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CERTAIN MULTIPLIER VERSION OF THE RIEMANN
DERANGEMENT THEOREM

Abstract. Aim of this paper is to consider a problem formulated in [6]. Namely, it
has been proven that for any sequences txnu

8
n“1 Ă R, lim

nÑ8
xn “ 8 and tanu

8
n“1 Ă p0,8q,

lim
nÑ8

an “ 0, for every interval ra, bs Ă r´8,8s, there exist a nondecreasing sequence

tknu
8
n“1 of positive integers and a sequence tεnu8n“1 of ˘1 signs such that the set of limit

points of the series
ř

εnxknan is equal to ra, bs.

In this paper, it will be proven that assumptions of the main theorem
from [6] can be significantly weaken. It results from the fact that the as-
sumptions forced for the sequence txnu in [6] were caused by the method of
theorem proving. Additionally, it will turn out that the way of proving the
generalization of this theorem presented in here is identical with the one used
in the constructive proof of the Riemann derangement theorem. Such man-
ner of proving can be also applied to some generalizations of this theorem
on series of terms in given finitely dimensional normed space.

At first, let us present the result determining the technical base of the
main result of this paper.

Lemma 1. Let txnu8n“1 Ă R, limnÑ8 xn “ 8 and tanu8n“1 Ă p0,8q,
limnÑ8 an “ 0. Then there exists a nondecreasing sequence tknu8n“1 of
positive integers satisfying the following conditions:

i) lim
nÑ8

kn “ 8,
ii) lim

nÑ8
xkn an “ 0,

iii)
8
ÿ

n“1

xkn an “ 8.
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Proof. Without loss of generality we can assume that txnu8n“1 Ă p0,8q. Let

Kr :“ min

"

k P N : sup
 

xr an : n ≥ k
(

≤ 1

r

*

, r “ 1, 2, . . . ,

L1 :“ min
!

k P N : k ≥ K2 and
k
ÿ

n“1

x1 an ≥ 1
)

,

Lr :“ min
!

k P N : k ≥ max
 

Kr`1, 1` Lr´1

(

and
k
ÿ

n“Lr´1`1

xr an ≥ 1
)

,

for r “ 2, 3, . . ..
Let us take kn “ r, for Lr´1 ă n ≤ Lr, r “ 1, 2, . . ., where L0 :“ 0. It

guarantees that the condition iq is satisfied.
Then we also have

xkn an “ xr an ≤ 1

r
, for Lr´1 ă n ≤ Lr, r “ 2, 3, . . . ,

since Lr´1 ≥ Kr. It means that the condition iiq holds.
Finally
8
ÿ

n“1

xkn an “
L1
ÿ

n“1

x1 an `
8
ÿ

r“2

Lr
ÿ

n“Lr´1`1

xr an ≥
L1
ÿ

n“1

x1 an `
8
ÿ

r“2

1 “ 8,

which implies condition iiiq.

From the above result one can easily receive the expected generalization
of Theorem 2 from [6].

Theorem 2. Let txnu8n“1 Ă R, limnÑ8 xn “ 8 and tanu8n“1 Ă p0,8q,
limnÑ8 an “ 0. We assume that tknu8n“1 is a nondecreasing sequence of
positive integers satisfying conditions i), ii) and iii) of Lemma 1. Let I Ă
R Y t˘8u be a nonempty interval, closed in 2-point compactification of R.
Then there exists a sequence tεnu8n“1 of ˘1 signs, such that the set of limit
points of the series

ř8
n“1 εnxknan is equal to I.

Proof. Few cases will be considered with regard to the form of interval I.
Let I “ rα, βs, α, β P R, α ≤ β. Let us define the auxiliary increasing

sequence tDnu
8
n“1 of positive integers

D1 :“ min
!

d P N :
d
ÿ

n“1

xkn an ≥ β
)

,

D2 :“ min
!

d P N : d ≥ D1 ` 1 and
D1
ÿ

n“1

xkn an ´
d
ÿ

n“D1`1

xkn an ≤ α
)

,
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D3 :“ min
!

d P N : d ≥ D2 ` 1 and

D1
ÿ

n“1

xkn an ´
D2
ÿ

n“D1`1

xkn an `
d
ÿ

n“D2`1

xkn an ≥ β
)

,

etc.

We take

εn “

#

1, for D2k ` 1 ≤ n ≤ D2k`1, k “ 0, 1, . . . ,

´1, for D2k´1 ` 1 ≤ n ≤ D2k, k “ 1, 2, . . . ,

where D0 :“ 0.
Let I “ rα,8q, α P R. We proceed analogically like in previous case.

One should only, in determining the numbers D2k´1, replace the number β
by the number α` k, for every k P N.

Similarly, if I “ R then defining the numbers D2k´1, we replace the
number β by k, whereas in determining the numbers D2k, the number α is
replaced by ´k, for every k P N.

Furthermore, if I “ t8u then in determining the numbers D2k´1, we
replace the number β by k, whereas in defining the numbers D2k, the number
α is replaced by k ´ 1, for every k P N.

In the cases: I “ p´8, αs, α P R or I “ t´8u, we take the sequence
tεnu

8
n“1, such that εn :“ ´ε1n, where tε1nu8n“1 is the sequence of ˘1 deter-

mined for intervals I “ rα,8q and I “ t8u, respectively.
Condition iiiq of Lemma 1 guarantees the correctness of the above defi-

nitions.

Similarity of the above proof to the constructive proof of the Riemann
derangement theorem is striking. Let us recall that the given conditionally
convergent series

ř8
n“1 an of real terms is divided into two subseries

ř8
n“1 bn

and
ř8

n“1 cn of positive and negative terms, respectively. If I Ă R Y t˘8u
is an interval, like in assumptions of Theorem 2, then we proceed similarly
like in the above proof. For example, if I “ rα, βs, α, β P R, α ≤ β, then we
determine an auxiliary sequence tDnu

8
n“1 Ă N in the following way

D1 :“ min
!

d P N :
d
ÿ

n“1

bn ≥ β
)

,

D2 :“ min
!

d P N :
D1
ÿ

n“1

bn `
d
ÿ

n“1

cn ≤ α
)

,

D3 :“ min
!

d P N : d ≥ D1 ` 1 and
d
ÿ

n“1

bn `
D2
ÿ

n“1

cn ≥ β
)

,
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D4 :“ min
!

d P N : d ≥ D2 ` 1 and
D3
ÿ

n“1

bn `
d
ÿ

n“1

cn ≤ α
)

,

etc.

The respective permutation p is defined as follows
$

’

’

’

’

&

’

’

’

’

%

appnq “ bn, for 1 ≤ n ≤ D1,

appD1`nq “ cn, for 1 ≤ n ≤ D2,

appD2k`nq “ bn, for D2k´1 ` 1 ≤ n ≤ D2k`1, k P N,
appD2k`1`nq “ cn, for D2k ` 1 ≤ n ≤ D2k`2, k P N.

Of course, the set of accumulation points of the received rearranged series
ř8

n“1 appnq is equal to I. Correctness of such proceedings results from the
convergence to zero of the sequences tbnu8n“1 and tcnu8n“1 and from the
divergence of the series

ř8
n“1 bn and

ř8
n“1 cn.

Problem. Additionally, let us notice that the above way of reasoning applies
also to the special series in finitely dimensional spaces. For example, let
us assume that u, v P R2 are nonparallel vectors (the nonzero vectors in
consequence). Let

ř8
n“1 an,

ř8
n“1 bn be the conditionally convergent series

of real terms. Let
ř8

n“1wn be the series formed from all the elements of
the sequence a1 u, b1 v, a2 u, b2 v, a3 u, b3 v, . . . Then for every x P R2 (more
general, for any x from the closure of the set X equal to any n´gon or any
disc in R2) there exists a permutation p of N such that

ř8
n“1wppnq “ x (or the

set of the limit points of the series
ř8

n“1wppnq is equal to X, respectively).
The Author is not absolutely convinced that the closure of any open and
connected set can be taken as the above set X.

Final remark
Subject matter concerning the Riemann derangement theorem appears

to be constantly inspiring, which is shown in the literature from the last few
years [1–3,5, 6].
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