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SOME OSTROWSKTI’'S TYPE INEQUALITIES
FOR FUNCTIONS WHOSE SECOND DERIVATIVES
ARE s-CONVEX IN THE SECOND SENSE

Abstract. Some new inequalities of the Ostrowski type for twice differentiable
mappings whose derivatives in absolute value are s-convex in the second sense are given.

1. Introduction

In 1938, Ostrowski proved the following integral inequality [12]:
THEOREM 1. Let I € R, f : I — R be a differentiable mapping on
(a,b) whose deriwative f' : (a,b) — R is bounded on (a,b), i.e., |f'|o =

sup |f/(t)| < co. Then, the inequality holds:
te(a,b)

2
1t 1 (z— “—b)
- tydt| < |5+ 2| (b— '
o= [ o] < 3 G5 - air,.
for all x € [a,b]. The constant i s sharp in the sense that it cannot be
replaced by a smaller one.

For some applications of Ostrowski’s inequality see (|I]-[4]) and for recent
results and generalizations concerning Ostrowski’s inequality see ([I]-[8]).

The class of s-convexity in the second sense is defined in the following
way [9, [I1]: a function f : [0,00) — R is said to be s-convex in the second
sense if

flz+ (1 —t)y) <t°f(z) + (1 =) f(y),

for all z,y € [0,0), ¢ € [0,1] and some fixed s € (0, 1]. This class is usually
denoted by K2.

In [10], Dragomir and Fitzpatrick proved the Hadamard inequality for
s-convex functions in the second sense:
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THEOREM 2. Suppose that f : [0,00) — [0,00) is an s-convex function in
the second sense, where s € (0,1), and let a,b € [0,0), a < b. If f € L([a, b))
then the following inequalities hold:

b
_ +b 1 f(a) + f(b)
1.1 21f (2 < de < "YU IO
b () gt s 0
The constant k£ = ﬁ is the best possible in the second inequality in
(L1

In [3], Cerone et al. proved the following inequalities of Ostrowski type
and Hadamard type, respectively.

THEOREM 3. Let f : [a,b] > R be a twice differentiable mapping on (a,b)

and " : (a,b) — R is bounded, i.e. ||f"|, = sup |f"(t)] < co. Then we
te(a,b)
have the inequality:

(1.2) ‘ﬂ@—biaff@ﬁ<xa+gfhﬂ

1 2 1 a+ " "
<|go-ore g (o= 25 |1 < 5
for all x € [a,b].

COROLLARY 1. Under the above assumptions, we have the mid-point in-

equality:
f (a + b f o

b—a

"

(1.3)

In this article, we establish new Ostrowski’s type inequalities for s-convex
functions in the second sense.

2. Main results
In order to establish our main results we need the following lemma.

LEMMA 1. Let I € R, f: I — R be a twice differentiable function on I°
with " € L1[a,b] where a,b e I with a <b. Then

2y [ rwae s+ (o250 1@
3

(b—=)°
2(b—a)

_(x_a) 12//w — Ha
_2®_GLLtf@ + (1= t)a)dt +

for each x € [a,b].

fl t2f" (tx + (1 — t)b)dt,
0
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Proof. By integration by parts, we have the following identity

1
(2.2) f 2" (tx + (1 — t)a)dt

0

12 , 1 Lo
- ($_a)f(tx+(1—t)a)0—w_a£] tf (b + (1 —t)a)dt
_ f,(x> o 2 t . g 1_ 1 1 ) iy
" (@—a) x_a[(x_a)f(t +(1—1) )0 x_afo flte+(1—1) )dt}

filx) — 2f(x) 2 Jl
= — t 1—t)a)dt.
@—a) (@-ap @oap )y [0
By using the change of the variable u = tx + (1 — t)a for ¢ € [0,1] and

multiplying the both sides of 1} by (;Eg_al)l;, we obtain

r—a)3 (L
(2.3) (2(b — C)L) JO 2" (tx + (1 — t)a)dt
(z—a)3f(z) (@—a)fx) 1 (7
- 2b—a)  b—a +b—aL J(u)du.
Similarly, we observe that

— 3 rl
(2.4) ;lzb—i) L 2" (tz + (1 — t)b)dt

(b—2)*f'(x) (b—a)f(x) 1 [
2b—a)  b—a +b—aLf(u)du'

Thus, adding (2.3) and ([2.4) we get the required identity (2.1). m
The following result may be stated:

THEOREM 4. Let I < [0,00), f: 1 — R be a twice differentiable function
on I° such that f" € Li[a,b] where a,b € I with a < b. If |f"| is s-convex
in the second sense on [a,b] for some fized s € (0,1], then the following
iequality holds:

25) |t [ s s+ (a- 2 ) )
ST I 7T

“2b—a) || s+3  (s+1)(s+2)(s+3)

|f" ()] 21" (b)|
+[ s+3 (s+1)(5—|—2)(8—|—3)] (bx)?)}’

for each x € [a,b].
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Proof. By Lemma [l| and by s-convex of |f”|, we have

i [ = s+ (5 50) o)

(:L'—a)3 2 // _
20— )Jt|ft+(1 t)a)| dt
( — ) 2 " .
( )Jt\f (tz + (1 —t)b)| dt
b f 7fs’f// —t)S’f”(a)H dt
élzb m))J [ts‘f” ‘—i—(l—t)s‘f”(b)u dt
f 2 ()| + (1L —t)° | (a)|) dt
x) 5+2 " 2 "
@)+ - o o) a
ﬂf—a)3 {If 2]f"(a)] ]
2(b— s+3  (s+1)(s+2)(s+3)
L b2 [|f” 2|f"(b) ]
2(b— s+3  (s+1)(s+2)(s+3)

{[5;3 s+12(|9f1(2;|(5+3)](x—a)3

|/ ()] 2|f"(0)]
J{ s+3 (s+1)(s+2)(s+3)}(b_$)3}’

where we have used the fact that

! 1 ! 2
524t = —— d f 21— t)%dt = :
JO s+3 0 ( ) (s +1)(s+2)(s+3)
This completes the proof. =

COROLLARY 2. [f we put M = sup |f"| in Theorem then we get
z€[a,b]

[ - 1)+ (2= 450 )

s*+3s+4 1 1 a+b\2
S?’M((s+1)(s+2)(s+3)> [24<b_a)2+2<x_ 2 > ]
<M(b—a)2 s?+3s +4

- 2 ((s+1)(s+2)(s+3)>'
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Here, simple computation shows that

—a)? a 2
(:U—a)3+(b—:v)3=(b—a)[<b 4) +3<x— ;b> ]

REMARK 1. If in Corollary [2| we choose s = 1, then we recapture the
inequality (1.2)) for functions f with convex |f”].

COROLLARY 3. If in C’orollary we choose x = “TH’, then we get the
mid-point inequality

1 a+b (b—a)? s? +3s +4
—aLf(u)du_f( 2 )‘SM 2 ((s+1)(5+2)(5+3)>'

THEOREM 5. Let [ < [0,0), f: 1 — R be a twice differentiable function
on I° such that f” € L1[a,b] where a,b € I with a <b. If |f"|? is s-convex in
the second sense on [a,b], for some fixed s € (0,1], p,q > 1 and ;1) + % =1,
then the following inequality holds:

(2.7) biaLbf(u)du—f(x) N (x_ a+b> o
<o (v 1>; (“ ”(”3)|Zi|1f”(a)lq>é

' Szb_—xaj <2p1+ 1>; <|f”($)|zi'1f"(")'q>3,

Proof. Suppose that p > 1. From Lemma [I] and by the Holder inequality,
we have

oo (538 o

r—a )3 L
< (Q(b_i)f tﬂf”t +(1—t)a ’dH—gzb—;)L tg\f”(tas+(1—t)b)|dt

< éfzb__“ij (L t2pdt>p 1<f0 " (b + (1t)a)th>;1
+ Szb__xij <L1 t2pdt>p <L1 \f”(tx+(1—t)b)\th>q

for each x € [a,b].
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Since | f”|? is s-convex in the second sense, we have

1
J |tz + (1-)a)|* dt < J [t " ()" + (1 =) | f"(a)|*] dt

_ @+ 1 (@)
s+ 1

and

1 1
fo (b + (1 — t)b)| dt < L [ |7 ()| + (1 — £)° | £ (5)] ] dt

_ @)+ )
s+1 '

Therefore, we have

[ s+ (a- 250 o)
. ;( >) <2p1+1>é <\f”(w)zi!1f”(a)!q>3

' gzl;—xc)j <2p1+ 1)11) ('f”(x)|jillf”(b>|")é,

where % + % = 1, which is required. =

COROLLARY 4. Under the above assumptions, we have the following in-
equality:

29 [ [ s s+ (o= 150) )

i (b—a)? 2
_8M (2 (b—a? 1( _atb\’]
(2p + 1); s+1 24 2 2
This follows by Theorem with M = sup |f"].
z€[a,b]

COROLLARY 5. With the assumptions in Corollary[d, one has the mid-point
wnequality:

iaLbf(u)du—fG;b)% E2p+)1); <Si1>3M

This follows by C’orolla'r’y choosing x = aTb.
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COROLLARY 6. With the assumptions in Corollary[d], one has the following
perturbed trapezoid like inequality:

~(b—a)
2

@+ F 01+ C (1 0) - 1/ (@)

o) 7
< (b—a) 1 < 2 )qM
2(2p+1)r \Ss+1
This follows using Corollary [4] with x = a, x = b, adding the results and
using the triangle inequality for the modulus.

THEOREM 6. Let [ — [0,0), f: 1 — R be a twice differentiable function
on I° such that f” € Li[a,b] where a,b € I with a < b. If |f"|? is s-convex
in the second sense on [a,b], for some fized s € (0,1] and q > 1, then the
following inequality holds:

20 [t [ swa g+ (a2 ) )
<o () (T e S

(b—2)* (1\'0 (1" (@) 21" (b)|? a
20— (3) <s+3 +(3+1)(s+2)(3+3)> ’

for each x € [a,b].

Proof. Suppose that ¢ > 1. From Lemma [I] and by the well known power
mean inequality, we have

=il ’ flu)du— f(2) + (a-"57) £0)

<@‘”5fﬂuwm+a—WMﬁ+“‘”3ffu%w+u—mwﬁ
0 0

= 2(b—aq) 2(b—a)
1-1 1
<G ([ ) ([ etroesa-omra)

1 1—1 1
q
f tzdt> (J 1" (tr+ (1—1)b ]th>
0 0

(b—=)°
* 2(b—a) (
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Since | f”|? is s-convex in the second sense, we have

Jtﬂf”tw—i—(l—t \th<£)1[t8”|f” )|+ (1 =) | £ (a)|*] dt

_ M@t 21f"(a)|’
s+3 (s+1)(s+2)(s+3)

and

1 1
J t2 |f”(tl‘ + (1 . t)b)}q dt < f [ts+2 ’f” }q + t2 ’f” ‘ ]
0 0

_ M@t 2[f"(0)*
s+ 3 (s+1)(s+2)(s+3)

Therefore, we have

b b
i [ s@ + (- )
L @—a ( ) <\f”( D, 2@ >3
~2(b—a) \3 5+3 (s+1)(s+2)(s+3)
L (b <1>1‘3 (Ler, __aror )3 ]
2(b—a) \3 s+3 (s+1)(s+2)(s+3)/) °
COROLLARY 7. Under the above assumptions we have the following inequal-

ity
o [ i s+ (- 50 )

1
2 4 q N2 2
Y 3(s*+3s+4) (b—a) YRR EIANE
(s+1)(s+2)(s+3) 24 2 2
This follows by Theoremﬁ with M = sup |f"].
z€[a,b)

COROLLARY 8. With the assuptions in Corollary[7], one has the mid-point
inequality:

1t a+b 3(s?+3s+4) (b—a)?
—aLf(“)d”_f< 2 >’§M<(s+1)(s+2)(5+3)> 2

a+b
5

Q=

This follows by Corollary choosing x =
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REMARK 2. If in Corollary [§| we choose s = 1 and ¢ = 1, then we have the
following inequality:

1t b b—a)?
b—awamqut;)‘SMKQS)’

which is the inequality (1.3]) for functions f with convex |f”].

COROLLARY 9. With the assumptions in Corollary[T], one has the following
perturbed trapezoid like inequality:

b . —a)?
[ =52 @+ s+ 5L (7 0 - @)

_(b—a)® (( 3(s? + 35 +4) )qM

- 6 s+1)(s+2)(s+3)

This follows by using Corollary [7] with © = a, x = b, adding the results and
using the triangle inequality for the modulus.

REMARK 3. All of the above inequalities hold for functions f with convex
|”]. Simply choose s = 1 in each of those results to get desired formulas.

The following result holds in the s-concave case.

THEOREM 7. Let I < [0,00), f: 1 — R be a twice differentiable function
on I° such that f” € Li[a,b] where a,b e I with a <b. If |f"|? is s-concave
in the second sense on [a,b], for some fized s € (0,1], p,q > 1 and I%—f—% =1,
then the following inequality holds:

(2.10) ‘b_laLbf(u)du () + <a: - b) f’(a:)‘

b
gova [ @@ [+ -2 T

=2+ (b—a) 2

for each x € [a,b].

Proof. Suppose that ¢ > 1. From Lemma [I] and by the Holder inequality,
we have
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‘ff ) — f(z) + <w—a;b>f’(w)‘

(:c—a) 2| g - (b 1:)3 12 "t o
< (b—a)jt |tz + (1 —t)a ]dt+ 20— a)Jot |f"(tz + (1 —t)b)| dt

< (be__azj <JO t2pdt> p IUO |f"(tz + (1 t)a)th>;1
+ élzg_xij (Ll t2pdt> ’ (Ll " (tx + (1 —t)b)|* dt> !

Since |f”]? is s-concave in the second sense, using ([1.1]) we obtain

(2.11) r e+ (1= o) dt < 221 (22
0 2
and
(2.12) fl ezt (= o)t de < 20t [ P
0 2
A combination of and gives
’ b
L - s@+ (o= 5 ) 1)
b
92(s=1)/g ( —a)’ f”(%) +(b—a2)* | f( +$)
: 2p + D)YP (b - a) 2

This completes the proof. m
COROLLARY 10. If in (2.10), we choose x = “TH’, then we have

(2.13) ﬁ Lbf(u)du —f (a ; b)

26=D/4(h — a)? 3a+b a+ 3b
< 2 [
16 (2p +1)7* 4 4
For instance, if s = 1, then we have
1 b a+b
L[ rwa- (% )]
(b—a)? { ) 3a+b‘ y,a+ 3b H
< + —)|.
o | e
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