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OSCILLATION FOR CERTAIN IMPULSIVE PARTIAL
DIFFERENCE EQUATIONS

Abstract. In this paper, we obtain some sufficient criteria for the oscillation of the
solutions of linear impulsive partial difference equations with continuous variables.

1. Introduction
The impulsive differential equations are adequate mathematical models

of various processes and phenomena studied in physics, chemical technology,
population dynamics, technics and economics. These equations provide nat-
ural mathematical description of processes which are subject to short-time
perturbations during their evolution. Various monographs [2, 4, 5, 6, 7, 9, 10],
devoted to the impulsive differential equations were published in the recent
years. At the same time, partial difference equations arise in applications,
involving populations dynamics with spatial migrations, chemical reactions,
mathematical physics and finite-difference schemes. Recently, there are many
papers that devoted to the development of qualitative theory of partial dif-
ference equations with continuous variables, see e.g. [8, 11, 13].

Let 0 “ x0 ă x1 ă . . . ă xn ă xn`1 ă . . . , be fixed points with
limnÑ8 xn “ 8, and let for n P N xn`r “ xn ` τ , where r is a fixed natural
number, and τ ą 0 is a constant. Define Jimp “ txnu

8
n“1, R` “ r0,8q,

J “ tpx, yq : x P Jimp, y P R`u.
In 2009, Agarwal and Karakoc studied the oscillation of solutions of

impulsive partial difference equations with continuous variables of the type

p1zpx` a, y ` bq ` p2zpx` a, yq ` p3zpx, y ` bq ´ p4zpx, yq

` P px, yqzpx´ τ, y ´ σq “ 0, px, yq P pR` ˆ R`qzJ,
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zpx`n , yq ´ zpx
´
n , yq “ Lnzpx

´
n , yq, pxn, yq P J,

where zpx`, yq “ limpq,sqÑpx,yq
qąx

zpq, sq, zpx´, yq “ limpq,sqÑpx,yq
qăx

zpq, sq [2].

In this paper, we shall consider the impulsive partial difference equations
with continuous variables of the form

(1) c1upx` a, y ` bq ` c2upx` a, yq ` c3upx, y ` bq ´ c4upx, yq

` F px, yqupx´ τ, yq `Gpx, yqupx, y ´ σq `Hpx, yqupx´ τ, y ´ σq “ 0,

px, yq P pR` ˆ R`qzJ,

(2) upx`n , yq ´ upx
´
n , yq “ Lnupx

´
n , yq, pxn, yq P J,

where upx`, yq “ limpq,sqÑpx,yq
qąx

upq, sq, upx´, yq “ limpq,sqÑpx,yq
qăx

upq, sq and

F,G,H P CpR` ˆ R`,R` ´ t0uq, a, b, τ, σ are positive constants, ci, i “
1, 2, 3, 4, are nonnegative constants.

Our results extend the oscillation results of Agarwal and Karakoc [2].
A function upx, yq in r´τ,8q ˆ r´σ,8q is said to be solution of (1)–(2)

if

(i) for px, yq P pR` ˆ R`qzJ , u is continuous and satisfies (1),
(ii) for px, yq P J , upx`, yq and upx´, yq exist, upx´, yq “ upx, yq, and sat-

isfy (2).

A solution upx, yq of (1)–(2) is said to be eventually positive (or negative)
if upx, yq ą 0 (or upx, yq ă 0) for all large x and y. It is said to be oscillatory
if it is neither eventually positive nor eventually negative otherwise, it is
called nonoscillatory.

2. Preparatory lemmas
Throughout this paper, we shall assume that

(A1) tLnu8n“1 is a sequence of positive real numbers such that
ř8
n“1 Ln ă 8,

(A2) c2, c3 ≥ c4 ą 0,
(A3) τ “ ka ` θ, σ “ lb ` η, where k, l are nonnegative integers, θ P r0, aq

and η P r0, bq.

We set, for any px, yq P R` ˆ R`,

P px, yq “ mintF ps, tq, x ≤ s ≤ x` a, y ≤ t ≤ y ` bu and
0 ă lim sup

x,yÑ8
P px, yq ă 8,

Qpx, yq “ mintGps, tq, x ≤ s ≤ x` a, y ≤ t ≤ y ` bu and
0 ă lim sup

x,yÑ8
Qpx, yq ă 8,
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Rpx, yq “ mintHps, tq, x ≤ s ≤ x` a, y ≤ t ≤ y ` bu and
0 ă lim sup

x,yÑ8
Rpx, yq ă 8,

T px, yq “ mintP px, yq, Qpx, yq, Rpx, yqu,

EP “

"

λ ą 0 : c4
ź

x0ăxmăx`a

p1` Lmq ´ λP px, yq ą 0, eventually
*

,

EQ “

"

λ ą 0 : c4
ź

x0ăxmăx`a

p1` Lmq ´ λQpx, yq ą 0, eventually
*

,

ER “

"

λ ą 0 : c4
ź

x0ăxmăx`a

p1` Lmq ´ λRpx, yq ą 0, eventually
*

,

E “

"

λ ą 0 : c4
ź

x0ăxmăx`a

p1` Lmq ´ λT px, yq ą 0, eventually
*

.

Here, the symbol
ś

x0ăxmăs
am denotes the product of the members of the

sequence tamu over m such that xm P px0, sq X Jimp. If px0, sq X Jimp “ H,
or x0 ≥ s then we assume that

ś

x0ăxmăs
am “ 1.

Lemma 1. Assume that upx, yq is an eventually positive solution of (1)–(2).
Then for px, yq P R` ˆ R` the function

(3) ωpx, yq “

ż x`a

x

ż y`b

y

´

ź

x0ăxmăs

`

1` Lm
˘´1

¯

ups, tqdtds

is an eventually positive solution of the partial difference inequality

(4) c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq

´ c4
ź

x0ăxmăx`a

p1` Lmqωpx, yq ` P px, yqωpx´ ka, yq `Qpx, yqωpx, y ´ lbq

`Rpx, yqωpx´ ka, y ´ lbq ≤ 0.

Proof. So that
ź

x0ăxmăx

`

1` Lm
˘´1

upx, yq

is continuous for px, yq P R` ˆ R`,

p5q
Bω

Bx

“

ż y`b

y

„

ź

x0ăxmăx`a

`

1`Lm
˘´1

upx`a, tq´
ź

x0ăxmăx`a

`

1`Lm
˘´1

upx, tq



dt

“

ż y`b

y

ź

x0ăxmăx

`

1`Lm
˘´1

„

ź

x≤xmăx`a

`

1`Lm
˘´1

upx`a, tq´upx, tq



dt,
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p6q
Bω

By
“

ż x`a

x

ź

x0ăxmăs

`

1` Lm
˘´1
rups, y ` bq ´ ups, yqsds.

Since upx, yq is an eventually positive solution of (1)–(2),

(7) c1upx` a, y ` bq ` c2upx` a, yq ` c3upx, y ` bq ´ c4upx, yq ă 0,

for px, yq P pR` ˆ R`qzJ . From (A2) and (7)

upx` a, yq ´ upx, yq ă 0 and upx, y ` bq ´ upx, yq ă 0,

eventually. Moreover since 0 ă
ś

x≤xmăx`a
`

1` Lm
˘´1 ≤ 1, we obtain

(8)
ź

x≤xmăx`a

`

1` Lm
˘´1

upx` a, yq ´ upx, yq ă 0.

Let px, yq P J and, say, x “ xn. From (2) and (8), we have

upxn, yq “
1

1` Ln
upx`n , yq ≥

1

1` Ln

ź

x`n≤xmăx`n`a

`

1` Lm
˘´1

upx`n ` a, yq

“
ź

xn≤xmăxn`a

`

1` Lm
˘´1

upxn ` a, yq.

So, for all px, yq P pR` ˆ R`q Bω
Bx ≤ 0 and Bω

By ≤ 0. Therefore

ωpx´ τ, y ´ σq “ ωpx´ pka` θq, y ´ plb` ηq ≥ ωpx´ ka, y ´ lbq.(9)

Since integrating (1), 0 ă
ś

x0ăxmăx`a

`

1` Lm
˘´1 ≤ 1, we find

0 “ c1

ż x`a

x

ż y`b

y
ups` a, t` bqdtds` c2

ż x`a

x

ż y`b

y
ups` a, tqdtds

` c3

ż x`a

x

ż y`b

y
ups, t` bqdtds´ c4

ż x`a

x

ż y`b

y
ups, tqdtds

`

ż x`a

x

ż y`b

y
F ps, tqups´ τ, tqdtds`

ż x`a

x

ż y`b

y
Gps, tqups, t´ σqdtds

`

ż x`a

x

ż y`b

y
Hps, tqups´ τ, t´ σqdtds,

which yields

(10) 0 ≥ c1

ż x`a

x

ż y`b

y

ź

x0ăxmăs

`

1` Lm
˘´1

ups` a, t` bqdtds
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`c2

ż x`a

x

ż y`b

y

ź

x0ăxmăs

`

1`Lm
˘´1

ups`a, tqdtds

`c3

ż x`a

x

ż y`b

y

ź

x0ăxmăs

`

1`Lm
˘´1

ups, t`bqdtds´c4

ż x`a

x

ż y`b

y
ups, tqdtds

`

ż x`a

x

ż y`b

y
F ps, tq

ź

x0ăxmăs

`

1`Lm
˘´1

ups´τ, tqdtds

`

ż x`a

x

ż y`b

y
Gps, tq

ź

x0ăxmăs

`

1`Lm
˘´1

ups, t´σqdtds

`

ż x`a

x

ż y`b

y
Hps, tq

ź

x0ăxmăs

`

1`Lm
˘´1

ups´τ, t´σqdtds.

From (9), (10) and using the definition of ω, P,Q,R, we obtain eventually

c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq

´ c4
ź

x0ăxmăx`a

`

1` Lm
˘

ωpx, yq ` P px, yqωpx´ ka, yq `Qpx, yqωpx, y ´ lbq

`Rpx, yqωpx´ ka, y ´ lbq ≤ 0.

Therefore, ωpx, yq is an eventually positive solution of inequality (4).

3. Main results
Theorem 1. Assume that there exist X0 ≥ 0, Y0 ≥ 0 such that if k ą l ą 0,

(11) inf
λPE,x≥X0,y≥Y0

1

λ

#

ˆ

c2
c4

˙k k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1` Lm
˘´1

˙

`

ˆ

c3
c4

˙l
ź

x0ăxmăx`a

`

1`Lm
˘´l

`ck´l2

l
ź

i“1

ˆ

c1`
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1`Lm
˘´1

˙

ˆ

„ l
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´λT
`

x´ ia, y´ ib
˘

˙

ˆ

k´l
ź

j“1

ˆ

c4
ź

x0ăxmăx´pl`j´1qa

`

1`Lm
˘

´λT
`

x´pl`jqa, y´ lb
˘

˙´1
+

ą 1,

if l ą k ą 0,
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(12) inf
λPE,x≥X0,y≥Y0

1

λ

#

ˆ

c2
c4

˙k k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1` Lm
˘´1

˙

`

ˆ

c3
c4

˙l
ź

x0ăxmăx`a

`

1`Lm
˘´l

`cl´k3

k
ź

i“1

ˆ

c1`
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1`Lm
˘´1

˙

ˆ

„ k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´λT
`

x´ ia, y´ ib
˘

˙

ˆ

l´k
ź

j“1

ˆ

c4
ź

x0ăxmăx´pk´1qa

`

1`Lm
˘

´λT
`

x´ka, y´pk`jqb
˘

˙´1
+

ą 1

and if k “ l ą 0,

(13) inf
λPE,x≥X0,y≥Y0

1

λ

#

ˆ

c2
c4

˙k k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1` Lm
˘´1

˙

`

ˆ

c3
c4

˙k
ź

x0ăxmăx`a

`

1` Lm
˘´k

`

k
ź

i“1

ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1` Lm
˘´1

˙

ˆ

„ k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ λT
`

x´ ia, y ´ ib
˘

˙´1
+

ą 1.

Then every solution of (1)–(2) is oscillatory.

Proof. Suppose to the contrary that upx, yq is nonoscillatory solution of (1)–
(2). Without loss of generality we may assume that upx, yq is an eventually
positive solution of (1)–(2). Let ωpx, yq be as in Lemma 1.

Set

Spλq “

"

λ ą 0 : c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq

´

ˆ

c4
ź

x0ăxmăx`a

`

1` Lm
˘

´ λT px, yq

˙

ωpx, yq ≤ 0, eventually
*

.

Since Bω
Bx ă 0 and Bω

By ă 0, from (4) we obtain
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c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq ´
`

c4
ź

x0ăxmăx`a

`

1` Lm
˘

´ T px, yq
˘

ωpx, yq ≤ 0,

which implies that 1 P Spλq. That is Spλq is nonempty. If λ0 P Spλq, we
have eventually

c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq

≤
`

c4
ź

x0ăxmăx`a

`

1` Lm
˘

´ λ0T px, yq
˘

ωpx, yq.

Therefore c4
ś

x0ăxmăx`a

`

1 ` Lm
˘

´ λ0T px, yq ą 0 eventually, i.e., λ0 P E.
Thus Spλq Ă E.

Let µ P Spλq. Noting that Bω
Bx ă 0 and Bω

By ă 0 eventually, we obtain
eventually

(14)
ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx`2a

`

1` Lm
˘´1

˙

ωpx` a, y ` bq

≤ c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq

≤
ˆ

c4
ź

x0ăxmăx`a

`

1` Lm
˘

´ µT px, yq

˙

ωpx, yq.

and thus,

(15)
ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx`a

`

1` Lm
˘´1

˙

ωpx, yq

≤
ˆ

c4
ź

x0ăxmăx

`

1` Lm
˘

´ µT px´ a, y ´ bq

˙

ωpx´ a, y ´ bq.

If k ą l ą 0 then

(16) ωpx, yq ≤
l
ź

i“1

ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1` Lm
˘´1

˙´1

ˆ

l
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ µT px´ ia, y ´ ibq

˙

ωpx´ la, y ´ lbq.

Since ωpx, yq ą 0 for all large x and y then from (4)

c2ωpx` a, yq ≤ c4
ź

x0ăxmăx`a

`

1` Lm
˘

ωpx, yq,

c3ωpx, y ` bq ≤ c4
ź

x0ăxmăx`a

`

1` Lm
˘

ωpx, yq,
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eventually. Hence

(17)
k
ź

i“1

c2ωpx´pi´1qa, yq ≤
k
ź

i“1

“

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

ωpx´ ia, yq
‰

ck2ωpx, yq ≤ ck4

k
ź

i“1

“

ź

x0ăxmăx´pi´1qa

`

1`Lm
˘‰

ωpx´ka, yq

and

(18)
l
ź

i“1

c3ωpx, ypi´ 1qbq ≤
l
ź

i“1

“

c4
ź

x0ăxmăx`a

`

1` Lm
˘

ωpx, y ´ ibq
‰

cl3ωpx, yq ≤ cl4
ź

x0ăxmăx`a

`

1` Lm
˘l
ωpx, y ´ lbq.

Moreover, from (14)

c2ωpx` a, yq ≤
“

c4
ź

x0ăxmăx`a

`

1` Lm
˘

´ µT px, yq
‰

ωpx, yq

and

(19) ωpx´ la, y ´ lbq

≤ 1

c2

“

c4
ź

x0ăxmăx´la

`

1`Lm
˘

´µT px´pl`1qa, y´lbq
‰

ωpx´pl`1qa, y´lbq

≤ ¨ ¨ ¨

≤ 1

ck´l2

k´l
ź

j“1

„

c4
ź

x0ăxmăx´pl`j´1qa

`

1`Lm
˘

´µT px´pl`jqa, y´lbq



ˆ ωpx´ ka, y ´ lbq,

eventually. Substituting (16)–(19) into (4), we obtain

c1ωpx`a, y`bq`c2ωpx`a, yq`c3ωpx, y`bq´c4
ź

x0ăxmăx`a

`

1`Lm
˘

ωpx, yq

`

ˆ

c2
c4

˙k

P px, yq
k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1`Lm
˘´1

˙

ωpx, yq

`

ˆ

c3
c4

˙l

Qpx, yq
ź

x0ăxmăx`a

`

1`Lm
˘´l

ωpx, yq

`ck´l2 Rpx, yq
l
ź

i“1

ˆ

c1`
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1`Lm
˘´1

˙
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ˆ

„ l
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´µT px´ia, y´ibq

˙

ˆ

k´l
ź

j“1

ˆ

c4
ź

x0ăxmăx´pl`j´1qa

`

1`Lm
˘

´µT px´pl`jqa, y´lbq

˙´1

ωpx, yq ≤ 0,

eventually. Then

c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq ´

"

c4
ź

x0ăxmăx`a

`

1` Lm
˘

´

„ˆ

c2
c4

˙k

P px, yq
k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1`Lm
˘´1

˙

`

ˆ

c3
c4

˙l

Qpx, yq
ź

x0ăxmăx`a

`

1`Lm
˘´l

`ck´l2 Rpx, yq
l
ź

i“1

ˆ

c1`
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1`Lm
˘´1

˙

ˆ

„ l
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´µT px´ ia, y´ ibq

˙

ˆ

k´l
ź

j“1

ˆ

c4
ź

x0ăxmăx´pl`j´1qa

`

1`Lm
˘

´µT px´pl`jqa, y´ lbq

˙´1*

ωpx, yq

≤ 0,

eventually. Thus

c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq ´

"

c4
ź

x0ăxmăx`a

`

1` Lm
˘

´T px, yq

„ˆ

c2
c4

˙k k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1`Lm
˘´1

˙

`

ˆ

c3
c4

˙l
ź

x0ăxmăx`a

`

1`Lm
˘´l

`ck´l2

l
ź

i“1

ˆ

c1`
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1`Lm
˘´1

˙



88 F. Özpinar, S. Öztürk, Z. F. Koçak

ˆ

„

sup
x≥X0,y≥Y0

l
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´µT px´ia, y´ibq

˙

ˆ

k´l
ź

j“1

ˆ

c4
ź

x0ăxmăx´pl`j´1qa

`

1`Lm
˘

´µT px´pl`jqa, y´lbq

˙´1*

ωpx, yq

≤ 0,

eventually. Therefore

λ0“

ˆ

c2
c4

˙k k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1`Lm
˘´1

˙

`

ˆ

c3
c4

˙l
ź

x0ăxmăx`a

`

1`Lm
˘´l

`ck´l2

l
ź

i“1

ˆ

c1`
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1`Lm
˘´1

˙

ˆ

„

sup
x≥X0,y≥Y0

l
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´µT px´ ia, y´ ibq

˙

ˆ

k´l
ź

j“1

ˆ

c4
ź

x0ăxmăx´pl`j´1qa

`

1`Lm
˘

´µT px´pl`jqa, y´ lbq

˙´1

P Spλq.

However, on the other hand, from (11) there exists an α1 P p1,8q such that

inf
λPE,x≥X0,y≥Y0

1

λ

"ˆ

c2
c4

˙k k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1` Lm
˘´1

˙

`

ˆ

c3
c4

˙l
ź

x0ăxmăx`a

`

1`Lm
˘´l

`ck´l2

l
ź

i“1

ˆ

c1`
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1`Lm
˘´1

˙

ˆ

„ l
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´λT px´ia, y´ibq

˙

ˆ

k´l
ź

j“1

ˆ

c4
ź

x0ăxmăx´pl`j´1qa

`

1`Lm
˘

´λT px´pl`jqa, y´lbq

˙´1*

≥ α1 ą 1.

Therefore, for λ “ µ, we obtain
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inf
λPE,x≥X0,y≥Y0

"ˆ

c2
c4

˙k k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1` Lm
˘´1

˙

`

ˆ

c3
c4

˙l
ź

x0ăxmăx`a

`

1`Lm
˘´l

`ck´l2

l
ź

i“1

ˆ

c1`
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1`Lm
˘´1

˙

ˆ

„ l
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´µT px´ ia, y´ ibq

˙

ˆ

k´l
ź

j“1

ˆ

c4
ź

x0ăxmăx´pl`j´1qa

`

1`Lm
˘

´µT px´pl`jqa, y´ lbq

˙´1*

≥ µα1.

The above inequality implies

(20)
ˆ

c2
c4

˙k k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1` Lm
˘´1

˙

`

ˆ

c3
c4

˙l
ź

x0ăxmăx`a

`

1` Lm
˘´l

` ck´l2

l
ź

i“1

ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1` Lm
˘´1

˙

ˆ

„ l
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ µT px´ ia, y ´ ibq

˙

ˆ

k´l
ź

j“1

ˆ

c4
ź

x0ăxmăx´pl`j´1qa

`

1` Lm
˘

´ µT px´ pl ` jqa, y ´ lbq

˙´1

“ λ0 ≥ µα1.

It is clear that if λ0 P Spλq then λ
1

0 ≤ λ0 implies that λ10 P Spλq. Therefore
µα1 P Spλq. Repeating the above arguments with µ replaced by µα1, we can
prove that there exists α2 P p1,8q such that µα1α2 P Spλq. Continuing in
this way, we obtain µ

ś8
i“1 αi P Spλq, where αi P p1,8q. This implies that

Spλq is unbounded.
On the other hand

lim
x,yÑ8

supT px, yq ą 0 and c4
ź

x0ăxmăx`a

`

1` Lm
˘

´ λT px, yq ą 0,
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eventually. So E is unbounded. Because of Spλq Ă E, then Spλq is also
bounded. If l ą k ą 0 then from (15), we obtain

ωpx, yq ≤
k
ź

i“1

ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1` Lm
˘´1

˙´1

(21)

ˆ

k
ź

i“1

`

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´ µT px´ ia, y´ ibq
˘

ωpx´ ka, y´ kbq,

ˆ

c2
c4

˙k

ωpx, yq ≤
k
ź

i“1

„

ź

x0ăxmăx´pi´1qa

`

1` Lm
˘



ωpx´ ka, yq,(22)

ˆ

c3
c4

˙l

ωpx, yq ≤
ź

x0ăxmăx`a

`

1` Lm
˘l
ωpx, y ´ lbq(23)

and

(24) ωpx´ ka, y ´ kbq ≤ 1

cl´k3

ˆ

l´k
ź

j“1

„

c4
ź

x0ăxmăx´pk´1qa

`

1`Lm
˘

´µT px´ka, y´pk`jqbq



ωpx´ka, y´lbq.

By (21)–(24), from (14), we have

c1ωpx`a, y`bq`c2ωpx`a, yq`c3ωpx, y`bq´c4
ź

x0ăxmăx`a

`

1`Lm
˘

ωpx, yq

`

ˆ

c2
c4

˙k

P px, yq
k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1`Lm
˘´1

˙

ωpx, yq

`

ˆ

c3
c4

˙l

Qpx, yq
ź

x0ăxmăx`a

`

1`Lm
˘´l

ωpx, yq

`cl´k3 Rpx, yq
k
ź

i“1

ˆ

c1`
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1`Lm
˘´1

˙

ˆ

„ k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´µT px´ia, y´ibq

˙

ˆ

l´k
ź

j“1

ˆ

c4
ź

x0ăxmăx´pk´lqa

`

1`Lm
˘

´µT px´ka, y´pk`jqbq

˙´1

ωpx, yq ≤ 0

and hence
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c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq ´

"

c4
ź

x0ăxmăx`a

`

1` Lm
˘

´T px, yq

„ˆ

c2
c4

˙k k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1`Lm
˘´1

˙

`

ˆ

c3
c4

˙l
ź

x0ăxmăx`a

`

1`Lm
˘´l

`cl´k3

k
ź

i“1

ˆ

c1`
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1`Lm
˘´1

˙

ˆ

„ k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´µT px´ ia, y´ ibq

˙

ˆ

l´k
ź

j“1

ˆ

c4
ź

x0ăxmăx´pk´1qa

`

1`Lm
˘

´µT px´ka, y´pk`jqbq

˙´1*

ωpx, yq

≤ 0,

eventually. Thus

c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq ´

"

c4
ź

x0ăxmăx`a

`

1` Lm
˘

´T px, yq

„ˆ

c2
c4

˙k k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1`Lm
˘´1

˙

`

ˆ

c3
c4

˙l
ź

x0ăxmăx`a

`

1`Lm
˘´l

`cl´k3

k
ź

i“1

ˆ

c1`
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1`Lm
˘´1

˙

ˆ

„

sup
x≥X0,y≥Y0

k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´µT px´ia, y´ibq

˙

ˆ

l´k
ź

j“1

ˆ

c4
ź

x0ăxmăx´pk´1qa

`

1`Lm
˘

´µT px´ka, y´pk`jqbq

˙´1*

ωpx, yq

≤ 0,

eventually. It is clear that
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λ10 “

ˆ

c2
c4

˙k k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1`Lm
˘´1

˙

`

ˆ

c3
c4

˙l
ź

x0ăxmăx`a

`

1`Lm
˘´l

`cl´k3

k
ź

i“1

ˆ

c1`
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1`Lm
˘´1

˙

ˆ

„

sup
x≥X0,y≥Y0

k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´µT px´ ia, y´ ibq

˙

ˆ

l´k
ź

j“1

ˆ

c4
ź

x0ăxmăx´pk´1qa

`

1`Lm
˘

´µT px´ka, y´pk`jqbq

˙´1

P Spλq.

In the same way as in the proof of case k ą l ą 0, we can show that Spλq is
unbounded.

For k “ l ą 0, (16)–(18) hold eventually. From (14), we obtain

c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq ´

"

c4
ź

x0ăxmăx`a

`

1` Lm
˘

´

„ˆ

c2
c4

˙k

P px, yq
k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1`Lm
˘´1

˙

`

ˆ

c3
c4

˙k

Qpx, yq
ź

x0ăxmăx`a

`

1`Lm
˘´k

`Rpx, yq
k
ź

i“1

ˆ

c1`
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1`Lm
˘´1

˙

ˆ

„ k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´µT px´ ia, y´ ibq

˙´1*

ωpx, yq ≤ 0

then

c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq ´

"

c4
ź

x0ăxmăx`a

`

1` Lm
˘

´T px, yq

„ˆ

c2
c4

˙k k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1`Lm
˘´1

˙

`

ˆ

c3
c4

˙k
ź

x0ăxmăx`a

`

1`Lm
˘´k
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`

k
ź

i“1

ˆ

c1`
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1`Lm
˘´1

˙

ˆ

„ k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´µT px´ ia, y´ ibq

˙´1*

ωpx, yq ≤ 0,

eventually. The above inequality implies

c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq ´

"

c4
ź

x0ăxmăx`a

`

1` Lm
˘

´T px, yq

„ˆ

c2
c4

˙k k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1`Lm
˘´1

˙

`

ˆ

c3
c4

˙k
ź

x0ăxmăx`a

`

1`Lm
˘´k

`

k
ź

i“1

ˆ

c1`
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1`Lm
˘´1

˙

ˆ

„

sup
x≥X0,y≥Y0

k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´µT px´ ia, y´ ibq

˙´1*

ˆ ωpx, yq ≤ 0.

Hence

λ20“

ˆ

c2
c4

˙k k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1`Lm
˘´1

˙

`

ˆ

c3
c4

˙k
ź

x0ăxmăx`a

`

1`Lm
˘´k

`

k
ź

i“1

ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1` Lm
˘´1

˙

ˆ

„

sup
x≥X0,y≥Y0

k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´µT px´ia, y´ibq

˙´1

P Spλq.

In the same way as in the proof of case k ą l ą 0, we can show that Spλq is
unbounded. This completes the proof.

Corollary 1. Assume that if k ą l ą 0,

(25) lim inf
x,yÑ8

T px, yq “ q

ą
`

c4L
˘k`1

„

ck2 ` c
l
3 ` c

k´l
2

ˆ

c1 `
2c2c3
c4L

˙l
`

k ` 1
˘k`1

kk

´1

,
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if l ą k ą 0,

(26) lim inf
x,yÑ8

T px, yq “ q

ą
`

c4L
˘l`1

„

ck2 ` c
l
3 ` c

l´k
3

ˆ

c1 `
2c2c3
c4L

˙k
`

l ` 1
˘l`1

ll

´1

,

and if k “ l ą 0,

(27) lim inf
x,yÑ8

T px, yq “ q

ą
`

c4L
˘k`1

„

ck2 ` c
k
3 `

ˆ

c1 `
2c2c3
c4L

˙k
`

k ` 1
˘k`1

kk

´1

,

where L “
ś8
m“1

`

1` Lm
˘

. Then every solution of (1)–(2) is oscillatory.

Proof. Since

max
0ăλ≤ c4L

q

λ
`

c4L´ λq
˘k
“

`

c4L
˘k`1

q

kk
`

k ` 1
˘k`1

for k ą l ą 0, from (25)

inf
λPE,x≥X0,y≥Y0

1

λ

#

ˆ

c2
c4

˙k k
ź

i“1

ˆ

ź

x0ăxmăx´pi´1qa

`

1` Lm
˘´1

˙

`

ˆ

c3
c4

˙l
ź

x0ăxmăx`a

`

1` Lm
˘´l

` ck´l2

l
ź

i“1

ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1` Lm
˘´1

˙

ˆ

„ l
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ λT
`

x´ ia, y ´ ib
˘

˙

ˆ

k´l
ź

j“1

ˆ

c4
ź

x0ăxmăx´pl`j´1qa

`

1` Lm
˘

´ λT
`

x´ pl ` jqa, y ´ lb
˘

˙´1
+

≥ 1

λ

#

ˆ

c2
c4L

˙k

`

ˆ

c3
c4L

˙l

` ck´l2

ˆ

c1 `
2c2c3
c4L

˙lˆ

c4L´ λq

˙´k
+

≥ q

c4L

˜

ˆ

c2
c4L

˙k

`

ˆ

c3
c4L

˙l
¸

`
ck´l2

`

c1 `
2c2c3
c4L

˘l

maxλ
`

c4L´ λq
˘k
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“
q

c4L

˜

ˆ

c2
c4L

˙k

`

ˆ

c3
c4L

˙l
¸

`ck´l2

ˆ

c1`
2c2c3
c4L

˙l q
`

c4L
˘k`1

`

k`1
˘k`1

kk

≥ q
`

c4L
˘k`1

„

ck2`c
l
3`c

k´l
2

ˆ

c1`
2c2c3
c4L

˙l
`

k`1
˘k`1

kk



ą 1.

Therefore from Theorem 1, every solution of (1)–(2) is oscillatory. In the
same way, we can prove the case of l ą k ą 0 and k “ l ą 0.

Theorem 2. Assume that there exist X0 ≥ 0, Y0 ≥ 0 such that
(28)

inf
λPEP ,x≥X0,y≥Y0

ck2
λ

„ k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´λP px´ia, yq

˙´1

ą 1.

Then every solution of (1)–(2) is oscillatory.

Proof. Assume that upx, yq is an eventually positive solution of (1)–(2).
From Lemma 1, there exists an eventually positive solution ωpx, yq of (4).
Then we have

(29) c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq

´ c4
ź

x0ăxmăx`a

`

1` Lm
˘

ωpx, yq ` P px, yqωpx´ ka, yq ≤ 0,

eventually. Let

SP pλq “
 

λ ą 0 : c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq

´
`

c4
ź

x0ăxmăx`a

p1` Lmq ´ λP px, yq
˘

ωpx, yq ≤ 0, eventually
(

.

Since Bω
Bx ă 0 and Bω

By ă 0 then from (29), we obtain

c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq

´

ˆ

c4
ź

x0ăxmăx`a

`

1` Lm
˘

´ P px, yq

˙

ωpx, yq ≤ 0,

eventually. This implies that 1 P SP pλq. That is SP pλq is nonempty. If
λ0 P SP pλq then we have eventually

0 ă c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq

≤
ˆ

c4
ź

x0ăxmăx`a

`

1` Lm
˘

´ λ0P px, yq

˙

ωpx, yq.
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Hence c4
ś

x0ăxmăx`a

`

1` Lm
˘

´ λ0P px, yq ą 0, i.e., λ0 P EP . Thus SP pλq
Ă EP . Since

lim sup
xÑ8,yÑ8

P px, yq ą 0 and c4
ź

x0ăxmăx`a

`

1` Lm
˘

´ λP px, yq ą 0

then EP is bounded. Since Sppλq Ă EP then Sppλq is also bounded.
Let µ P SP pλq. Noting that Bω

Bx ă 0 and Bω
By ă 0 eventually, we have

(30)

c2ωpx`a, yq ă

„

c4
ź

x0ăxmăx`a

`

1`Lm
˘

´µP px, yq



ωpx, yq,

ck2ωpx, yq ă
k
ź

i“1

„

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´µP px´ ia, yq



ωpx`a, yq.

From (29) and (30), we obtain

c1ωpx`a, y`bq`c2ωpx`a, yq`c3ωpx, y`bq´c4
ź

x0ăxmăx`a

`

1`Lm
˘

ωpx, yq

` ck2

„

sup
x≥X0,y≥Y0

k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ µP px´ ia, yq

˙´1

ˆ P px, yqωpx, yq ≤ 0,

eventually. Hence

ck2

„

sup
x≥X0,y≥Y0

k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ µP px´ ia, yq

˙´1

“ λ0 P SP pλq.

On the other hand, from (28) there exists α1 P p1,8q such that

inf
λPEP ,x≥X0,y≥Y0

ck2
λ

„ k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ λP px´ ia, yq

˙´1

≥ α1 ą 1.

Therefore for λ “ µ,

λ0 “ ck2

„

sup
x≥X0,y≥Y0

k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ µP px´ ia, yq

˙´1

≥ µα1 P Sppλq.

Repeating the above arguments with µ replaced by µα1, we can prove that
there exists α2 P p1,8q such that µα1α2 P SP pλq. Continuing in this way,
we obtain µ

ś8
i“1 αi P SP pλq, where αi P p1,8q. This implies that SP pλq
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is unbounded. This contradicts the boundness of SP pλq. The proof is com-
plete.

Theorem 3. Assume that there exist X0 ≥ 0, Y0 ≥ 0 such that
(31)

inf
λPEQ,x≥X0,y≥Y0

cl3
λ

„ l
ź

i“1

ˆ

c4
ź

x0ăxmăx`a

`

1` Lm
˘

´ λQpx, y ´ ibq

˙´1

ą 1.

Then every solution of (1)–(2) is oscillatory.

The proof of Theorem 3 is similar to the proof of Theorem 2.

Corollary 2. If

(32) lim inf
x,yÑ8

P px, yq “ p ą

`

c4L
˘k`1

ck2

kk

pk ` 1qk`1

or

(33) lim inf
x,yÑ8

Qpx, yq “ q ą

`

c4L
˘l`1

cl3

ll

pl ` 1ql`1

then every solution of (1)–(2) is oscillatory.

Proof. From (32), we obtain

inf
λPEP ,x≥X0,y≥Y0

ck2
λ

„ k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ λP px´ ia, yq

˙´1

≥ inf
0ăλ≤ c4L

p

ck2

λ
`

c4L´ λp
˘k
“ ck2

p
`

c4L
˘k`1

pk ` 1qk`1

kk
ą 1.

So (28) holds. Similarly, if (33) holds then (31) holds. Thus, by Theorem 2
and Theorem 3, every solution of (1)–(2) is oscillatory.

Theorem 4. Assume that there exist X0 ≥ 0, Y0 ≥ 0 such that if k ą l ą 0,

(34) inf
λPER,x≥X0,y≥Y0

ck´l2

λ

l
ź

i“1

ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1` Lm
˘´1

˙

ˆ

„ l
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ λR
`

x´ ia, y ´ ib
˘

˙

ˆ

k´l
ź

j“1

ˆ

c4
ź

x0ăxmăx´pl`j´1qa

`

1` Lm
˘

´ λR
`

x´ pl ` jqa, y ´ lb
˘

˙´1

ą 1,

if l ą k ą 0,
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(35) inf
λPER,x≥X0,y≥Y0

cl´k3
ś

k

i“1

ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1` Lm
˘´1

˙

ˆ

„ k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ λR
`

x´ ia, y ´ ib
˘

˙

ˆ

l´k
ź

j“1

ˆ

c4
ź

x0ăxmăx´pk´1qa

`

1` Lm
˘

´ λR
`

x´ ka, y ´ pk ` jqb
˘

˙´1

ą 1

and if k “ l ą 0,

(36) inf
λPER,x≥X0,y≥Y0

1

λ

k
ź

i“1

ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1` Lm
˘´1

˙

ˆ

„ k
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ λR
`

x´ ia, y ´ ib
˘

˙´1

ą 1.

Then every solution of (1)–(2) is oscillatory.

Proof. Assume that upx, yq is an eventually positive solution of (1)–(2).
From Lemma 1, there exists an eventually positive solution ωpx, yq of (4).
Then we have

(37) c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq

´ c4
ź

x0ăxmăx`a

`

1` Lm
˘

ωpx, yq `Rpx, yqωpx´ ka, y ´ lbq ≤ 0,

eventually. Set

SRpλq “

"

λ ą 0 : c1ωpx` a, y ` bq ` c2ωpx` a, yq ` c3ωpx, y ` bq

´

ˆ

c4
ź

x0ăxmăx`a

`

1` Lm
˘

´Rpx, yq

˙

ωpx, yq ≤ 0, eventually
*

.

It is easy to prove that SRpλq Ă ER, SR is nonempty and ER is bounded.
Let µ P SRpλq. Noting that Bω

Bx ă 0 and Bω
By ă 0, eventually, we have

ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx`a

`

1` Lm
˘´1

˙

ωpx, yq

≤
`

c4
ź

x0ăxmăx

`

1` Lm
˘

´ µRpx´ a, y ´ bq
˘

ωpx´ a, y ´ bq,

for k ą l ą 0,
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(38) ωpx, yq ≤
l
ź

i“1

ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1` Lm
˘´1

˙´1

ˆ

l
ź

i“1

`

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ µRpx´ ia, y ´ ibq
˘

ωpx´ la, y ´ lbq

and

(39) ωpx´ la, y ´ lbq ≤

1

ck´l2

k´l
ź

j“1

„

c4
ź

x0ăxmăx´pl`j´1qa

`

1`Lm
˘

´µRpx´pl`jqa, y´lbq



ωpx´ka, y´lbq.

From (37) and (39), we obtain

c1ωpx`a, y`bq`c2ωpx`a, yq`c3ωpx, y`bq´c4
ź

x0ăxmăx`a

`

1`Lm
˘

ωpx, yq

` ck´l2

l
ź

i“1

ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1` Lm
˘´1

˙

ˆ

„

sup
x≥X0,y≥Y0

l
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ µRpx´ ia, y ´ ibq

˙

ˆ

k´l
ź

j“1

ˆ

c4
ź

x0ăxmăx´pl`j´1qa

`

1` Lm
˘

´ µRpx´ pl ` jqa, y ´ lbq

˙´1

ˆRpx, yqωpx, yq ≤ 0.

Hence,

ck´l2

l
ź

i“1

ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1` Lm
˘´1

˙

ˆ

„

sup
x≥X0,y≥Y0

l
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ µRpx´ ia, y ´ ibq

˙

ˆ

k´l
ź

j“1

ˆ

c4
ź

x0ăxmăx´pl`j´1qa

`

1` Lm
˘

´ µRpx´ pl ` jqa, y ´ lbq

˙´1

“ λ0 P SRpλq.

On the other hand, from (34) there exists an α1 P p1,8q such that
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inf
λPER,x≥X0,y≥Y0

ck´l2

λ

l
ź

i“1

ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1` Lm
˘´1

˙

ˆ

„ l
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ λRpx´ ia, y ´ ibq

˙

ˆ

k´l
ź

j“1

ˆ

c4
ź

x0ăxmăx´pl`j´1qa

`

1` Lm
˘

´ λRpx´ pl ` jqa, y ´ lbq

˙´1

≥ α1 ą 1.

Hence, for λ “ µ

λ0 “ ck´l2

l
ź

i“1

ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1` Lm
˘´1

˙

ˆ

„ l
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1` Lm
˘

´ µRpx´ ia, y ´ ibq

˙

ˆ

k´l
ź

j“1

ˆ

c4
ź

x0ăxmăx´pl`j´1qa

`

1` Lm
˘

´ µRpx´ pl ` jqa, y ´ lbq

˙´1

≥ µα1 P SRpλq.

Repeating the above arguments with µ replaced by µα1, we get µα1α2 P

SRpλq, where α2 P p1,8q. Continuing in this way, we have µ
ś8
i“1 αi P

SRpλq, where αi P p1,8q. This implies that SRpλq is unbounded. This
contradicts the boundness of SRpλq. The proof is complete.

Corollary 3. Assume that if k ą l ą 0,

(40) lim inf
x,yÑ8

Rpx, yq “ r ą pc4Lq
k`1cl´k2

ˆ

c1 `
2c2c3
c4L

˙´l kk

pk ` 1qk`1
,

if l ą k ą 0,

(41) lim inf
x,yÑ8

Rpx, yq “ r ą pc4Lq
l`1ck´l3

ˆ

c1 `
2c2c3
c4L

˙´k ll

pl ` 1ql`1
,

and if k “ l ą 0,

(42) lim inf
x,yÑ8

Rpx, yq “ r ą pc4Lq
k`1

ˆ

c1 `
2c2c3
c4L

˙´k kk

pk ` 1qk`1
,

where L “
ś8
m“1p1` Lmq. Then every solution of (1)–(2) is oscillatory.



Oscillation for certain impulsive partial difference equations 101

Proof. For k ą l ą 0, from (40), we have

inf
λPER,x≥X0,y≥Y0

ck´l2

λ

l
ź

i“1

ˆ

c1 `
2c2c3
c4

ź

x0ăxmăx´pi´2qa

`

1` Lm
˘´1

˙

ˆ

„ l
ź

i“1

ˆ

c4
ź

x0ăxmăx´pi´1qa

`

1`Lm
˘

´λR
`

x´ ia, y´ ib
˘

˙

ˆ

k´l
ź

j“1

ˆ

c4
ź

x0ăxmăx´pl`j´1qa

`

1`Lm
˘

´λR
`

x´pl` jqa, y´ lb
˘

˙´1

≥ inf
λPER,x≥X0,y≥Y0

ck´l2

ˆ

c1`
2c2c3
c4L

˙l

λpc4L´λrqk
“ r

ck´l2
`

c4L
˘k`1

ˆ

c1`
2c2c3
c4L

˙l
pk` 1qk`1

kk

ą 1.

Thus (34) is fulfilled. Similarly, if (41) and (42) hold, (35) and (36) are
fulfilled, respectively. Hence by Theorem 4, every solution of (1)–(2) is
oscillatory.
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