DE

G

DE GRUYTER
OPEN

DEMONSTRATIO MATHEMATICA
Vol. XLVII No 1 2014

Mireya Bracamonte, Jurancy Eret, José Giménez
and Nelson Merentes

UNIFORMLY CONTINUOUS SUPERPOSITION OPERATORS
IN THE SPACE OF FUNCTIONS
OF BOUNDED n-DIMENSIONAL ¢-VARIATION

Abstract. We prove that if a superposition operator maps a subset of the space of all
metric-vector-space-valued-functions of bounded n-dimensional ®-variation into another
such space, and is uniformly continuous, then the generating function of the operator is an
affine function in the functional variable.

1. Introduction

Given two (non-empty) sets A and B, the notation B4 will stand for the
set of all functions from A to B. As usual, if M, N are linear spaces, the
notation L(M, N) stands for the set of all linear maps from M to N.

Let A, B and C be non-empty sets. If h : A x C — B is a given function,
X c C* and Y c B4 are linear spaces then the nonlinear superposition
(Nemytskij) operator H : X — Y| generated by the function h, is defined as

(Hf)(t) := h(t, f(t)), te A

This operator plays a central role in various mathematical fields, e.g. in
the theory of nonlinear integral equations, and has been studied thoroughly.
Perhaps, the most important problem concerning the theory of the superposi-
tion operator is to establish necessary and sufficient conditions guaranteeing
that this operator maps a given function space into itself. These conditions
are called acting conditions (e.g., (non-linear) boundedness, continuity, lo-
cal or global Lipschitz conditions, etc.). On the other hand, superposition
operators being the simplest operators between function spaces, another im-
portant problem is to determine if a certain given operator, that acts between
some given function spaces, can be redefined via the notion of superposition,
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thus, e.g., it has been established that for some function spaces, any locally
defined operator is a Nemytskij operator (cf. [12], [I3] and [§]). We refer the
reader to the celebrated book [I], by J. Appell and P. P. Zabrejko, in which
most of the basic facts and results concerning superposition operators are
exposed.

Throughout this paper, the letter n denotes a positive integer. Let a =
(a1,a2,...,a,) and b = (by,b2,...,b,) be points in R™. We will use the
notation a < b to mean that a; < b; for each ¢« = 1,...,n and accordingly
we define a = b,a<b,a>Dband a>b. If a<b, the set J:=[a,b] =

[ 1[ai, b;] will be called an n-dimensional closed interval.

i=1

Given an n-dimensional closed interval J, a metric vector space M and
a p-function ®, we will denote by BRVy (J; M) the normed space of all
functions of n-dimensional bounded ®-variation on J . Suppose that N
is another linear metric space, C is a convex subset of M, V¥ is another
p-function and h: J x C — N is a given function.

In this paper, we prove that if the superposition operator H, generated
by h, maps the set Re = {f € BRVZ(J; M) : f(J) = C)} into BRVy(J; N)
and is uniformly continuoug! then there is a linear operator A : M — N and
a function B € N such that

h(x,y) = A(x)y + B(x), xelJ, yeC.

2. Functions of bounded n-dimensional ®-variation

In this section, we present the definition and main basic aspects of the
notion of n-dimensional ®-variation for functions defined on rectangles of R™
that take values on a metric semigroup (cf. also [2, 3]).

DEFINITION 2.1. A metric semigroup is a structure (M, d, +) where (M, +)
is an abelian semigroup and d is a translation invariant metric on M.

In particular, the triangle inequality implies that, for all u,v,p,q€ M,

d(u,v) <d(p,q) +d(u+p,v+¢q), and
(2.1) d(u+p,v+q) < d(u,v) + d(p, q).

Following |2} [10], in this paper we use the following notations:

N (resp. Ny) denotes the set of all positive integers (resp. non-negative
integers) and, if n € N, a typical point in R™ is denoted as x = (x1,x2,...,Zy)
:= (x;)~1; however, the canonical unit vectors of R" are denoted by e;j; that

'That is, given € > 0 there is § > 0 such that |H(f) — H(g)|srvp@;n) < € for all
f,g € Rec such that | f — gHBRvg(J;M) < 4.
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is, ej 1= (e(J))”

n_, where,

‘ 0. if ;
el = hr (j=1,2,...,n).
1, ifr=4j,

The zero n-tuple (0,0,...,0) is denoted by 0, and by 1 we mean the
n-tuple 1 = (1,1,...,1).

Ifa = (a1,09,...,a,), with a; € Ny, is a n-tuple of non-negative integers
then we call a a multi-indez.

The euclidean volume of an n-dimensional closed interval [a,b] =
n

[a;, b;] will be denoted by Vol [a,b]; that is, Vol [a,b] = [](b; — a;).
i=1 i=1
In addition, for a = (o, 0,...,ay) € Nfandx = (z1,22,...,2,) € R",
we will use the notations

3

la] i=a1 +as+ -+ ay and ax = (a1, 02X, .. ., ApTy).

We will denote by N the set of all strictly increasing continuous convex
functions @ : [0, +00) — [0, +00) such that ®(¢) = 0 if and only if ¢ = 0 and
tlim O(t) = +o0.

—00
Also, Ny will denote the set of all functions ® € A, for which the Orlicz

D(t
condition (also called o0; condition) holds: tlim i) = +00.
—00

Functions from A are often called p-functions.

One says that a function ® € N satisfies a condition Ay, and writes
® € Ao, if there are constants K > 0 and ¢ty > 0 such that
(2.2) O(2t) < K®(t), forall t>t.

Notice that these sets are related in a one to one fashion; indeed, if
0 = (61,...,0,) € E(n) then we can define 0 := (1 — 61,02,...,6,) € O(n),
and this operation is clearly invertible.

In what follows, M is supposed to be a metric semigroup and [a,b] an
n-dimensional closed interval.

DEFINITION 2.2. [2, [, 11| Given a function f : [a,b] — M, we define the
n-dimensional Vitali difference of f over an n-dimensional interval [x,y] <
[a, b], by

23)  AulfixyD)i=d( Y fOx+A—-0)y), Y fox+(1-0)y)),
0e€(n) 0eO(n)
where
En):={0eNj:0<1 and |f| is even },
O(n):={0eNj:0<1 and |0| is odd}.



Uniformly continuous superposition operators 59

This difference is usually associated to the names of Vitali, Lebesgue,
Hardy, Krause, Fréchet and De la Vallée Poussin (|5, [4] [6]).

Now, in order to define the ®-variation of a function f : [a,b] — M, we
consider net partitions of [a, b]; that is, partitions of the kind

(2.4) E=6 x % xEuwithé = {tMi=1,..n,

where {k;}!' ; < N and for each i, § is a partition of [a;, b;]. The set of all
net partitions of an interval [a, b] will be denoted by 7([a, b]).
A point in a net partition £ is called a node and it is of the form

tq (t(l) t(2) t(3) t(”))

a1 T2 Yzttt YO
where 0 < a = (o4 )?:1 < k, with & := (k;)]-;.
For the sake of simplicity in notation, we will simply write £ = {t,}, to
refer to all the nodes that form a given partition &.

A cell of an n-dimensional interval [a, b] is an n-dimensional subinterval
of the form [to—1,t4], for 0 < a < k.
Note that

tg = (tél),t((f), . ,t(()n)) = (a1,a9,...,a,) and
t = (65,02t = (b1, by By).

DEFINITION 2.3. Let f : [a,b] —» M and ® € N. The ®-variation, in the
sense of Vitali-Riesz of f is defined as

(2.5) pa(f,[a,b]) == sup pg(f,[a b],§),
&em[a,b]
where
7 a - (f’[ a-1,t ]) o
pq)(f:[ ab]aé) 1§§SH@< VOZ[ Lt ] ) Vl[ a—1,% ]

Now, just as in 2], we need to define the truncation of a point (an interval
or a function) by a given multi-index 0 < n < 1. Notice that in this case,
the entries of such n are either 0 or 1.

e The truncation of a point x € R™ by a multi-index 0 < n < 1, which is
denoted by x|n, is defined as the |n|-tuple that is obtained if we suppress
from x the entries for which the corresponding entries of 1 are equal to
0. That is, x|n = (x; : i € {1,2,...,n},m; = 1). For instance, if x =
(x1,x9,x3,24,25) and n = (0,1,1,0,1) then x|n = (z2, z3, 5).

e The truncation of an n-dimensional interval [a,b] by a multi-index 0 <
n < 1 is defined as [a,b]|n := [a|n, b|n].
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e Given a function f : [a,b] — M, a multi-index 0 < n < 1 and a point
€ [a, b], we define f7 : [a,b]|n — M, the truncation of f by n, by the
formula

fy(xln) == flrx + (1 —n)z), z¢€[ab].
Note that the function f7 depends only on the || variables x; for which
n; = 1.

REMARK 2.4. Given a function f : [a,b] — M and a multi-index n # 0,
the |n|-dimensional Vitali difference for f3 (cf. (2.3)) is given by

Ap(f, e yD) = d( Y FBx+ (1= 0)y) + (1 —n)a),
6e€(n)

>, SOr0x + (1= 0)y) + (1= n)a)).

0eO(n)
6<n
DEFINITION 2.5. Let ® € N and let (M,d,+,-) be a metric semigroup.
A function f : [a,b] — M is said to be of bounded ®-variation in the sense
of Vitali-Hardy—Riesz, if the total ®-variation

(2.6) TRVa(f.[a,b]):= Y. pil(f2 [ab][n)

0#n<1
is finite. The set of all functions f that satisfy TRVs(f, [a,b]) < +oo will
be denoted by RV{([a,b]; M).

3. The normed space BRVj([a,b]; M)

So far, our choice of metric semigroups as range sets, for functions de-
fined on R", suffices adequately to define a notion of n-dimensional variation;
however, as we need to study a superposition operator problem between lin-
ear normed spaces in which the presence of this notion is desired, it will be
necessary to ask for additional structure on the range set M. The one that
we will considerate is that of vectorial metric space.

DEFINITION 3.1. By a metric vector space (MVS) we will understand a
topological vector space (M, 7) in which the topology 7 is induced as a
metric d that satisfies the following conditions:

(1) d is a translation invariant metric.

(2) d(aa,ab) = |a|d(a,b), for any o € R and a,be M.

Note that any MVS is, in particular, a metric semigroup. In what follows,
M is supposed to be an MVS and [a, b] — an n-dimensional closed interval.
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REMARK 3.2. It readily follows from that, given two functions f,g :
[a,b] — M, a multi-index n # 0 and an n-dimensional interval [x,y] <
[a, b], the |n|-dimensional Vitali difference (c.f. (2.3)) of the truncation (f +
9)5 (= f3 + g5) satisfies the inequality

(3.1 Auy ((f +9)5 B y]) < Ay (£ 56 5]) + Ay (97, [x.5]) -
LEMMA 3.3. The functional TRVg(-,[a,b]) is conver.

Proof. The lemma is a consequence of (3.1)) and of the fact that ® is a non
decreasing convex function. m

THEOREM 3.4. The class RVg ([a, b]; M) is symmetric and conve.

Proof. That RVJ([a,b]; M) is symmetric is a consequence of property (2)
(since d(—a,—b) < d(a,b)) of Definition while convexity follows from
Lemma 3.3 w

As a consequence of Theorem the linear space generated by
RV ([a,b]; M) is the set

{f:[a,b] > M : \f e RVg([a,b]; M) for some A > 0},

which we will call the space of functions of bounded ®-variation in the sense

of Vitali-Hardy-Riesz and will denote as BRV{ ([a, b]; M).
LEMMA 3.5. The set

A:={f e BRVE([a,b}; M) / TRVa(f,[a,b]) < 1}
is a convez, balanced and absorbent subset of BRV{ ([a,b]; M).

Proof. To prove convexity suppose that f,g € A and let a, 3 be non-
negative real numbers such that a« + = 1. Then TRVs(f,[a,b]) < 1,
TRVs(g,[a,b]) <1 and by Lemma [3.3]

TRVy(af + Bg,[a,b]) < aTRVs(f,[a,b]) + BT RVs(g, [a, b])
<a+p=1
Hence A is convex.
On the other hand, from Definition [2.3] it readily follows that if fo = 0
then TRVs(fo,[a,b]) = 0, thus fo € A and therefore, by virtue of the
convexity property of A just proved, A is balanced. Finally, the fact that

A is absorbent follows from property (2) of Definition and the convexity
of . m

By virtue of 3.5 the Minkowski Functional of A

)it o= 0v7m (L) < 1)
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defines a seminorm on BRVJ ([a,b]; M), and therefore
(3.2) LI == £ IBRrVy (a b)) := d(f(a),0) + p,(f)
defines a norm on BRVg ([a,b]; M).

LEMMA 3.6. Let f € BRVZ([a,b]; M),

(i) if [f]l # 0 then TRVa(f/[f],[a,b]) < 1;
(if) & 0# [f] <1 then TRVy(f,[a,b]) <|f].

Proof. (i) From Definition 3.2 p, (f) < | f].-
If p,(f) < |f| then there is & € A such that p,(f) < & < |f| and

TRVs <J£, [a, b]) < 1. The convexity of A implies then that S € A.

I £1
If p,(f) = || f| then there is a sequence t,, € A such that

/ [a,b]) <1

57

tn, — |fll and TRV (

It follows, by continuity, that

e
v ([ ab) <1

(ii) Follows from (i) and the convexity of TRVg(-, [a,b]). =
REMARK 3.7. Recall that if ® is any (-function then
(3.3) lim 7® (c/r) =0, V ce [0, +m).

r—0+

4. Main result

In this section, we state and prove the main result of this paper concern-
ing the action of a superposition operator between spaces of functions of
bounded n-dimensional ®-variation. Since we are going to deal with differ-
ent o-functions, and for the sake of clarity of exposition, we will denote the
norm of BRVg ([a,b]; M) by || - (&)

THEOREM 4.1. Suppose that [a,b] < R" is an n-dimensional inter-
val, ® and ¥ € N, M and N are MVS and C is a convexr and closed
subset of M. If a composition operator H, generated by the function
h : [a,b] x C — N which is continuous in the first variable, maps the
set {f € BRVg([a,b]; M) : f([a,b]) = C)} into BRVy([a,b]; N) and is uni-
formly continuous then there are functions A€ L(M,N) and B : [a,b] > N
such that

(4.1) h(t,u) = A(t)u + B(t), te[a,b], weC.
In addition, if 0 € C then B € BRV([a,b]; N).
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Proof. Since H is uniformly continuous, given € > 0 there is § > 0 such
that [|H(f1) — H(f2)[lv < € whenever fi,fo € {f € BRVg(|a,b]; M) :

f([a,b]) = C)} satisfy [ f1 — falle <.
It follows that the modulus of continuity of H:

w(p) :=sup{|H(f1) —H(f2)[y : |/1 = fals <p} (p>0)

is well defined, continuous at zero, w(0) = 0 and
(42) IHf —Hfaolle <w(|fi — fole)
From inequality (4.2) and (3.6) we get:

L (H(7) — H(f)
(43) q’<w(|f1—f2<1>)’

<TRVs <

|H fi — Hfz|w
— w(|fi = folle)

H(f1) — H(f2)
b)) <iva (= e
H(f1) —H(f2) |Hfi —Hf2w (a b]>
|Hfi —Hfolw w(lfi — falle) "
H(f1) — H(f2)
|Hfi —Hfaw’

TRV ( [a, b]) <1

Thus
o (H(f1) — H(f2) a
e (w(llfl ~halo) 'L ’b]>
A, (H(fl) — H(f2), [t1, t2]
P

w(lfi = fole) >
Vol [tl,tg] Vol [t17t2]7

>

which implies

1 1 H(fl) _H(f2)7[t17t2]
¢ (voz [tl,t2]> Vollti to] = An ( (i = Folle) )

and

(4.4)  An (H(f1) — H(f2), [t1, t2])
1

<o —
- < Vol [tl, t2]

To prove that h is continuous in the second variable, we proceed as follows:
let y and 4 be two points in C and define

fix) =y and fo(x)i=7,  xe[ab].
Then, fi1, fo € {f € BRVg([a,b]; M) : f([a,b]) = C)} and
[f1 = felle = d((f1 = f2)(a),0) + pa(f1 — f2) = d(y — ¥,0).

) Vol [t1, ta]w (| f1 — folle)-
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Set T := H(f1) — H(f2). Then, for x € [a, b], we have
(45) d(h(X, y) - h(X7 g)v 0) = d(Hfl (X> - Hf?(x>7 0) = d(T(X)7 0)
<A (T [ax]) +n Y Ap (T3, [a,x][0) + [T(a)].
0<6<1

Since (4.4) holds for any t1,t2 € [a, b], in particular it holds for t; = a
and to = x, hence from (4.5), we get the inequality
< nA, (T7 [av X])—I—TL Z A\9| (Tb?v [av X] |.9)+d(T(a>7 0)

0<6<1

1
sn fi=f — | Vol|a,x||0+d(Hf1—Hf>)(a),0
3 wllfi-flo)e oty Vo XA A B @).0

| A

0§0<1 (1= olo)® (vz[ix]@ Vol [a, x] [0+ (HLfi—Hf2) v

1
=n w(|fi—foll )@ ' [ ————— ) Vol [a, x][0+w(] f1—fo|lo)
05%&1 be ( Vbl[a,x]LH) 1—J2|®

- {n 2 oL (I/bl[i;g]LQ) Vol [a,x] w—i—l}w(’fl—fﬂq))

0<6<1

- {n S o (o) [a,x]w+1}w<ry—mm.

0<6<1

Consequently, as y — 7 the limit of the right hand side of is zero
which proves the continuity of A in the second variable.

Now we will show that h satisfies the Jensen equation in the second
variable.

Indeed, let t; = (tg ))z ; and tg = (tg))i:1 € [a, b], suppose further that
t1 < tg, and define the functions

0, if a; <t <,
(4)
t—1 o3 i
m(t) = g, i <t<t)
ty’ =1
1, if {) <t < by
Next, consider y1,y2 € C, y1 # y2 and define
(4.7) fi(x) = [H ni(zi)(y1 —y2) +y; + Y2]
i=1

forj = 1,27 Where X = (xl,x27 e 7‘%.”)'
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Notice that
fi(x) — fa(x)

1 n n
=3 [H (@) (y1—y2) +y1 +y2 — [ [n(@)(y1 - y2) — y2 - y2]
=1 =1
_y1—Yy2
2

Hence fi1 — fo has zero ®-variation and
If1 = fal(@,ar) = d((f1 — f2)(a),0) + p,(f1 — fo)
= d((fi ~ f2)(a),0) = d (”;”0> - d(y; y;) >0,

Notice then that

o If x =t, where a; =2, for ¢ =1,2,...,n then
n n t(ZZ) . t(z)
[ [t =11 G— =1
=1 =1 t2 - tl

Thus, by (4.7)

o Ifa; =2, fori=1,2,...,nthen

fi(ta) = %[Hn(tgff)(m —y2) +y1 +Y2] =y1, and

=1
L) y1i+y2
fa(ta) := 5[HU(%J(Y1 —y2) ty2+ YZ]T'
=1

o If oy, # 2, for some 1 < k < nthen

1 yi+y2
filta) = B [y1+y2] = —
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Thus, by the definition of H, we have
Hfl(tQ) = h(t27f1(t2)) = h(t27Y1),

Hfs(t2) = h(t2, fa(t2)) = h<t2, y —; YQ>7

y1+y2
2 )

Hf1(t1) = h(t1, fi(t1)) = h(tb
Hf>(t1) = h(t1, f2(t1)) = h(t1,y2),

and, if 6 is a non-zero multi-index different from 1

Hf1(9t1 + (1 — Q)tg) = h<9t1 + (1 — 9)132,
Hf2(0t1 + (1 —0)t2) = h(6t1 + (1 — O)t2,y2).
Letting to — t1 on the left hand side of (4.4]), we get

(48)  lim d( 3 (=) (H(f1) — H(£2)(0t + (1 - 0)t2),0)

t t
2—t o<1

— d((t1,y1)~h (tl, “*”)

y1+Yy2
2 )

2
+ dim 3 (1) ()~ H(f2)) 01+ (1-0)t),0)

to—t
2t o=

6#1

= d<h(t1,)’1)—h (th y1+y2>

2

t t
2—t; h<1
#1

+ lim Y (1) {h <0t1+(1—9)t2,YI;}Q)—h(0t1+(1—9)t2,y2)} ,o)

which, by continuity of h in the first variable, is equal to

= d<h(t17}’1)—h<t17yl;m)

+ 3 (-1l [h <9t1+(1—9)t1,”1;YQ> —h(9t1+(1—9)t1,y2)] ,0)

<1
0#1

- d(h(tl,yl)—h<t1, Y1;y2) 3 (1) [h (tl,‘“;yz> —h(tl,yg)] ,0> .

0<1
0£1

Now, for 1 < k < n, the number of n-tuples with k entries equal to 1, is
n!

W)= (n— k) k!’

equal to ( X thus
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NS (0 Y52 ) ey

0+£0

1+Y2

< >_h(tl,}’2) p i
[ ”2> - [ {30+ (3) - (5))
<t1, i +YQ> b1, ys)) {

= h<t1,Y1;YQ>—h(t1,Y2) {—1}.

Hence, from this identity and (4.8)), we get

(49)  lim (Y (-1 (H(f) - H(f2)) (01 + (1 - 0)t2),0)

2ot N

=d<h(t1,y1)—h<t1,Y1 ;"72)
+ ), (=) [ ( 1, y1—£y2> —h(th}’z)} 70>

6<1
0+#0

+ +
=d (h(th)’I) —h (th Y1 5 y2> —h <t17 Y1 5 Y2> + h(t1,}’2>70> .

On the other hand, property (3.3) implies that the limit as to — t1 on
the right side of (4.4) is zero, therefore

+ -
d (h(tl,yl) ~h (tl, x ”) ~h (tl, o "’2) +h<t1,y2>70) =0

2
or equivalently
h(ti,y1) + h(t1,y2) L (t y1+ Y2>
= 1, .
2 2
Thus h(ty, ) is a solution for the Jensen equation in C for t; € [a, b].
Adapting a classical standard argument (c.f Kuczma [7], see also [9]), we
conclude that there exist A(t;) € £(M,N) and B € N2Pl such that
(4.10) h(t1,y) = A(t1)y + B(t1) y €C.
Finally, notice that if 0 € C then taking y = 0 in (4.10]), we have h(t,0) =
B(t), for t € [a, b], which implies that B € BRV'([a,b]; N). u
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the first version of this paper for a very careful reading of it and for all the
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