

Erhan Set, Mehmet Zeki Sarikaya, M. Emin Ozdemir

SOME OSTROWSKI'S TYPE INEQUALITIES
FOR FUNCTIONS WHOSE SECOND DERIVATIVES
ARE s -CONVEX IN THE SECOND SENSE

Abstract. Some new inequalities of the Ostrowski type for twice differentiable mappings whose derivatives in absolute value are s -convex in the second sense are given.

1. Introduction

In 1938, Ostrowski proved the following integral inequality [12]:

THEOREM 1. *Let $I \subseteq \mathbb{R}$, $f : I \rightarrow \mathbb{R}$ be a differentiable mapping on (a, b) whose derivative $f' : (a, b) \rightarrow \mathbb{R}$ is bounded on (a, b) , i.e., $\|f'\|_{\infty} = \sup_{t \in (a, b)} |f'(t)| < \infty$. Then, the inequality holds:*

$$\left| f(x) - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \left[\frac{1}{4} + \frac{(x - \frac{a+b}{2})^2}{(b-a)^2} \right] (b-a) \|f'\|_{\infty},$$

for all $x \in [a, b]$. The constant $\frac{1}{4}$ is sharp in the sense that it cannot be replaced by a smaller one.

For some applications of Ostrowski's inequality see ([1]–[4]) and for recent results and generalizations concerning Ostrowski's inequality see ([1]–[8]).

The class of s -convexity in the second sense is defined in the following way [9, 11]: a function $f : [0, \infty) \rightarrow \mathbb{R}$ is said to be s -convex in the second sense if

$$f(tx + (1-t)y) \leq t^s f(x) + (1-t)^s f(y),$$

for all $x, y \in [0, \infty)$, $t \in [0, 1]$ and some fixed $s \in (0, 1]$. This class is usually denoted by K_s^2 .

In [10], Dragomir and Fitzpatrick proved the Hadamard inequality for s -convex functions in the second sense:

2010 *Mathematics Subject Classification:* 26A15, 26D07, 26D15, 26D10.

Key words and phrases: Ostrowski's inequality, convex function, s -convex function.

THEOREM 2. Suppose that $f : [0, \infty) \rightarrow [0, \infty)$ is an s -convex function in the second sense, where $s \in (0, 1)$, and let $a, b \in [0, \infty)$, $a < b$. If $f \in L^1([a, b])$ then the following inequalities hold:

$$(1.1) \quad 2^{s-1}f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{s+1}.$$

The constant $k = \frac{1}{s+1}$ is the best possible in the second inequality in (1.1).

In [3], Cerone et al. proved the following inequalities of Ostrowski type and Hadamard type, respectively.

THEOREM 3. Let $f : [a, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping on (a, b) and $f'' : (a, b) \rightarrow \mathbb{R}$ is bounded, i.e. $\|f''\|_\infty = \sup_{t \in (a, b)} |f''(t)| < \infty$. Then we have the inequality:

$$(1.2) \quad \left| f(x) - \frac{1}{b-a} \int_a^b f(t)dt - \left(x - \frac{a+b}{2}\right) f'(x) \right| \leq \left[\frac{1}{24}(b-a)^2 + \frac{1}{2} \left(x - \frac{a+b}{2}\right)^2 \right] \|f''\|_\infty \leq \frac{(b-a)^2}{6} \|f''\|_\infty,$$

for all $x \in [a, b]$.

COROLLARY 1. Under the above assumptions, we have the mid-point inequality:

$$(1.3) \quad \left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{(b-a)^2}{24} \|f''\|_\infty.$$

In this article, we establish new Ostrowski's type inequalities for s -convex functions in the second sense.

2. Main results

In order to establish our main results we need the following lemma.

LEMMA 1. Let $I \subseteq \mathbb{R}$, $f : I \rightarrow \mathbb{R}$ be a twice differentiable function on I° with $f'' \in L_1[a, b]$ where $a, b \in I$ with $a < b$. Then

$$(2.1) \quad \begin{aligned} & \frac{1}{b-a} \int_a^b f(u)du - f(x) + \left(x - \frac{a+b}{2}\right) f'(x) \\ &= \frac{(x-a)^3}{2(b-a)} \int_0^1 t^2 f''(tx + (1-t)a)dt + \frac{(b-x)^3}{2(b-a)} \int_0^1 t^2 f''(tx + (1-t)b)dt, \end{aligned}$$

for each $x \in [a, b]$.

Proof. By integration by parts, we have the following identity

$$\begin{aligned}
 (2.2) \quad & \int_0^1 t^2 f''(tx + (1-t)a) dt \\
 &= \frac{t^2}{(x-a)} f'(tx + (1-t)a) \Big|_0^1 - \frac{2}{x-a} \int_0^1 t f'(tx + (1-t)a) dt \\
 &= \frac{f'(x)}{(x-a)} - \frac{2}{x-a} \left[\frac{t}{(x-a)} f(tx + (1-t)a) \Big|_0^1 - \frac{1}{x-a} \int_0^1 f(tx + (1-t)a) dt \right] \\
 &= \frac{f'(x)}{(x-a)} - \frac{2f(x)}{(x-a)^2} + \frac{2}{(x-a)^2} \int_0^1 f(tx + (1-t)a) dt.
 \end{aligned}$$

By using the change of the variable $u = tx + (1-t)a$ for $t \in [0, 1]$ and multiplying the both sides of (2.2) by $\frac{(x-a)^3}{2(b-a)}$, we obtain

$$\begin{aligned}
 (2.3) \quad & \frac{(x-a)^3}{2(b-a)} \int_0^1 t^2 f''(tx + (1-t)a) dt \\
 &= \frac{(x-a)^2 f'(x)}{2(b-a)} - \frac{(x-a)f(x)}{b-a} + \frac{1}{b-a} \int_a^x f(u) du.
 \end{aligned}$$

Similarly, we observe that

$$\begin{aligned}
 (2.4) \quad & \frac{(b-x)^3}{2(b-a)} \int_0^1 t^2 f''(tx + (1-t)b) dt \\
 &= -\frac{(b-x)^2 f'(x)}{2(b-a)} - \frac{(b-x)f(x)}{b-a} + \frac{1}{b-a} \int_x^b f(u) du.
 \end{aligned}$$

Thus, adding (2.3) and (2.4) we get the required identity (2.1). ■

The following result may be stated:

THEOREM 4. *Let $I \subset [0, \infty)$, $f : I \rightarrow \mathbb{R}$ be a twice differentiable function on I° such that $f'' \in L_1[a, b]$ where $a, b \in I$ with $a < b$. If $|f''|$ is s -convex in the second sense on $[a, b]$ for some fixed $s \in (0, 1]$, then the following inequality holds:*

$$\begin{aligned}
 (2.5) \quad & \left| \frac{1}{b-a} \int_a^b f(u) du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right| \\
 & \leq \frac{1}{2(b-a)} \left\{ \left[\frac{|f''(x)|}{s+3} + \frac{2|f''(a)|}{(s+1)(s+2)(s+3)} \right] (x-a)^3 \right. \\
 & \quad \left. + \left[\frac{|f''(x)|}{s+3} + \frac{2|f''(b)|}{(s+1)(s+2)(s+3)} \right] (b-x)^3 \right\},
 \end{aligned}$$

for each $x \in [a, b]$.

Proof. By Lemma 1 and by s -convex of $|f''|$, we have

$$\begin{aligned}
& \left| \frac{1}{b-a} \int_a^b f(u)du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right| \\
& \leq \frac{(x-a)^3}{2(b-a)} \int_0^1 t^2 |f''(tx + (1-t)a)| dt \\
& \quad + \frac{(b-x)^3}{2(b-a)} \int_0^1 t^2 |f''(tx + (1-t)b)| dt \\
& \leq \frac{(x-a)^3}{2(b-a)} \int_0^1 t^2 [t^s |f''(x)| + (1-t)^s |f''(a)|] dt \\
& \quad + \frac{(b-x)^3}{2(b-a)} \int_0^1 t^2 [t^s |f''(x)| + (1-t)^s |f''(b)|] dt \\
& = \frac{(x-a)^3}{2(b-a)} \int_0^1 (t^{s+2} |f''(x)| + t^2(1-t)^s |f''(a)|) dt \\
& \quad + \frac{(b-x)^3}{2(b-a)} \int_0^1 (t^{s+2} |f''(x)| + t^2(1-t)^s |f''(b)|) dt \\
& = \frac{(x-a)^3}{2(b-a)} \left[\frac{|f''(x)|}{s+3} + \frac{2|f''(a)|}{(s+1)(s+2)(s+3)} \right] \\
& \quad + \frac{(b-x)^3}{2(b-a)} \left[\frac{|f''(x)|}{s+3} + \frac{2|f''(b)|}{(s+1)(s+2)(s+3)} \right] \\
& = \frac{1}{2(b-a)} \left\{ \left[\frac{|f''(x)|}{s+3} + \frac{2|f''(a)|}{(s+1)(s+2)(s+3)} \right] (x-a)^3 \right. \\
& \quad \left. + \left[\frac{|f''(x)|}{s+3} + \frac{2|f''(b)|}{(s+1)(s+2)(s+3)} \right] (b-x)^3 \right\},
\end{aligned}$$

where we have used the fact that

$$\int_0^1 t^{s+2} dt = \frac{1}{s+3} \quad \text{and} \quad \int_0^1 t^2(1-t)^s dt = \frac{2}{(s+1)(s+2)(s+3)}.$$

This completes the proof. ■

COROLLARY 2. *If we put $M = \sup_{x \in [a,b]} |f''|$ in Theorem 4, then we get*

$$\begin{aligned}
(2.6) \quad & \left| \frac{1}{b-a} \int_a^b f(u)du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right| \\
& \leq 3M \left(\frac{s^2 + 3s + 4}{(s+1)(s+2)(s+3)} \right) \left[\frac{1}{24}(b-a)^2 + \frac{1}{2} \left(x - \frac{a+b}{2} \right)^2 \right] \\
& \leq M \frac{(b-a)^2}{2} \left(\frac{s^2 + 3s + 4}{(s+1)(s+2)(s+3)} \right).
\end{aligned}$$

Here, simple computation shows that

$$(x-a)^3 + (b-x)^3 = (b-a) \left[\frac{(b-a)^2}{4} + 3 \left(x - \frac{a+b}{2} \right)^2 \right].$$

REMARK 1. If in Corollary 2 we choose $s = 1$, then we recapture the inequality (1.2) for functions f with convex $|f''|$.

COROLLARY 3. If in Corollary 2 we choose $x = \frac{a+b}{2}$, then we get the mid-point inequality

$$\left| \frac{1}{b-a} \int_a^b f(u) du - f\left(\frac{a+b}{2}\right) \right| \leq M \frac{(b-a)^2}{2} \left(\frac{s^2 + 3s + 4}{(s+1)(s+2)(s+3)} \right).$$

THEOREM 5. Let $I \subset [0, \infty)$, $f : I \rightarrow \mathbb{R}$ be a twice differentiable function on I° such that $f'' \in L_1[a, b]$ where $a, b \in I$ with $a < b$. If $|f''|^q$ is s -convex in the second sense on $[a, b]$, for some fixed $s \in (0, 1]$, $p, q > 1$ and $\frac{1}{p} + \frac{1}{q} = 1$, then the following inequality holds:

$$\begin{aligned} (2.7) \quad & \left| \frac{1}{b-a} \int_a^b f(u) du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right| \\ & \leq \frac{(x-a)^3}{2(b-a)} \left(\frac{1}{2p+1} \right)^{\frac{1}{p}} \left(\frac{|f''(x)|^q + |f''(a)|^q}{s+1} \right)^{\frac{1}{q}} \\ & \quad + \frac{(b-x)^3}{2(b-a)} \left(\frac{1}{2p+1} \right)^{\frac{1}{p}} \left(\frac{|f''(x)|^q + |f''(b)|^q}{s+1} \right)^{\frac{1}{q}}, \end{aligned}$$

for each $x \in [a, b]$.

Proof. Suppose that $p > 1$. From Lemma 1 and by the Hölder inequality, we have

$$\begin{aligned} & \left| \frac{1}{b-a} \int_a^b f(u) du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right| \\ & \leq \frac{(x-a)^3}{2(b-a)} \int_0^1 t^2 |f''(tx + (1-t)a)| dt + \frac{(b-x)^3}{2(b-a)} \int_0^1 t^2 |f''(tx + (1-t)b)| dt \\ & \leq \frac{(x-a)^3}{2(b-a)} \left(\int_0^1 t^{2p} dt \right)^{\frac{1}{p}} \left(\int_0^1 |f''(tx + (1-t)a)|^q dt \right)^{\frac{1}{q}} \\ & \quad + \frac{(b-x)^3}{2(b-a)} \left(\int_0^1 t^{2p} dt \right)^{\frac{1}{p}} \left(\int_0^1 |f''(tx + (1-t)b)|^q dt \right)^{\frac{1}{q}}. \end{aligned}$$

Since $|f''|^q$ is s -convex in the second sense, we have

$$\begin{aligned} \int_0^1 |f''(tx + (1-t)a)|^q dt &\leq \int_0^1 [t^s |f''(x)|^q + (1-t)^s |f''(a)|^q] dt \\ &= \frac{|f''(x)|^q + |f''(a)|^q}{s+1} \end{aligned}$$

and

$$\begin{aligned} \int_0^1 |f''(tx + (1-t)b)|^q dt &\leq \int_0^1 [t^s |f''(x)|^q + (1-t)^s |f''(b)|^q] dt \\ &= \frac{|f''(x)|^q + |f''(b)|^q}{s+1}. \end{aligned}$$

Therefore, we have

$$\begin{aligned} &\left| \frac{1}{b-a} \int_a^b f(u) du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right| \\ &\leq \frac{(x-a)^3}{2(b-a)} \left(\frac{1}{2p+1} \right)^{\frac{1}{p}} \left(\frac{|f''(x)|^q + |f''(a)|^q}{s+1} \right)^{\frac{1}{q}} \\ &\quad + \frac{(b-x)^3}{2(b-a)} \left(\frac{1}{2p+1} \right)^{\frac{1}{p}} \left(\frac{|f''(x)|^q + |f''(b)|^q}{s+1} \right)^{\frac{1}{q}}, \end{aligned}$$

where $\frac{1}{p} + \frac{1}{q} = 1$, which is required. ■

COROLLARY 4. *Under the above assumptions, we have the following inequality:*

$$\begin{aligned} (2.8) \quad &\left| \frac{1}{b-a} \int_a^b f(u) du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right| \\ &\leq \frac{3M}{(2p+1)^{\frac{1}{p}}} \left(\frac{2}{s+1} \right)^{\frac{1}{q}} \left[\frac{(b-a)^2}{24} + \frac{1}{2} \left(x - \frac{a+b}{2} \right)^2 \right]. \end{aligned}$$

This follows by Theorem 5 with $M = \sup_{x \in [a,b]} |f''|$.

COROLLARY 5. *With the assumptions in Corollary 4, one has the mid-point inequality:*

$$\left| \frac{1}{b-a} \int_a^b f(u) du - f \left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)^2}{8(2p+1)^{\frac{1}{p}}} \left(\frac{2}{s+1} \right)^{\frac{1}{q}} M.$$

This follows by Corollary 4, choosing $x = \frac{a+b}{2}$.

COROLLARY 6. *With the assumptions in Corollary 4, one has the following perturbed trapezoid like inequality:*

$$\begin{aligned} & \left| \int_a^b f(u)du - \frac{(b-a)}{2} [f(a) + f(b)] + \frac{(b-a)^2}{4} (f'(b) - f'(a)) \right| \\ & \leq \frac{(b-a)^3}{2(2p+1)^{\frac{1}{p}}} \left(\frac{2}{s+1} \right)^{\frac{1}{q}} M. \end{aligned}$$

This follows using Corollary 4 with $x = a$, $x = b$, adding the results and using the triangle inequality for the modulus.

THEOREM 6. *Let $I \subset [0, \infty)$, $f : I \rightarrow \mathbb{R}$ be a twice differentiable function on I° such that $f'' \in L_1[a, b]$ where $a, b \in I$ with $a < b$. If $|f''|^q$ is s -convex in the second sense on $[a, b]$, for some fixed $s \in (0, 1]$ and $q \geq 1$, then the following inequality holds:*

$$\begin{aligned} (2.9) \quad & \left| \frac{1}{b-a} \int_a^b f(u)du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right| \\ & \leq \frac{(x-a)^3}{2(b-a)} \left(\frac{1}{3} \right)^{1-\frac{1}{q}} \left(\frac{|f''(x)|^q}{s+3} + \frac{2|f''(a)|^q}{(s+1)(s+2)(s+3)} \right)^{\frac{1}{q}} \\ & \quad + \frac{(b-x)^3}{2(b-a)} \left(\frac{1}{3} \right)^{1-\frac{1}{q}} \left(\frac{|f''(x)|^q}{s+3} + \frac{2|f''(b)|^q}{(s+1)(s+2)(s+3)} \right)^{\frac{1}{q}}, \end{aligned}$$

for each $x \in [a, b]$.

Proof. Suppose that $q \geq 1$. From Lemma 1 and by the well known power mean inequality, we have

$$\begin{aligned} & \left| \frac{1}{b-a} \int_a^b f(u)du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right| \\ & \leq \frac{(x-a)^3}{2(b-a)} \int_0^1 t^2 |f''(tx + (1-t)a)| dt + \frac{(b-x)^3}{2(b-a)} \int_0^1 t^2 |f''(tx + (1-t)b)| dt \\ & \leq \frac{(x-a)^3}{2(b-a)} \left(\int_0^1 t^2 dt \right)^{1-\frac{1}{q}} \left(\int_0^1 t^2 |f''(tx + (1-t)a)|^q dt \right)^{\frac{1}{q}} \\ & \quad + \frac{(b-x)^3}{2(b-a)} \left(\int_0^1 t^2 dt \right)^{1-\frac{1}{q}} \left(\int_0^1 t^2 |f''(tx + (1-t)b)|^q dt \right)^{\frac{1}{q}}. \end{aligned}$$

Since $|f''|^q$ is s -convex in the second sense, we have

$$\begin{aligned} \int_0^1 t^2 |f''(tx + (1-t)a)|^q dt &\leq \int_0^1 [t^{s+2} |f''(x)|^q + t^2(1-t)^s |f''(a)|^q] dt \\ &= \frac{|f''(x)|^q}{s+3} + \frac{2|f''(a)|^q}{(s+1)(s+2)(s+3)} \end{aligned}$$

and

$$\begin{aligned} \int_0^1 t^2 |f''(tx + (1-t)b)|^q dt &\leq \int_0^1 [t^{s+2} |f''(x)|^q + t^2(1-t)^s |f''(b)|^q] dt \\ &= \frac{|f''(x)|^q}{s+3} + \frac{2|f''(b)|^q}{(s+1)(s+2)(s+3)}. \end{aligned}$$

Therefore, we have

$$\begin{aligned} &\left| \frac{1}{b-a} \int_a^b f(u) du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right| \\ &\leq \frac{(x-a)^3}{2(b-a)} \left(\frac{1}{3} \right)^{1-\frac{1}{q}} \left(\frac{|f''(x)|^q}{s+3} + \frac{2|f''(a)|^q}{(s+1)(s+2)(s+3)} \right)^{\frac{1}{q}} \\ &\quad + \frac{(b-x)^3}{2(b-a)} \left(\frac{1}{3} \right)^{1-\frac{1}{q}} \left(\frac{|f''(x)|^q}{s+3} + \frac{2|f''(b)|^q}{(s+1)(s+2)(s+3)} \right)^{\frac{1}{q}}. \blacksquare \end{aligned}$$

COROLLARY 7. *Under the above assumptions we have the following inequality*

$$\begin{aligned} &\left| \frac{1}{b-a} \int_a^b f(u) du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right| \\ &\leq M \left(\frac{3(s^2 + 3s + 4)}{(s+1)(s+2)(s+3)} \right)^{\frac{1}{q}} \left[\frac{(b-a)^2}{24} + \frac{1}{2} \left(x - \frac{a+b}{2} \right)^2 \right]. \end{aligned}$$

This follows by Theorem 6 with $M = \sup_{x \in [a,b]} |f''|$.

COROLLARY 8. *With the assumptions in Corollary 7, one has the mid-point inequality:*

$$\left| \frac{1}{b-a} \int_a^b f(u) du - f \left(\frac{a+b}{2} \right) \right| \leq M \left(\frac{3(s^2 + 3s + 4)}{(s+1)(s+2)(s+3)} \right)^{\frac{1}{q}} \frac{(b-a)^2}{24}.$$

This follows by Corollary 7, choosing $x = \frac{a+b}{2}$.

REMARK 2. If in Corollary 8 we choose $s = 1$ and $q = 1$, then we have the following inequality:

$$\left| \frac{1}{b-a} \int_a^b f(u)du - f\left(\frac{a+b}{2}\right) \right| \leq M \frac{(b-a)^2}{24},$$

which is the inequality (1.3) for functions f with convex $|f''|$.

COROLLARY 9. *With the assumptions in Corollary 7, one has the following perturbed trapezoid like inequality:*

$$\begin{aligned} & \left| \int_a^b f(u)du - \frac{(b-a)}{2} [f(a) + f(b)] + \frac{(b-a)^2}{4} (f'(b) - f'(a)) \right| \\ & \leq \frac{(b-a)^3}{6} \left(\frac{3(s^2 + 3s + 4)}{(s+1)(s+2)(s+3)} \right)^{\frac{1}{q}} M. \end{aligned}$$

This follows by using Corollary 7 with $x = a$, $x = b$, adding the results and using the triangle inequality for the modulus.

REMARK 3. All of the above inequalities hold for functions f with convex $|f''|$. Simply choose $s = 1$ in each of those results to get desired formulas.

The following result holds in the s -concave case.

THEOREM 7. *Let $I \subset [0, \infty)$, $f : I \rightarrow \mathbb{R}$ be a twice differentiable function on I° such that $f'' \in L_1[a, b]$ where $a, b \in I$ with $a < b$. If $|f''|^q$ is s -concave in the second sense on $[a, b]$, for some fixed $s \in (0, 1]$, $p, q > 1$ and $\frac{1}{p} + \frac{1}{q} = 1$, then the following inequality holds:*

$$\begin{aligned} (2.10) \quad & \left| \frac{1}{b-a} \int_a^b f(u)du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right| \\ & \leq \frac{2^{(s-1)/q}}{(2p+1)^{1/p} (b-a)} \left(\frac{(x-a)^3 \left| f''\left(\frac{x+a}{2}\right) \right| + (b-x)^3 \left| f''\left(\frac{b+x}{2}\right) \right|}{2} \right), \end{aligned}$$

for each $x \in [a, b]$.

Proof. Suppose that $q > 1$. From Lemma 1 and by the Hölder inequality, we have

$$\begin{aligned}
& \left| \frac{1}{b-a} \int_a^b f(u)du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right| \\
& \leq \frac{(x-a)^3}{2(b-a)} \int_0^1 t^2 |f''(tx + (1-t)a)| dt + \frac{(b-x)^3}{2(b-a)} \int_0^1 t^2 |f''(tx + (1-t)b)| dt \\
& \leq \frac{(x-a)^3}{2(b-a)} \left(\int_0^1 t^{2p} dt \right)^{\frac{1}{p}} \left(\int_0^1 |f''(tx + (1-t)a)|^q dt \right)^{\frac{1}{q}} \\
& \quad + \frac{(b-x)^3}{2(b-a)} \left(\int_0^1 t^{2p} dt \right)^{\frac{1}{p}} \left(\int_0^1 |f''(tx + (1-t)b)|^q dt \right)^{\frac{1}{q}}.
\end{aligned}$$

Since $|f''|^q$ is s -concave in the second sense, using (1.1) we obtain

$$(2.11) \quad \int_0^1 |f''(tx + (1-t)a)|^q dt \leq 2^{s-1} \left| f''\left(\frac{x+a}{2}\right) \right|^q$$

and

$$(2.12) \quad \int_0^1 |f''(tx + (1-t)b)|^q dt \leq 2^{s-1} \left| f''\left(\frac{b+x}{2}\right) \right|^q.$$

A combination of (2.11) and (2.12) gives

$$\begin{aligned}
& \left| \frac{1}{b-a} \int_a^b f(u)du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right| \\
& \leq \frac{2^{(s-1)/q}}{(2p+1)^{1/p} (b-a)} \left(\frac{(x-a)^3 \left| f''\left(\frac{x+a}{2}\right) \right| + (b-x)^3 \left| f''\left(\frac{b+x}{2}\right) \right|}{2} \right).
\end{aligned}$$

This completes the proof. ■

COROLLARY 10. *If in (2.10), we choose $x = \frac{a+b}{2}$, then we have*

$$\begin{aligned}
(2.13) \quad & \left| \frac{1}{b-a} \int_a^b f(u)du - f\left(\frac{a+b}{2}\right) \right| \\
& \leq \frac{2^{(s-1)/q} (b-a)^2}{16 (2p+1)^{1/p}} \left[\left| f''\left(\frac{3a+b}{4}\right) \right| + \left| f''\left(\frac{a+3b}{4}\right) \right| \right].
\end{aligned}$$

For instance, if $s = 1$, then we have

$$\begin{aligned}
& \left| \frac{1}{b-a} \int_a^b f(u)du - f\left(\frac{a+b}{2}\right) \right| \\
& \leq \frac{(b-a)^2}{16 (2p+1)^{1/p}} \left[\left| f''\left(\frac{3a+b}{4}\right) \right| + \left| f''\left(\frac{a+3b}{4}\right) \right| \right].
\end{aligned}$$

References

- [1] M. Alomari, M. Darus, *Some Ostrowski's type inequalities for convex functions with applications*, RGMIA 13(1) (2010), Article 3. [ONLINE: <http://ajmaa.org/RGMIA/v13n1.php>]
- [2] M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, *Ostrowski's inequalities for functions whose derivatives are s -convex in the second sense*, RGMIA 12 (2009), Supp., No. 15.
- [3] P. Cerone, S. S. Dragomir, J. Roumeliotis, *An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications*, RGMIA Res. Rep. Coll. 1(1) (1998), Article 4.
- [4] S. S. Dragomir, S. Wang, *Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules*, Appl. Math. Lett. 11 (1998), 105–109.
- [5] M. Z. Sarikaya, *On the Ostrowski type integral inequality*, Acta Math. Univ. Comenianae 79(1) (2010), 129–134.
- [6] E. Set, M. E. Özdemir, M. Z. Sarikaya, *New inequalities of Ostrowski's type for s -convex functions in the second sense with applications*, Facta Univ. Ser. Math. Inform. 27(1) (2012), 67–82.
- [7] M. E. Özdemir, H. Kavurmacı, E. Set, *Ostrowski's type inequalities for (α, m) -convex functions*, Kyungpook Math. J. 50 (2010), 371–378.
- [8] M. Z. Sarikaya, E. Set, M. E. Özdemir, *On the integral inequalities for mappings whose second derivatives are convex and applications*, Stud. Univ. Babeş-Bolyai Math., in press.
- [9] W. W. Breckner, *Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Räumen*, Publ. Inst. Math. 23 (1978), 13–20.
- [10] S. S. Dragomir, S. Fitzpatrick, *The Hadamard's inequality for s -convex functions in the second sense*, Demonstratio Math. 32(4) (1999), 687–696.
- [11] H. Hudzik, L. Maligranda, *Some remarks on s -convex functions*, Aequationes Math. 48 (1994), 100–111.
- [12] A. Ostrowski, *Über die Absolutabweichung einer differentiablen Funktionen von ihren Integralmittelwert*, Comment. Math. Helv. 10 (1938), 226–227.

E. Set
 DEPARTMENT OF MATHEMATICS
 FACULTY OF SCIENCE AND ARTS
 ORDU UNIVERSITY
 ORDU, TURKEY
 E-mail: erhanset@yahoo.com

M. E. Özdemir
 ATATÜRK UNIVERSITY
 K.K. EDUCATION FACULTY
 DEPARTMENT OF MATHEMATICS
 25240, CAMPUS, ERZURUM, TURKEY
 E-mail: emos@atauni.edu.tr

M. Z. Sarikaya
 DEPARTMENT OF MATHEMATICS
 FACULTY OF SCIENCE AND ARTS
 DÜZCE UNIVERSITY
 DÜZCE, TURKEY
 E-mail: sarikayamz@gmail.com