εb˚q “ pa` bq ` εpa˚ ` b˚q.
3. Multiplication : pa` εa˚qpb` εb˚q “ ab` εpab˚ ` a˚bq.

Let D denote the set of dual numbers;

D “ tã “ a` εa˚ | a, a˚ P Ru.

It is well-known that dual numbers form a ring over the real numbers,
but not field. In fact, the pure dual numbers are zero divisors.

Dual function of dual number presents a mapping of a dual numbers
space on itself. The analytic condition for dual function
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f̃px` εx˚q “ fpx` εx˚q ` εf˚px` εx˚q

is
Bf˚

Bx˚
“
Bf

Bx

and the derivative of f̃ with respect to a dual variable is

df̃px̃q

dx̃
“
Bf˚

Bx˚
` ε
Bf˚

Bx
.

A differentiable function fpx̃q can be expressed by
fpx` εx˚q “ fpxq ` εx˚f 1pxq,

from which
dfpx̃q

dx̃
“ f 1pxq ` εx˚f2pxq,

where f 1pxq is the derivative of f .

An ordered triple of dual numbers px̃1, x̃2, x̃3q is called a dual vector and
the set of dual vectors is denotedy by

D3 “ Dˆ Dˆ D “ tx̃|x̃ “ px1 ` εx˚1 , x2 ` εx˚2 , x3 ` εx˚3q
“ px1 ` x2 ` x3q ` εpx

˚
1 , x

˚
2 , x

˚
3q

“ x` εx˚, x,x˚ P E3u.

For any dual number λ̃ “ λ`ελ˚ and any x̃ “ x`εx˚, ỹ “ y`εy˚ P D3,
we define:
1. Equality : x̃ “ ỹ if and only if x “ y and x˚ “ y˚.
2. Scalar multiplication : λ̃x̃ “ λx` εpλx˚ ` λ˚xq.
3. Scalar product : xx̃, ỹy “ xx,yy ` εpxx,y˚y ` xx˚,yyq.
4. Cross product : x̃ˆ ỹ “ xˆ y ` εpxˆ y˚ ` x˚ ˆ yq.
In this definition, the notions x¨, ¨y and ˆ mean the standard scalar product
and the standard cross product of E3, respectively.

If x ‰ 0, the norm of a dual vector x̃ is defined by

||x̃|| “ ||x|| ` ε
xx,y˚y

||x||
.

A dual vector x̃ with norm 1 is called a dual unit vector. Let x̃ “ x`εx˚ P D3.
Then the set

S̃2 “ tx̃ “ x` εx˚ | }x̃} “ p1, 0q; x,x˚ P E3u

is called the dual unit sphere.
The angle θ̃ “ θ ` εθ˚ between two dual unit vectors x̃ and ỹ is called a

dual angle and defined by
xx̃, ỹy “ cospθ̃q “ cospθq ´ εθ˚ sinpθq.
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Let γptq “ pγ1ptq, γ2ptq, γ3ptqq and γ˚ptq “ pγ˚1 ptq, γ
˚
2 ptq, γ

˚
3 ptqq be real

valued curves in the Euclidean space E3. The γ̃ptq “ γptq` εγ˚ptq is a curve
in the dual space D3 and is called a dual space curve. If the real valued
functions γiptq and γ˚i ptq are differentiable, then the dual space curve

γ̃ : I ÝÑ D3

t ÞÝÑ γ̃ptq “ pγ1ptq ` εγ
˚
1 ptq, γ2ptq ` εγ

˚
2 ptq, γ3ptq ` εγ

˚
3 ptqq

“ γptq ` εγ˚ptq

is differentiable in D3. We call the real part γ̃ the inicatrix of γ̃ptq. The dual
arc length of the dual space curve γ̃ptq from t1 to t is defined by

(1) s̃ “

ż t

t1

||γ̃1ptq||dt` ε

ż t

t1

xt, pγ˚ptqq1ydt “ s` εs˚,

where t is a unit tangent vector of γptq. From now on, we will take the arc
length s of γptq as the parameter instead of t.

Denote by tt̃, ñ, b̃u the moving dual Frenet frame along the dual space
curve γ̃psq in the dual space D3. Then t̃, ñ and b̃ are the dual tangent,
the dual principal normal and the dual binormal vector fields, respectively.
Then for the curve γ̃, the Frenet formulae are given by

d

ds̃

»

—

–

t̃

ñ

b̃

fi

ffi

fl

“

»

—

–

κn` εpκ˚n` κn˚q

´κt` τb` εp´κ˚t´ κt˚ ` τ˚b` τb˚q

´τn´ εpτ˚n` τn˚q

fi

ffi

fl

“

»

—

–

κ̃ 0

´κ̃ 0 τ̃

0 ´τ̃ 0

fi

ffi

fl

»

—

–

t̃

ñ

b̃

fi

ffi

fl

,

where κ̃ “ κ`εκ˚ is nowhere pure dual curvature and τ̃ “ τ`ετ˚ is nowhere
pure dual torsion. The above formulae are called the Frenet formulae of dual
curve in D3 [7].

3. Dual plane curves
For two real valued functions f and g, it is well-known that if f and

g hold fptq2 ` gptq2 “ 1, then there exists a function θ from R to R such
that fptq “ cospθptqq and gptq “ sinpθptqq. Similarly, we have the following
lemma.

Lemma 3.1. Let f and g be two differentiable dual functions satisfying
rfpt̃qs2 ` rgpt̃qs2 “ 1. Then, there exists a function θ̃ from D to D such that
fpt̃q “ cospθ̃pt̃qq and gpt̃q “ sinpθ̃pt̃qq.

Proof. Put t̃ “ t` εt˚. Then, the functions f and g are given by

(2) fpt̃q “ fptq ` εt˚f 1ptq and gpt̃q “ gptq ` εt˚g1ptq,
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where f 1ptq and g1ptq are the derivations of f and g. Since fpt̃q2 ` gpt̃q2 “
fptq2`gptq2`2εt˚pfptqf 1ptq`gptqg1ptqq “ 1, it follows that fptq2`gptq2 “ 0
and t˚pfptqf 1ptq ` gptqg1ptqq “ 0. From the result of real valued functions,
there is a real function θ such that fptq “ cospθptqq and gptq “ sinpθptqq. The
function θ can be extended as a dual function θ̃pt̃q “ θptq ` εt˚θ1ptq, from
which, we have fpt̃q “ cospθ̃pt̃qq and gpt̃q “ sinpθ̃pt̃qq.

Now, we can have the explicit determination of a dual plane curve in
terms of its curvature.

Theorem 3.2. A dual plane curve γ̃ps̃q “ pxps̃q, yps̃qq P D2 with the dual
curvature κ̃ps̃q is locally expressed by

(3) xps̃q “

ż s̃

0
cos

´

ż t̃

0
κ̃pp̃q dp̃

¯

dt̃, yps̃q “

ż s̃

0
sin

´

ż t̃

0
κ̃pp̃q dp̃

¯

dt̃.

Proof. Let t̃ps̃q be the unit dual tangent vector of γ̃. Then, from Lemma 2.1,
we can set

(4) t̃ps̃q “
´

cospθ̃ps̃qq, sinpθ̃ps̃qq
¯

,

for a dual function θ̃ps̃q. The dual Frenet equation implies that κ̃ “ dθ̃{ds̃
with the principal normal vector field ñps̃q given by

(5) ñps̃q “
´

´ sinpθ̃ps̃qq, cospθ̃ps̃qq
¯

.

By a suitable choice of a coordinate system, we can assume the initial point
γ̃p0q “ p0, 0q and the initial tangent vector t̃p0q “ p1, 0q. Hence, together
with θ̃p0q “ 0, the curve γ̃ps̃q is expressed by (3).

Example 3.3. (Circle with the dual radius 1{k̃) In (3), we put κ̃ by a dual
number k̃ “ k` εk˚. Then, the dual components xps̃q and yps̃q are given by

(6) xps̃q “
1

k̃
sinpk̃s̃q and yps̃q “ ´

1

k̃
cospk̃s̃q `

1

k̃
.

By putting s̃ “ s` εfpsq in (1), (6) is rewritten as

xpsq “
1

k
sinpksq ` ε

ˆ

pfpsq `
k˚

k
sq cospksq ´

k˚

k2
sinpksq

˙

and

ypsq “
1

k
p1´ cospksqq ` ε

ˆ

pfpsq `
k˚

k
sq sinpksq ´

k˚

k2
p1´ cospksqq

˙

.

In other words, a dual circle in D2 with the dual radius 1{pk ` εk˚q is ex-
pressed by a product curve of xpsq P D and ypsq P D. Fig. 1 represents a
curve with k̃ “ 1` ε 1

10 and fpsq “ s.
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Fig. 1. A dual circle is a product curve of above two curves in D.

Example 3.4. (Dual Cornu spiral in D2) In Euclidean space, a plane curve
whose the curvature κ is a linear function of the arc-length parameter s is
called Cornu spiral. We call a dual plane curve whose curvature κ̃ is a linear
function of the dual arc-length parameter s̃, a dual Cornu spiral. From
Theorem 3.2, the dual Cornu spiral with the curvature κ̃ps̃q “ 2s̃ is

(7) xpsq “

ż s

0
cospt2qdt` fpsq cosps2q, ypsq “

ż s

0
sinpt2qdt` fpsq sinps2q,

where fpsq “ s˚ in (1) (see Fig. 2).
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Fig. 2. A dual spiral is a product curve of above two curves in D.
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4. Dual helices and dual slant helices
Definition 4.1. Let γ̃ps̃q be a dual Frenet curve in D3 with non-zero
dual curvature κ̃. The curve γ̃ps̃q is called a general dual helix if its tangent
vector field makes a constant dual angle with a dual fixed line ˜̀. We call the
direction of ˜̀ by axis of a general dual helix γ̃ps̃q.

Consider a dual unit vector field Ṽ ps̃q along γ̃ps̃q given by

(8) Ṽ ps̃q “ ãps̃qt̃ps̃q ` b̃ps̃qñps̃q ` c̃ps̃qb̃ps̃q,

where ãps̃q, b̃ps̃q and c̃ps̃q are dual functions. By taking the derivative of (8)
with respect to s̃, Ṽ ps̃q is a constant vector along γ̃ps̃q if and only if

(9)

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dã

ds̃
ps̃q ´ b̃ps̃qκ̃ps̃q “ 0,

db̃

ds̃
ps̃q ` ãps̃qκ̃ps̃q ´ c̃ps̃qτ̃ps̃q “ 0,

dc̃

ds̃
ps̃q ` b̃ps̃qτ̃ps̃q “ 0.

Let γ̃ps̃q be a general dual helix in D3 with unit axis Ṽ and θ̃ a constant
dual angle between the tangent vector field of γ̃ps̃q and the axis Ṽ . Then,
from (8) and (9), Ṽ is given by

(10) Ṽ ps̃q “ cospθ̃qt̃ps̃q ` sinpθ̃qb̃ps̃q

and it satisfies that

(11)
κ̃

τ̃
“ tanpθ̃q.

Conversely, if (11) holds for a constant dual number tanpθ̃q then the
vector (10) is a constant dual vector along a dual Frenet curve γ̃ps̃q satisfying
xt̃, Ṽ y “ cospθ̃q.

Thus, we have the Lancret theorem in dual 3-space D3 as follows:

Theorem 4.2. (Lancret Theorem in D3) A dual Frenet curve in D3 is a
general dual helix if and only if there exists a constant dual number c̃ such
that τ̃ “ c̃κ̃.

Proposition 4.3. Let γ̃0ps̃q “ px̃ps̃q, ỹps̃q, 0q be a dual plane curve in
D2 Ă D3 with non-zero dual curvature κ̃0ps̃q and b̃0 “ p0, 0, 1q P D3. If γ̃ps̃q
is an integral curve of ´ cospθ̃qñ0ps̃q ` sinpθ̃qb̃0, then γ̃ps̃q is a general dual
helix in D3.

Proof. By the definition of integral curve, the tangent vector field t̃ps̃q of
γ̃ps̃q is given by ´ cospθ̃qñ0ps̃q ` sinpθ̃qb̃0. By taking the derivative of t̃ in
terms of s̃, we have the dual curvature κ̃ps̃q “ cospθ̃qκ̃0ps̃q and the principal



The explicit determinations of dual plane curves and dual delices. . . 163

normal vector field ñps̃q “ t̃0ps̃q of γ̃ps̃q. Also, the binormal vector field b̃ps̃q
of γ̃ps̃q is given by

b̃ps̃q “ t̃ps̃q ˆ ñps̃q(12)

“

”

´ cospθ̃qñ0ps̃q ` sinpθ̃qb̃0

ı

ˆ t̃0ps̃q

“ sinpθ̃qñ0ps̃q ` cospθ̃qb̃0.

The differentiation of b̃ps̃q leads the dual torsion τ̃ps̃q “ sinpθ̃qκ̃0 of γ̃ps̃q,
from which we have our assertion.

In the proof of Proposition 4.3, the dual principal normal vector field ñ
of the curve γ̃ps̃q is calculated by t̃0. This means that γ̃0ps̃q is an integral
curve of the principal normal vector field ñ along γ̃ps̃q. Hence, the converse
of Proposition 4.3 can be stated as follows:

Proposition 4.4. Let γ̃ps̃q be a general dual helix in D3. An integral
curve γ̃0ps̃q of the principal normal vector field ñ along γ̃ps̃q is a dual plane
curve in D2.

Proof. For a non-zero dual number c̃, assume that τ̃ “ c̃κ̃. Put V ps̃q “
c̃t̃ps̃q ` b̃ps̃q. Then V is a constant vector along γ̃ and is orthogonal to t̃0
for all s̃. This means that γ̃0 lies in a dual plane curve orthogonal to V in
D3.

Together with Theorem 3.2, from Propositions 4.3 and 4.4, we have the
explicit determanation of a general dual helix in D3 as follows:

Theorem 4.5. A general dual helix γ̃ :“ γ̃ps̃q in D3 with τ̃ “ c̃κ̃ can be
expressed by

(13)
1

A

ˆ
ż s̃

0
sin

ˆ

|A|

ż σ̃

0
κ̃pt̃qdt̃

˙

dσ̃,´

ż s̃

0
cos

ˆ

|A|

ż σ̃

0
κ̃pt̃qdt̃

˙

dσ̃, c̃s̃

˙

,

where A “ ˘
?

1` c̃2.

Proof. Let γ̃0ps̃q be an integral curve of the principal normal vector field ñ
along γ̃ps̃q. Then, γ̃0ps̃q is a dual plane curve with the dual curvature κ̃0ps̃
given by

κ̃0ps̃q “

›

›

›

›

d

ds̃
t̃0

›

›

›

›

“

›

›

›

›

d

ds̃
ñ

›

›

›

›

“ }κ̃t̃´ τ̃ b̃} “ κ̃}t̃´ c̃b̃} “
a

1` c̃2κ̃ps̃q.

Thus, from Theorem 3.2 and Proposition 4.3, we have the position vec-
tor (13).

Corollary 4.6. Let pxps̃q, yps̃q, 0q be a unit speed dual plane curve and ã
and b̃ dual numbers satisfying ã2` b̃2 “ 1. Then γ̃ps̃q “ pãyps̃q,´ãxps̃q, b̃s̃q is
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a dual slant helix in D3. Moreover, its curvature κ̃ and torsion τ̃ are respec-

tively given by |ã|
b

`

d
ds̃xps̃q

˘2
`
`

d
ds̃yps̃q

˘2 and b̃
b

`

d
ds̃xps̃q

˘2
`
`

d
ds̃yps̃q

˘2.

From Example 3.3 and Corollary 4.6, we can give an example of a dual
slant helix in D3.

Example 4.7. (Dual circular helix) Putting θ̃ “ θ ` εθ˚, ã “ cospθ̃q and
ã “ sinpθ̃q, a dual circle pxpsq, ypsqq in Example 2.3 induces a general dual
helix γ̃ given by pcospθ̃qypsq,´ cospθ̃qxpsq, sinpθ̃qps ` εfpsqqq. The position
vector pXpsq, Y psq, Zpsqq of γ̃ is expressed by

Xpsq “
1

k
cospθq sinpksq

` ε

„

´
1

k
θ˚ sinpksq ` cospθq

ˆ

pfpsq `
k˚

k
q cospksq ´

k˚

k2
sinpksq

˙

,

Y psq “
1

k
cospθq cospksq

` ε

„

´
1

k
θ˚ cospksq ` cospθq

ˆ

pfpsq `
k˚

k
q sinpksq ´

k˚

k2
cospksq

˙

,

Zpsq “ s sinpθq ` ε psinpθqfpsq ` θ˚s cospθqq .

Moreover, its dual curvature κ̃ and dual torsion τ̃ are given by | cospθ̃q|k̃ and
sinpθ̃qk̃, respectively. This curve is called a dual circular helix with constant
dual curvature and constant dual torsion. Also, this curve is a triple product
curve of three curves Xpsq, Y psq and Zpsq in D. Fig. 3 represents a dual
circular helix with fpsq “ cospsq.
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Fig. 3. A dual circular helix is a triple product curve of above three curves in D.
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For a given dual curve γ̃ps̃q in D3 with the dual Frenet frame tt̃, ñ, b̃u,
an integral curve Γ̃ps̃q of

´ cos

ˆ
ż s̃

s̃0

τ̃ ds̃

˙

ñps̃q ` sin

ˆ
ż s̃

s̃0

τ̃ ds̃

˙

b̃ps̃q

is called a principal-donor curve of γ̃ps̃q. Also, γ̃ps̃q is called a principal-
direction curve of Γ̃ps̃q.

Remark 4.8. We can check easily that γ̃ps̃q is an integral curve of the
principal normal vector field along Γ̃ps̃q.

Definition 4.9. Let γ̃ps̃q be a dual Frenet curve in D3 with non-zero dual
curvature κ̃ and non-zero dual torsion τ̃ . The curve γ̃ps̃q is called a dual
slant helix if its principal normal vector field makes a constant dual angle
with a dual fixed line ˜̀. We call the direction of ˜̀ by slant axis of a dual
slant helix γ̃ps̃q.

A characterization of the dual slant helices by its dual curvature and dual
torsion is the same as that of the slant helices in E3.

Theorem 4.10. [5] Let γ̃ be a unit speed dual space curve with κ̃ps̃q ‰ 0.
Then γ̃ is a slant dual helix if and only if

κ̃2

pκ̃2 ` τ̃2q
3
2

ˆ

τ̃

κ̃

˙1

“ constant.

From Remark 4.8, the following is clear.

Proposition 4.11. A dual curve γ̃ps̃q in D3 is a general dual helix if and
only if its principal-donor curve Γ̃ps̃q is a dual slant helix.

From Theorem 4.5 and Proposition 4.11, we can have the explicit deter-
mination of a dual slant helix. For this, we need the following lemma.

Lemma 4.12. If a dual space curve Γ̃ps̃q in D3 is a principal-donor curve
of a dual space curve γ̃ps̃q with the dual curvature κ̃ps̃q and the dual torsion
τ̃ps̃q, then the dual curvature K̃ps̃q and the dual torsion T̃ ps̃q of the curve Γ̃
are given by

(14) K̃ps̃q “ κ̃ps̃q

ˇ

ˇ

ˇ

ˇ

cos

ˆ
ż

τ̃ps̃qds̃

˙ˇ

ˇ

ˇ

ˇ

and T̃ ps̃q “ κ̃ps̃q sin

ˆ
ż

τ̃ps̃qds̃

˙

.

Moreover, it satisfies that

(15) κ̃ps̃q “
a

K̃2 ` T̃ 2 and
ż

τ̃ps̃qds̃ “ sin´1

¨

˝

T̃ ps̃q
b

K̃ps̃q2 ` T̃ ps̃q2

˛

‚.

Proof. From the definition of the principal-donor curve, the tangent vector
field T̃ of Γ̃ is given by
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´ cos

ˆ
ż

τ̃ ds̃

˙

ñps̃q ` sin

ˆ
ż

τ̃ ds̃

˙

b̃ps̃q.

By taking the derivative of T̃ with respect to s̃ and using the Frenet formulae
of the dual curves in D3, it follows that

K̃ps̃qÑps̃q “ κ̃ps̃q cos

ˆ
ż

τ̃ ds̃

˙

t̃ps̃q,

from which, K̃ps̃q “ κ̃ps̃q| cos
`ş

τ̃ ds̃
˘

| and Ñ “ t̃. Also, the binormal vector
field B̃ is given by

T̃ˆ Ñ “

"

´ cos

ˆ
ż

τ̃ ds̃

˙

ñps̃q ` sin

ˆ
ż

τ̃ ds̃

˙

b̃ps̃q

*

ˆ
 

t̃ps̃q
(

“ sin

ˆ
ż

τ̃ ds̃

˙

ñps̃q ` cos

ˆ
ż

τ̃ ds̃

˙

b̃ps̃q.

By taking the derivative of B̃ with respect to s̃ and using the Frenet formulae
of the dual curves in D3, we have the last assertion of (14). We can easily
check (15). Thus, the proof is completed.

Theorem 4.13. Let Γ̃ps̃q be a dual slant helix with the dual curvature K̃
and the dual torsion T̃ . Then Γ̃ps̃q “ pXps̃q, Y ps̃q, Zps̃qq can be expressed by

(16) Xps̃q “ ´

ż s̃

0

K̃pσ̃q
b

T̃ pσ̃q2 ` T̃ pσ̃q2
cos

ˆ

|A|

ż σ̃

0

b

K̃pt̃q2 ` T̃ pt̃q2dt̃

˙

`
c̃T̃ pσ̃q

A
b

K̃pσ̃q2 ` T̃ pσ̃q2
sin

ˆ

|A|

ż σ̃

0

b

K̃pt̃q2 ` T̃ pt̃q2dt̃

˙

dσ̃,

(17) Y ps̃q “ ´

ż s̃

0

K̃pσ̃q
b

T̃ pσ̃q2 ` T̃ pσ̃q2
sin

ˆ

|A|

ż σ̃

0

b

K̃pt̃q2 ` T̃ pt̃q2dt̃

˙

´
c̃T̃ pσ̃q

A
b

K̃pσ̃q2 ` T̃ pσ̃q2
cos

ˆ

|A|

ż σ̃

0

b

K̃pt̃q2 ` T̃ pt̃q2dt̃

˙

dσ̃,

and

(18) Zps̃q “
1

A

ż s̃

0

T̃ pσ̃q
b

K̃pσ̃q2 ` T̃ pσ̃q2
dσ̃,

for a dual number c̃, where A “ ˘
?

1` c̃2.
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Proof. From Proposition 4.11, we construct a dual slant helix in D3 using
(13) in Theorem 4.5. The dual Frenet frame of a general dual helix (13) is
calculated by

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

t̃ps̃q “
1

A

ˆ

sin

ˆ

|A|

ż s̃

0
κ̃pt̃qdt̃

˙

,´ cos

ˆ

|A|

ż s̃

0
κ̃pt̃qdt̃

˙

, c̃

˙

,

ñps̃q “

ˆ

cos

ˆ

|A|

ż s̃

0
κ̃pt̃qdt̃

˙

, sin

ˆ

|A|

ż s̃

0
κ̃pt̃qdt̃

˙

, 0

˙

,

b̃ps̃q “
1

A

ˆ

´c̃ sin

ˆ

|A|

ż s̃

0
κ̃pt̃qdt̃

˙

, c̃ cos

ˆ

|A|

ż s̃

0
κ̃pt̃qdt̃

˙

, 1

˙

.

Since a dual slant helix Γ̃ps̃q is a principal-donor curve of a general dual helix,
the tangent vector field T̃ps̃q of Γ̃ps̃q is

´ cos
´

ż s̃

0
τ̃ ds̃

¯

ñps̃q ` sin
´

ż s̃

0
τ̃ ds̃

¯

b̃ps̃q.

Thus, Γ̃ps̃q can be expressed by

Γ̃ps̃q “

ż s̃

0
T̃pt̃qdt̃ “ pXps̃q, Y ps̃q, Zps̃qq ,

where

Xps̃q “´

ż s̃

0
cos

ˆ
ż σ̃

0
τ̃pt̃qdt̃

˙

cos

ˆ

|A|

ż σ̃

0
κ̃pt̃qdt̃

˙

(19)

`
c̃

A
sin

ˆ
ż σ̃

0
τ̃pt̃qdt̃

˙

sin

ˆ

|A|

ż σ̃

0
κ̃pt̃qdt̃

˙

dσ̃,

Y ps̃q “ ´

ż s̃

0
cos

ˆ
ż σ̃

0
τ̃pt̃qdt̃

˙

sin

ˆ

|A|

ż σ̃

0
κ̃pt̃qdt̃

˙

(20)

´
c̃

A
sin

ˆ
ż σ̃

0
τ̃pt̃qdt̃

˙

cos

ˆ

|A|

ż σ̃

0
κ̃pt̃qdt̃

˙

dσ̃,

Zps̃q “
1

A

ż s̃

0
sin

ˆ
ż σ̃

0
τ̃pt̃qdt̃

˙

dσ̃.(21)

By applying (15) into Xps̃q, Y ps̃q and Zps̃q, we get our assertion.

Lastly, we give an example dual slant helix Γ̃ in D3.

Example 4.14. (Dual circular slant helix) In Example 4.7, we showed
a circular dual helix in D3 which is a principal-donor curve of a dual circle
in D2. When a dual slant helix Γ̃ in D3 is a principal-donor curve of a dual
circular helix γ̃, we call the curve Γ̃ a dual circular slant helix. Since the
dual circular helix γ̃ has the constant dual curvature k̃ and the constant
dual torsion τ̃ “ c̃k̃ for a dual number c̃, from (19), (20) and (21), we can
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give the position vector of Γ̃ as follows:

Xps̃q

“ ´

ż s̃

0
cospc̃k̃σ̃q cos

´

a

1` c̃2k̃σ̃
¯

`
c̃

?
1` c̃2

sinpc̃k̃σ̃q sin
´

a

1` c̃2k̃σ̃
¯

dσ̃

“
2c̃

k̃
sinpc̃k̃σ̃q cos

´

a

1` c̃2k̃σ̃
¯

´
1` 2c̃2
?

1` c̃2k̃
cospc̃k̃σ̃q sin

´

a

1` c̃2k̃σ̃
¯

,

Y ps̃q

“ ´

ż s̃

0
cospc̃k̃σ̃q sin

´

a

1` c̃2k̃σ̃
¯

´
c̃

?
1` c̃2

sinpc̃k̃σ̃q cos
´

a

1` c̃2k̃σ̃
¯

dσ̃

“
2c̃

k̃
sinpc̃k̃σ̃q sin

´

a

1`c̃2k̃σ̃
¯

`
1` 2c̃2
?

1` c̃2k̃

!

cospc̃k̃σ̃q cos
´

a

1`c̃2k̃σ̃
¯

` 1
)

,

and

Zps̃q “
1

?
1` c̃2

ż s̃

0
sinpc̃k̃σ̃qdσ̃ “ ´

1

c̃
?

1` c̃2k̃

!

cospc̃k̃s̃` 1q
)

.

If c̃ “ 1 and k̃ “ 1` ε, the dual circular slant Γ̃ is given by

Xps` εfpsqq “ 2 sinpsq cosp
?

2sq ´
3
?

2
cospsq sinp

?
2sq

` ε

"

p2´
3
?

2
qps` fpsqq

´

cospsq cosp
?

2sq ´
?

2 sinpsq sinp
?

2sq
¯

´2 cosp
?

2sq sinpsq `
3
?

2
cospsq sinp

?
2sq

*

,

Y ps` εfpsqq “ 2 sinpsq sinp
?

2sq `
3
?

2

´

cospsq cosp
?

2sq ´ 1
¯

` ε

"

ps` fpsqq

ˆ

sinp
?

2sq cospsq ´

?
2

2
sinpsq cosp

?
2sq

˙

´2 sinpsq sinp
?

2sq ´
3
?

2

´

cospsq cosp
?

2sq ´ 1
¯

*

and

Zps` εfpsqq “
1
?

2
p1´ cospsqq `

ε

2
tcospsq ´ 1` ps` fpsqq sinpsqu .

If we put fpsq “ s, the curve Γ̃ is represented in Fig. 4.
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Fig. 4. A dual circular slant helix is a triple product curve of above three curves in D.
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