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UNIFORMLY CONTINUOUS SUPERPOSITION OPERATORS
IN THE SPACE OF FUNCTIONS

OF BOUNDED n-DIMENSIONAL Φ-VARIATION

Abstract. We prove that if a superposition operator maps a subset of the space of all
metric-vector-space-valued-functions of bounded n-dimensional Φ-variation into another
such space, and is uniformly continuous, then the generating function of the operator is an
affine function in the functional variable.

1. Introduction
Given two (non-empty) sets A and B, the notation BA will stand for the

set of all functions from A to B. As usual, if M,N are linear spaces, the
notation LpM,Nq stands for the set of all linear maps from M to N.

Let A, B and C be non-empty sets. If h : AˆC Ñ B is a given function,
X Ă CA and Y Ă BA are linear spaces then the nonlinear superposition
(Nemytskij) operator H : X Ñ Y , generated by the function h, is defined as

pHfqptq :“ hpt, fptqq, t P A.

This operator plays a central role in various mathematical fields, e.g. in
the theory of nonlinear integral equations, and has been studied thoroughly.
Perhaps, the most important problem concerning the theory of the superposi-
tion operator is to establish necessary and sufficient conditions guaranteeing
that this operator maps a given function space into itself. These conditions
are called acting conditions (e.g., (non-linear) boundedness, continuity, lo-
cal or global Lipschitz conditions, etc.). On the other hand, superposition
operators being the simplest operators between function spaces, another im-
portant problem is to determine if a certain given operator, that acts between
some given function spaces, can be redefined via the notion of superposition,
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thus, e.g., it has been established that for some function spaces, any locally
defined operator is a Nemytskij operator (cf. [12], [13] and [8]). We refer the
reader to the celebrated book [1], by J. Appell and P. P. Zabrejko, in which
most of the basic facts and results concerning superposition operators are
exposed.

Throughout this paper, the letter n denotes a positive integer. Let a “
pa1, a2, . . . , anq and b “ pb1, b2, . . . , bnq be points in Rn. We will use the
notation a ă b to mean that ai ă bi for each i “ 1, . . . , n and accordingly
we define a “ b, a ≤ b, a ≥ b and a ą b. If a ă b, the set J :“ ra,bs “
n
ś

i“1
rai, bis will be called an n-dimensional closed interval.

Given an n-dimensional closed interval J, a metric vector space M and
a ϕ-function Φ, we will denote by BRV n

Φ pJ;Mq the normed space of all
functions of n-dimensional bounded Φ-variation on J . Suppose that N
is another linear metric space, C is a convex subset of M , Ψ is another
ϕ-function and h : Jˆ C Ñ N is a given function.

In this paper, we prove that if the superposition operator H, generated
by h, maps the set RC “ tf P BRV n

Φ pJ;Mq : fpJq Ă Cqu into BRV n
Ψ pJ;Nq

and is uniformly continuous1 then there is a linear operator A : M Ñ N and
a function B P NJ such that

hpx, yq “ Apxqy `Bpxq, x P J, y P C.

2. Functions of bounded n-dimensional Φ-variation
In this section, we present the definition and main basic aspects of the

notion of n-dimensional Φ-variation for functions defined on rectangles of Rn
that take values on a metric semigroup (cf. also [2, 3]).

Definition 2.1. Ametric semigroup is a structure pM,d,`q where pM,`q
is an abelian semigroup and d is a translation invariant metric on M .

In particular, the triangle inequality implies that, for all u, v, p, q PM ,

dpu, vq ≤ dpp, qq ` dpu` p, v ` qq, and
dpu` p, v ` qq ≤ dpu, vq ` dpp, qq.(2.1)

Following [2, 10], in this paper we use the following notations:
N (resp. N0) denotes the set of all positive integers (resp. non-negative

integers) and, if n P N, a typical point in Rn is denoted as x “ px1, x2, . . . , xnq
:“ pxiq

n
i“1; however, the canonical unit vectors of Rn are denoted by ej; that

1That is, given ε ą 0 there is δ ą 0 such that }Hpfq ´ Hpgq}BRV n
Ψ pJ;Nq ă ε, for all

f, g P RC such that }f ´ g}BRV n
Φ pJ;Mq ă δ.
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is, ej :“ pe
pjq
r q

n
r“1 where,

ejr :“

#

0, if r ‰ j,

1, if r “ j,
pj “ 1, 2, . . . , nq.

The zero n-tuple p0, 0, . . . , 0q is denoted by 0, and by 1 we mean the
n-tuple 1 “ p1, 1, . . . , 1q.

If α “ pα1, α2, . . . , αnq, with αj P N0, is a n-tuple of non-negative integers
then we call α a multi-index.

The euclidean volume of an n-dimensional closed interval ra,bs “
n
ś

i“1
rai, bis will be denoted by Vol ra,bs; that is, Vol ra,bs “

n
ś

i“1
pbi ´ aiq.

In addition, for α “ pα1, α2, . . . , αnq P Nn0 andx “ px1, x2, . . . , xnq P Rn,
we will use the notations

|α| :“ α1 ` α2 ` ¨ ¨ ¨ ` αn and αx :“ pα1x1, α2x2, . . . , αnxnq.

We will denote by N the set of all strictly increasing continuous convex
functions Φ : r0,`8q Ñ r0,`8q such that Φptq “ 0 if and only if t “ 0 and
lim
tÑ8

Φptq “ `8.
Also, N8 will denote the set of all functions Φ P N , for which the Orlicz

condition (also called 81 condition) holds: lim
tÑ8

Φptq

t
“ `8.

Functions from N are often called ϕ-functions.
One says that a function Φ P N satisfies a condition ∆2, and writes

Φ P ∆2, if there are constants K ą 0 and t0 ą 0 such that

Φp2tq ≤ KΦptq, for all t ≥ t0.(2.2)

Notice that these sets are related in a one to one fashion; indeed, if
θ “ pθ1, . . . , θnq P Epnq then we can define rθ :“ p1 ´ θ1, θ2, . . . , θnq P Opnq,
and this operation is clearly invertible.

In what follows, M is supposed to be a metric semigroup and ra,bs an
n-dimensional closed interval.

Definition 2.2. [2, 5, 11] Given a function f : ra,bs ÑM , we define the
n-dimensional Vitali difference of f over an n-dimensional interval rx,ys Ď
ra,bs, by

(2.3) ∆npf, rx,ysq :“ d
´

ÿ

θPEpnq
fpθx` p1´ θqyq,

ÿ

θPOpnq
fpθx` p1´ θqyq

¯

,

where

Epnq :“ tθ P Nn0 : θ ≤ 1 and |θ| is even u,
Opnq :“ tθ P Nn0 : θ ≤ 1 and |θ| is oddu.
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This difference is usually associated to the names of Vitali, Lebesgue,
Hardy, Krause, Fréchet and De la Vallée Poussin ([5, 4, 6]).

Now, in order to define the Φ-variation of a function f : ra,bs ÑM , we
consider net partitions of ra,bs; that is, partitions of the kind

ξ “ ξ1 ˆ ξ2 ˆ ¨ ¨ ¨ ˆ ξn with ξi :“ tt
piq
j u

ki
j“0, i “ 1, . . . , n,(2.4)

where tkiuni“1 Ă N and for each i, ξi is a partition of rai, bis. The set of all
net partitions of an interval ra,bs will be denoted by πpra,bsq.

A point in a net partition ξ is called a node and it is of the form

tα :“ ptp1qα1
, tp2qα2

, tp3qα3
, . . . , tpnqαn q,

where 0 ≤ α “ pαi q
n
i“1 ≤ κ, with κ :“ pkiq

n
i“1.

For the sake of simplicity in notation, we will simply write ξ “ ttαu, to
refer to all the nodes that form a given partition ξ.

A cell of an n-dimensional interval ra,bs is an n-dimensional subinterval
of the form rtα´1, tαs, for 0 ă α ≤ κ.

Note that

t0 “ pt
p1q
0 , t

p2q
0 , . . . , t

pnq
0 q “ pa1, a2, . . . , anq and

tκ “ pt
p1q
k1
, t
p2q
k2
, . . . , t

pnq
kn
q “ pb1, b2, . . . , bnq.

Definition 2.3. Let f : ra,bs ÑM and Φ P N . The Φ-variation, in the
sense of Vitali-Riesz of f is defined as

ρnΦpf, ra,bsq :“ sup
ξPπra,bs

ρnΦpf, ra,bs, ξq,(2.5)

where

ρnΦpf, ra,bs, ξq :“
ÿ

1≤α≤κ
Φ

ˆ

∆n pf, rtα´1, tαsq

Vol rtα´1, tαs

˙

Vol rtα´1, tαs.

Now, just as in [2], we need to define the truncation of a point (an interval
or a function) by a given multi-index 0 ă η ≤ 1. Notice that in this case,
the entries of such η are either 0 or 1.

• The truncation of a point x P Rn by a multi-index 0 ă η ≤ 1, which is
denoted by xbη, is defined as the |η|-tuple that is obtained if we suppress
from x the entries for which the corresponding entries of η are equal to
0. That is, xbη “ pxi : i P t1, 2, . . . , nu, ηi “ 1q. For instance, if x “
px1, x2, x3, x4, x5q and η “ p0, 1, 1, 0, 1q then xbη “ px2, x3, x5q.
• The truncation of an n-dimensional interval ra,bs by a multi-index 0 ă
η ≤ 1 is defined as ra,bsbη :“ rabη,bbηs.
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• Given a function f : ra,bs Ñ M , a multi-index 0 ă η ≤ 1 and a point
z P ra,bs, we define fzη : ra,bsbη Ñ M , the truncation of f by η, by the
formula

fzη pxbηq :“ fpηx` p1´ ηqzq, x P ra,bs.

Note that the function fzη depends only on the |η| variables xi for which
ηi “ 1.

Remark 2.4. Given a function f : ra,bs Ñ M and a multi-index η ‰ 0,
the |η|-dimensional Vitali difference for faη (cf. (2.3)) is given by

∆|η|pf
a
η , rx,ysq :“ d

´

ÿ

θPEpnq
θ≤η

f pηpθx` p1´ θqyq ` p1´ ηqaq ,

ÿ

θPOpnq
θ≤η

fpηpθx` p1´ θqyq ` p1´ ηqaq
¯

.

Definition 2.5. Let Φ P N and let pM,d,`, ¨q be a metric semigroup.
A function f : ra,bs ÑM is said to be of bounded Φ-variation in the sense
of Vitali–Hardy–Riesz, if the total Φ-variation

TRVΦpf, ra,bsq :“
ÿ

0‰η≤1
ρ
|η|
Φ pf

a
η , ra,bsbηq(2.6)

is finite. The set of all functions f that satisfy TRVΦpf, ra,bsq ă `8 will
be denoted by RV n

Φ pra,bs;Mq.

3. The normed space BRV n
Φ pra,bs;Mq

So far, our choice of metric semigroups as range sets, for functions de-
fined on Rn, suffices adequately to define a notion of n-dimensional variation;
however, as we need to study a superposition operator problem between lin-
ear normed spaces in which the presence of this notion is desired, it will be
necessary to ask for additional structure on the range set M . The one that
we will considerate is that of vectorial metric space.

Definition 3.1. By a metric vector space (MVS) we will understand a
topological vector space pM, τq in which the topology τ is induced as a
metric d that satisfies the following conditions:

(1) d is a translation invariant metric.
(2) dpαa, αbq “ |α| dpa, bq, for any α P R and a, b PM.

Note that any MVS is, in particular, a metric semigroup. In what follows,
M is supposed to be an MVS and ra,bs – an n-dimensional closed interval.
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Remark 3.2. It readily follows from 2.1 that, given two functions f, g :
ra,bs Ñ M , a multi-index η ‰ 0 and an n-dimensional interval rx,ys Ă
ra,bs, the |η|-dimensional Vitali difference (c.f. (2.3)) of the truncation pf `
gqaη (“ faη ` g

a
η ) satisfies the inequality

∆|η|

`

pf ` gqaη , rx,ys
˘

≤ ∆|η|

`

faη , rx,ys
˘

`∆|η|

`

gaη , rx,ys
˘

.(3.1)

Lemma 3.3. The functional TRVΦp¨, ra,bsq is convex.

Proof. The lemma is a consequence of (3.1) and of the fact that Φ is a non
decreasing convex function.

Theorem 3.4. The class RV n
Φ pra,bs;Mq is symmetric and convex.

Proof. That RV n
Φ pra,bs;Mq is symmetric is a consequence of property (2)

(since dp´a,´bq ≤ dpa, bq) of Definition 3.1 while convexity follows from
Lemma 3.3.

As a consequence of Theorem 3.4, the linear space generated by
RV n

Φ pra,bs;Mq is the set

tf : ra,bs ÑM : λf P RV n
Φ pra,bs;Mq for someλ ą 0u ,

which we will call the space of functions of bounded Φ-variation in the sense
of Vitali–Hardy–Riesz and will denote as BRV n

Φ pra,bs;Mq.

Lemma 3.5. The set

Λ :“ tf P BRV n
Φ pra,bs;Mq { TRVΦpf, ra,bsq ≤ 1u

is a convex, balanced and absorbent subset of BRV n
Φ pra,bs;Mq.

Proof. To prove convexity suppose that f, g P Λ and let α, β be non-
negative real numbers such that α ` β “ 1. Then TRVΦpf, ra,bsq ≤ 1,
TRVΦpg, ra,bsq ≤ 1 and by Lemma 3.3

TRVΦpαf ` βg, ra,bsq ≤ αTRVΦpf, ra,bsq ` βTRVΦpg, ra,bsq

≤ α` β “ 1.

Hence Λ is convex.
On the other hand, from Definition 2.3 it readily follows that if f0 ” 0

then TRVΦpf0, ra,bsq “ 0, thus f0 P Λ and therefore, by virtue of the
convexity property of Λ just proved, Λ is balanced. Finally, the fact that
Λ is absorbent follows from property (2) of Definition 3.1 and the convexity
of Φ.

By virtue of 3.5, the Minkowski Functional of Λ

pΛpfq :“ inf

"

t ą 0 : TRVΦ

ˆ

f

t
, ra,bs

˙

≤ 1

*

,
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defines a seminorm on BRV n
Φ pra,bs;Mq, and therefore

}f} :“ }f}BRV nΦ pra,bs;Mq :“ dpfpaq, 0q ` pΛpfq(3.2)

defines a norm on BRV n
Φ pra,bs;Mq.

Lemma 3.6. Let f P BRV n
Φ pra,bs;Mq,

(i) if }f} ‰ 0 then TRVΦpf{}f}, ra,bsq ≤ 1;
(ii) if 0 ‰ }f} ≤ 1 then TRVΦpf, ra,bsq ≤ }f}.

Proof. (i) From Definition 3.2 pΛpfq ≤ }f}.
If pΛpfq ă }f} then there is ξ P Λ such that pΛpfq ă ξ ≤ }f} and

TRVΦ

ˆ

f

ξ
, ra,bs

˙

≤ 1. The convexity of Λ implies then that
f

}f}
P Λ.

If pΛpfq “ }f} then there is a sequence tn P Λ such that

tn Ñ }f} and TRVΦ

ˆ

f

tn
, ra,bs

˙

≤ 1.

It follows, by continuity, that

TRVΦ

ˆ

f

}f}
, ra,bs

˙

≤ 1.

(ii) Follows from (i) and the convexity of TRVΦp¨, ra,bsq.

Remark 3.7. Recall that if Φ is any ϕ-function then

lim
rÑ0`

rΦ´1pc{rq “ 0, @ c P r0,`8q.(3.3)

4. Main result
In this section, we state and prove the main result of this paper concern-

ing the action of a superposition operator between spaces of functions of
bounded n-dimensional Φ-variation. Since we are going to deal with differ-
ent ϕ-functions, and for the sake of clarity of exposition, we will denote the
norm of BRV n

Φ pra,bs;Mq by } ¨ }pΦ,Mq.

Theorem 4.1. Suppose that ra,bs Ď Rn is an n-dimensional inter-
val, Φ and Ψ P N , M and N are MVS and C is a convex and closed
subset of M . If a composition operator H, generated by the function
h : ra,bs ˆ C Ñ N which is continuous in the first variable, maps the
set tf P BRV n

Φ pra,bs;Mq : fpra,bsq Ă Cqu into BRV n
Ψ pra,bs;Nq and is uni-

formly continuous then there are functions A P LpM,Nq and B : ra,bs Ñ N
such that

(4.1) hpt, uq “ Aptqu`Bptq, t P ra,bs, u P C.
In addition, if 0 P C then B P BRV n

Ψ pra,bs;Nq.
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Proof. Since H is uniformly continuous, given ε ą 0 there is δ ą 0 such
that }Hpf1q ´ Hpf2q}Ψ ≤ ε whenever f1, f2 P tf P BRV n

Φ pra,bs;Mq :
fpra,bsq Ă Cqu satisfy }f1 ´ f2}Φ ≤ δ.

It follows that the modulus of continuity of H:

ωppq :“ sup t}Hpf1q ´Hpf2q}Ψ : }f1 ´ f2}Φ ≤ pu pp ą 0q

is well defined, continuous at zero, ωp0q “ 0 and

}Hf1 ´Hf2}Ψ ≤ ωp}f1 ´ f2}Φq.(4.2)

From inequality (4.2) and (3.6) we get:

(4.3) ρnΦ

ˆ

Hpf1q ´Hpf2q

ωp}f1 ´ f2}Φq
, ra,bs

˙

≤ TRVΦ

ˆ

Hpf1q ´Hpf2q

ωp}f1 ´ f2}Φq
, ra,bs

˙

≤ TRVΦ

ˆ

Hpf1q ´Hpf2q

}Hf1 ´Hf2}Ψ

}Hf1 ´Hf2}Ψ

ωp}f1 ´ f2}Φq
, ra,bs

˙

≤ }Hf1 ´Hf2}Ψ

ωp}f1 ´ f2}Φq
TRVΦ

ˆ

Hpf1q ´Hpf2q

}Hf1 ´Hf2}Ψ
, ra,bs

˙

≤ 1.

Thus

1 ≥ ρnΦ
ˆ

Hpf1q ´Hpf2q

ωp}f1 ´ f2}Φq
, ra,bs

˙

≥ Φ

¨

˚

˚

˝

∆n

ˆ

Hpf1q ´Hpf2q, rt1, t2s

ωp}f1 ´ f2}Φq

˙

Vol rt1, t2s

˛

‹

‹

‚

Vol rt1, t2s,

which implies

Φ´1

ˆ

1

Vol rt1, t2s

˙

Vol rt1, t2s ≥ ∆n

ˆ

Hpf1q ´Hpf2q, rt1, t2s

ωp}f1 ´ f2}Φq

˙

and

(4.4) ∆n pHpf1q ´Hpf2q, rt1, t2sq

≤ Φ´1

ˆ

1

Vol rt1, t2s

˙

Vol rt1, t2sωp}f1 ´ f2}Φq.

To prove that h is continuous in the second variable, we proceed as follows:
let y and ry be two points in C and define

f1pxq :“ y and f2pxq :“ ry, x P ra,bs.

Then, f1, f2 P tf P BRV
n

Φ pra,bs;Mq : fpra,bsq Ă Cqu and

}f1 ´ f2}Φ “ dppf1 ´ f2qpaq, 0q ` pΦpf1 ´ f2q “ dpy ´ ry, 0q.
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Set T :“ Hpf1q ´Hpf2q. Then, for x P ra,bs, we have

(4.5) dphpx, yq ´ hpx, ryq, 0q “ dpHf1pxq ´Hf2pxq, 0q “ dpT pxq, 0q

≤ ∆n pT, ra,xsq ` n
ÿ

0ăθă1

∆|θ| pT
a
θ , ra,xsbθq ` }T paq}.

Since (4.4) holds for any t1, t2 P ra,bs, in particular it holds for t1 “ a
and t2 “ x, hence from (4.5), we get the inequality

(4.6) dphpx, yq ´ hpx, ryq, 0q

≤ n∆n pT, ra,xsq`n
ÿ

0ăθă1

∆|θ| pT
a
θ , ra,xsbθq`dpT paq, 0q

≤ n
ÿ

0ăθ≤1
ωp}f1´f2}ΦqΦ

´1

ˆ

1

Vol ra,xsbθ

˙

Vol ra,xsbθ`dppHf1´Hf2qpaq, 0q

≤ n
ÿ

0ăθ≤1
ωp}f1´f2}ΦqΦ

´1

ˆ

1

Vol ra,xsbθ

˙

Vol ra,xsbθ`}pHf1´Hf2q}Ψ

≤ n
ÿ

0ăθ≤1
ωp}f1´f2}ΦqΦ

´1

ˆ

1

Vol ra,xsbθ

˙

Vol ra,xsbθ`ωp}f1´f2}Φq

“

#

n
ÿ

0ăθ≤1
Φ´1

ˆ

1

Vol ra,xsbθ

˙

Vol ra,xsbθ`1

+

ωp}f1´f2}Φq

“

#

n
ÿ

0ăθ≤1
Φ´1

ˆ

1

Vol ra,xsbθ

˙

Vol ra,xsbθ`1

+

ωp}y´ry}M q.

Consequently, as y Ñ ry the limit of the right hand side of (4.6) is zero
which proves the continuity of h in the second variable.

Now we will show that h satisfies the Jensen equation in the second
variable.

Indeed, let t1 “ pt
piq
1 q

n
i“1 and t2 “ pt

piq
2 q

n
i“1 P ra,bs, suppose further that

t1 ≤ t2, and define the functions

ηiptq :“

$

’

’

’

’

&

’

’

’

’

%

0, if ai ≤ t ≤ tpiq1 ,

t´ t
piq
1

t
piq
2 ´ t

piq
1

, if tpiq1 ≤ t ≤ t
piq
2 ,

1, if tpiq2 ≤ t ≤ bi.
Next, consider y1,y2 P C, y1 ‰ y2 and define

fjpxq :“
1

2

”

n
ź

i“1

ηipxiqpy1 ´ y2q ` yj ` y2

ı

,(4.7)

for j “ 1, 2, where x :“ px1, x2, . . . , xnq.
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Notice that

f1pxq ´ f2pxq

“
1

2

”

n
ź

i“1

ηpxiqpy1 ´ y2q ` y1 ` y2 ´

n
ź

i“1

ηpxiqpy1 ´ y2q ´ y2 ´ y2

ı

“
y1 ´ y2

2
.

Hence f1 ´ f2 has zero Φ-variation and

}f1 ´ f2}pΦ,Mq “ dppf1 ´ f2qpaq, 0q ` pϕpf1 ´ f2q

“ dppf1 ´ f2qpaq, 0q “ d

ˆ

y1 ´ y2

2
, 0

˙

“ d

ˆ

y1

2
,
y2

2

˙

ą 0.

Notice then that

• If x “ tα where αi “ 2, for i “ 1, 2, . . . , n then

n
ź

i“1

ηptpiqαi q “
n
ź

i“1

t
piq
αi ´ t

piq
1

t
piq
2 ´ t

piq
1

“ 1.

• If x “ tα with αi ‰ 2, for some 1 ≤ i ≤ n then

n
ź

i“1

ηptpiqαi q “
n
ź

i“1

t
piq
αi ´ t

piq
1

t
piq
2 ´ t

piq
1

“ 0.

Thus, by (4.7)

• If αi “ 2, for i “ 1, 2, . . . , n then

f1ptαq :“
1

2

”

n
ź

i“1

ηptpiqαi qpy1 ´ y2q ` y1 ` y2

ı

“ y1, and

f2ptαq :“
1

2

”

n
ź

i“1

ηptpiqαi qpy1 ´ y2q ` y2 ` y2

ıy1 ` y2

2
.

• If αk ‰ 2, for some 1 ≤ k ≤ n then

f1ptαq :“
1

2
ry1 ` y2s “

y1 ` y2

2
,

f2ptαq :“ y2.
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Thus, by the definition of H, we have

Hf1pt2q “ hpt2, f1pt2qq “ hpt2,y1q,

Hf2pt2q “ hpt2, f2pt2qq “ h

ˆ

t2,
y1 ` y2

2

˙

,

Hf1pt1q “ hpt1, f1pt1qq “ h

ˆ

t1,
y1 ` y2

2

˙

,

Hf2pt1q “ hpt1, f2pt1qq “ hpt1,y2q,

and, if θ is a non-zero multi-index different from 1

Hf1pθ t1 ` p1´ θqt2q “ h

ˆ

θ t1 ` p1´ θqt2,
y1 ` y2

2

˙

,

Hf2pθ t1 ` p1´ θqt2q “ hpθt1 ` p1´ θqt2,y2q.

Letting t2 Ñ t1 on the left hand side of (4.4), we get

(4.8) lim
t2Ñt1

d
´

ÿ

θ≤1

p´1q|θ| pHpf1q ´Hpf2qqpθ t1 ` p1´ θqt2q, 0
¯

“ d
´

hpt1,y1q´h

ˆ

t1,
y1`y2

2

˙

` lim
t2Ñt1

ÿ

θ≤1
θ‰1

p´1q|θ| pHpf1q´Hpf2qqpθ t1`p1´θqt2q, 0
¯

“ d

ˆ

hpt1,y1q´h

ˆ

t1,
y1`y2

2

˙

` lim
t2Ñt1

ÿ

θ≤1
θ‰1

p´1q|θ|
„

h

ˆ

θ t1`p1´θqt2,
y1`y2

2

˙

´hpθ t1`p1´θqt2,y2q



, 0

˙

which, by continuity of h in the first variable, is equal to

“ d

ˆ

hpt1,y1q´h

ˆ

t1,
y1`y2

2

˙

`
ÿ

θ≤1
θ‰1

p´1q|θ|
„

h

ˆ

θt1`p1´θqt1,
y1`y2

2

˙

´hpθt1`p1´θqt1,y2q



,0

˙

“ d

ˆ

hpt1,y1q´h

ˆ

t1,
y1`y2

2

˙

`
ÿ

θ≤1
θ‰1

p´1q|θ|
„

h

ˆ

t1,
y1`y2

2

˙

´hpt1,y2q



,0

˙

.

Now, for 1 ≤ k ≤ n, the number of n-tuples with k entries equal to 1, is

equal to
`

n
k

˘

“
n!

pn´ kq! k!
, thus
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ÿ

θ≤1
θ‰0

p´1q|θ|
„

h

ˆ

t1,
y1 ` y2

2

˙

´ hpt1,y2q



“

„

h

ˆ

t1,
y1 ` y2

2

˙

´ hpt1,y2q

 n
ÿ

k“1

p´1qk
ˆ

n

k

˙

“

„

h

ˆ

t1,
y1 ` y2

2

˙

´ hpt1,y2q

" n
ÿ

k“0

p´1qk
ˆ

n

k

˙

´

ˆ

n

0

˙*

“

„

h

ˆ

t1,
y1 ` y2

2

˙

´ hpt1,y2q

"

p´1` 1qn ´

ˆ

n

0

˙*

“

„

h

ˆ

t1,
y1 ` y2

2

˙

´ hpt1,y2q



t´1u .

Hence, from this identity and (4.8), we get

(4.9) lim
t2Ñt1

d
´

ÿ

θ≤1
p´1q|θ| pHpf1q ´Hpf2qqpθ t1 ` p1´ θqt2q, 0

¯

“ d

ˆ

hpt1,y1q ´ h

ˆ

t1,
y1 ` y2

2

˙

`
ÿ

θ≤1
θ‰0

p´1q|θ|
„

h

ˆ

t1,
y1 ` y2

2

˙

´ hpt1,y2q



, 0

˙

“ d

ˆ

hpt1,y1q ´ h

ˆ

t1,
y1 ` y2

2

˙

´ h

ˆ

t1,
y1 ` y2

2

˙

` hpt1,y2q, 0

˙

.

On the other hand, property (3.3) implies that the limit as t2 Ñ t1 on
the right side of (4.4) is zero, therefore

d

ˆ

hpt1,y1q ´ h

ˆ

t1,
y1 ` y2

2

˙

´ h

ˆ

t1,
y1 ` y2

2

˙

` hpt1,y2q, 0

˙

“ 0

or equivalently
hpt1,y1q ` hpt1,y2q

2
“ h

ˆ

t1,
y1 ` y2

2

˙

.

Thus hpt1, ¨q is a solution for the Jensen equation in C for t1 P ra,bs.
Adapting a classical standard argument (c.f Kuczma [7], see also [9]), we

conclude that there exist Apt1q P LpM,Nq and B P N ra.bs such that

hpt1,yq “ Apt1qy`Bpt1q y P C.(4.10)

Finally, notice that if 0 P C then taking y “ 0 in (4.10), we have hpt,0q “
Bptq, for t P ra,bs, which implies that B P BRV n

Ψ pra,bs;Nq.

The authors would like to express their sincere gratitude to the referee of
the first version of this paper for a very careful reading of it and for all the
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