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OSCILLATION FOR CERTAIN IMPULSIVE PARTIAL
DIFFERENCE EQUATIONS

Abstract. In this paper, we obtain some sufficient criteria for the oscillation of the
solutions of linear impulsive partial difference equations with continuous variables.

1. Introduction

The impulsive differential equations are adequate mathematical models
of various processes and phenomena studied in physics, chemical technology,
population dynamics, technics and economics. These equations provide nat-
ural mathematical description of processes which are subject to short-time
perturbations during their evolution. Various monographs [2} 4} 5 [6], [7, 9, 10],
devoted to the impulsive differential equations were published in the recent
years. At the same time, partial difference equations arise in applications,
involving populations dynamics with spatial migrations, chemical reactions,
mathematical physics and finite-difference schemes. Recently, there are many
papers that devoted to the development of qualitative theory of partial dif-
ference equations with continuous variables, see e.g. |8 [I1], [13].

Let 0 = 29 < 21 < ... < T, < Tps1 < ..., be fixed points with
limy,, o T, = 00, and let for n € N x4, = x,, + 7, where r is a fixed natural
number, and 7 > 0 is a constant. Define Jimp = {zn}nr;, RT = [0,0),
J={(z,y): x € Jimp,y e RT}.

In 2009, Agarwal and Karakoc studied the oscillation of solutions of
impulsive partial difference equations with continuous variables of the type

prz(z + a,y +b) + p2z(x + a,y) + p3z(z,y + b) — paz(z,y)
+P(LL‘,y)Z(l'—7',y—O') :07 (x,y)e (R+ XR+)\J7
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Z(fU}t;y)_z(x;y) :an(x'gvy)a (xn')y)e‘]v
where Z<$+7 y) = hm(q,s)%(m,y) Z(q, 3)7 Z(xiv y) = hm(q,s)a(az,y) Z(Qa S) [2]

q>x q<x
In this paper, we shall consider the impulsive partial difference equations

with continuous variables of the form
(1)  cau(xz+a,y+b) + coulr + a,y) + csu(x,y + b) — cau(z,y)
+ F(z,y)u(r — 7,y) + Gz, y)u(z,y — o) + H(z,y)u(z — 7,y — 0) = 0,
(z,y) € (RT x R)\J,

where u(x™,y) = limg )y w(q, 5), w(@™,y) = limg gz u(g,s) and
> q<z

x

F,G,H € C(R" x RJ“,]R?Jr —{0}), a,b, 7,0 are positive constants, ¢;, i =
1,2, 3,4, are nonnegative constants.

Our results extend the oscillation results of Agarwal and Karakoc [2].

A function u(z,y) in [—7,0) x [—0,0) is said to be solution of (1)-(2)
if
(i) for (z,y) € (R* x R*)\J, u is continuous and satisfies (1)),
(ii) for (z,y) € J, u(zt,y) and u(z~,y) exist, u(z™,y) = u(x,y), and sat-

isfy .

A solution u(z, y) of (I)-(2) is said to be eventually positive (or negative)
if u(z,y) > 0 (or u(z,y) < 0) for all large = and y. It is said to be oscillatory
if it is neither eventually positive nor eventually negative otherwise, it is
called nonoscillatory.

2. Preparatory lemmas
Throughout this paper, we shall assume that
(A1) {L,}*_, is a sequence of positive real numbers such that > " ; L, < 0,
(AQ) Co,C3 > Cq > 0,
(A3) 7 = ka+ 0, 0 = lb + n, where k,l are nonnegative integers, 6 € [0, a)
and 7n € [0,b).
We set, for any (z,y) € RT x R,
P(z,y) = min{F(s,t),r <s<z+a,y<t<y+b and
0 < limsup P(x,y) < o0,
z,Yy—0
Q(z,y) = min{G(s,t),r <s<z+a,y<t<y+b} and
0 < limsup Q(x,y) < o0,

x,y—00
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R(z,y) = min{H(s,t),r <s<z+a,y <t<y+b} and
0 < limsup R(z,y) < o

Z,y—>0

T(z,y) = min{P(z,y), Q(z,y), R(z,y)},

Ep ={)\ >0:c¢y H (1+ L) — AP(z,y) >0 eventually}
ro<Tm<xr+a

Eq ={)\ ey H (1+ Lp,) — AQ(z,y) > 0, eventually},
ro<Tm<xr+a

Er = {)\ >0:¢y H (1+ Ly,) — AR(x,y) > 0, eventually},
ro<Tm<zx+a

={)\ >0:cq H (1+ Ly,) — AT(z,y) > 0, eventually}

ro<Tm<T+a
Here, the symbol Hmo <z, <s @m denotes the product of the members of the
sequence {a,,} over m such that z,, € (xo,s) N Jimp. If (x0,5) N Jimp = F,
or xp > s then we assume that [ | am = 1.

LEMMA 1. Assume that u(zx,y) is an eventually positive solution of f.
Then for (z,y) € RT x R the function

(3) w(z,y) f fﬁb (1+ Lm)*l)u(s,t)dtds

xo <:(:m<s

To<Tm<S

18 an eventually positive solution of the partial difference inequality
(4) caw(z+a,y+0b)+cow(z+a,y)+ caw(z,y +b)
—ar ] (U + Lpw(z,y) + Pl y)w — ka,y) + Q(z, y)w(x,y — 1b)

ro<Tm<rt+a
+ R(z,y)w(x — ka,y —1b) <0
Proof. So that

H (1 + Lm)_lu(x, Y)

To<Tm<T

is continuous for (z,y) € RT x R,

ow
(5 =
y+b 1 1
- J [ H (1+Lp) u(z+a,t)— H (1+ L) u(:v,t)]dt
Yy ro<Tm<r+a ro<Tm<xrt+a

Jﬁ” I (1+L)1{ 11 (1+Lm)_1u(x+a,t)—u(xjt)}du

TO<Tm <T r<rm<zr+ta
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(6) (ZZ = JHG H (1+ Lm)fl[u(s,y +b) — u(s,y)]ds.

T0<Tm<s
Since u(z,y) is an eventually positive solution of 7,
(7)  au(x+a,y+b) + cou(x + a,y) + czu(x,y + b) — cau(z,y) <0,
for (z,y) € (RT x RT)\J. From[(A2)| and

u(z + a,y) —u(z,y) <0 and u(z,y +b) —u(x,y) <0,

eventually. Moreover since 0 < [ | (1 + Lm)_1 < 1, we obtain

r<rm<zr+a

(8) H (1+ Lm)flu(ac +a,y) —u(z,y) <O0.

r<rm<xr+a
Let (x,y) € J and, say, © = z,,. From and (8], we have

1 1 .
wrod) = @iz e [T 0 k) e va)

oy Srm<x:{+a
= H (1+ Lm)flu(xn + a,y).
Tn<Tm<Tn+a

So, for all (z,y) € (RT x RY) % <0 and g—‘; < 0. Therefore
9) w@-71y—0)=wl@—(ka+0),y—(Ib+n)>w(®—ka,y—Ib).

Since integrating (1), 0 < [Leg<e,,<zra (1+ Lm)f1 <1, we find

x+a ry+b z+a ry+b
0=c f j u(s + a,t + b)dtds + 2 J J u(s + a, t)dtds
€z Y T Y

z+a ry+b z+a ry+b
+c3 f J u(s,t + b)dtds — ¢4 J J u(s, t)dtds
T Yy z )

r+a ry+b x+a ry+b
+ f f F(s,t)u(s — 7,t)dtds + J J G(s,t)u(s,t — o)dtds
T Yy z )
z+a ry+b
+ J J H(s,t)u(s — 7,t — o)dtds,
x y

which yields

z+a ry+b _1
(10) 0>¢ f J H (1+ L) u(s+a,t+b)dtds
x y

To<Tm<S
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y+b 1
+02f f (1+ L) u(s+a,t)dtds

xo<a:m<s
y+b _1 z+a ry+b
+c3 (1+ L) u(s,t—l—b)dtds—qj f u(s,t)dtds
:c0<z <s z Y
y+b 1
f f (s,t) (1+Lp) u(s—r,t)dtds
x0<zm<s
y+b
f G(s,t) (1+Lm)71u(s,t—a)dtds
z0<a:m<s
y+b 1
f H(s,t) (1+Lp) u(s—T,t—0)dtds.
xo<zm<s

From @D, and using the definition of w, P, Q), R, we obtain eventually

aw(x + a,y +b) + cow(z + a,y) + caw(z,y + b)
—cr || (4 Ln)w(@,y) + Ple,y)w(z — ka,y) + Q(z, y)w(z,y — Ib)

T0<Tm<T+a
+ R(z,y)w(x — ka,y — 1b) <O0.

Therefore, w(x,y) is an eventually positive solution of inequality . "

3. Main results
THEOREM 1. Assume that there exist Xog > 0,Yy > 0 such that if k > 1 > 0,

a -, i{ (Z)k ﬁ < [ (1+ Lm)_1>

1=1 Mgo<zm<z—(i—1)a

+ <63>l [T (+L.)"

¢4 To<Tm<xT+a

l
+c7 ' <c1 | 2c2cs I (1+ Lm)_1>

C
4 ro<tm<r—(i—2)a

X [ﬁ (c4 1 (1+Lm)—)\T(az—ia,y—ib))

zo<tm<zr—(i—1)a

X 1 (c4 I1 (1+Lm)—AT(x—(Hj)a,y—Zb))}_l} > 1,

zo<tm<z—(l+j—1)a
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(12 - af i{ (Z)k ﬁ < I (1+ Lm)_1>

=1 “go<zm<z—(i—1)a

; (CS)l [T (4L

C
4 To<Tm<T+a

k
+e5 ] ] <cl 4 20 11 (1 +Lm)_1)
=1

C.
4 To<Tm<zr—(i—2)a

k
X[H<c4 11 (1+Lm)—)\T(a:—ia,y—ib)>
i=1 ro<xm<zr—(i—1)a
I—k -1
X <C4 H (1+Lm)—)\T(a:—ka,y—(k—i—j)b))] }>1
j=1 ro<xm<r—(k—1)a
and if k =1> 0,

w . i{ (Z)k ﬁ < I (1+ Lm)_1>

=1 Mzro<xm<z—(i—1)a

<C3>k [T (i)™

€4 ro<rm<z+ta

+ ﬁ <c1 + 2602403 I] (1+ Lm)1>

=1 T0<Tm<z—(i—2)a

x [ﬁ<c4 11 (1+Lm)—)\T(:U—ia,y—z'b)ﬂ_l}>1.

i=1 ro<xm<zr—(i—1)a

+

Then every solution of f s oscillatory.

Proof. Suppose to the contrary that u(x,y) is nonoscillatory solution of f
. Without loss of generality we may assume that u(x,y) is an eventually
positive solution of (I))-(2). Let w(z,y) be as in Lemma [}

Set

S(\) = {)\ >0: cqw(x+a,y+b) + cow(x + a,y) + csw(z,y + b)

— (c4 H (1+ L) — AT(x,y))w(x,y) < O,eventually}.

To<Tm<T+a

Since g—“; < 0 and ‘;—‘; < 0, from we obtain
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aw( + a,y +0) + cqw(z + a,y) + csw(@,y +b) = (ca [[  (1+ L)
ro<Tm<r+a
- T(l’,y))(ﬂ(l‘,y) < 07
which implies that 1 € S(A). That is S(\) is nonempty. If Ao € S(A), we
have eventually

aw(x + a,y +b) + cow(z + a,y) + caw(z,y + b)
T0<Tm<T+a

Therefore ¢4 H$O<xm<x+a (1 + Lm) — XoT'(z,y) > 0 eventually, i.e., A\ € E.
Thus S(\) < E.
Let 1 € S(A). Noting that g—;{ < 0 and % < 0 eventually, we obtain

eventually

(14) (Cl n 2¢9c3 H (1+ Lm)_1>w(:v +a,y+0b)

¢4 ro<Tm<r+2a

<cw(z+a,y+bd)+ cow(x + a,y) + csw(z,y +b)

< <C4 [] @Q+Ln) —MT(x,y)>W(:v,y)-

To<Tm<T+a

and thus,

(15) (cl | 228 [] @+ Lm)1>w(x,y)

C
4 ro<Tm<xT+a

g(C4 H (1+Lm)—,uT(a:—a,y—b))w(:E—a,y—b).

To<Tm<T

If Kk >1>0 then

l -1
(16)  w(z,y) <[] <c1 | 2208 [T (+ Lm)_1>

; C
=1 4 ro<tm<zr—(i—2)a

l
XH<C4 H (1+ L) —,uT(:E—ia,y—ib))w(ac—la,y—lb).
i=1

zo<zm<z—(i—1)a

Since w(z,y) > 0 for all large = and y then from

cow(z + a,y) < ey H (1 + Lm)w(x,y),

To<Tm<T+a

csw(z,y+b) <cy H (1 + Lm)w(l‘»y%

To<Tm<T+a
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eventually Hence

k
HCQOJ (i—1)a,y) < H H (1+Lm)w(x—z'a,y)]

ro<tm<zr—(i—1)a

s

::]w

Aw(z,y) H (1+ L) Jw(z—ka, y)
0<xm<mf(i71)a
and
!
(18) Hc;w z,y(i —1)b) < H H (1+ L) w(z,y —ib)]
i=1 To<Tm<T+a
chw(z,y) < ¢ H (1+ Lm)lw(x, y —1b).
To<Tm<T+a

Moreover, from ((14))
owtay) <l []  Q+Ln)—pT(@y))w(zy)

To<Tm<T+a
and
(19)  w(z —la,y —1b)
1
< *[04 H (1—|—Lm)—,uT(a:—(H—l)a,y—lb)]w(x—(l—l—l)a,y—lb)
€2 ro<rm<zr—la
<
1 k-1
<=0 {04 H (1+Lm)—uT(:c—(l—Fj)a,y—lb)]
€2 j=1 zo<zm<z—(l+j—1)a

x w(x — ka,y — 1b),
eventually. Substituting f into , we obtain

aw(@+a,y+b)+ew@tay) tew@y+b)—a [ (1+Ln)w(z,y)

To<Tm<T+a

+(Z)kp ("“””ﬁ( 1 L) et

=1 Mgo<zm<z—(i—1)a

s\ 1
+<4> Q) [ (14Ln) wiwy)

To<Tm<r+a

!
+ AR, y) 1—[ <C1+ 2¢oc3 1—[ (1+Lm)_1>

; C
i=1 4 To<Tm<z—(i—2)a
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x [ﬁ <C4 11 (1+Ly) —uT(x—ia,y—ib))

zo<tm<r—(i—1)a
k-l -1
X (04 H (14 L) ,uT(a:(l+j)a,ylb))} w(z,y) <0,
zo<zm<z—(l+j—1)a

eventually. Then

aw(x + a,y +b) + cow(z + a,y) + csw(z,y + b) — {04 H (1+ L)

() et 11w

=1 Npo<zm<z—(i—1)a

+<C3>1Q(x,y) [T (+Ln)”

€4 To<Tm<T+a

l
+ R,y ] <01 4 2268 I1 (14 L) ‘1>

. C
i=1 4 zo<Tm<r—(i—2)a

x [ﬁ <C4 11 (1+Lm)—,uT(x—z'a,y—ib)>

zo<tm<zr—(i—1)a

T C Y R —uT(x—(lJrj)a,y—lb))]l} Jutn)

zo<zm<z—(l+j—1)a
<0

)

eventually. Thus

clw(x+a,y+b)+C2w(a:+a,y)+c3w(:s,y+b)—{c4 [] @Q+Ln)

To<Tm<r+a

_T(g;,y)KZ) I1 ( I1 (1+Lm)1)

=1 Mpo<zm<z—(i—1)a

+ <Z3>l 11 (14Ly,) "

ro<rm<x+a

l
k—1 26203 —1
+ch E <01 = 11 (14 L) >

To<Tm<r—(1—2)a
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{ sup <C4 11 (1+Ly) —,uT(:c—z'a,y—ib))

z>Xo0,y>Y0 1 To<Tm<zr—(i—1)a

Al T oem)wreemsm)] oy

j=1 To<Tm<zr—(l+j—1)a

<0

)

eventually. Therefore

k k

w-(5) (I )<1+Lm>‘1)+(c3) [T (L)

; . C4
=1 Mzrog<azm<z—(i—1)a To<Tm<T+a

l
+e7'T] <01+ 2e263 I (1 +Lm)1>

C
i= 4 To<Tm<zr—(i—2)a

[ sup <C4 11 (1+ L) — uT(z —ia, y—z’b))

z2>Xo,y=>Y0 ;1 To<Tm<z—(i—1)a

]ii[ ( 11 (1+Ly) —pT(z— (l—l—j)a,y—lb))}_l e S(N).

zo<tm<zc—(l+j—1)a

However, on the other hand, from there exists an aj € (1,00) such that

) 1 o k k B
AeE,xg;o,yzYo /\{ <c4> H ( H (14 L) )

=1 Mpo<zm<z—(i—1)a

s <03>l T (L)

C
4 To<Tm<xT+a

+czln< $22% T (4L

To<Tm<zr—(i—2)a

x [ﬁ <c4 11 (1+Ly) —AT(m—ia,y—ib))
k

zo<tm<zr—(i—1)a

x T (c4 I1 (1+Lm)—/\T(:1;—(l+j)a,y—lb))]1} > ap > 1.

zo<tm<c—(l+j—1)a

Therefore, for A = u, we obtain
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k k
. C2 -1
)\EE,xél_}(fo,yZYo { <C4> 1_[ < H (1 * Lm) >

i=1 Ngo<zm<z—(i—1)a

; <03>l [T (4L

C
4 To<Tm<T+a

l
+57'T ] (c1+ 2e2c3 I (1+Lm)_1>

C
4 To<Tm<z—(i—2)a

x [ﬁ <c4 11 (1+Lm)—,uT(m—z'a,y—z'b)>

zo<tm<zr—(i—1)a

xkil <c4 11 (1 +Lm)—uT(m—(l+j)a,y—lb))]1} > pioy.

zo<tm<c—(l+j—1)a

The above inequality implies

(20) (Z)k ﬁ < I1 (1+ Lm)‘1>

i=1 Nzo<zm<z—(i—1)a

+<C3)l [T (+Ln)

C
4 To<Tm<T+a

l
+e7 '] (cl 4 Zecs 11 (1+ Lm)_1>

C
4 zo<Tm<zr—(i—2)a

X {ﬁ (04 I (1+ L) — pT(x — ia,y — z’b))

To<Tm<zr—(i—1)a

x i <c4 11 (1+ L) — pT(z — (1 + ja,y — lb)>]l

zo<tm<z—(l+j—1)a
= Ao > pagq.

It is clear that if Ag € S()\) then Ay < Ao implies that A, € S(\). Therefore
pa € S(A). Repeating the above arguments with p replaced by paq, we can
prove that there exists ag € (1,00) such that puajas € S(A). Continuing in
this way, we obtain p[[;2; a; € S(A), where a; € (1,00). This implies that
S(A) is unbounded.

On the other hand

x’IJLnOO supT'(z,y) >0 and c4 H (1+ L) = AT(z,y) > 0,

ro<Tm<T+a
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eventually. So E is unbounded. Because of S(\) < E, then S(\) is also
bounded. If [ > k& > 0 then from , we obtain

k -1
(21) wzy) < ] <c1 4 Zeacs I1 (1+ Lm)_l)

p C
i=1 4 2o <Tm<z—(i—2)a

k
X H (C4 H (1+Lm) —uT(m—ia,y—z’b))w(w—ka,y—kb),

i=1 zo<tm<zr—(i—1)a

(22) (Z)kw(%y) < ﬁ[ 11 (1 —l—Lm)}w(x— ka,y),

ro<tm<zr—(i—1)a

l
(23) <03’> w(z,y) < H (1+ Lm)lw(:x, y — 1b)

€4 T0<Tm<T+a
and
1
(24)  w(z —ka,y —kb) <
€3
I—k
XH |:C4 H (l—i—Lm)—uT(x—ka,y—(k—l—j)b)}w(m—ka,y—lb).

j=1 ro<xm<r—(k—1)a

By 7, from , we have

aw(@+a,y+b)+ew@tay)tew@y+b)—a [ (1+Ln)w(z,y)

ro<Trm<xr+a

+(Z>kp (x’y)ﬁ< [T L) )oton

i=1 Mgo<zm<z—(i—1)a

(Ve 1 (et oty

4 ro<Tm<T+a

k
+cé_kR(3:, Y) H <61 + 20263 H (1+Lm)_1>

. C
=1 4 zo<zm<z—(i—2)a

x [ﬁ <C4 11 (1+Ly) ~,uT(a:ia,yib)>

i= zo<Tm<zr—(i—1)a

-k -1
XH <C4 H (1+Lm)—MT(x—ka,y—(k—kj)b))] w(z,y) <0
j=1

zo<tm<zr—(k—l)a

and hence
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aw(x+a,y+b) + cow(r + a,y) + csw(z,y + b) — {04 H (1+ L)

_T(;L«,y)KZ)k ﬁ < I1 (1 +Lm)_1>

i=1 Mpo<zm<z—(i—1)a

+ (Z?’)l [T (+La)

To<Tm<T+a

+cb H( 26203 I1 (1+Lm)‘1>

To<Tm<zr—(i—2)a

x [H (04 11 (1+ L) — uT(z —ia, y—ib))

i=1 ro<tm<zr—(i—1)a

x T <c4 H (1+Ly) —pT(z—ka,y— (k:+j)b))]_1] }w(ac, y)

j=1 ro<xm<r—(k—1)a

<0

)

eventually. Thus

clw(x+a,y+b)+cZw(x+a,y>+C3w(:v,y+b)—{c4 [] @+Ln)

_T(x,y){<2> H( I (1+Lm)1>

i=1 Mgo<zm<z—(i—1)a

+ <C3>l [T (+Ln)"

€4 To<Tm<T+a

+d5 H( 262C3 I] (1+Lm)_1>

To<Tm<z—(i—2)a

x[ sup ﬁ<C4 11 (1+Lm)—,uT(x—ia,y—z'b))

z2X0,y2Y0 ;1 zo<tm<r—(i—1)a

xﬁ <C4 11 (1+Lm)—MT(az—ka,y—(kvLj)b))}_l} }w(x,y)

zo<tm<r—(k—1)a

<0

)

eventually. It is clear that
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ST T, o )R I e

<L <T— ro<Tm<T+a

k
+d ] ] <01 4 26 I1 (1 +Lm)_1>

C
4 To<Tm<zr—(i—2)a

k
1+ Ly,) —pT(x—ia,y—ib
- {xz)iligzyoﬂ (04 H ( ) % (JU 1a, Y —1 ))

To<Tm<zr—(i—1)a

-k -1
XH (04 H (1+Lm)—/,LT(:L‘—ka,y—(k—i-j)b))} e S(A).
j=1

ro<tm<zr—(k—1)a

In the same way as in the proof of case k > [ > 0, we can show that S(\) is
unbounded.

For k=1>0, f hold eventually. From , we obtain

aw(x + a,y +b) + cow(z + a,y) + csw(z,y + b) — {04 H (1+ L)

(@) renl( 11, o)

=1 “Mpo<zm<z—(i—1)a

+<Zi>kQ(9:,y) [T (+z.)™"

To<Tm<T+a

k
+R(:c,y)1_[ <01+ 2eacs H (1+Lm)_1>

. C
i=1 4 20 <Tm<z—(i—2)a

x [ﬁ <C4 1 (1+ L) —MT(gg—m,y—ib)ﬂ_l} }w(x,y) <0

i=1 zo<tm<zr—(i—1)a

then

clw(x+a,y+b)+cZw(x+a,y>+C3w(:v,y+b)—{c4 [] @+Ln)

To<Tm<T+a

_T(:r,y)[Cj)kﬁ( I1 (1+Lm)1>

i=1 Mpo<zm<z—(i—1)a

+ (Zz)k [T (+Ln)™"

To<Tm<T+a
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+ ﬁ <c1 | 2e2cs I (1+ Lm)_1>

i= To<Tm<r—(1—2)a

x hﬁ[ (C4 I (1 +Lm)pT(mia,yib))]_l]}w(fB,y) <0,

=1 To<Tm<zr—(i—1)a

eventually. The above inequality implies

aw(x +a,y+b) + cow(z + a,y) + csw(z,y + b) — {04 H (1+ L)

To<Tm<T+a

—T(:U,y)[<z>k ﬁ ( I1 (1 +Lm)_1>

i=1 Mpo<zm<z—(i—1)a

. (C?’)k [T (L™

C
4 To<Tm<T+a

+ﬁ <01+ 202¢ I (1+Lm)_1>

i=1 €4 To<Tm<zr—(i—2)a

x[ sup ﬁ<(:4 11 (1+Lm)—uT(x—ia,y—ib)>}1]}
0

.

z>Xo,y>Y0 ;71 20<Tm<z—(i—1)a

(T, 0 ) e

C
ro<Tm<r—(1— 4 ro<Tm<r+a

+ H ( 26203 I1 (1+ Lm)_1>

To<Tym<z—(i—2)a

x [ sup ﬁ (04 11 (1+Lm)—uT(x—m,y—¢b)>]_l e S(\).

z2X0,y2Y0 j—1 zo<zm<zr—(i—1)a

In the same way as in the proof of case k > [ > 0, we can show that S(\) is
unbounded. This completes the proof. =

COROLLARY 1. Assume that if k > 1> 0,

(25)  liminfT'(z,y) = ¢
,y—>00

l k+1-4_1
k+1 k—l 2coc3 (k + 1)
> L
(ca) {62 +ch+cb <61 + oL ) I ,
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ifl > k>0,

(26)  lim irolof T(z,y) =q

x7y_)
k I+14-1
I+1 _ 2¢c9c [+1
>(C4L)+|:C]2€+Cé+0ék(61+ 23)( ) } ,

C4L ll
and if k =1> 0,

(27) liminfT(z,y) = ¢

x,Y—>00

k k+14_-1

k+1 2cocs (k + 1)
> (caL) [c’g +ck+ <cl + il > o ,
where L = H:;:l (1 + Lm). Then every solution of f is oscillatory.

Proof. Since

L)k+1 kk
max A(cgL — )\ b (C4
0<,\§)C% (e ) q (k+ 1)I€Jrl

fork:>l>0,from

) 1 o k k B
)\EE,xér)l(fO,yZYO /\{ <C4) H ( H (1 + Lm) )

=1 Mpo<zm<z—(i—1)a

+<03>l [T (tLn)”

C
4 To<Tm<T+a

l
+c7'T] <c1 4 220 11 (1+ Lm)_l)
=1

C
4 To<Tm<zr—(i—2)a

X {ﬁ(“ 11 (1+Ly) —AT(m—ia,y—ib))

ro<tm<zr—(i—1)a

X T <c4 11 (1+ L) —)\T(a;—(l+j)a,y—lb)>}l}

2o <tm<z—(l+j—1)a

Co k C3 ! 20263 ! k
k—I1

— + | —= ) + + L — \g

<C4L> <C4L> “ <61 ca L ) (C4 ) }

— l

4 (02 >’“ <C3 )’ ¢ (o +%57)
>— (=) +|—F + -
call\ \eal cal max A (csL — Aq)




Oscillation for certain impulsive partial difference equations 95

k+1
O k+ i l L e +20263 ' q (k+1) i
AR sl 2\ (cs) TR
l k+1
2 k+1
>q[c2+c3+c’§ l<c1+ CQCS) (h+ 1) ]>1.

= (C4L)k;+1 C4L kk

Therefore from Theorem , every solution of f is oscillatory. In the
same way, we can prove the case of [ >k >0and k=1>0. =

THEOREM 2. Assume that there exist Xo > 0,Yy > 0 such that
(28)
-1
/\eEp,x>X0 o A [H <C4 H | (1+Lp) —AP(z—ia, y)>] > 1.
=1 zo<tm<zr—(i—1)a
Then every solution of f s oscillatory.
Proof. Assume that u(z,y) is an eventually positive solution of 7.
From Lemma [1} there exists an eventually positive solution w(z,y) of (4).
Then we have
(29) cw(r+a,y+b) +cow(x+a,y) + caw(x,y + b)
—C4 H (1+Lm)w(:v,y)+P(x,y)w(x—k‘a,y) §07

xo<Tm<T+a

eventually. Let

Sp(A) ={A>0: cw(z+a,y+b) + cw(z + a,y) + csw(z,y + b)
— (ca H (1+ L) — AP(z,y))w(z,y) < 0,eventually}.

To<Tm<T+a

Since g—; < 0 and Z—Z’ < 0 then from , we obtain

aw(x +a,y +b) + cow(z + a,y) + caw(z,y + b)

(o T 0 Lw) = Pl Jwten <0
To<Tm<T+a

eventually. This implies that 1 € Sp()\). That is Sp(\) is nonempty. If

Ao € Sp(A) then we have eventually

0 <cw(z+a,y+0b)+ cow(r+a,y) + csw(x,y + b)

(0TI 02w =20 ot

To<Tm<T+a



96 F. Ozpinar, S. Oztiirk, Z. F. Kocak

Hence ¢4 [ [,y cp, <ata (14 Lm) — XoP(x,y) > 0, i.e., Ao € Ep. Thus Sp())
c FEp. Since

limsup P(x,y) >0 and cy H (1+ L) — AP(z,y) > 0

Z—0,y—0 To<Tm<T+a

then Ep is bounded. Since Sap()\) c Ep then S,()) is also bounded.
Let 1€ Sp()). Noting that 52 < 0 and ‘g—‘; < 0 eventually, we have

T

cQw(aH—a, y) < [04 H (1+Lm) —uP(x,y)]w(x,y),

To<Tm<TH+a
(30)

k
Aw(z,y) < H [64 H (1+ L) —,uP(x—z’a,y)}w(x—i—a, Y).

i=1 zo<tm<zr—(i—1)a

From and , we obtain

aw(z+a,y+b)+cw(r+a,y)+csw(x,y+b)—cq H (1+ Ly)w(z,y)

To<Tm<T+a
i ~1
+c’§[ sup H<C4 H (14 Lim) —uP(x—ia,y)ﬂ
z>X0,y>Y0 ;7 zo<Tm<z—(i—1)a
x P(z,y)w(z,y) <0,

eventually. Hence

c’g[ sup ﬁ <C4 11 (1+ L) — pP(z - m,m)]_l

r2Xo,y>Y0 ;7 zo<tm<r—(i—1)a
. )\0 € Sp()\).
On the other hand, from there exists o € (1,00) such that

kr.k 1
. s ‘
)\eEp,mgl)f(o,yZYO By [ H <C4 H (1+ L) — AP(z — ia, y))}

=1 ro<tm<z—(i—1)a
>ap > 1.

Therefore for A = p,

Ao = cg{ sup ﬁ <C4 11 (1+ Ly) — pP(z — ia,y))}—l

2Xo0,y2Y0 ;1 zo<zm<z—(i—1)a
> o € Sp(N).
Repeating the above arguments with p replaced by paq, we can prove that

there exists ay € (1,00) such that pajag € Sp(A). Continuing in this way,
we obtain p[]2; a; € Sp(\), where ; € (1,00). This implies that Sp(\)
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is unbounded. This contradicts the boundness of Sp(A). The proof is com-
plete. =

THEOREM 3. Assume that there exist Xo > 0,Yy > 0 such that
(31)

lrt 1
- c ) B
)\eEQ,xgl)f(O,yZYO Y [H <C4 H (1 + Lm) AQ(z,y Zb))} > 1.

i=1 To<Tm<zr+a
Then every solution of f 1s oscillatory.
The proof of Theorem [3]is similar to the proof of Theorem

COROLLARY 2. If
(C4L)k+1 Lk

(32) Egﬂ%ofp(wvy) =p=> cé’ (k + 1)k+1
or
I+1
(cal) !
33 lim inf =
(33) lim inf Q(z,y) = ¢ > Ry

then every solution of f s oscillatory.
Proof. From , we obtain

kr .k 1
. s .
AeEp,:cglffo,yZYo X { 1_[ <C4 1_[ (1 + Lm) - )‘P(m —a, y))}

i=1 To<Tm<zr—(i—1)a

k 1 k+1
2 inf = P - k1 L k)
0<A<HE (cyL — Ap) (cal) k

So holds. Similarly, if holds then holds. Thus, by Theorem
and Theorem [3| every solution of f is oscillatory. m

THEOREM 4. Assume that there exist Xg > 0,Yy > 0 such that if k > 1 > 0,

k—l 1
(34) inf 2 (01 LI T (s Lm)1>

XeEga>Xoy>Yo A (& ,
=1 To<Tm<z—(i—2)a

> 1.

ro<tm<r—(i—1)a

x [ﬁ<04 11 (1+Lm)—)\R(as—z’a,y—ib)>

ro<xm<zr—(l+j—1)a

x 1 <c4 11 (1+ L) = AR(z — (1 + j)a,y —lb)>]_1 > 1,
>
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-k

(35) inf B <c1 | 20208 [T @+ Lm)_l)

XeEp2>Xow>Yo [] ;- 4 oo (i-2)a

X [ﬁ<04 11 (1+Lm)—)\R(:c—ia,y—ib)>

i=1 ro<tm<zr—(i—1)a

xﬁ<c4 1 (1+Lm)—)\R(a:—ka,y—(k+j)b)>}_l>1

zo<tm<zr—(k—1)a

and if k =1> 0,

k

. 1 2coc3 ~1
(36) AeER,mgl)f(O,yzYo A H (Cl * 4 H (1+ Lm) )

i=1 T0<Tm<z—(i—2)a

X [ﬁ<c4 1 (1+Lm)—)\R(x—ia,y—ib))]_l>1.

=1 zo<tm<z—(i—1)a

Then every solution of f 1s oscillatory.

Proof. Assume that u(z,y) is an eventually positive solution of 7.
From Lemma [1} there exists an eventually positive solution w(z,y) of (4).
Then we have

(37)  caw(z+a,y+0b)+cow(z + a,y) + csw(z,y +b)
—cy H (1 + Lm)w(m, y) + R(x,y)w(z — ka,y — 1b) <0,

ro<Tm<x+a

eventually. Set

Sr(A\) = {)\ >0: qw(x+a,y+b) + cow(z +a,y) + csw(z,y + b)

— <C4 H (1+ L) — R(x,y))w(x, y) <0, eventually}.

To<Tm<TH+a

It is easy to prove that Sr(\) € Eg, Sg is nonempty and Epr is bounded.
Let p € Sr(\). Noting that g—;’ < 0 and g—‘; < 0, eventually, we have

(00222 [T () utew

¢4 ro<Tm<xr+a
< (64 H (1 + Lm) —pR(x —a,y — b))w(az —a,y—b),
To<Tmm <T

for k>1>0,
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l -1
(38) wxy) <[] <01 + 2002403 I1 (1+ Lm)‘1>

=1 zo<Tm<z—(i—2)a

l
X H (ca H (1+ L) — pR(z —ia,y — ib))w(z — la,y — Ib)

=1 zo<Tm<zr—(i—1)a

and

(39) w(z—la,y—1b) <

k—I1
% H [04 H (1+Lp) —,uR(ac—(H—j)a,y—lb)}w(m—k‘a, y—Ib).
j=1

zo<zm<z—(l+j—1)a

From and , we obtain

caw(z+a,y+b)+cw(r+a,y)+cgw(x,y+b)—cq H (1+ L) w(z,y)

To<Tm<TH+a

+ck ZH ( 4 20203 I1 (1+ Lm)_1>

€4 To<Tm<zr—(i—2)a

{ sup <C4 1 (1+ Ly) — pR(z —ia,y — ib))

z2X0,y2Y0 j—1 zo<Tm<zr—(i—1)a

xﬁ< 11 (1+Lm)—,uR(x—(l—l—j)a,y—lb))]1

J zo<tm<z—(l+j—1)a

x R(z,y)w(z,y) < 0.

l
2 _
k-t H <01 + 602403 11 (1+ L) 1)

ro<tm<z—(i—2)a

[ sup <C4 11 (1+ L) — pR(z —ia,y — ib))

z2Xo0,y=Y0 1 zo<zm<z—(i—1)a

T <c4 I1 (14 L) — pR(x — (1 + jay — zm)]_l

j=1 zo<zm<z—(l+j—1)a

=X € SR()\).

On the other hand, from there exists an «aj € (1,00) such that
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l
: 26203 1
)‘EER:xgl)f(myZYo T H (Cl + Cq H (1 + Lm) >

To<Tym<z—(i—2)a

(1+ Lp) — AR(z — ia,y — zb))

—]

~1

X <C4
i=1

Hence, for A = p

I
No = b <C1 N 2c9c3 1—[ (1+ Lm)—1>
=1

C.
4 To<Tm<r—(i—2)a

x [ <C4 11 (1+ Ly) — pR(z —ia,y — z’b))
k

-1
(1+ Lin) = AR(z — (I + j)a,y — lb)ﬂ

zo<tm<zr—(l+j—1)a

>oaq > 1.

7

—~

i=1 zo<Tm<zr—(i—1)a

T <C4 [ (1+ L) —uR(w—(”j)a’y_lb))}_l

j=1 zo<tm<zr—(l+j—1)a

<

> pa € SR(A).

Repeating the above arguments with u replaced by poy, we get pajas €
Sr(N), where ap € (1,00). Continuing in this way, we have u[[;2, a; €
Sr(N), where a; € (1,00). This implies that Sgr(A) is unbounded. This
contradicts the boundness of Sg(A). The proof is complete. =

COROLLARY 3. Assume that if k > 1> 0,

2c9e3 k*
o _ k+1 1—k 263
(40) 1;1;13% R(z,y) =71 > (cal)"" "y (Cl + cal ) (k + 1)k+17
ifl >k >0,
2cac3\ " It
. _ I4+1 k-1 263
(41) gr;lig R(z,y) =1 > (cal) ™y (Cl + sl ) (I + 1)1

and if k =1> 0,

2cacs\ " kP
. . k+1 263
(42) gglirgR(w,y) =71 > (csl) <01 T il ) (k1 1)+

where L =[[;-_ (1 + Ly,). Then every solution of (1)~(2) is oscillatory.
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Proof. For k > [ > 0, from , we have

k—1 1
. c 2coc3 1
inf 2 c1 + 1+L
NeEp,a>Xo,y>Yo A < ! H ( m) >

. C
i=1 4 To<Tm<zr—(i—2)a

x U_LKCA‘ 11 (1+Lm)—>\R(x—ia,y—ib)>

ro<Tm<zr—(i—1)a

xﬁ<c4 11 (1+Lm)—)\R(m—(l+j)a,y—lb)>]1

j=1 2o <tm<z—(l+j—1)a
2coc
k—1 263
. © (Cl * cuL > k-t 2coc3 l(k+ 1)k+1
> inf = 2 c1 +
T AeEpa>Xow>Yo  A(caL — Ar)k (C4L)k+1 caL kk

> 1.

Thus is fulfilled. Similarly, if and hold, and are
fulfilled, respectively. Hence by Theorem every solution of 1) is
oscillatory. m
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