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LINEAR APPROXIMATION AND ASYMPTOTIC
EXPANSION ASSOCIATED WITH THE SYSTEM OF

NONLINEAR FUNCTIONAL EQUATIONS

Abstract. This paper is devoted to the study of the following perturbed system of
nonlinear functional equations

(E) fipxq “
m
ÿ

k“1

n
ÿ

j“1

„

εaijkΨ

ˆ

x, fjpRijkpxqq,

ż Xijkpxq

0

fjptqdt

˙

` bijkfjpSijkpxqq



` gipxq,

x P Ω “ r´b, bs, i “ 1, . . . , n, where ε is a small parameter, aijk, bijk are the given real
constants, Rijk, Sijk, Xijk : Ω Ñ Ω, gi : Ω Ñ R, Ψ : Ωˆ R2

Ñ R are the given continuous
functions and fi : Ω Ñ R are unknown functions. First, by using the Banach fixed point
theorem, we find sufficient conditions for the unique existence and stability of a solution
of (E). Next, in the case of Ψ P C2

pΩˆ R2;Rq, we investigate the quadratic convergence
of (E). Finally, in the case of Ψ P CN pΩˆ R2;Rq and ε sufficiently small, we establish an
asymptotic expansion of the solution of (E) up to order N ` 1 in ε. In order to illustrate
the results obtained, some examples are also given.

1. Introduction
In this paper, we consider the following system of nonlinear functional

equations

(1.1) fipxq

“

m
ÿ

k“1

n
ÿ

j“1

„

εaijkΨ

ˆ

x, fjpRijkpxqq,

ż Xijkpxq

0
fjptqdt

˙

`bijkfjpSijkpxqq



`gipxq,

i “ 1, . . . , n, x P Ω “ r´b, bs, where aijk, bijk are the given real constants;
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Rijk, Sijk, Xijk : Ω Ñ Ω, gi : Ω Ñ R, Ψ : Ω ˆ R2 Ñ R are the given
continuous functions and fi : Ω Ñ R are unknown functions, ε is a small
parameter.

The existence of solutions for functional integral equations of the form
(1.1) have been extensively studied by many authors via various techniques
in functional analysis, topology and fixed point theory, such as using the Ba-
nach fixed point theorem, fixed point theorems of Krasnoselskii type, the
Darbo fixed point theorem, the nonlinear alternative of Leray–Schauder
and using the technique of the measure of noncompactness. There are
many interesting results of solvability, asymptotic stability and some prop-
erties of solutions; for example, we refer to the [1], [4]–[17] and references
therein.

It is well known that, integral equations and functional integral equations
as above have attracted great interest in the field of nonlinear analysis not
only because of their mathematical context but also because of their appli-
cations in various fields of science and technology, in engineering, mechanics,
physics, economics, . . . . For the details of such applications, see for example,
C. Corduneanu [2], K. Deimling [3].

In [17], system (1.1) is studied withm “ n “ 2, Ψ “ 0 and Sijk binomials
of first degree. The solution is approximated by a uniformly convergent
recurrent sequence and it is stable with respect to the functions gi.

In [7], [8], [10], the existence and uniqueness of a solution of the functional
equation

fpxq “ apx, fpSpxqqq,

in the functional space BCra, bs, have been studied.
In [11]–[14], special cases of (1.1) have been studied corresponding the

following form

fipxq “
m
ÿ

k“1

n
ÿ

j“1

aijk px, fjpSijkpxqqq ` gipxq,

i “ 1, . . . , n, x P I Ă R, where I is a bounded or unbounded interval. By
using the Banach fixed point theorem, the authors have established the ex-
istence, uniqueness and stability of the solution of (1.1) with respect to the
functions gi. Furthermore, the quadratic convergence and an asymptotic ex-
pansion of solutions are also investigated.

Applying a fixed point theorem of Krasnosel’skii type and giving the
suitable assumptions, Dhage and Ntouyas [4], Purnaras [16] obtained some
results on the existence of solutions to the following nonlinear functional
integral equation
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xptq “ qptq `

ż µptq

0
kpt, sqfps, xpθpsqqqds`

ż σptq

0
vpt, sqgps, xpηpsqqqds,

t P r0, 1s,

where 0 ≤ µptq ≤ t; 0 ≤ σptq ≤ t; 0 ≤ θptq ≤ t; 0 ≤ ηptq ≤ t, for all t P r0, 1s.
Purnaras also showed that the technique used in [16] can be applied to

yield existence results for the following equation

xptq “ qptq `

ż µptq

αptq
kpt, sqfps, xpθpsqqqds

`

ż λptq

βptq

pkpt, sqF

ˆ

s, xpνpsqq,

ż σpsq

0
k0ps, v, xpηpvqqqdv

˙

ds, t P r0, 1s.

Recently, using the technique of the measure of noncompactness and the
Darbo fixed point theorem, Z. Liu et al. [9] have proved the existence and
asymptotic stability of solutions for the equation

xptq “ f

ˆ

t, xptq,

ż t

0
upt, s, xpapsqq, xpbpsqqq ds

˙

, t P R`.

Motivated by the above mentioned works, we introduce and investigate
the more general nonlinear functional integral equation of the form (1.1).

This paper consists of five sections. In Section 2, by using the Banach
fixed point theorem, we find sufficient conditions for the unique existence
and stability of a solution of (1.1). In Section 3, in the case of Ψ P C2pΩˆ
R2;Rq, we investigate the quadratic convergence of (1.1). In the case of
Ψ P CN pΩˆR2;Rq and ε sufficiently small, an asymptotic expansion of the
solution of (1.1) up to order N ` 1 in ε is established in Section 4. We end
the paper with illustrated examples.

The results obtained here relatively generalize the ones in [1], [4]–[17].

2. The theorems on existence, uniqueness and stability of solutions
With Ω “ r´b, bs, we denote by X “ CpΩ;Rnq the Banach space of

functions f : Ω Ñ Rn continuous on Ω with respect to the norm

}f}X “ sup
xPΩ

n
ÿ

i“1

|fipxq| , f “ pf1, . . . , fnq P X.

For any non-negative integer r, we put

CrpΩ;Rnq “
!

f P CpΩ;Rnq : f
pkq
i P CpΩ;Rq, 0 ≤ k ≤ r, 1 ≤ i ≤ n

)

.

It is clear that CrpΩ;Rnq is the Banach space with respect to the norm

}f}r “ max
0≤k≤r

sup
xPΩ

n
ÿ

i“1

ˇ

ˇ

ˇ
f
pkq
i pxq

ˇ

ˇ

ˇ
.
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We write the system (1.1) in the form of an operational equation in X
as follows

(2.1) f “ εAf `Bf ` g,

where

f “ pf1, . . . , fnq, Af “ ppAfq1, . . . , pAfqnq, Bf “ ppBfq1, . . . , pBfqnq,

with
$

’

’

’

’

&

’

’

’

’

%

pAfqipxq “
m
ÿ

k“1

n
ÿ

j“1

aijkΨ

ˆ

x, fjpRijkpxqq,

ż Xijkpxq

0
fjptqdt

˙

,

pBfqipxq “
m
ÿ

k“1

n
ÿ

j“1

bijkfjpSijkpxqq, x P Ω, i “ 1, 2, . . . , n.

We set the following notions

}rαijks} “
n
ÿ

i“1

m
ÿ

k“1

max
1≤j≤n

|αijk| ,

for any set rαijks “ tαijk P R : i, j “ 1, . . . , n; k “ 1, . . . ,mu,

}rFijks} “
n
ÿ

i“1

m
ÿ

k“1

max
1≤j≤n

}Fijk}8 ,

for any set rFijks “ tFijk P CpΩ;Rq : i, j “ 1, . . . , n; k “ 1, . . . ,mu, where
the symbol }¨}8 denotes the supremum norm on CpΩ;Rq; and the following
assumptions

pH1q all the functions Rijk, Sijk, Xijk : Ω Ñ Ω are continuous,
pH2q g P X,
pH3q }rbijks} ă 1,
pH4q Ψ : Ω ˆ R2 Ñ R satisfies the following condition: @M ą 0, DC1pMq

ą 0: |Ψpx, y1, z1q ´Ψpx, y2, z2q| ≤ C1pMq p|y1 ´ y2| ` |z1 ´ z2|q for all
px, y1, z1q, px, y2, z2q P Ωˆ r´M,M s ˆ r´bM, bM s,

pH5q M ą
2}g}X

1´}rbijks}
and 0 ă ε0 ă

Mp1´}rbijks}q

2rp1`bqMC1pMq`nM0s}raijks}
,

where

(2.2) M0 “ sup t|Ψpx, 0, 0q| : x P Ωu .

Given M ą 0, we put

KM “ tf P X : }f}X ≤Mu.

The following lemmas are useful to establish our main results, the proof
are not difficult so we omit it.



Linear approximation and asymptotic expansion associated. . . 107

Lemma 2.1. Let pH1q and pH3q hold. Then the linear operator I ´ B :
X Ñ X is invertible and

›

›pI ´Bq´1
›

› ≤ 1

1´ }rbijks}
.

By Lemma 2.1, we rewrite the functional equations system (2.1) as follows

(2.3) f “ pI ´Bq´1pεAf ` gq ” Tf.

Lemma 2.2. Let pH1q, pH3q, pH4q hold. Then, for every M ą 0 we have

(i) }Af}X ≤ }raijks} rp1` bqC1pMq }f}X ` nM0s , @f P KM ;
(ii)

›

›Af ´Af̄
›

›

X
≤ p1` bqC1pMq }raijks}

›

›f ´ f̄
›

›

X
,@f, f̄ P KM .

Then, we have the following theorem.

Theorem 2.3. Let pH1q–pH5q hold. Then, for every ε, with |ε| ≤ ε0, the
system (2.3) has a unique solution f P KM .

Proof. It is evident that T : X Ñ X. Considering f, f̄ P KM , by Lemmas
2.1 and 2.2, we easily verify that

}Tf}X ≤ 1

1´ }rbijks}
rε0 }raijks} pp1` bqMC1pMq ` nM0q ` }g}Xs ;(2.4)

›

›Tf ´ T f̄
›

›

X
≤
ε0 p1` bqC1pMq }raijks}

1´ }rbijks}

›

›f ´ f̄
›

›

X
.(2.5)

Notice that, from pH3q–pH5q we have

(2.6)
1

1´ }rbijks}
rε0 }raijks} pp1` bqMC1pMq ` nM0q ` }g}Xs ≤M.

It follows from (2.4)–(2.6), that T : KM Ñ KM is a contraction mapping.
Then, using Banach fixed point theorem, there exists a unique function f P
KM such that f “ Tf.

Remark 2.4. Theorem 2.3 gives a consecutive approximate algorithm

f pνq “ Tf pν´1q, ν “ 1, 2, . . . , where f p0q P X is given.

Then the sequence tf pνqu converges in X to the solution f of (2.3) and
we have the error estimation

›

›

›
f pνq ´ f

›

›

›

X
≤ σν

1´ σ

›

›

›
Tf p0q ´ f p0q

›

›

›

X
for all ν P N,

where σ “
ε0 p1` bqC1pMq }raijks}

1´ }rbijks}
ă 1.
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3. The second order algorithm
In this part, let Ψ P C1pΩˆ R2;Rq.
First, using the approximation

Ψpx, upνq, vpνqq – Ψpx, upν´1q, vpν´1qq`
BΨ

By
px, upν´1q, vpν´1qq

´

upνq´upν´1q
¯

`
BΨ

Bz
px, upν´1q, vpν´1qq

´

vpνq´ vpν´1q
¯

,

where upνq “ f
pνq
j pRijkpxqq, v

pνq “
şXijkpxq
0 f

pνq
j ptqdt, we obtain the following

algorithm for system (1.1)

(3.1) f
pνq
i pxq “ ε

m
ÿ

k“1

n
ÿ

j“1

aijkΨ
´

W
pνq
ijk pxq

¯

` ε
m
ÿ

k“1

n
ÿ

j“1

aijk
BΨ

By

´

W
pνq
ijk pxq

¯´

f
pνq
j pRijkpxqq ´ f

pν´1q
j pRijkpxqq

¯

` ε
m
ÿ

k“1

n
ÿ

j“1

aijk
BΨ

Bz

´

W
pνq
ijk pxq

¯

ˆ
ż Xijkpxq

0

´

f
pνq
j ptq ´ f

pν´1q
j ptq

¯

dt

˙

`

m
ÿ

k“1

n
ÿ

j“1

bijkf
pνq
j pSijkpxqq ` gipxq,

for all x P Ω, 1 ≤ i ≤ n, and ν “ 1, 2, . . . where

(3.2) W
pνq
ijk pxq “

ˆ

x, f
pν´1q
j pRijkpxqq,

ż Xijkpxq

0
f
pν´1q
j ptqdt

˙

,

and f p0q “ pf p0q1 , . . . , f
p0q
n q P KM is given.

Rewrite (3.1) as a linear system of functional equations

(3.3) f
pνq
i pxq “ pBf pνqqipxq ` ε

m
ÿ

k“1

n
ÿ

j“1

α
pνq
ijkpxqf

pνq
j pRijkpxqq

` ε
m
ÿ

k“1

n
ÿ

j“1

β
pνq
ijkpxq

ż Xijkpxq

0
f
pνq
j ptqdt` g

pνq
i pxq,

for x P Ω, i “ 1, 2, . . . , n and ν “ 1, 2, . . . with αpνqijkpxq, β
pνq
ijkpxq and g

pνq
i pxq

depending on f pν´1q as follows

(3.4) α
pνq
ijkpxq “ aijk

BΨ

By

´

W
pνq
ijk pxq

¯

, β
pνq
ijkpxq “ aijk

BΨ

Bz

´

W
pνq
ijk pxq

¯

,
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and

(3.5) g
pνq
i pxq “ gipxq ` εpAf

pν´1qqipxq ´ ε
m
ÿ

k“1

n
ÿ

j“1

α
pνq
ijkpxqf

pν´1q
j pRijkpxqq

´ ε
m
ÿ

k“1

n
ÿ

j“1

β
pνq
ijkpxq

ż Xijkpxq

0
f
pν´1q
j ptqdt.

Then, we have the following.

Theorem 3.1. Let pH1q–pH3q hold and let Ψ P C1pΩˆR2;Rq. If f pν´1q P

X satisfies
γν “ }rbijks} ` |ε|

´›

›

›
rα
pνq
ijks

›

›

›
` b

›

›

›
rβ
pνq
ijk s

›

›

›

¯

ă 1,

there exists a unique function f pνq P X being solution of system (3.3)–(3.5).

Proof. We write system (3.3)–(3.5) in the form of an operational equation
in X “ CpΩ;Rnq

f pνq “ Tνf
pνq,

where

pTνfqipxq “ pBfqipxq ` ε
m
ÿ

k“1

n
ÿ

j“1

α
pνq
ijkpxqfjpRijkpxqq

` ε
m
ÿ

k“1

n
ÿ

j“1

β
pνq
ijkpxq

ż Xijkpxq

0
fjptqdt` g

pνq
i pxq,

for x P Ω, i “ 1, 2, . . . , n and f “ pf1, . . . , fnq P X.
It is easy to check that Tν : X Ñ X and

›

›Tνf ´ Tν f̄
›

›

X
≤ γν

›

›f ´ f̄
›

›

X
for all f, f̄ P X.

Using the Banach fixed point theorem, there exists a unique function
f pνq P X being a solution of system (3.3)–(3.5).

Next, we make the following hypotheses:

pH6q Ψ P C2pΩˆ R2;Rq,
pH7q ε0 }raijks}

“

nM0
M ` p1` bqM1 `

1
2p1` bq

2M2M
‰

≤ 1´}rbijks}´
1
M }g}X ,

where M0 is given by (2.2) and
$

’

’

&

’

’

%

M1 “ sup

"ˆˇ

ˇ

ˇ

ˇ

BΨ

By

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

BΨ

Bz

ˇ

ˇ

ˇ

ˇ

˙

px, y, zq : px, y, zq P A˚

*

,

M2 “ sup

"ˆˇ

ˇ

ˇ

ˇ

B2Ψ

By2

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

B2Ψ

ByBz

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

B2Ψ

Bz2

ˇ

ˇ

ˇ

ˇ

˙

px, y, zq : px, y, zq P A˚

*

,

with A˚ “ tpx, y, zq : x P Ω, |y| ≤M, |z| ≤ bMu .



110 L. T. P. Ngoc, H. T. H. Dung, P. H. Danh, N. T. Long

Theorem 3.2. Let pH1q–pH3q, pH6q, pH7q hold, let f be the solution of
system (1.1) and the sequence tf pνqu be defined by algorithm (3.3)–(3.5).

piq If
›

›f p0q
›

›

X
≤M, then

(3.6)
›

›

›
f pνq ´ f

›

›

›

X
≤ βM

›

›

›
f pν´1q ´ f

›

›

›

2

X
,@ν “ 1, 2, . . .

where

(3.7) βM “

1
2ε0 p1` bq

2M2 }raijks}

1´ }rbijks} ´ ε0 p1` bqM1 }raijks}
ą 0.

piiq If the first term f p0q sufficiently near f such that βM
›

›f p0q ´ f
›

›

X
ă 1,

then the sequence tf pνqu converges quadratically to f and furthermore

(3.8)
›

›

›
f pνq ´ f

›

›

›

X
≤ 1

βM

´

βM

›

›

›
f p0q ´ f

›

›

›

X

¯2ν

,@ν “ 1, 2, . . .

Proof. First, we verify that if
›

›f p0q
›

›

X
≤M, then

›

›

›
f pνq

›

›

›

X
≤M,@ν “ 1, 2, . . .

Indeed, supposing

(3.9)
›

›f pν´1q
›

›

X
≤M,

we deduce from (3.3) that

(3.10)
›

›

›
f pνq

›

›

›

X
≤

´

}rbijks} ` |ε|
›

›

›
rα
pνq
ijks

›

›

›
` |ε| b

›

›

›
rβ
pνq
ijk s

›

›

›

¯ ›

›

›
f pνq

›

›

›

X
`

›

›

›
gpνq

›

›

›

X
.

On the other hand, we have

(3.11)

$

’

’

&

’

’

%

ˇ

ˇ

ˇ
α
pνq
ijkpxq

ˇ

ˇ

ˇ
≤ |aijk|

ˇ

ˇ

ˇ

ˇ

BΨ

By

´

W
pνq
ijk pxq

¯

ˇ

ˇ

ˇ

ˇ

≤M1 |aijk| ,

ˇ

ˇ

ˇ
β
pνq
ijkpxq

ˇ

ˇ

ˇ
≤ |aijk|

ˇ

ˇ

ˇ

ˇ

BΨ

Bz

´

W
pνq
ijk pxq

¯

ˇ

ˇ

ˇ

ˇ

≤M1 |aijk| .

Hence, we deduce from (3.10), (3.11) that
›

›

›
f pνq

›

›

›

X
≤ r}rbijks} ` ε0 p1` bqM1 }raijks}s

›

›

›
f pνq

›

›

›

X
`

›

›

›
gpνq

›

›

›

X
.

Note that pH7q implies }rbijks} ` ε0 p1` bqM1 }raijks} ă 1, so

(3.12)
›

›

›
f pνq

›

›

›

X
≤

›

›gpνq
›

›

X

1´ }rbijks} ´ ε0 p1` bqM1 }raijks}
.

Now, we need an estimate on the term
›

›gpνq
›

›

X
.



Linear approximation and asymptotic expansion associated. . . 111

From (3.4) and (3.5), we obtain

(3.13) g
pνq
i pxq “ gipxq ` ε

m
ÿ

k“1

n
ÿ

j“1

aijk

„

Ψ
´

W
pνq
ijk pxq

¯

´
BΨ

By

´

W
pνq
ijk pxq

¯

f
pν´1q
j pRijkpxqq ´

BΨ

Bz

´

W
pνq
ijk pxq

¯

ż Xijkpxq

0
f
pν´1q
j ptqdt



.

On the other hand, the Taylor’s expansion of the function Ψpx, 0, 0q at
the point W pνq

ijk pxq “
´

x, f
pν´1q
j pRijkpxqq,

şXijkpxq
0 f

pν´1q
j ptqdt

¯

, up to order 2,
leads to

Ψpx, 0, 0q “ Ψ
´

W
pνq
ijk pxq

¯

´
BΨ

By

´

W
pνq
ijk pxq

¯

f
pν´1q
j pRijkpxqq

´
BΨ

Bz

´

W
pνq
ijk pxq

¯

ż Xijkpxq

0
f
pν´1q
j ptqdt`

1

2

B2Ψ

By2

´

W̄
pνq
ijk pxq

¯´

f
pν´1q
j pRijkpxqq

¯2

`
B2Ψ

ByBz

´

W̄
pνq
ijk pxq

¯

f
pν´1q
j pRijkpxqq

ż Xijkpxq

0
f
pν´1q
j ptqdt

`
1

2

B2Ψ

Bz2

´

W̄
pνq
ijk pxq

¯

˜

ż Xijkpxq

0
f
pν´1q
j ptqdt

¸2

,

where

W̄
pνq
ijk pxq “

ˆ

x,´θijkf
pν´1q
j pRijkpxqq,´θijk

ż Xijkpxq

0
f
pν´1q
j ptqdt

˙

,

0 ă θijk ă 1.

Therefore

(3.14)
ˇ

ˇ

ˇ

ˇ

Ψ
´

W
pνq
ijk pxq

¯

´
BΨ

By

´

W
pνq
ijk pxq

¯

f
pν´1q
j pRijkpxqq

´
BΨ

Bz

´

W
pνq
ijk pxq

¯

ż Xijkpxq

0
f
pν´1q
j ptqdt

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

Ψpx, 0, 0q ´
1

2

B2Ψ

By2

´

W̄
pνq
ijk pxq

¯´

f
pν´1q
j pRijkpxqq

¯2

´
B2Ψ

ByBz

´

W̄
pνq
ijk pxq

¯

f
pν´1q
j pRijkpxqq

ż Xijkpxq

0
f
pν´1q
j ptqdt

´
1

2

B2Ψ

Bz2

´

W̄
pνq
ijk pxq

¯

ˆ
ż Xijkpxq

0
f
pν´1q
j ptqdt

˙2ˇ
ˇ

ˇ

ˇ
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≤M0 `
1

2
M2

´

f
pν´1q
j pRijkpxqq

¯2
`M2

ˇ

ˇ

ˇ

ˇ

f
pν´1q
j pRijkpxqq

ż Xijkpxq

0
f
pν´1q
j ptqdt

ˇ

ˇ

ˇ

ˇ

`
1

2
M2

ˆ
ż Xijkpxq

0
f
pν´1q
j ptqdt

˙2

≤M0 `
1

2
M2

„ˇ

ˇ

ˇ

ˇ

f
pν´1q
j pRijkpxqq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż Xijkpxq

0
f
pν´1q
j ptqdt

ˇ

ˇ

ˇ

ˇ

2

.

It follows from (3.13), (3.14) that

(3.15)
›

›

›
gpνq

›

›

›

X
≤ }g}X ` ε0 }raijks}

„

nM0 `
1

2
p1` bq2M2M

2



.

Hence, from (3.12), (3.15) and pH7q, we obtain

›

›

›
f pνq

›

›

›

X
≤
}g}X ` ε0 }raijks}

”

nM0 `
1
2 p1` bq

2M2M
2
ı

1´ }rbijks} ´ ε0 p1` bqM1 }raijks}
≤M.

Now, we shall estimate
›

›f ´ f pνq
›

›

X
.

Put epνq “ f ´ f pνq, we obtain from (1.1) and (3.1) the system

(3.16) e
pνq
i pxq “ fipxq ´ f

pνq
i pxq

“ pBepνqqipxq ` ε
m
ÿ

k“1

n
ÿ

j“1

α
pνq
ijkpxqe

pνq
j pRijkpxqq

` ε
m
ÿ

k“1

n
ÿ

j“1

β
pνq
ijkpxq

ż Xijkpxq

0
e
pνq
j ptqdt

` ε
m
ÿ

k“1

n
ÿ

j“1

aijk

„

Ψ pWijkpxqq ´Ψ
´

W
pνq
ijk pxq

¯

´
BΨ

By

´

W
pνq
ijk pxq

¯

e
pν´1q
j pRijkpxqq ´

BΨ

Bz

´

W
pνq
ijk pxq

¯

ż Xijkpxq

0
e
pν´1q
j ptqdt



,

where W pνq
ijk pxq is given by (3.2) and

Wijkpxq “

˜

x, fjpRijkpxqq,

ż Xijkpxq

0
fjptqdt

¸

.

Using Taylor’s expansion of the function Ψ
´

x, fjpY q,
şZ
0 fjptqdt

¯

at the

point px, f pν´1q
j pY q,

şZ
0 f

pν´1q
j ptqdtq, up to order 2, we obtain
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(3.17) Ψ

ˆ

x, fjpY q,

ż Z

0
fjptqdt

˙

“ Ψ

ˆ

x, f
pν´1q
j pY q,

ż Z

0
f
pν´1q
j ptqdt

˙

`
BΨ

By

ˆ

x, f
pν´1q
j pY q,

ż Z

0
f
pν´1q
j ptqdt

˙

e
pν´1q
j pY q

`
BΨ

Bz

ˆ

x, f
pν´1q
j pY q,

ż Z

0
f
pν´1q
j ptqdt

˙
ż Z

0
e
pν´1q
j ptqdt

`
1

2

B2Ψ

By2

´

ω
pνq
j px, Y, Zq

¯ ˇ

ˇ

ˇ
e
pν´1q
j pY q

ˇ

ˇ

ˇ

2

`
B2Ψ

ByBz

´

ω
pνq
j px, Y, Zq

¯

e
pν´1q
j pY q

ż Z

0
e
pν´1q
j ptqdt

`
1

2

B2Ψ

Bz2

´

ω
pνq
j px, Y, Zq

¯

ˆ
ż Z

0
e
pν´1q
j ptqdt

˙2

,

where

ω
pνq
j px, Y, Zq

“

ˆ

x, f
pν´1q
j pY q ` θje

pν´1q
j pY q,

ż Z

0

”

f
pν´1q
j ptq ` θje

pν´1q
j ptq

ı

dt

˙

,

0 ă θj ă 1.

Substituting (3.17) into (3.16) where the arguments of fj , f
pν´1q
j , e

pν´1q
j ,

ω
pνq
j appearing in (3.17) are replaced by Y “ Rijkpxq, Z “ Xijkpxq, we get

(3.18) e
pνq
i pxq “ pBe

pνqqipxq ` ε
m
ÿ

k“1

n
ÿ

j“1

α
pνq
ijkpxqe

pνq
j pRijkpxqq

` ε
m
ÿ

k“1

n
ÿ

j“1

β
pνq
ijkpxq

ż Xijkpxq

0
e
pνq
j ptqdt

` ε
m
ÿ

k“1

n
ÿ

j“1

aijk

„

1

2

B2Ψ

By2

´

ω
pνq
ijkpxq

¯ ˇ

ˇ

ˇ
e
pν´1q
j pRijkpxqq

ˇ

ˇ

ˇ

2

`
B2Ψ

ByBz

´

ω
pνq
ijkpxq

¯

e
pν´1q
j pRijkpxqq

ż Xijkpxq

0
e
pν´1q
j ptqdt

`
1

2

B2Ψ

Bz2

´

ω
pνq
ijkpxq

¯

ˇ

ˇ

ˇ

ˇ

ż Xijkpxq

0
e
pν´1q
j ptqdt

ˇ

ˇ

ˇ

ˇ

2

,

where ωpνqijkpxq “ ω
pνq
j px,Rijkpxq, Xijkpxqq.
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Combining (3.9), (3.11), (3.18), the result is
›

›

›
epνq

›

›

›

X
≤

›

›

›
Bepνq

›

›

›

X
`ε0

n
ÿ

i“1

m
ÿ

k“1

max
1≤j≤n

sup
xPΩ

ˇ

ˇ

ˇ
α
pνq
ijkpxq

ˇ

ˇ

ˇ

n
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

e
pνq
j pRijkpxqq

ˇ

ˇ

ˇ

ˇ

`ε0

n
ÿ

i“1

m
ÿ

k“1

max
1≤j≤n

sup
xPΩ

ˇ

ˇ

ˇ
β
pνq
ijkpxq

ˇ

ˇ

ˇ

n
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

ż Xijkpxq

0
e
pνq
j ptqdt

ˇ

ˇ

ˇ

ˇ

ˇ

`
1

2
ε0M2

n
ÿ

i“1

m
ÿ

k“1

max
1≤j≤n

|aijk| sup
xPΩ

n
ÿ

j“1

ˆ

ˇ

ˇ

ˇ
e
pν´1q
j pRijkpxqq

ˇ

ˇ

ˇ̀

ˇ

ˇ

ˇ

ˇ

ż Xijkpxq

0
e
pν´1q
j ptqdt

ˇ

ˇ

ˇ

ˇ

˙2

≤ r}rbijks}`ε0 p1`bqM1 }raijks}s
›

›

›
epνq

›

›

›

X

`
1

2
ε0 p1`bq

2M2 }raijks}
›

›

›
epν´1q

›

›

›

2

X
.

Consequently

(3.19)
›

›

›
epνq

›

›

›

X
≤

1
2ε0 p1` bq

2M2 }raijks}

1´ }rbijks} ´ ε0 p1` bqM1 }raijks}

›

›

›
epν´1q

›

›

›

2

X

” βM

›

›

›
epν´1q

›

›

›

2

X
.

Hence, we obtain (3.6) by (3.7) and (3.19). Finally, from (3.6), (3.8)
follows.

Remark 3.3. If we choose µ0 sufficient large such that

βM

›

›

›
gpµ0q ´ f

›

›

›

X
≤ βM

›

›

›
Tgp0q ´ gp0q

›

›

›

X

σµ0

1´ σ
ă 1,

and choose f p0q “ gpµ0q, then first term f p0q sufficiently near f such that
βM

›

›f p0q ´ f
›

›

X
ă 1.

4. Asymptotic expansion of solutions
In this part, we assume that the functions Rijk, Sijk, Xijk, g, Ψ and the

real numbers aijk, bijk, M satisfy the assumptions pH1q–pH5q, respectively.
We use the following notation

Ψrfjs “ Ψ

ˆ

x, fjpRijkpxqq,

ż Xijkpxq

0
fjptqdt

˙

.

Now, we assume that

pH8q Ψ P CN pΩˆ R2;Rq.

We consider the perturbed system (2.1), where ε is a small parame-
ter |ε| ≤ ε0. Let us consider the finite sequence of functions tf rrsu, r “
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0, 1, . . . , N, f rrs P KM (with suitable constants M ą 0, ε0 ą 0q defined as
follows:

(4.1) f rrs “ pI ´Bq´1P rrs, r “ 0, 1, . . . , N,

where
P rrs “

´

P
rrs
1 , . . . , P rrsn

¯

, r “ 0, 1, . . . , N,

and
P r0s “ g.

With r “ 1:

P
r1s
i “ pAf r0sqipxq “

m
ÿ

k“1

n
ÿ

j“1

aijkπ
r0s
j rΨs,

where

(4.2)

$

’

’

&

’

’

%

π
r0s
j rΨs “ Ψrf

r0s
j s “ Ψ

´

x, f
r0s
j pRijkpxqq, Jf

r0s
j pXijkpxqq

¯

,

Jf
r0s
j pXijkpxqq “

ż Xijkpxq

0
f
r0s
j ptqdt.

With r “ 2:

P
r2s
i “

m
ÿ

k“1

n
ÿ

j“1

aijkπ
r1s
j rΨs,

where

(4.3) π
r1s
j rΨs “ π

r0s
j rD2Ψsf

r1s
j ` π

r0s
j rD3ΨsJf

r1s
j , D2Ψ “

BΨ

By
, D3Ψ “

BΨ

Bz
.

For 2 ≤ r ≤ N,

P
rrs
i “

m
ÿ

k“1

n
ÿ

j“1

aijkπ
rr´1s
j rΨs,

where, πrrsj rΨs, 0 ≤ r ≤ N ´ 1 defined by the recurrence formulas

(4.4) π
rrs
j rΨs “

r´1
ÿ

s“0

r ´ s

r

!

π
rss
j rD2Ψsf

rr´ss
j ` π

rss
j rD3ΨsJf

rr´ss
j

)

.

We also note that πrrsj rΨs is the first-order function with respect to f rrsj ,

Jf
rrs
j . In fact,

π
rrs
j rΨs “ π

r0s
j rD2Ψsf

rrs
j ` π

r0s
j rD3ΨsJf

rrs
j ` terms depending on

pj, r, π
rss
j rD2Ψs, π

rss
j rD3Ψs, f

rss
j , Jf

rss
j q, s “ 1, . . . , r ´ 1.
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Put

h “ f r0s `
N
ÿ

r“1

f rrsεr ” f r0s ` U,

then

v “ fε ´
N
ÿ

r“0

f rrsεr ” fε ´ h

satisfies the system

(4.5) pI ´Bqv “ εrApv ` hq ´Ahs ` Eε,

where

Eε “ εrApf r0s ` Uq ´Apf r0sqs ´
N
ÿ

r“2

P rrsεr.

Then, we have the following lemmas.

Lemma 4.1. The functions πrrsj rΨs, 0 ≤ r ≤ N ´ 1 as above are defined by
the following formulas:

π
rrs
j rΨs “

1

r!

Br

Bεr
Ψrhjs

ˇ

ˇ

ˇ

ˇ

ε“0

, 0 ≤ r ≤ N ´ 1.

Proof. (i) It is easy to see that

1

0!

B0

Bε0
Ψrhjs

ˇ

ˇ

ˇ

ˇ

ε“0

“ Ψrhjs|ε“0

“ Ψ
´

x, f
r0s
j pRijkpxqq, Jf

r0s
j pXijkpxqq

¯

“ Ψrf
r0s
j s “ π

r0s
j rΨs.

With r “ 1, we shall show that

(4.6) π
r1s
j rΨs “

1

1!

B

Bε
Ψrhjs

ˇ

ˇ

ˇ

ˇ

ε“0

.

We have

(4.7)
B

Bε
Ψrhjs “ D2Ψrhjs

B

Bε
hj `D3Ψrhjs

B

Bε
Jhj .

On the other hand, from the formulas

hj “
N
ÿ

r“0

f
rrs
j εr,

B

Bε
hj “

N
ÿ

r“1

rf
rrs
j εr´1,

B

Bε
Jhj “

N
ÿ

r“1

rJf
rrs
j εr´1,

we have

(4.8) hj |ε“0 “ f
r0s
j ,

B

Bε
hj

ˇ

ˇ

ˇ

ˇ

ε“0

“ f
r1s
j ,

B

Bε
Jhj

ˇ

ˇ

ˇ

ˇ

ε“0

“ Jf
r1s
j .
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Hence, it follows from (4.7), (4.8) that

1

1!

B

Bε
Ψrhjs

ˇ

ˇ

ˇ

ˇ

ε“0

“ D2Ψrhjs
B

Bε
hj

ˇ

ˇ

ˇ

ˇ

ε“0

` D3Ψrhjs
B

Bε
Jhj

ˇ

ˇ

ˇ

ˇ

ε“0

“ D2Ψrf
r0s
j sf

r1s
j `D3Ψrf

r0s
j sJf

r1s
j

“ π
r0s
j rD2Ψsf

r1s
j ` π

r0s
j rD3ΨsJf

r1s
j “ π

r1s
j rΨs.

Thus, (4.6) holds.

Suppose that we have defined the functions πrssj rΨs, 0 ≤ s ≤ r ´ 1 from
formulas (4.2), (4.3) and (4.4). Therefore, it follows from (4.7) that

Br

Bεr
Ψrhjs “

Br´1

Bεr´1

ˆ

B

Bε
Ψrhjs

˙

“
Br´1

Bεr´1

„

D2Ψrhjs
B

Bε
hj `D3Ψrhjs

B

Bε
Jhj



“

r´1
ÿ

s“0

Csr´1

„

Bs

Bεs
D2Ψrhjs

Br´s

Bεr´s
hj `

Bs

Bεs
D3Ψrhjs

Br´s

Bεr´s
Jhj



.

We also note that

Bs

Bεs
hj

ˇ

ˇ

ˇ

ˇ

ε“0

“ s!f
rss
j ,

Bs

Bεs
Jhj

ˇ

ˇ

ˇ

ˇ

ε“0

“ s!Jf
rss
j , 0 ≤ s ≤ r.

Hence

1

r!

Br

Bεr
Ψrhjs

ˇ

ˇ

ˇ

ˇ

ε“0

“
1

r!

r´1
ÿ

s“0

Csr´1

„

Bs

Bεs
D2Ψrhjs

ˇ

ˇ

ˇ

ˇ

ε“0

Br´s

Bεr´s
hj

ˇ

ˇ

ˇ

ˇ

ε“0

`
Bs

Bεs
D3Ψrhjs

ˇ

ˇ

ˇ

ˇ

ε“0

Br´s

Bεr´s
Jhj

ˇ

ˇ

ˇ

ˇ

ε“0



“
1

r!

r´1
ÿ

s“0

Csr´1s!π
rss
j rD2Ψspr ´ sq!f

rr´ss
j

`

r´1
ÿ

s“0

Csr´1s!π
rss
j rD3Ψspr ´ sq!Jf

rr´ss
j

“
1

r!

r´1
ÿ

s“0

Csr´1s!pr ´ sq!
”

π
rss
j rD2Ψsf

rr´ss
j ` π

rss
j rD3ΨsJf

rr´ss
j

ı

“

r´1
ÿ

s“0

r ´ s

r

”

π
rss
j rD2Ψsf

rr´ss
j ` π

rss
j rD3ΨsJf

rr´ss
j

ı

“ π
rrs
j rΨs.

Lemma 4.1 is proved completely.
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Lemma 4.2. Let pH1q–pH5q, pH8q hold. Then there exists a constant C̄p1qN
depending only on N , }raijks}, }rbijks} ,

›

›f rrs
›

›

X
, 0 ≤ r ≤ N such that

}Eε}X ≤ C̄
p1q
N |ε|N`1 .

Proof. In the case of N “ 1, the proof of Lemma 4.2 is easy, hence we omit
the details, so we only prove with N ≥ 2. We have

(4.9)
´

Apf r0s ` Uq ´Apf r0sq
¯

i
pxq “

m
ÿ

k“1

n
ÿ

j“1

aijk

”

Ψrf
r0s
j ` Ujs ´Ψrf

r0s
j s

ı

,

in which

Ψrf
r0s
j s “ Ψ

´

x, f
r0s
j pRijkpxqq, Jf

r0s
j pXijkpxqq

¯

,

Ψrf
r0s
j ` Ujs “ Ψ

´

x, f
r0s
j pRijkpxqq ` UjpRijkpxqq, Jpf

r0s
j ` UjqpXijkpxqq

¯

.

By using Maclaurin’s expansion of the function Ψrhjs round the point
ε “ 0 up to order N, we obtain

(4.10) Ψrhjs ´Ψrf
r0s
j s “ Ψrf

r0s
j ` Ujs ´Ψrf

r0s
j s

“

N´1
ÿ

r“1

1

r!

Br

Bεr
Ψrhjs

ˇ

ˇ

ˇ

ˇ

ε“0

εr `
εN

N !
R
rNs
j rΨs

“

N´1
ÿ

r“1

π
rrs
j rΨsε

r `
εN

N !
R
rNs
j rΨ, θ1s,

where drrsj rΨs, 0 ≤ r ≤ N´1 are defined by (4.2), (4.3) and (4.4); RrNsj rΨ, θ1s

is defined as follows

(4.11) R
rNs
j rΨ, θ1s “

BN

BεN
Ψrhjs

ˇ

ˇ

ˇ

ˇ

ε“θ1ε

,

with 0 ă θ1 ă 1.

Substituting Ψrf
r0s
j ` Ujs ´ Ψrf

r0s
j s in (4.10) into (4.9), we obtain after

some rearrangements in order of ε that

(4.12) Eεi “ εpApf r0s ` Uq ´Apf r0sqqi ´
N
ÿ

r“2

P
rrs
i εr

“ ε
m
ÿ

k“1

n
ÿ

j“1

aijk

”

Ψrf
r0s
j ` Ujs ´Ψrf

r0s
j s

ı

´

N
ÿ

r“2

P
rrs
i εr
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“

N´1
ÿ

r“1

m
ÿ

k“1

n
ÿ

j“1

aijkπ
rrs
j rΨsε

r`1 `
εN`1

N !

m
ÿ

k“1

n
ÿ

j“1

aijkR
rNs
j rΨ, θ1s ´

N
ÿ

r“2

P
rrs
i εr

“

N´1
ÿ

r“1

P
rr`1s
i εr`1 `

εN`1

N !

m
ÿ

k“1

n
ÿ

j“1

aijkR
rNs
j rΨ, θ1s ´

N
ÿ

r“2

P
rrs
i εr

“
εN`1

N !

m
ÿ

k“1

n
ÿ

j“1

aijkR
rNs
j rΨ, θ1s.

By the boundedness of the functions f rrs, r “ 0, 1, 2, . . . , N, f rrs P KM ,
it implies from (4.11), (4.12) that

}Eε}X “ |ε|
N`1

}RN rΦ, εs}X ≤ C̄
p1q
N |ε|N`1 .

Lemma 4.2 is proved completely.

Theorem 4.3. Let pH1q–pH5q, pH8q hold. Then there exists a constant
ε1 ą 0 such that, for every ε P R, with |ε| ≤ ε1, the system (2.3) has a unique
solution fε P KM satisfying the asymptotic estimation up to order N ` 1 as
follows

›

›

›

›

fε ´
N
ÿ

r“0

f rrsεr
›

›

›

›

X

≤ 2

1´ }rbijks}
C̄
p1q
N |ε|N`1 ,

where the functions f rrs, r “ 0, 1, . . . , N are defined by (4.1).

Proof. From (4.5), Lemmas 2.1 and 4.2, we have

(4.13) }v}X ≤
›

›pI ´Bq´1
›

› p|ε| }Apv ` hq ´Ah}X ` }Eε}Xq

≤ 1

1´ }rbijks}

´

ε1 }Apv ` hq ´Ah}X ` C̄
p1q
N |ε|N`1

¯

.

On the other hand

(4.14)

}v ` h}X “ }fε}X ≤ N1, }h}X ≤
N
ÿ

r“0

›

›

›
f rrs

›

›

›

X
” N̄1,

}Jv ` Jh}X “ }Jfε}X ≤ N2, }Jh}X ≤
N
ÿ

r“0

›

›

›
Jf rrs

›

›

›

X
” N̄2.

It follows from (4.14) that

(4.15) }Apv ` hq ´Ah}X ≤ C2pMq }raijks} }v}X ,

where
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C2pMq

“ sup

"
ˇ

ˇ

ˇ

ˇ

BΨ

By
px, y, zq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

BΨ

Bz
px, y, zq

ˇ

ˇ

ˇ

ˇ

: x P Ω, |y| ≤ N1 ` N̄1, |z| ≤ N2 ` N̄2

*

.

From (4.13), (4.15), we obtain

}v}X ≤ 1

1´ }rbijks}

´

ε1C2pMq }raijks} }v}X ` C̄
p1q
N |ε|N`1

¯

.

Choose 0 ă ε1 ă ε0, such that

(4.16) ε1C2pMq }raijks}
1

1´ }rbijks}
≤ 1{2.

So, (4.16) leads to

}v}X ≤ 2

1´ }rbijks}
C̄
p1q
N |ε|N`1 ,

or
›

›

›

›

fε ´
N
ÿ

r“0

f rrsεr
›

›

›

›

X

≤ 2

1´ }rbijks}
C̄
p1q
N |ε|N`1 .

Theorem 4.3 is proved completely.

5. Examples
Let us give two following illustrated examples for the results obtained as

above.

5.1. Example 1. Let us consider system (1.1) with n “ 2, m “ 1, Ψ px, y, zq
“ cos y sin z :

(5.1)

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

f1pxq “ εa11 cos

ˆ

f1

ˆ

x

3
`

2

3

˙˙

sin

ˆ
ż x

0
f1ptqdt

˙

` εa12 cos

ˆ

f2

ˆ

x

3
´

2

3

˙˙

sin

˜

ż x3

0
f2ptqdt

¸

` b11f1p
2x

3
`

1

3
q ` b12f2p

x

2
´

1

2
q ` g1pxq,

f2pxq “ εa21 cos

ˆ

f1

ˆ

x

4
`

3

4

˙˙

sin

˜

ż x5

0
f1ptqdt

¸

` εa22 cos

ˆ

f2

ˆ

x

4
´

3

4

˙˙

sin

ˆ
ż x

0
f2ptqdt

˙

` b21f1

ˆ

x

2
`

1

2

˙

` b22f2

ˆ

2x

3
´

1

3

˙

` g2pxq,

x P Ω “ r´1, 1s,
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where ε ą 0 is small enough; aijk ” aij , bijk ” bij are constants and all the
functions g1, g2 : Ω Ñ R; Rijk ” Rij , Sijk ” Sij , Xijk ” Xij : Ω Ñ Ω are
continuous defined respectively as follows

$

’

’

&

’

’

%

aij P R;

bij P R such that
}rbijs} “

ř2
i“1 max

1≤j≤2
|bij | “ max

1≤j≤2
|b1j | ` max

1≤j≤2
|b2j | ă 1;

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

g1, g2 P CpΩ;Rq;

rRijpxqs “

«

R11pxq R12pxq

R21pxq R22pxq

ff

“

«

x
3 `

2
3

x
3 ´

2
3

x
4 `

3
4

x
4 ´

3
4

ff

;

rSijpxqs “

«

S11pxq S12pxq

S21pxq S22pxq

ff

“

«

2x
3 `

1
3

x
2 ´

1
2

x
2 `

1
2

2x
3 ´

1
3

ff

;

rXijpxqs “

«

X11pxq X12pxq

X21pxq X22pxq

ff

“

«

x x3

x5 x

ff

.

It is obvious that pH1q–pH5q hold with M ą
2}g}X

1´}rbijs}
and 0 ă ε0 ă

1´}rbijs}
4}raijs}

. So we conclude that, for every ε with |ε| ă ε0, equation (5.1) has
a unique solution f P KM .

On the other hand, because Ψ px, y, zq “ Ψ py, zq “ cos y sin z, pH6q and

pH8q are also satisfied. Therefore, if M ą
2}g}X

1´}rbijs}
, 0 ă ε0 ă

1´}rbijs}´
1
M
}g}X

2p2`3Mq}raijs}

and ε ą 0 is small enough, then we obtain the results as in Theorems 3.2
and 4.3.

5.2. Example 2. Consider system (1.1) with n “ m “ 2, Ψ px, y, zq “
Φ pzq , Φ P C1pRq :

(5.2)

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

f1pxq “ εa11Φ

ˆ
ż x

0
f1ptqdt

˙

`εa12Φ

ˆ
ż x3

0
f2ptqdt

˙

`b111f1

ˆ

x`1

2

˙

`b112f1pcosπxq`b122f2

ˆ

2x`1

3

˙

`g1pxq,

f2pxq “ b211f1

ˆ

x´1

2

˙

`b221f2psinπxq`b222f2

ˆ

2x´1

3

˙

`g2pxq,

x P Ω “ r´1, 1s,

where ε ą 0 is small enough; aijk ” aij , bijk are constants and all the
functions g1, g2 : Ω Ñ R; Rijk ” Rij , Sijk, Xijk ” Xij : Ω Ñ Ω are
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continuous defined respectively as follows
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

aij P R such that

raijs “

«

a11 a12

a21 a22

ff

“

«

a11 a12

0 0

ff

;

bijk P R such that

rbijks “

«

b111 b121 b112 b122

b211 b221 b212 b222

ff

“

«

b111 0 b112 b122

b211 b221 0 b222

ff

,

}rbijks} “
2
ÿ

i“1

2
ÿ

k“1

max
1≤j≤2

|bijk|

“ |b111| ` |b222| `max t|b112| , |b122|u `max t|b211| , |b221|u ă 1;

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

g1, g2 P CpΩ;Rq;

rSijkpxqs “

«

S111pxq S121pxq S112pxq S122pxq

S211pxq S221pxq S212pxq S222pxq

ff

“

«

x`1
2 0 cosπx 2x`1

3
x´1

2 sinπx 0 2x´1
3

ff

;

rXijpxqs “

«

X11pxq X12pxq

X21pxq X22pxq

ff

“

«

x x3

0 0

ff

.

It is also clear to see that pH1q–pH5q hold with M ą
2}g}X

1´}rbijks}
and

0 ă ε0 ă
Mp1´}rbijks}q

4}raijs}

«

M sup
|z|≤M

|Φ1pzq|`|Φp0q|

ff . So, for every ε such that |ε| ă ε0,

equation (5.2) has a unique solution f P KM .

Furthermore, if Φ P C2pRq or Φ P CN pRq, M ą
2}g}X

1´}rbijks}
and

0 ă 2ε0 }raijs}

„

|Φ p0q|

M
` sup
|z|≤M

ˇ

ˇΦ1 pzq
ˇ

ˇ`M sup
|z|≤M

ˇ

ˇΦ2 pzq
ˇ

ˇ



ă 1´ }rbijks} ´
1

M
}g}X

and ε ą 0 is small enough, the results of Theorems 3.2 and 4.3 are obtained.
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