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FIXED POINTS OF F-WEAK CONTRACTIONS
ON COMPLETE METRIC SPACES

Abstract. In this paper, we introduce the notion of an F-weak contraction and prove
a fixed point theorem for F-weak contractions. Examples are given to show that our result
is a proper extension of some results known in the literature.

1. Introduction and preliminaries

Recently, many results of the fixed point problems for maps on metric
spaces have been proved [I], [2], [3], [6], [7], [9]. In [1I], Wardowski has
introduced the concept of an F-contraction as follows.
DEFINITION 1.1. (|II], Definition 2.1) Let F be the family of all functions
F :(0,+00) — R such that
(F1) F is strictly increasing, that is, for all o, 8 € (0,40) if @ < 8 then

F(a) < F(B);

(F2) For each sequence {ay,} of positive numbers, the following holds:

lim o, =0 if and only if lim F(a,) = —0;
n—ao0 n—a0
(F3) There exists k € (0,1) such that lim (a*F(a)) = 0.

a—0t+
Let (X,d) be a metric space. A map T : X — X is said to be an F-
contraction on (X,d) if there exist FF € F and 7 > 0 such that for all
z,ye X,
(1.1) d(Tz,Ty) > 0= 7+ F(d(Tz,Ty)) < F(d(z,y)).
ExAaMPLE 1.2. [II] The following functions F' : (0,+o0) — R are the
elements of F:
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(1) Fa =Ina,

(2) Fao =Ina + a,
1

(3) F@:—ﬁ,

(4) Fa =In(a? + a).

By using the notion of F'-contraction, the author has proved a fixed point
theorem which generalizes Banach contraction principle in a different way
than in the known results from the literature.

THEOREM 1.3. ([11I], Theorem 2.1) Let (X,d) be a complete metric space
and T : X — X be an F'-contraction. Then we have

(1) T has a unique fized point z*.
(2) For all x € X, the sequence {T™x} is convergent to z*.
REMARK 1.4. ([1I], Remark 2.1) Let 7" be an F-contraction. Then

d(Tz,Ty) < d(x,y) for all z,y € X such that Tz # Ty. Also, T is a
continuous map.

In this paper, we introduce the notion of an F-weak contraction and
prove a fixed point theorem for F-weak contractions, which generalizes some
results known from the literature. Examples are given to show that our
result is a proper extension of [I1, Theorem 2.1].

2. Main results

First we generalize the notion of an F-contraction into an F-weak con-
traction as follows.

DEFINITION 2.1. Let (X,d) be a metric space. A map T : X — X is
said to be an F-weak contraction on (X,d) if there exist F' € F and 7 > 0
such that, for all z,y € X satisfying d(T'z, Ty) > 0, the following holds:

(2.1) 7+ F(d(Tz,Ty))
<F ( max {d(aj, y),d(z,Tz),d(y, Ty),

REMARK 2.2.

d(z,Ty) ; d(y, Tz) })

(1) Every F-contraction is an F-weak contraction.
(2) Let T be an F-weak contraction. From (2.1)) we have, for all z,y € X,
Tx #Ty

F(d(Tz,Ty)) <7 + F(d(Tx, Ty))

< F<max {d(m, y),d(z,Tx),d(y, Ty),

d(z,Ty) ~|2— d(y,Tz) })
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Then, by (F1), we get

d(Tz,Ty) < max {d(w,y), d(z, Tz),d(y, Ty), d(z,Ty) + d(y, Tx) }’

2
for all z,y e X, Tx # Ty.

The following example shows that the inverse implication of Remark
does not hold.

ExXAMPLE 2.3. Let T : [0,1] — [0, 1] be given by
1
— ifxze(o,1),
Te =< 2
! ifx=1
T if x =1.

Since T is not continuous, T' is not an F-contraction by Remark For
x€[0,1) and y = 1, we have

a(Tr Tl—d11 =
eI =d\55) =

and

d(z,T1) 4+ d(1,Tz)
2

max {d(x, 1),d(z,Tx),d(1,T1), } >d(1,T1) = i

Therefore, by choosing Fa = Ina, a € (0, +00) and 7 = In 3, we see that T
is an F-weak contraction.

Now we state the main result of the paper.

THEOREM 2.4. Let (X, d) be a complete metric space and T : X — X be
an F-weak contraction. If T or F is continuous, then we have

(1) T has a unique fized point z* € X.
(2) For all x € X, the sequence {T™x} is convergent to x*.

Proof. . Let z € X be arbitrary and fixed. We define x,, 1 = Tz, for all
n € Nu{0}, where ¢ = z. If there exists ng € Nu {0} such that x,,+1 = Tn,,
then T'z,, = x,,. This proves that z,, is a fixed point of 7.

Now we suppose that z,4+1 # z, for alln e Nu{0}. Then d(zp+1,2,) >0
for all n e N u {0}. It follows from (2.1)) that for each n e N:



Fized points of F-weak contractions on complete metric spaces 149
(2.2)  F(d(zpt1,2n)) = F(d(Tan, Tzn_1))
< F(max {d(wn, Tn—1),d(xn, TTy),d(xp_1,TTH_1),

d(l’n, Txn—l) + d(xn—la T.Z’n) }) 7
2

d n—1, n
F<max{ xn)xn—l)vd(mnvxn+l)7d($n—1)xn)7(xlw}) - T

2
d n—1is<n
= F(max{ $n,$n_1>,d(xn,xn+1)7(x12$+1)}) g
A(xp— d .
(m { (@, Tn—1), d(Xn, Tnt1), (n 17%); (Tn, +1)}>_T

= F max {d Ty Tp—1)s d(:cn,a:nﬂ)}) — T

If there exists n € N such that max {d(xn, Tn-1),d(Tp, mn+1)} = d(Tp+1,Tn)
then (2.2)) becomes

F(d(wn+1,:nn)) < F(d(wn+1,$n)) -7 < F(d(xn+1,3}n)).
It is a contradiction. Therefore,
max{d(xn,xn_l),d(:cn, xn+1)} = d(xp,Tp-1),

for all n € N. Thus, from , we have

F(d(zn41,20)) < F(d(zn, 2n-1)) — 7,
for all n € N. It implies that
(2.3) F(d(zps1,20)) < F(d(z1,20)) — 07,
for all neN. Taking the limit as n— o0 in , we get

nli_r)rgo F(d(zps+1,2n)) = —00

that together with (F2) gives

(2.4) hm d(xn+1, ) = 0.
From (F3), there exists k € (0,1) such that
(2.5) nh_r}n ((d(mn+1,xn))kF(d(aan,xn))) =0.

It follows from (2.3 . ) that

(26)  (A@as1,20))" (F(d(enir, n)) = F(d(w1,20)))

< _(d(anrla xn))knT <0,
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for all n € N. By using (2.4), (2.5) and taking the limit as n — oo in ({2.6),
we get

(2.7) lim (n(d(mnH,xn))k) = 0.

n—0o0

Then there exists n; € N such that n(d(a:nH, :L'n))k < 1 for all n > nq, that
is,

1
(28) d(xn+17xn) < 1
nk
for all n > nj. For all m > n > ny, by using ([2.8)) and the triangle inequality,
we get

(2.9) ATy, Tn) < d(Tm, Tm—1) + ... + d(Tpy1, Ty)
0 e} 1
< Z d({L‘iJrl,l'Z) < Z I
=n =n zk

Since the series >, 1/n% is convergent, taking the limit as n — o
in , we get limy, y— o0 d(Zy,, ) = 0. This proves that {z,} is a Cauchy
sequence in X. Since X is complete, there exists * € X such that lim, . =,
= x*. We shall prove that x* is a fixed point of T" by two following cases.

Case 1. T is continuous. We have
d(z*,Tx™) = nlgrgo d(zp, Txy,) = nlgrolo d(xp, Tpi1) = 0.
This proves that z* is a fixed point of T.
Case 2. F is continuous. In this case, we consider two following sub-
cases.

Subcase 2.1. For each n € N, there exists i,, € N such that x;,y; = Tz*
and i, > i,_1 where ig = 1. Then we have

¥ = lim 2,41 = lim T2* = Tz*.
n—o0 n—0o0

This proves that x* is a fixed point of T

Subcase 2.2. There exists ng € N such that x,,1 # Ta* for all n > ng.
That is d(Txy, Txz*) > 0 for all n > ng. It follows from (2.1, (F1) and the
triangle inequality that

(2.10) 7+ F(d(zps1,Tz™))
=7+ F(d(Tzn, Tz*))

* *
< F(max {d<xn,x*>,d<xn,m>,d<x*,n*>, Aeon, T07) -l L) })
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d(zn, Tz*) + d(z*, Tns1) })

- F(max {d(mn,x*),d(azn,xn+1), d(z*,Tx"), 5
< F<max {d(xn,x*),d(xn,xn+1), d(z*, Tx™),

d(zp, x*) + d(z*, Tz*) + d(x*, xp41) })
5 :

If d(z*,Tz*) > 0 then by the fact
nh_l;%O d(:cn,x*) = nh—I>rOlO d(l’*7$n+1) = 0)

there exists ni € N such that for all n > ny, we have

max {d(:cn, ), d(xp, 1), d(x™, Ta™),

d(xp, 2*) + d(z*, Tx*) + d(x*, Tp11)
2

} = d(a*, Tz*).

By (2.10), we get
(2.11) T+ F(d(zn41, Ta™)) < F(d(z*, Ta™)),
for all n > max{ng,n1}. Since F' is continuous, taking the limit as n — oo
in ([2.11]), we obtain
T+ F(d(z*, Tx")) < F(d(z*, Tz")).

It is a contradiction. Therefore, d(x*, Tx*) = 0, that is, x* is a fixed point
of T.

By two above cases, T has a fixed point x*. Now, we prove that the fixed

point of T is unique. Let z7, 23 be two fixed points of 7. Suppose to the
contrary that z7 # x3. Then T2} # Tx3. It follows from (2.1) that

T+ F(d(z%,23)) = 7 + F(d(T=}, Tx3))

Y Txs * ok
< F(max {d(l‘i‘w;),d(xi"?ngT)’d(x;’TgU;)’ d(x¥, Tx3) _;_ d(z%, Tx?) })

d(at, 3) +d($§aﬂv?)}>

= (o {dta o)t o)l ), !

= F(d(x’f, m;‘))
It is a contradiction. Then d(z¥,25) = 0, that is, 27 = 3. This proves that

the fixed point of T is unique.
(2). It follows from the proof of that lim, o T2 = lim, o Tnit

=z% n

From Theorem [2.4] we get the following corollaries.
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COROLLARY 2.5. Let (X,d) be a complete metric space and T : X — X
satisfies

(212)  d(Tz,Ty) > 0= 7+ F(d(Tz,Ty))
< F(ad(z,y) + bd(z, Tz) + cd(y, Ty) + e|d(z, Ty) + d(y, Tz)]),

for all x,y € X where a,b,c > 0 and a+b+c+2e < 1. If T or F is
continuous then

(1) T has a unique fixved point z* € X.
(2) For all x € X, the sequence {T™x} is convergent to x*.

Proof. For all z,y € X, we have

ad(z,y) + bd(z, Tx) + cd(y, Ty) + e[d(x, Ty) + d(y, T:L')]
d(z, Ty) + d(y, Tx) }

< (a+ b+ c+ 2¢) max {d(:ﬂ, y),d(x, Tx),d(y, Ty), 5

d(z,Ty) + d(y, Tx) }
5 :

Then, by (F1) we see that ([2.1)) is a consequence of (2.12)). Then the corollary
is proved. =

REMARK 2.6. Since ([2.12]) is a consequence of ([I.1)) and 7 is continuous
by Remark [T.4] we get Theorem [I.3] from Corollary 2.5]

< max {d(w, y),d(z,Tx),d(y, Ty),

The following example shows that Theorem [2.4] is a proper extension of
Theorem [L.3

EXAMPLE 2.7. Let T be given as in Example Since T' is not an F-
contraction for any F, Corollary [I.3] is not applicable to T. On the other
hand, let F' be given as in Example 2.3] Then 7" is an F-weak contraction.
Therefore, Theorem can be applicable to T and the unique fixed point
of T is %

REMARK 2.8. When we consider the different types of F'-weak contractions
then we obtain the variety of known contractions in the literature. For
example, see the following

(1) For all z,y € X and a,b,c > 0,a + b+ ¢ < 1, we have that
d(Tz,Ty) < ad(z,y) + bd(z, Tz) + cd(y, Ty)

implies

d(Tz,Ty) < (a+b+c) max{d(w, y),d(xz, Tz),d(y, Ty), d(xz,Ty) + d(y,Tm)}'

2
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Then if d(Tz,Ty) > 0, we get

7+ In(d(Tz, Ty))
<In (max {d(:c,y), d(z,Tz),d(y, Ty),

d(z,Ty) —;— d(y,Ta:)})7

where 7 = Inl/(a+ b+ ¢) > 0. Then the contraction condition in [10]
becomes the condition with Fa = Ina for all & > 0. This proves
that Theorem [2.4]is a generalization of the main result of [10].

For all z,y € X and k € [0,1), we have that

d(Tz,Ty) < kmax {d(z,Tz),d(y, Ty)}

implies

d(Tz,Ty) < kmax {d(az,y),d(z,Tm)’ d(y, Ty), d(z,Ty) + d(y,Tx)}.

2
Then if d(T'z,Ty) > 0, we get
7+ In (d(Tz, Ty))

d(z, Ty) + d(y, T'x)
2 )
where 7 = In1/k > 0. Then the contraction condition in [4] becomes
the condition (2.1) with Fa = Ina, for all « > 0. This proves that
Theorem is a generalization of the main result of [4].

For all z,y € X and non-negative numbers ¢(z,y),r(x,y), s(z,y) and
t(z,y) with

sup {q(z,y) + r(z,y) + s(z,y) + 2t(z,y)} = A <1
z,ye X

and d(Tz,Ty) > 0, we have that
d(Tz,Ty) < q(z,y)d(z,y) + r(z,y)d(z, Tz) + s(z, y)d(y, Ty)
+ t(x, y)[d(z, Ty) + d(y, Tz)]

<In (max {d(x, y),d(z,Tz),d(y, Ty),

implies

d(Tz,Ty) < Amax{d(w,y),d(m,Tm)7 d(y, Ty), d(z, Ty) + d(y,Tm)}.

2
Then if d(Tz, Ty) > 0, we get

1
In X +Ind(Tx,Ty)

d(z, Ty) + d(y, Tl‘)}>,

<t (‘max{ o, ).d(o. 7o), (7). 0
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(7]
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where 7 = In1/A > 0. Then the contraction condition (C) in [5, page 20|
becomes the condition with Fa = Ina for all @ > 0. This proves
that Theorem is a generalization of [5, Theorem 2.5.(i)].

For all z,y € X and non-negative numbers a, b, c,e, f with a + b + ¢ +
e+ f <1, we have that

duh;Ty)g(l;bbﬂxﬁfx)+d@hTyﬂ

+ (e, Ty) + d(y, T2)] + fd(x,y)

implies

d(Tz,Ty) < (a+b+c+e+ f)

d(z,Ty) + d(y, Tx)}
5 )

X max {d<x,y>,d<x,Tx>,d<y,Ty>,

Then if d(Txz,Ty) > 0, we get

1 +Ind(Tx,Ty)

na+b+c+e+f
d(z, Ty) + d(y, T
<ln<max{d(w,y),d(a:,Ta?),d(vay)y (@ y)2 g w)}>,

where 7 = Inl1/(a+b+c+e+ f) > 0. Then the contraction condi-
tion (2) in |8, page 202| becomes the condition with Fa = Ina
for all & > 0. This proves that Theorem is a generalization of [8]
Theorem 1.(1).(a)].
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