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FIXED POINTS OF F -WEAK CONTRACTIONS
ON COMPLETE METRIC SPACES

Abstract. In this paper, we introduce the notion of an F -weak contraction and prove
a fixed point theorem for F -weak contractions. Examples are given to show that our result
is a proper extension of some results known in the literature.

1. Introduction and preliminaries
Recently, many results of the fixed point problems for maps on metric

spaces have been proved [1], [2], [3], [6], [7], [9]. In [11], Wardowski has
introduced the concept of an F -contraction as follows.

Definition 1.1. ([11], Definition 2.1) Let F be the family of all functions
F : p0,`8q ÝÑ R such that

(F1) F is strictly increasing, that is, for all α, β P p0,`8q if α ă β then
F pαq ă F pβq;

(F2) For each sequence tαnu of positive numbers, the following holds:

lim
nÑ8

αn “ 0 if and only if lim
nÑ8

F pαnq “ ´8;

(F3) There exists k P p0, 1q such that lim
αÑ0`

`

αkF pαq
˘

“ 0.

Let pX, dq be a metric space. A map T : X ÝÑ X is said to be an F -
contraction on pX, dq if there exist F P F and τ ą 0 such that for all
x, y P X,

(1.1) dpTx, Tyq ą 0ñ τ ` F
`

dpTx, Tyq
˘

≤ F
`

dpx, yq
˘

.

Example 1.2. [11] The following functions F : p0,`8q Ñ R are the
elements of F :
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(1) Fα “ lnα,
(2) Fα “ lnα` α,

(3) Fα “ ´
1
?
α
,

(4) Fα “ lnpα2 ` αq.

By using the notion of F -contraction, the author has proved a fixed point
theorem which generalizes Banach contraction principle in a different way
than in the known results from the literature.

Theorem 1.3. ([11], Theorem 2.1) Let pX, dq be a complete metric space
and T : X ÝÑ X be an F -contraction. Then we have

(1) T has a unique fixed point x˚.
(2) For all x P X, the sequence tTnxu is convergent to x˚.

Remark 1.4. ([11], Remark 2.1) Let T be an F -contraction. Then
dpTx, Tyq ă dpx, yq for all x, y P X such that Tx ‰ Ty. Also, T is a
continuous map.

In this paper, we introduce the notion of an F -weak contraction and
prove a fixed point theorem for F -weak contractions, which generalizes some
results known from the literature. Examples are given to show that our
result is a proper extension of [11, Theorem 2.1].

2. Main results
First we generalize the notion of an F -contraction into an F -weak con-

traction as follows.

Definition 2.1. Let pX, dq be a metric space. A map T : X ÝÑ X is
said to be an F -weak contraction on pX, dq if there exist F P F and τ ą 0
such that, for all x, y P X satisfying dpTx, Tyq ą 0, the following holds:

(2.1) τ ` F
`

dpTx, Tyq
˘

≤ F
ˆ

max

"

dpx, yq, dpx, Txq, dpy, Tyq,
dpx, Tyq ` dpy, Txq

2

*˙

.

Remark 2.2.

(1) Every F -contraction is an F -weak contraction.
(2) Let T be an F -weak contraction. From (2.1) we have, for all x, y P X,

Tx ‰ Ty

F
`

dpTx, Tyq
˘

ă τ ` F
`

dpTx, Tyq
˘

≤ F
ˆ

max

"

dpx, yq, dpx, Txq, dpy, Tyq,
dpx, Tyq ` dpy, Txq

2

*˙

.
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Then, by (F1), we get

dpTx, Tyq ă max

"

dpx, yq, dpx, Txq, dpy, Tyq,
dpx, Tyq ` dpy, Txq

2

*

,

for all x, y P X, Tx ‰ Ty.

The following example shows that the inverse implication of Remark 2.2(1)
does not hold.

Example 2.3. Let T : r0, 1s ÝÑ r0, 1s be given by

Tx “

$

’

’

&

’

’

%

1

2
, if x P r0, 1q,

1

4
, if x “ 1.

Since T is not continuous, T is not an F -contraction by Remark 1.4. For
x P r0, 1q and y “ 1, we have

dpTx, T1q “ d

ˆ

1

2
,
1

4

˙

“

ˇ

ˇ

ˇ

ˇ

1

2
´

1

4

ˇ

ˇ

ˇ

ˇ

“
1

4
ą 0

and

max

"

dpx, 1q, dpx, Txq, dp1, T1q,
dpx, T1q ` dp1, Txq

2

*

≥ dp1, T1q “
3

4
.

Therefore, by choosing Fα “ lnα, α P p0,`8q and τ “ ln 3, we see that T
is an F -weak contraction.

Now we state the main result of the paper.

Theorem 2.4. Let pX, dq be a complete metric space and T : X ÝÑ X be
an F -weak contraction. If T or F is continuous, then we have

(1) T has a unique fixed point x˚ P X.
(2) For all x P X, the sequence tTnxu is convergent to x˚.

Proof. (1). Let x P X be arbitrary and fixed. We define xn`1 “ Txn for all
n P NYt0u, where x0 “ x. If there exists n0 P NYt0u such that xn0`1 “ xn0 ,
then Txn0 “ xn0 . This proves that xn0 is a fixed point of T .

Now we suppose that xn`1 ‰ xn for all n P NYt0u. Then dpxn`1, xnq ą 0
for all n P NY t0u. It follows from (2.1) that for each n P N:
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(2.2) F
`

dpxn`1, xnq
˘

“ F
`

dpTxn, Txn´1q
˘

≤ F
ˆ

max

"

dpxn, xn´1q, dpxn, Txnq, dpxn´1, Txn´1q,

dpxn, Txn´1q ` dpxn´1, Txnq

2

*˙

´ τ

“ F

ˆ

max

"

dpxn, xn´1q, dpxn, xn`1q, dpxn´1, xnq,
dpxn´1, xn`1q

2

*˙

´ τ

“ F

ˆ

max

"

dpxn, xn´1q, dpxn, xn`1q,
dpxn´1, xn`1q

2

*˙

´ τ

≤ F
ˆ

max

"

dpxn, xn´1q, dpxn, xn`1q,
dpxn´1, xnq ` dpxn, xn`1q

2

*˙

´ τ

“ F
`

max
 

dpxn, xn´1q, dpxn, xn`1q
(˘

´ τ.

If there exists n P N such that max
 

dpxn, xn´1q, dpxn, xn`1q
(

“ dpxn`1, xnq
then (2.2) becomes

F
`

dpxn`1, xnq
˘

≤ F
`

dpxn`1, xnq
˘

´ τ ă F
`

dpxn`1, xnq
˘

.

It is a contradiction. Therefore,

max
 

dpxn, xn´1q, dpxn, xn`1q
(

“ dpxn, xn´1q,

for all n P N. Thus, from (2.2), we have

F
`

dpxn`1, xnq
˘

≤ F
`

dpxn, xn´1q
˘

´ τ,

for all n P N. It implies that

(2.3) F
`

dpxn`1, xnq
˘

≤ F
`

dpx1, x0q
˘

´ nτ,

for all nPN. Taking the limit as nÑ8 in (2.3), we get

lim
nÑ8

F pdpxn`1, xnqq “ ´8

that together with (F2) gives

(2.4) lim
nÑ8

dpxn`1, xnq “ 0.

From (F3), there exists k P p0, 1q such that

(2.5) lim
nÑ8

´

`

dpxn`1, xnq
˘k
F
`

dpxn`1, xnq
˘

¯

“ 0.

It follows from (2.3) that

(2.6)
`

dpxn`1, xnq
˘k
´

F
`

dpxn`1, xnq
˘

´ F
`

dpx1, x0q
˘

¯

≤ ´
`

dpxn`1, xnq
˘k
nτ ≤ 0,
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for all n P N. By using (2.4), (2.5) and taking the limit as n Ñ 8 in (2.6),
we get

(2.7) lim
nÑ8

´

n
`

dpxn`1, xnq
˘k
¯

“ 0.

Then there exists n1 P N such that n
`

dpxn`1, xnq
˘k ≤ 1 for all n ≥ n1, that

is,

(2.8) dpxn`1, xnq ≤
1

n
1
k

,

for all n ≥ n1. For all m ą n ≥ n1, by using (2.8) and the triangle inequality,
we get

dpxm, xnq ≤ dpxm, xm´1q ` . . .` dpxn`1, xnq(2.9)

ă

8
ÿ

i“n

dpxi`1, xiq ≤
8
ÿ

i“n

1

i
1
k

.

Since the series
ř8
n“1 1{n

1
k is convergent, taking the limit as n Ñ 8

in (2.9), we get limn,mÑ8 dpxm, xnq “ 0. This proves that txnu is a Cauchy
sequence in X. Since X is complete, there exists x˚PX such that limnÑ8 xn
“ x˚. We shall prove that x˚ is a fixed point of T by two following cases.

Case 1. T is continuous. We have

dpx˚, Tx˚q “ lim
nÑ8

dpxn, Txnq “ lim
nÑ8

dpxn, xn`1q “ 0.

This proves that x˚ is a fixed point of T .

Case 2. F is continuous. In this case, we consider two following sub-
cases.

Subcase 2.1. For each n P N, there exists in P N such that xin`1 “ Tx˚

and in ą in´1 where i0 “ 1. Then we have

x˚ “ lim
nÑ8

xin`1 “ lim
nÑ8

Tx˚ “ Tx˚.

This proves that x˚ is a fixed point of T .

Subcase 2.2. There exists n0 P N such that xn`1 ‰ Tx˚ for all n ≥ n0.
That is dpTxn, Tx˚q ą 0 for all n ≥ n0. It follows from (2.1), (F1) and the
triangle inequality that

τ ` F
`

dpxn`1, Tx
˚q
˘

(2.10)
“ τ ` F

`

dpTxn, Tx
˚q
˘

≤ F
ˆ

max

"

dpxn, x
˚q, dpxn, Txnq, dpx

˚, Tx˚q,
dpxn, Tx

˚q ` dpx˚, Txnq

2

*˙
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“ F

ˆ

max

"

dpxn, x
˚q, dpxn, xn`1q, dpx

˚, Tx˚q,
dpxn, Tx

˚q ` dpx˚, xn`1q

2

*˙

≤ F
ˆ

max

"

dpxn, x
˚q, dpxn, xn`1q, dpx

˚, Tx˚q,

dpxn, x
˚q ` dpx˚, Tx˚q ` dpx˚, xn`1q

2

*˙

.

If dpx˚, Tx˚q ą 0 then by the fact

lim
nÑ8

dpxn, x
˚q “ lim

nÑ8
dpx˚, xn`1q “ 0,

there exists n1 P N such that for all n ≥ n1, we have

max

"

dpxn, x
˚q, dpxn, xn`1q, dpx

˚, Tx˚q,

dpxn, x
˚q ` dpx˚, Tx˚q ` dpx˚, xn`1q

2

*

“ dpx˚, Tx˚q.

By (2.10), we get

(2.11) τ ` F
`

dpxn`1, Tx
˚q
˘

≤ F
`

dpx˚, Tx˚q
˘

,

for all n ≥ maxtn0, n1u. Since F is continuous, taking the limit as n Ñ 8

in (2.11), we obtain

τ ` F
`

dpx˚, Tx˚q
˘

≤ F
`

dpx˚, Tx˚q
˘

.

It is a contradiction. Therefore, dpx˚, Tx˚q “ 0, that is, x˚ is a fixed point
of T .

By two above cases, T has a fixed point x˚. Now, we prove that the fixed
point of T is unique. Let x˚1 , x˚2 be two fixed points of T . Suppose to the
contrary that x˚1 ‰ x˚2 . Then Tx˚1 ‰ Tx˚2 . It follows from (2.1) that

τ ` F
`

dpx˚1 , x
˚
2q
˘

“ τ ` F
`

dpTx˚1 , Tx
˚
2q
˘

≤ F
ˆ

max

"

dpx˚1 , x
˚
2q, dpx

˚
1 , Tx

˚
1q, dpx

˚
2 , Tx

˚
2q,

dpx˚1 , Tx
˚
2q ` dpx

˚
2 , Tx

˚
1q

2

*˙

“ F

ˆ

max

"

dpx˚1 , x
˚
2q, dpx

˚
1 , x

˚
1q, dpx

˚
2 , x

˚
2q,

dpx˚1 , x
˚
2q ` dpx

˚
2 , x

˚
1q

2

*˙

“ F
`

dpx˚1 , x
˚
2q
˘

.

It is a contradiction. Then dpx˚1 , x˚2q “ 0, that is, x˚1 “ x˚2 . This proves that
the fixed point of T is unique.

(2). It follows from the proof of (1) that limnÑ8 T
nx “ limnÑ8 xn`1

“ x˚.

From Theorem 2.4, we get the following corollaries.
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Corollary 2.5. Let pX, dq be a complete metric space and T : X ÝÑ X
satisfies

(2.12) dpTx, Tyq ą 0ñ τ ` F
`

dpTx, Tyq
˘

≤ F
`

adpx, yq ` bdpx, Txq ` cdpy, Tyq ` e
“

dpx, Tyq ` dpy, Txq
‰˘

,

for all x, y P X where a, b, c ≥ 0 and a ` b ` c ` 2e ă 1. If T or F is
continuous then

(1) T has a unique fixed point x˚ P X.
(2) For all x P X, the sequence tTnxu is convergent to x˚.

Proof. For all x, y P X, we have

adpx, yq ` bdpx, Txq ` cdpy, Tyq ` e
“

dpx, Tyq ` dpy, Txq
‰

≤ pa` b` c` 2eqmax

"

dpx, yq, dpx, Txq, dpy, Tyq,
dpx, Tyq ` dpy, Txq

2

*

≤ max

"

dpx, yq, dpx, Txq, dpy, Tyq,
dpx, Tyq ` dpy, Txq

2

*

.

Then, by (F1) we see that (2.1) is a consequence of (2.12). Then the corollary
is proved.

Remark 2.6. Since (2.12) is a consequence of (1.1) and T is continuous
by Remark 1.4, we get Theorem 1.3 from Corollary 2.5.

The following example shows that Theorem 2.4 is a proper extension of
Theorem 1.3.

Example 2.7. Let T be given as in Example 2.3. Since T is not an F -
contraction for any F , Corollary 1.3 is not applicable to T . On the other
hand, let F be given as in Example 2.3. Then T is an F -weak contraction.
Therefore, Theorem 2.4 can be applicable to T and the unique fixed point
of T is 1

2 .

Remark 2.8. When we consider the different types of F -weak contractions
then we obtain the variety of known contractions in the literature. For
example, see the following

(1) For all x, y P X and a, b, c ≥ 0, a` b` c ă 1, we have that

dpTx, Tyq ≤ adpx, yq ` bdpx, Txq ` cdpy, Tyq

implies

dpTx, Tyq ≤ pa`b`cqmax

"

dpx, yq, dpx, Txq, dpy, Tyq,
dpx, Tyq ` dpy, Txq

2

*

.
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Then if dpTx, Tyq ą 0, we get

τ ` lnpdpTx, Tyq
˘

≤ ln

ˆ

max

"

dpx, yq, dpx, Txq, dpy, Tyq,
dpx, Tyq ` dpy, Txq

2

*˙

,

where τ “ ln 1{pa` b` cq ą 0. Then the contraction condition in [10]
becomes the condition (2.1) with Fα “ lnα for all α ą 0. This proves
that Theorem 2.4 is a generalization of the main result of [10].

(2) For all x, y P X and k P r0, 1q, we have that

dpTx, Tyq ≤ kmax
 

dpx, Txq, dpy, Tyq
(

implies

dpTx, Tyq ≤ kmax

"

dpx, yq, dpx, Txq, dpy, Tyq,
dpx, Tyq ` dpy, Txq

2

*

.

Then if dpTx, Tyq ą 0, we get

τ ` ln
`

dpTx, Tyq
˘

≤ ln

ˆ

max

"

dpx, yq, dpx, Txq, dpy, Tyq,
dpx, Tyq ` dpy, Txq

2

*˙

,

where τ “ ln 1{k ą 0. Then the contraction condition in [4] becomes
the condition (2.1) with Fα “ lnα, for all α ą 0. This proves that
Theorem 2.4 is a generalization of the main result of [4].

(3) For all x, y P X and non-negative numbers qpx, yq, rpx, yq, spx, yq and
tpx, yq with

sup
x,yPX

 

qpx, yq ` rpx, yq ` spx, yq ` 2tpx, yq
(

“ λ ă 1

and dpTx, Tyq ą 0, we have that

dpTx, Tyq ≤ qpx, yqdpx, yq ` rpx, yqdpx, Txq ` spx, yqdpy, Tyq
` tpx, yq

“

dpx, Tyq ` dpy, Txq
‰

implies

dpTx, Tyq ≤ λmax

"

dpx, yq, dpx, Txq, dpy, Tyq,
dpx, Tyq ` dpy, Txq

2

*

.

Then if dpTx, Tyq ą 0, we get

ln
1

λ
` ln dpTx, Tyq

≤ ln

ˆ

max

"

dpx, yq, dpx, Txq, dpy, Tyq,
dpx, Tyq ` dpy, Txq

2

*˙

,
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where τ “ ln 1{λ ą 0. Then the contraction condition (C) in [5, page 20]
becomes the condition (2.1) with Fα “ lnα for all α ą 0. This proves
that Theorem 2.4 is a generalization of [5, Theorem 2.5.(i)].

(4) For all x, y P X and non-negative numbers a, b, c, e, f with a ` b ` c `
e` f ă 1, we have that

dpTx, Tyq ≤
a` b

2

“

dpx, Txq ` dpy, Tyq
‰

`
c` e

2

“

dpx, Tyq ` dpy, Txq
‰

` fdpx, yq

implies
dpTx, Tyq ≤ pa` b` c` e` fq

ˆmax

"

dpx, yq, dpx, Txq, dpy, Tyq,
dpx, Tyq ` dpy, Txq

2

*

.

Then if dpTx, Tyq ą 0, we get

ln
1

a` b` c` e` f
` ln dpTx, Tyq

ă ln

ˆ

max

"

dpx, yq, dpx, Txq, dpy, Tyq,
dpx, Tyq ` dpy, Txq

2

*˙

,

where τ “ ln 1{pa` b` c` e` fq ą 0. Then the contraction condi-
tion (2) in [8, page 202] becomes the condition (2.1) with Fα “ lnα
for all α ą 0. This proves that Theorem 2.4 is a generalization of [8,
Theorem 1.(1).(a)].
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