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LINEAR APPROXIMATION AND ASYMPTOTIC
EXPANSION ASSOCIATED WITH THE SYSTEM OF
NONLINEAR FUNCTIONAL EQUATIONS

Abstract. This paper is devoted to the study of the following perturbed system of
nonlinear functional equations

mon Xijk(x)
0= 3 3 |ewnw (s o). [ p0d) + v (Sl + o)
k=1j=1 0
xz € Q=[-bb],i=1,...,n, where ¢ is a small parameter, a;;x, b;;r are the given real

constants, Rijk, Sijk, Xijk : Q2 —>Q, g; : Q >R, U:Q x R? — R are the given continuous
functions and f; : € — R are unknown functions. First, by using the Banach fixed point
theorem, we find sufficient conditions for the unique existence and stability of a solution
of (E)). Next, in the case of ¥ € C%(Q x R?;R), we investigate the quadratic convergence
of l} Finally, in the case of ¥ € CN(Q x R%; R) and ¢ sufficiently small, we establish an
asymptotic expansion of the solution of up to order N + 1 in €. In order to illustrate
the results obtained, some examples are also given.

1. Introduction

In this paper, we consider the following system of nonlinear functional
equations

(11)  fi(z)
m.on Xijk(z)

= 3 2o (o sirintol. [ 50 ) by S| +aito)
k=1j=1 0

i=1,...,n, x € Q = [-b,b], where a;ji, b;ji, are the given real constants;
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Rijku Sijk; Xijk : Q- Q, gi : Q - R, U0 x RQ — R are the given
continuous functions and f; : 2 — R are unknown functions, € is a small
parameter.

The existence of solutions for functional integral equations of the form
have been extensively studied by many authors via various techniques
in functional analysis, topology and fixed point theory, such as using the Ba-
nach fixed point theorem, fixed point theorems of Krasnoselskii type, the
Darbo fixed point theorem, the nonlinear alternative of Leray—Schauder
and using the technique of the measure of noncompactness. There are
many interesting results of solvability, asymptotic stability and some prop-
erties of solutions; for example, we refer to the [I], [4]-[17] and references
therein.

It is well known that, integral equations and functional integral equations
as above have attracted great interest in the field of nonlinear analysis not
only because of their mathematical context but also because of their appli-
cations in various fields of science and technology, in engineering, mechanics,
physics, economics, . ... For the details of such applications, see for example,
C. Corduneanu [2], K. Deimling [3].

In [I7], system is studied with m = n = 2, ¥ = 0 and S;j;, binomials
of first degree. The solution is approximated by a uniformly convergent
recurrent sequence and it is stable with respect to the functions g;.

In [7], [8], [10], the existence and uniqueness of a solution of the functional
equation

f(x) = a(z, f(5(x))),

in the functional space BC[a, b], have been studied.

In [11]-|14], special cases of (1.1)) have been studied corresponding the
following form

fil@) = 37 D% ain (@, £(Si(x))) + gi(x),
k=1j=1

i=1,...,n, x € I < R, where I is a bounded or unbounded interval. By
using the Banach fixed point theorem, the authors have established the ex-
istence, uniqueness and stability of the solution of with respect to the
functions g;. Furthermore, the quadratic convergence and an asymptotic ex-
pansion of solutions are also investigated.

Applying a fixed point theorem of Krasnosel’skii type and giving the
suitable assumptions, Dhage and Ntouyas [4], Purnaras [16] obtained some
results on the existence of solutions to the following nonlinear functional
integral equation
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u(t) a(t)
mw—«w+f kwﬁﬂaﬂﬂﬁwk+f o(t, $)g(s, 2(1(5)))ds,

0 0
t e [0,1],

where 0 < u(t) <t;0<o(t) <t;0<0(t) <t;0<n(t) <t, foralltel0,1].
Purnaras also showed that the technique used in [I6] can be applied to
yield existence results for the following equation

()

ﬂﬂ—dﬂ+f K(t,5) (5, 2(0(5)))ds

a(t)

At o(5)
+ L(t) k‘(t,s)F<s,x(V(S))aL k‘o(s,v,x(n(v)))dv) ds, te[0,1].

Recently, using the technique of the measure of noncompactness and the
Darbo fixed point theorem, Z. Liu et al. [9] have proved the existence and
asymptotic stability of solutions for the equation

2(t) = f<t, (%), Ltu(t,s,m(a(s)),x(b(s))) ds>, teR,.

Motivated by the above mentioned works, we introduce and investigate
the more general nonlinear functional integral equation of the form .

This paper consists of five sections. In Section 2, by using the Banach
fixed point theorem, we find sufficient conditions for the unique existence
and stability of a solution of . In Section 3, in the case of W e C?(Q x
R%;R), we investigate the quadratic convergence of . In the case of
U e ON(Q x R%;R) and ¢ sufficiently small, an asymptotic expansion of the
solution of up to order N + 1 in ¢ is established in Section 4. We end
the paper with illustrated examples.

The results obtained here relatively generalize the ones in [1, [4]-[17].

2. The theorems on existence, uniqueness and stability of solutions
With Q = [-b,b], we denote by X = C(€;R") the Banach space of
functions f: 2 — R" continuous on ) with respect to the norm

Iflx = sugZ @), f=(f1.- fa) € X.
TEM =1

For any non-negative integer r, we put

CT(RY) = {feC(Q;R”) P ec@R), 0<k<r 1 gign}.

)

It is clear that C"(Q2; R™) is the Banach space with respect to the norm

fi(k)(m)‘-

0<E<r 2eQ

n
|1, = max sup }.
i=1
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We write the system (1.1]) in the form of an operational equation in X
as follows

(2.1) f=eAf+Bf +g,

where

f=0 o f)y Af = (A1 (A)n), B = (Bf)1, - (Bf)n),

with

Xijn(z)
awk\If(x fi( ij(x)),fo fj(t)dt>,

ijfj zyk ), er,i=1,2,...,n

A
||

P

i MS i MS

We set the following notions

for any set [aji] = {oijr e R 1 4, j = n; k=1,...,m},
n m
zjk Z Z Igax H-FZJk“
1=1k= -

for any set [Fiji] = {Fijr € C(Q;R) : Lny k= ,m}, where
the symbol ||, denotes the supremum norm on C’ (4 R); and the following
assumptions

(Hy) all the functions Ryji, Sijk, Xiji : 8 — € are continuous,

( 2) g€ X7

(H3) [[bejel]l <1,

(Hy) U : Q x R? — R satisfies the following condition: YM > 0, 3C; (M)
> 0: [U(z,y1,21) — (2, y2, 22)| < C1(M) (|ly1 — ya| + [21 — 22]) for all
(xayl)zl)v (1‘,3/2722) € x [_M’ M] X [_bMu bM]a

2o M (1| [bis]])

(Hs) M > 1—||[bsjn]]| and 0 <& < 2[(14b) MC1 (M) +nMo] | [a;]]|

where

(2.2) My = sup {|¥(z,0,0)| : z € Q}.
Given M > 0, we put
={feX:|flx < M}

The following lemmas are useful to establish our main results, the proof
are not difficult so we omit it.
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LEMMA 2.1. Let (Hi) and (Hs) hold. Then the linear operator I — B :
X — X is invertible and

1
I-B) Y <————. =
| | T
By Lemma 2.1, we rewrite the functional equations system ({2.1]) as follows
(2.3) f=(I—-B) YecAf+9)=TFf.

LEMMA 2.2. Let (Hy), (Hs), (Hy4) hold. Then, for every M > 0 we have
(1) [Afllx < [[aiell [(1 +0) CL(M) [ flly +nMo], Vfe Ku;
(ii) |Af = Af] < (@ +0)CL(M) [[aig]|l [ f = fll 5, VS, fe K. m

Then, we have the following theorem.

THEOREM 2.3. Let (Hy)—(Hs) hold. Then, for every e, with |e| < eq, the
system (2.3) has a unique solution f € Kyy.

Proof. It is evident that T : X — X. Considering f, f € Ky, by Lemmas
2.1 and 2.2, we easily verify that

1
(2.4) |ITf|x < T el
o (1+0) C1(M) [[agix
1 — | [bijr]]

Notice that, from (Hs)—(Hs) we have

(20 Iaije]| (1 +b) MCy(M) +nMo) + |9l x];

(2.5) |Tf-T7|, < M- Fllx-

(2.6) (€0 Iaiji ]l (L +b) MCL(M) + nMo) + |g] x] < M.

1
1= [[bie]l
It follows from ([2.4)—(2.6|), that 7" : Ky — Ky is a contraction mapping.

Then, using Banach fixed point theorem, there exists a unique function f €
Ky such that f=Tf. u

REMARK 2.4. Theorem 2.3 gives a consecutive approximate algorithm
f@ =11 1, =12 ... where fO e X is given.
Then the sequence {f(”)} converges in X to the solution f of |) and

we have the error estimation

O.l/

Hf(”) - fHX < HTf(O) _ 7O HX for all v € N,
g0 (1 +0) C1(M) |[aize]|

1 —[[bazel|

1—0

where o = < 1.
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3. The second order algorithm
In this part, let ¥ e C1(2 x R% R).

First, using the approximation

oV
@) (Y ~ (v=1) =1y 4 “% (v=1) o, (w=1)y () _,,(v=1)
U(z,u"” v\ = U(z,u U )+ay(ac,u ,V )(u u )
oV
i g(%u(wn,v(ufl)) (U(w —W*l)) :
where u*) = f](l')(RZ]k( = S ii(@) f ( )dt, we obtain the following

algorithm for system

31 [ =2 Y (W)
k=1j=1
. zam o) -1
k=1 j=1
m n Xijk ac)
o3 Sl (v (J 101 w) )
1j=1 0

bijif\" (Sijn()) + gi(2),

+
gk =
1=

E
Il
fu
<.
Il
it

forall z e Q, 1

IN

i1<n,and v =1,2,... where

Xijr(x)
(32) W)= <x f}””(Rmx)),L f}””(t)dt>,

and f(© = (fl(o), .. (0)) € Ky is given.
Rewrite (3.1)) as a linear system of functional equations

33)  fY) = (Bf +aZ Zamk V) (Riju(x))
k=1j=1
Z]k()
re @ [ 0+ o),
k=1j=1

forxeQ,i=1,2,...,nand v = 1,2,... with aglz(x), 51(;13(3”) and gi(y)(x)

depending on f*~1 as follows

14 &\IJ v v 6\11 v
B9 afl@) =ang (W) AR = an (WH@),
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and
(35) g”(@) = gi(@) + (AL D)) —e D) DT al) (@) 11V (Riju ()
k=1j=1
zgk(ﬁf)
— £ Z Z Bz]k J f](yil) (t)dt

k=1j=1
Then, we have the following.
THEOREM 3.1. Let (Hy)—(H3) hold and let ¥ € C*(QxR%;R). If f—1 e

X satisfies
— il + e (H s +vlis]) <1

there exists a unique function %) e X being solution of system 1}1)

Proof. We write system (3.3)—(3.5)) in the form of an operational equation
in X =C(Q;R")

@ =1, 0

where
(T f)i(z) = )+e Z Z %k (Riji(2))
k=1j=1
) gy [ )
pey Z 8 J £t + o (),
k=1j=

foreeQ,i=1,2,...,nand f = (f1,...,fn) e X

It is easy to check that T, : X — X and

|1 f =Tofly <w|f—fly forall f,feX.

Using the Banach fixed point theorem, there exists a unique function
) e X being a solution of system (3.3)—(3.5). =

Next, we make the following hypotheses:
(Hg) ¥ e C?Q x R%R),
(Hz) eo llainll ["57> + (1 +0)Mi + (1 +0)*MoM] < 1—|[bijae]| — 37 9 x
where M is given by ([2.2) and

ov ov
M, =sup{<‘a + % ) (x,y,2): (2,9, 2) eA*},
0?v 0%V 0?v
MQ_Sup{( ayQ +‘ayaz + 822 >(w7y7z):(x7y7z)eA*}7

with Ay = {(z,y,2) : x € Q, ly| < M, |z| < bM}.
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THEOREM 3.2. Let (Hi)—(Hs), (Hg), (H7) hold, let f be the solution of
system |D and the sequence {f(l’)} be defined by algorithm (Dib

() If [ £ < M, then

2
W) _ (v=1) _ _
(3.6) Hf fHX < Bm Hf fHX,VV 1,2,...
where
320 (14 6)* My | [ail|
1 —|[bije]] — €0 (1 +b) M [[ai]|
(ii) If the first term fO) sufficiently near f such that By ||f(0) — f||X <1

then the sequence {f(”)} converges quadratically to f and furthermore

09 1t o ) e

(3.7) By = > 0.

Proof. First, we verify that if Hf ©) HX < M, then

il

<M,Vv=1,2,...
Indeed, supposing

(3.9) |77l < M

we deduce from ) that

(Mwnﬂduﬁ

On the other hand, we have

(3.10) H )

-+ el |85

)1l

#ll,

% (
8‘1/(

a(V) (.’L‘)’ < ‘aiﬂf‘ ijk

W (« ))‘ < M |aijil
(3.11)

B @)| < lasjl
Hence, we deduce from n m that
170 < Hilessell + 20 (1 +0) My el | 7]+ 9]

Note that (H7) implies |[[bijr]] + €0 (1 + b) My ||[aije]]| < 1, so

ijk

w )(:v))‘ < My |aiji] -

9" x
=T ikl = €0 (14 0) My |[ag]|

Now, we need an estimate on the term Hg v HX .

(3.12) H 7
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From and , we obtain
313 o) =g +e X o ¥ (WS 0)
k=17j=1

ov Y b ow Y Xige()
-5, (WiH@) 5 ”(Rijkm))—az(wi&;(x))fo ! ”(t)dt].

On the other hand, the Taylor’s expansion of the function ¥(x,0,0) at
the point VVZ(;;C) (x) = (:L’, f](yfl)( iik (T SO ik )f;yfl)(t)dt) , up to order 2,
leads to

¥(,0.0) = ¥ (W) - 5 (W) 17 (Rin(a)

S () [ e Do+ 3 5 (W) (1 Ban(a)’

0

62\1/ - (v v— ka() v
o (W) 2 Rt [ A e

0Yyoz

2
1020 , Xijn(z) o
+3 03 (W) (j )

where

- (v v— lek(:p) v
Wz‘(jk)(ﬂﬁ)Z <JU, —9¢jkf; 1)(Rz’jk($))7—9ijkﬁ) f]( D(t)dt),

O<02‘jk<1-
Therefore
1 a\ll v v—
(3.14) ‘ (W) - @(Wig,m) £V (Riji ()
oV Hiakle) o,
-5 (Wiw) f f; )<t>dt\

- ‘\Il(x,0,0) - 182; (Wi(j?(x)> (fg@_l)(Rijk(l’»)z

2V s _ o Xk () .
R <Wi(ﬂ'k)($)> fa( 1)(Rz‘jk($))L fJ( Y(t)at

102w / ) Xijk(2) (-1 2
T 502 (Wijk (35)) <f0 I (t)dt> ‘
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Xijr(x)
£ (Rigi () j £ (bt

1 v 2
< Mo+ 5 Mo (£ (Bijele))) + Mo j

1 Kige() 2
+2M2(J g 1)(t)dt>

0

1
< M0+2M2[

Xijr(x) 2
f}y_l)(Rijk(x))‘ + L f}”‘”(t)dt” .

It follows from - ) that
(3.15) H |

Hence, from (3.12)), (3.15) and (H7), we obtain

o). < lolx + <o llaisell [n0o + 3 (1+ 07 200%]
X5 (bl = O+ M ffagell

<l + o sl o+ 5 (14 Mas?.

Now, we shall estimate Hf — f(”)HX.

Put e = f — f) we obtain from l} and |b the system

k=1j=1
m ijk(T)
D IDNIC) IO
k=1j=1 0
Fe D) D a0 (W) ¥ (W) (0)

where WZ(J k) (x) is given by (3.2)) and
Xijr(x)

Wijk(z) = (56 fj(Rijk(x)),f

0

fj(t)dt> .

Using Taylor’s expansion of the function ¥ (ﬁ, fi(Y), Sg fj(t)dt) at the

point (z, So (= 1) dt), up to order 2, we obtain
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g =13y [ -1
(3.17) \Il<x (V). L fj(t)dt> _ (:): 7! (Y),L 7! (t)dt)
a\IJ ]/—1 Z U—l V—l
# S (a0, [ ) &)
OV (w1 g (7 ) 7 (-
+ 2 <x 1700w ) [l
LW () (1) 1y |2
23z (7. 2)) [0
P ) =1 3y [ =)
Y, Z Y
S (@@ 2) V0 [V
13°0 ¢ ) SRR
55 (w] ( Y,Z)) UO e (t)dt) ,
where
"(2,Y, 2)
z
- (x,f§”‘1)< Y) +0;e"D(v), fo 170 + 05e 1) dt>,
0< 0]' < 1.
Substituting (3.17)) into (3.16|) where the arguments of f;, f(l' 1), egy_l),
wj(.y) appearing in (3.17) are replaced by Y = R;ji(2), Z = X;ji(z), we get

(3.18)  eM(x) =
where w) (z) =w
ijk

(Be(V _|_ £ Z Z a”k 5'11 Z]k(l‘»
S Xij ()
+e 3, 3 Ail) j e )
k=1j=1 0
m n 1 aij ) . )
Te Z Z a {2 oy? (Wfﬂz(fﬂ)) e§ )(Rijk(x))‘
k=1j=1
0w v v— Xijr(@)
dyoz (b)) e R ))J0 "V (t)dt
1020 () Xip@) (,_p) 2
2 022 <wz‘jk<$)) Jo e; (t)dt ],
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Combining (3.9), (3.11)), (3.18)), the result is
n m

) <H )

He X~ Be X | 1<j<ngeq Riji(
nom Xije(z)
(v) ‘ f W)

+e max su x e’ (t)dt

Z Z maxsup S| 1] 670

1 \ n m n (v—1) Xijn(@) (v—1) d 2
+§50 2;;1 1I£Jaﬁxn|aijk|ilel£;:1 ‘ej (Rijr(x ’—F e, (t)dt

< [[bijill +20 (1+b) My [[asx]|] Hew

+ %80 (1+b)* Mo |[asi]| He(yil) Hi

Consequently
(3.19) He(y) < 350 (1+6)° My |[ay]| H (1) H
X 7 1= [bige]l — o (1 +0) My [[ai]] X
¢
Hence, we obtain (3.6) by (3.7) and ( - Finally, from (3.6)), (3.8)
follows. =

REMARK 3.3. If we choose pg sufficient large such that
Bum Hg(’m) - fHX < Bm HTQ(O) — g H

and choose f(© = ¢(0) then first term f(© sufficiently near f such that
B [fO = fly <1 m

0')“’0

<1

X1l—o ’

4. Asymptotic expansion of solutions

In this part, we assume that the functions R;;x, Sijk, Xijk, g, ¥ and the
real numbers a;j, biji, M satisfy the assumptions (Hi)—-(Hs), respectively.
We use the following notation

w15;] = 0 (. (Rinlo), | T o),

0

Now, we assume that
(Hg) ¥ e CN(Q x R%R).

We consider the perturbed system (2.1), where £ is a small parame-
ter || < eo. Let us consider the finite sequence of functions {fl'1}, r =



Linear approrimation and asymptotic expansion associated. . . 115

0,1,...,N, fIrl e Ky, (with suitable constants M > 0, g > 0) defined as
follows:

(4.1) fri = -B)~tprl r=0,1,... N,
where
P = (PP r =01, N,
and
Pl =g
With r = 1:
PM = (A @) = ST Y g,
k=1j=1
where
W) = 9 = w (2, O Ry (@), T 1 (Xigr () )
(4-2) Xijk ()
T £ (X0 () = fo 791yt
With r = 2:
PP = N ageri e,
k=1j=1
where
o o
(4.3) wiw] = 7Dy w M 4 2 Dsw) s M, Dyw = 5y s =

For 2 <r < N,
Pi[r] = 2 Z aijkﬂj['r [¥],
k=1j=1

where, ﬂ'J[-T] [U], 0 <r < N — 1 defined by the recurrence formulas

r—1

r r—S S r— S r—s

(4.4) 7.(][][\1/]:2 ; {WJ[-][D2\I/]f][ S]—|—7rj[.][D3\I/]Jf][ ]}.
s=0

We also note that W][T] [V] is the first-order function with respect to f][r],
ijm. In fact,
7T][~T] (V] = 7r][.0] [DoV] f][r] + 7T][0] [D3V]J fj[r] + terms depending on

(Gor, 7 Do W] wl Dy wy, f g gl s =1 e -,
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Put

then

N
U:fE*Zf[T]ersz*h

r=0
satisfies the system
(4.5) (I — B)v =¢[A(v+ h) — Ah] + E,
where
N
Ee = e[A(f1 + U) = A(S)) = 3 Pler.
r=2

Then, we have the following lemmas.

LEMMA 4.1. The functions 7TJ[~T] [U], 0 <r < N —1 as above are defined by
the following formulas:
1 0

[r] _ 1
m [V = r! Qe

J

,0<r<N-—1.
e=0

U [hy]

Proof. (i) It is easy to see that

1

ol @‘I’[hg’] = U[hy]|

e=0
= ¥ (o, S Biju@), T (X)) = AN = 7w
With r = 1, we shall show that

e=0

(4.6) ] - L - V[hy]

We have

0

0 0
(47) ‘lf[h]] = Dgw[h]]%h] + ng/[hj]%Jh]

O
On the other hand, from the formulas
N N
hy = fler, Z r i Jh = M rafller-
r=0 r=1
we have
@8)  hylo= A" Sngl =W Lgny) =g
' 7 " Oe 770" L, 7
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Hence, it follows from (4.7]), (4.8]) that

1 0

0 0
ﬂ %\I’[hj] = DQW[hj]?hj + Dg\lf[hj]f:]hj

e=0 0 e=0 Oe e=0
=Dﬂuﬁw“+0ww 17 £
= Dy w M 4 7 Dsw) s Y = 2w,

Thus, ) holds.

Suppose that we have deﬁned the functions 77[ ][\11] 0<s<r—1from

formulas and (| . Therefore, it follows from . that

o" ot [0 o1 0 0
agT\I’[hj] = F (ag\IJ[hJ]) p e Py |:D2\11[h ]ashj + D3\I’[h]]a€<]h]:|

67‘7‘9 aS 6”‘78
= Z { s DoV byl = hy + < DyWlhy] o=

OeT—$ Ocs Jh]

We also note that

o8 FEC
ashi| = ]“,%th —slfflo<s<r
=0 e=0
Hence
1 o or—s
rl oer [h‘]] o T' Z C?" 1 [ 2 [h ] o Oer—S$ J o
S a?"*S
DaW[h; g Jh,
" ags ’ [h]] e=0 567’—3 Jh] 5=0]
1 r—1
= 2 st Do) — )1l
" s=0
r—1
+ 3 st Dy W (e — s)1a
s=0
1 B sl | _[s] (r—s]
= ZE)CS 18!(r —s)! [ js [DQ\IJ]f + st [D3V]J f; S]

2| a1 4 2l pgwg £ = Al ),

r—1
>
s=0 r

Lemma 4.1 is proved completely. m
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LEMMA 4.2. Let (Hy)-(Hs), (Hs) hold. Then there exists a constant C_'](\})
depending only on N, |[[aji]ll, |[bijr]] Hf[”]HX, 0 <r < N such that

|Eclx < CN1el™.

Proof. In the case of N = 1, the proof of Lemma 4.2 is easy, hence we omit
the details, so we only prove with N > 2. We have

Ms

iamk[ o[+ vy - wir™)

15=1

(49) (AU +0) = AU (@) -
’ k

in which
O = 0 (o S R (@), A (Kia(a)) )
W[+ 03] = 0 (2, P (Rige(@) + Uy (Rigi(@)), T+ U)) (X))

By using Maclaurin’s expansion of the function ¥[h;] round the point
€ = 0 up to order N, we obtain

(410 win] - e = w4 o) - e

- Z I wle + RV, 01),

Whered[][ U,0<r<N-— laredeﬁnedby and. - ][‘11,91]

is deﬁned as follows
5N

[N _
(4.11) RNV, 6] =

Ulh,]

)
e=01¢

with 0 < 67 < 1.
Substituting \Il[f][o] + U;] — \I/[f[o]] in (4.10) into ll we obtain after

J
some rearrangements in order of € that

N
(412) B = (A + U) — A1), - 2 pl

m n N
=¢ Z Z Qijk [ L Uj] - [f][o]]] - Z Pimsr

k=1j=1 r=2
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N—1 m n m n N
_ MZIZI%MJ[T][\IJ el 4 Z Z ainRMw,01] 22
r=1 k=1j= k=1j=1 r=
N—-1 m n N
= jt)i[T’+l 7"+1 Z Z mkR ‘;[/ 91 Z
r=1 k=1j=1 r=2
8N+1 m n
= N Z Z aZ]kR \11,01].

k=1j=1

By the boundedness of the functions fI"l, r = 0,1,2,..., N, fl'l e Ky,

it implies from (4.11] - ) that
N+1 N+1
|E-]x = [e]N " [Ra[@, €] < O [el™
Lemma 4.2 is proved completely. m

THEOREM 4.3. Let (Hy)—(Hs), (Hg) hold. Then there exists a constant
g1 > 0 such that, for every e € R, with |e| < €1, the system has a unique
solution f. € K satisfying the asymptotic estimation up to order N + 1 as
follows

N

2 N+
oS <2 ey
I I A

where the functions fI"), r =0,1,..., N are defined by (4.1)).

Proof. From (4.5), Lemmas 2.1 and 4.2, we have

(413)  |oly < [T = B) Y (el |A( + k) — AB] ¢ + | E]l)
1
= T ol (c11A4Qw -+ h) = ARl + Y 1)

On the other hand

N
o+ Al = I £:lx < M, Bl < ) [£17) =,
r=0
(4.14) . )
7o+ Jhlx = | folx < No, | Jhly < 3 | 757) = Re.
r=0

It follows from (4.14) that
(4.15) [A(v + h) = Ah| x < Co(M) [[ase]| [0l x

where
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Ca(M)
i3
=8supy | =L, Yy, =
oy
From (4.13), (4.15)), we obtain

ov _ _
+ ‘(Bz(x’y’z) cx e, |yl < Ni+ Np, |z < Na+ N2}-

1 ~(1) | [N+1
<—— (e109(M) [[as; c .
ol < Ty (510200 lassell ol + O el
Choose 0 < €1 < gq, such that
1
(4.16) 1 Co(M) [l | — o < 12
7L — [bijie]]
So, (4.16) leads to
2 ~(1) | |N+1
lvllx € T—m—7CN [l
S [T
or
- [7] ~(L) | IN+1
oS e <2 G N
) 7;) x = =il Y

Theorem 4.3 is proved completely. =

5. Examples

Let us give two following illustrated examples for the results obtained as
above.

5.1. Example 1. Let us consider system (1.1)) withn =2, m =1, ¥ (z,y, 2)
=cosysinz :

[ () = can cos ( A (;“" + g)) sin (L A (t)dt)
+ eaya cos <f2 <‘; - g)) sin <f3 fz(t)dt>

1

2¢ 1 T
+ bl1f1(§ + §) + b12f2(5 — 5) + g1(z),

GO\ f@) = caz cos <f1 <Z + i)) sin (f fl(t)dt>
+ eagy cos ( fo <Z - i)) sin U: fg(t)dt>

x 1 2x 1
+ ba1 f1 <2 + 2> + baa fo (3 — 3> + g2(x),
(z€Q=[-1,1],
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where € > 0 is small enough; a;j1 = a;j, bjjp = b;j are constants and all the
functions g1, g2 : Q— R; Rijk = Rija Sz’jk = Sij7 Xijk = Xij : Q) — Q) are
continuous defined respectively as follows

-

aij € R;
{ bij €R such that
- N2 _
L 03]l = 2= 11rga2<2|sz| 1Injax |b1;] + 1m]ax |boj| < 1;
)
g1, g2 € C(S4; R);
T 42 x_ 2
N R s d IS0 E O B
Ro(z)  Roa(x) 243 z._3
A S S 22 .1 oz _ 1
S0 I skt I A A
So1(z)  Saa(x) g4l 2 1
Xi1(z)  Xia(z) z P
[Xij(2)] = [X -1
L 21(x)  Xoo(x) P x

It is obvious that (H;)-(Hs) hold with M > 2olxand 0 < g0 <

1=[[bi; ]I
bl - g6 we conclude that, for every e with |e] < g9, equation 1} has
A[as]l

a unique solution f e Kyy.
On the other hand, because ¥ (z,y,2) = ¥ (y,z) = cosysin z, (Hg) and
TN
(Hg) are also satisfied. Therefore, if M > alx o < gg < bl | L2 v B

1-Tbs; 11 2(2+3M)||[as]
and € > 0 is small enough, then we obtain the results as in Theorems 3.2

and 4.3.

5.2. Example 2. Consider system (1.1)) with n = m = 2, ¥ (x,y,2) =
®(z), e CHR):

fl( )—€a11q)<f f1 dt>+€a12¢<J fz dt —I—b111f1<x+1>

+b112f1(COS 7['.73)+1)122f2< ) (w),

(5.2) <
fa(x) = ba11 f1 (T) +b221f2(Sin7T$)+b222f2<2m3_1> +g2(7),
(z e Q=[-1,1],
where € > 0 is small enough; a;jr = a;j, bjjx are constants and all the

functions g1, g2 : @ — R; Ryx = Rij, Sijk, Xijk = X35+ Q — Q are
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continuous defined respectively as follows

ai; € R such that

ail a2 ail a2
lai;] = = ;
a1 a2 0 0

bij € R such that )

3 [bsie] — it bior bz b _ b 0 bug bz
K bair baor barz baza|  |bain baar O baza|
2 2
I[bijeelll = ; Z e |bijk|

= |b111| + |b222| + max {|b112], |b122|} + max {|b211],|b221]} < 1;

-

g1, g2 € C(; R);
[sijm)]:[*;l”(@ Sin(@) Snale) Sw(m)]
211(x) Soo1(x)  Sora(x)  Saza(x)

< z+ 0 COS T 2x+1
_| 2 3 |.
z—1 . 2x—1 |’

5= sinmx 0 ==

Xu(z) Xio(z) _ |z a3
\ 0 0]

It is also clear to see that (Hi)—-(Hs) hold with M > 2HH§)HX]” and
M (1 [bal])

4] [as;]] [M sup |9/ (z)[+|2(0)|
lz|<M

equation ([5.2)) has a unique solution f € Kj;.

Furthermore, if ® € C%(R) or ® € CV(R), M > % and

0 < g < . So, for every e such that |g| < &y,

LON L sup [/ (2)] + M sup |(1’"(Z)‘]
M

0 < 2¢q | [aj]] [ M < |2]<M
zZ|< =

1
<1—|[bije]l — 5V gl x

and € > 0 is small enough, the results of Theorems 3.2 and 4.3 are obtained.
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