

Wiesław Sasin

THE DE RHAM COHOMOLOGY OF DIFFERENTIAL SPACES

Introduction

In [11] we have defined an exterior algebra $\hat{A}(M)$ on a differential space M in the sense of Sikorski [12], [13]. Introduced there the operator \hat{d} satisfies the well-known axioms of the exterior derivation. So we may consider the de Rham complex in our case. Such complexes were considered on another differentiable spaces by Smith [15], Spallek [16], [17], Marshall [2], [7], Mostow [10] and Schwartz [18]. It seems that these complexes are of interest in global analysis. We investigate properties of the de Rham cohomology of the complex $(\hat{A}(M), \hat{d})$ on a Sikorski's differential space.

In Section 1 we recall some basic notions and notation. In Section 2 we describe some properties of the Cartesian product of differential spaces and consider smooth one-parameter families of differential forms. Next in Section 3 we define the homotopy operator L for \hat{d} , which let us easily give an axiomatic description of the considered de Rham cohomology.

1. Basic notions and notation

Let (M, C) be a differential space [13], [14]. By τ_C we denote the smallest topology on M such that all functions from C are continuous. Let C_0 be a set of real functions on M . The differential structure C is called generated by C_0 if C is the smallest differential structure containing C_0 . We denote by M_p the space tangent to (M, C) at the point $p \in M$. Each ele-

ment $v \in M_p$ is an R -linear mapping $v: C \rightarrow R$ satisfying the condition:

$$v(\alpha \cdot \beta) = \alpha(p)v(\beta) + \beta(p)v(\alpha) \quad \text{for any } \alpha, \beta \in C.$$

Let $TM := \bigcup_{p \in M} M_p$ be a disjoint sum of tangent spaces to (M, C) .

Let TC (see [5]) be the differential structure on TM generated by the set $\{\alpha \cdot \pi : \alpha \in C\} \cup \{d\alpha : \alpha \in C\}$, where $\pi : TM \rightarrow M$ is the natural projection and $d\alpha : TM \rightarrow R$ is a function defined by the formula

$$(d\alpha)(v) = v(\alpha) \quad \text{for } v \in TM.$$

Now, let us put

$$T^k M = \{(v_1, \dots, v_k) \in TM \times \dots \times TM : \pi(v_1) = \dots = \pi(v_k)\}$$

as well as

$$T^k C = (TC \times \dots \times TC)_{T^k M} \quad \text{for } k = 1, 2, \dots [5].$$

By $A^k(M)$, where $k = 1, 2, \dots$, we denote the set of all smooth mappings $\omega : T^k M \rightarrow R$ such that the mapping $\omega|_{M_p \times \dots \times M_p}$ is skew-symmetric R - k -linear for each point $p \in M$ [5]. A direct sum $A(M) = \bigoplus_{k \geq 0} A^k(M)$, where $A^0(M) = C$, together with the canonical operations of addition and multiplication is a graded algebra over R .

Let $\omega^k(M)$ for $k \geq 1$ denote the set of all elements $\omega \in A^k(M)$ such that for each point $p \in M$ there exist an open neighbourhood $U \in \tau_C$ of p and a family of smooth functions $\alpha_{i_1}, \dots, \alpha_{i_{k-1}}, \alpha_{i_1 \dots i_{k-1}} \in C_U$ for $(i_1, \dots, i_{k-1}) \in I \subset \mathbb{N}^{k-1}$, where I is a finite subset, such that

$$\omega|_{\pi^{-1}(U)} = \sum_I d\alpha_{i_1 \dots i_{k-1}} \wedge d\alpha_{i_1} \wedge \dots \wedge d\alpha_{i_{k-1}}$$

as well as

$$\sum_I \alpha_{i_1 \dots i_{k-1}} d\alpha_{i_1} \wedge \dots \wedge d\alpha_{i_{k-1}} = 0.$$

Moreover for $k = 0$ we put $\mathcal{M}^0(M) = \{0\}$ [11]. One can prove [11] that the direct sum $\mathcal{M}(M) = \bigoplus_{k \geq 0} \mathcal{M}^k(M)$ is a homogeneous ideal in the graded algebra $A(M)$.

Let A^k be a sheaf $U \mapsto A^k(U)$, $U \in \tau_C$. We denote by \mathcal{M}^k ($k = 0, 1, \dots$) the sheaf $U \mapsto \mathcal{M}^k(U)$, $U \in \tau_C$. Let \mathcal{C} be the sheaf of all smooth functions on (M, C) [10]. Evidently for each $k \geq 1$ \mathcal{M}^k is a subsheaf of \mathcal{C} -modules of the sheaf A^k of \mathcal{C} -modules. Let $A = \bigoplus_{k \geq 0} A^k$ and $\mathcal{M} = \bigoplus_{k \geq 0} \mathcal{M}^k$ be direct sums of the correspondent sheaves. The both sheaves A and \mathcal{M} are evidently the sheaves of graded algebras. The sheaf \mathcal{M} is a subsheaf of homogeneous ideals in the sheaf of graded algebras A [11]. Let $\Lambda = A/\mathcal{M}$ be a quotient presheaf. Denote by \hat{A} the quotient sheaf associated with the quotient presheaf Λ . If $\xi \in \Lambda^k(U)$, $U \in \tau_C$ then for each point $p \in U$ by ξ_p we will denote below a germ of ξ at the point p . In the set $\hat{A}(U)$ of the cross-sections of the sheaf \hat{A} over $U \in \tau_C$ one can define in the natural way the operations of additions and exterior multiplication. Moreover for any $U \in \tau_C$ a direct sum $\hat{A}(U) = \bigoplus_{k \geq 0} \hat{A}^k(U)$ is a graded algebra over R . In the graded algebra $\hat{A}(M)$ there exists exactly one operator $\hat{d}: \hat{A}^k(M) \rightarrow \hat{A}^{k+1}(M)$ for $k = 0, 1, \dots$ satisfying the well-known conditions of exterior derivative (see Th. 3.1 in [11]). Let $\omega \in \hat{A}^k(M)$ be an arbitrary element, $k = 0, 1, \dots$. Recall that for $k = 0$ $\hat{A}^0(M) = C$ and then $(\hat{d}\omega)(p) := [d\omega]_p$ for each point $p \in M$, where $[d\omega]_p$ is the germ of the equivalence class $[d\omega]$. Now, let $k \geq 1$ and p be an arbitrary point of M . There exist for ω an open neighbourhood $U \in \tau_C$ of p and an indexed family of smooth functions $\alpha_{i_1}, \dots, \alpha_{i_k}, \alpha_{i_1 \dots i_k} \in C_U = \mathcal{C}(U)$, $(i_1, \dots, i_k) \in I \subset N^k$, such that

$$(1.1) \quad \omega(q) = \left[\sum_I \alpha_{i_1 \dots i_k} \frac{d\alpha_{i_1}}{d\omega} \wedge \dots \wedge \frac{d\alpha_{i_k}}{d\omega} \right]_q$$

for each point $q \in U$. Then we put

$$(1.2) \quad (\hat{d}\omega)(p) := \left[\sum_I d\alpha_{i_1 \dots i_k} \wedge d\alpha_{i_1} \wedge \dots \wedge d\alpha_{i_k} \right]_p.$$

Denote by $\mathfrak{X}(M)$ the C -module of all smooth vector fields tangent to (M, C) .

2. The Cartesian product of differential spaces. Smooth 1-parameter families of differential forms

Let (M, C) and (N, D) be differential spaces. For an arbitrary function $\alpha \in C$ we denote by $\bar{\alpha}$ the function $\bar{\alpha} : M \times N \rightarrow R$ given by

$$(2.1) \quad \bar{\alpha} = \alpha \circ \text{pr}_1,$$

where $\text{pr}_1 : M \times N \rightarrow M$ is the projection of $M \times N$ onto M .

Analogously for any $\beta \in D$ let $\bar{\beta} : M \times N \rightarrow R$ be the function given by

$$(2.2) \quad \bar{\beta} = \beta \circ \text{pr}_2,$$

where $\text{pr}_2 : M \times N \rightarrow N$ is the projection of $M \times N$ onto N .

Let $C \times D$ be the differential structure on $M \times N$ generated by the set of real functions $\{\bar{\alpha} : \alpha \in C\} \cup \{\bar{\beta} : \beta \in D\}$. The differential space $(M \times N, C \times D)$ is called the Cartesian product of differential spaces (M, C) and (N, D) [14]. If C is generated by a set C_0 and D is generated by a set D_0 then the differential structure $C \times D$ is generated by the set $\{\bar{\alpha} : \alpha \in C_0\} \cup \{\bar{\beta} : \beta \in D_0\}$.

For an arbitrary point $p_0 \in M$ let $j_{p_0} : N \rightarrow M \times N$ be the imbedding given by

$$(2.3) \quad j_{p_0}(q) = (p_0, q) \quad \text{for } q \in N.$$

For an arbitrary point $q_0 \in N$ let $j_{q_0} : N \rightarrow M \times N$ be the imbedding defined by

$$(2.4) \quad j_{q_0}(p) = (p, q_0) \quad \text{for } p \in M.$$

It is easy to verify the following equalities:

$$(2.5) \quad \text{pr}_1 \circ j_{q_0} = \text{id}_M,$$

$$(2.6) \quad \text{pr}_2 \circ j_{p_0} = \text{id}_N,$$

$$(2.7) \quad (\text{pr}_1 \circ j_{p_0})(q) = p_0 \quad \text{for } q \in N,$$

$$(2.8) \quad (\text{pr}_2 \circ j_{q_0})(p) = q_0 \quad \text{for } p \in M.$$

Let $(M \times N)_{(p,q)}$ be the tangent space to $(M \times N, C \times D)$ at a point (p,q) . For any tangent vector $w \in (M \times N)_{(p,q)}$ we put

$$(2.9) \quad w_M = (j_q \circ \text{pr}_1)_{*(p,q)} w,$$

$$(2.10) \quad w_N = (j_p \circ \text{pr}_2)_{*(p,q)} w.$$

It is easy to see that $w = w_M + w_N$ and that the vectors w_M and w_N satisfy the following conditions:

$$(2.11) \quad w_M(\bar{\beta}) = 0 \quad \text{for any } \beta \in D,$$

$$(2.12) \quad w_N(\bar{\alpha}) = 0 \quad \text{for any } \alpha \in C.$$

Definition 2.1. A vector $w \in (M \times N)_{(p,q)}$ is said to be parallel to (M, C) if $w(\bar{\beta}) = 0$ for any $\beta \in D$. A vector $w \in (M \times N)_{(p,q)}$ is said to be parallel to (N, D) if $w(\bar{\alpha}) = 0$ for any $\alpha \in C$.

Clearly for any $w \in (M \times N)_{(p,q)}$ the vector w_M is parallel to (M, C) and the vector w_N is parallel to (N, D) . It is easy to see that the subspace $(j_q)_{*(M_p)}$ is the set of all vectors tangent to $(M \times N, C \times D)$ at (p,q) parallel to (M, C) and the subspace $(j_p)_{*(N_q)}$ is the set of all vectors tangent to $(M \times N, C \times D)$ at (p,q) parallel to (N, D) . One can prove [14] that the tangent space $(M \times N)_{(p,q)}$ is a direct sum of subspaces $(j_q)_{*(M_p)}$ and $(j_p)_{*(N_q)}$.

Definition 2.2. A vector field $Z \in \mathfrak{X}(M \times N)$ is said to be parallel to (M, C) if $Z(\bar{\beta}) = 0$ for any $\beta \in D$. A vector field $Z \in \mathfrak{X}(M \times N)$ is said to be parallel to (N, D) if $Z(\bar{\alpha}) = 0$ for any $\alpha \in C$.

Now, let $Z \in \mathfrak{X}(M \times N)$ be an arbitrary vector field tangent to $(M \times N, C \times D)$. Let us put

$$(2.13) \quad Z_M(p, q) := (j_q \circ \text{pr}_1)_{*(p, q)} Z(p, q) \quad \text{for } (p, q) \in M \times N,$$

$$(2.14) \quad Z_N(p, q) := (j_p \circ \text{pr}_2)_{*(p, q)} Z(p, q) \quad \text{for } (p, q) \in M \times N.$$

One can prove the identities:

$$(2.15) \quad Z_M(\bar{\alpha}) = Z(\bar{\alpha}) \quad \text{for } \alpha \in C,$$

$$(2.16) \quad Z_M(\bar{\beta}) = 0 \quad \text{for } \beta \in D,$$

$$(2.17) \quad Z_N(\bar{\alpha}) = 0 \quad \text{for } \alpha \in C,$$

$$(2.18) \quad Z_N(\bar{\beta}) = Z(\bar{\beta}) \quad \text{for } \beta \in D.$$

So the vector fields Z_M and Z_N defined by (2.13)-(2.14) are smooth and parallel to (M, C) and (N, D) respectively. Moreover $Z = Z_M + Z_N$.

Now, let $X \in \mathfrak{X}(M)$ be an arbitrary smooth vector field tangent to (M, C) . Let $\bar{X}: M \times N \rightarrow T(M \times N)$ be the mapping given by

$$(2.19) \quad \bar{X}(p, q) := (j_q)_{*p} X(p) \quad \text{for } (p, q) \in M \times N.$$

It is easy to verify that \bar{X} is a smooth vector field tangent to $(M \times N, C \times D)$, parallel to (M, C) and satisfies the following condition:

$$(2.20) \quad \bar{X}(\bar{\alpha}) = \overline{X(\alpha)} \quad \text{for any } \alpha \in C.$$

Analogously for any $Y \in \mathfrak{X}(N)$ we can define the vector field $\bar{Y} \in \mathfrak{X}(M \times N)$ parallel to (N, D) by the following formula

$$(2.21) \quad \bar{Y}(p, q) := (j_p)_{*q} Y(q) \quad \text{for } (p, q) \in M \times N.$$

One can verify the following identities:

$$(2.22) \quad [\bar{X}, \bar{Y}] = 0 \quad \text{for any } X \in \mathfrak{X}(M), Y \in \mathfrak{X}(N),$$

$$(2.23) \quad [\bar{x}_1, \bar{x}_2] = \overline{[x_1, x_2]} \quad \text{for any } x_1, x_2 \in \mathfrak{X}(M),$$

$$(2.24) \quad [\bar{y}_1, \bar{y}_2] = \overline{[y_1, y_2]} \quad \text{for any } y_1, y_2 \in \mathfrak{X}(N).$$

Now, let $\varphi \in C \times D$ be an arbitrary real function. Denote by $\pi : T(M \times N) \rightarrow M \times N$ the canonical projection [5]. Let π_1 and π_2 be the coordinates of π , i.e. $\pi = (\pi_1, \pi_2)$. Let us put

$$(2.25) \quad (d_M \varphi)(v) = v(\varphi(\cdot, \pi_2(v))) \quad \text{for } v \in T(M \times N),$$

$$(2.26) \quad (d_N \varphi)(v) = v(\varphi(\pi_1(v), \cdot)) \quad \text{for } v \in T(M \times N).$$

One can verify that $d_M \varphi$ and $d_N \varphi$ are smooth 1-forms on $M \times N$ and

$$(2.27) \quad d\varphi = d_M \varphi + d_N \varphi.$$

1-form $d_M \varphi$ is called the partial differential of φ with respect to M and 1-form $d_N \varphi$ is called the partial differential of φ with respect to N . It is easy to check the following identities:

$$(2.28) \quad j_p^*(d\varphi) = j_p^*(d_N \varphi) \quad \text{for any } p \in M,$$

$$(2.29) \quad j_q^*(d\varphi) = j_q^*(d_M \varphi) \quad \text{for any } q \in N.$$

Now we consider the Cartesian product of (R, ξ) and (M, C) , where ξ is the natural differential structure on R generated by the function $\theta = \text{id}_R$. If the differential structure C is generated by C_0 then the differential structure $\xi \times C$ is generated by the set $\{\bar{\xi}\} \cup \{\bar{\alpha} : \alpha \in C_0\}$. Let $T = \frac{d}{dt} \in \mathfrak{X}(R \times M)$ be the vector field defined by (2.13), where $\frac{d}{dt}$ is the basis vector field tangent to (R, ξ) .

For any $\omega \in A^k(R \times M)$, $k \in N$, let $\gamma_T \omega$ be the $(k-1)$ -form defined by

$$(2.30) \quad (\gamma_T \omega)(v_1, \dots, v_{k-1}) := \omega(T(t, p), v_1, \dots, v_{k-1})$$

for $v_1, \dots, v_{k-1} \in (R \times M)_{(t, p)}$, $(t, p) \in R \times M$.

Moreover for $\omega \in A^0(R \times M)$ we put $\mathcal{I}_T \omega := 0$.

It is easy to see that the operator $\mathcal{I}_T: A(R \times M) \rightarrow A(R \times M)$, $\omega \mapsto \mathcal{I}_T \omega$, is $\mathcal{E} \times C$ -linear and satisfies the following condition:

$$(2.31) \quad \mathcal{I}_T(\omega_1 \wedge \omega_2) = \mathcal{I}_T \omega_1 \wedge \omega_2 + (-1)^{|\omega_1|} \omega_1 \wedge \mathcal{I}_T \omega_2$$

for $\omega_1, \omega_2 \in A(R \times M)$. Of course $\mathcal{I}_T \circ \mathcal{I}_T = 0$.

We shall prove

Lemma 2.1. Every k -form $\omega \in A^k(R \times M)$ may be uniquely presented in the form

$$(2.32) \quad \omega = d\bar{\theta} \wedge \omega_1 + \omega_2,$$

where $\omega_1 \in A^{k-1}(R \times M)$ and $\omega_2 \in A^k(R \times M)$ are such forms that $\mathcal{I}_T \omega_1 = 0$ and $\mathcal{I}_T \omega_2 = 0$.

Proof. Put $\omega_1 := \mathcal{I}_T \omega$ and $\omega_2 := \omega - d\bar{\theta} \wedge \mathcal{I}_T \omega$. Of course $\mathcal{I}_T \omega_1 = 0$ and $\mathcal{I}_T \omega_2 = 0$. It remains to prove the uniqueness of the decomposition (2.32). In fact, if $\omega = d\bar{\theta} \wedge \omega'_1 + \omega'_2$, where $\mathcal{I}_T \omega'_1 = 0$ and $\mathcal{I}_T \omega'_2 = 0$ then

$$\mathcal{I}_T \omega = \mathcal{I}_T(d\bar{\theta} \wedge \omega'_1) = \mathcal{I}_T(d\bar{\theta} \wedge \omega_1).$$

Hence $\omega'_1 - d\bar{\theta} \wedge \mathcal{I}_T \omega'_1 = \omega_1 - d\bar{\theta} \wedge \mathcal{I}_T \omega_1$. Consequently $\omega'_1 = \omega_1$ and

$$\omega_2 = \omega - d\bar{\theta} \wedge \omega_1 = \omega - d\bar{\theta} \wedge \omega'_1 = \omega'_2.$$

Denote by $A^{0,k}(R \times M)$ the $\mathcal{E} \times C$ -submodule of k -forms $\omega \in A^k(R \times M)$ satisfying the condition $\mathcal{I}_T \omega = 0$ and by $A^{1,k-1}(R \times M)$ the submodule of the $\mathcal{E} \times C$ -module $A^k(R \times M)$ of all forms of the form $d\bar{\theta} \wedge \omega_1$, where $\omega_1 \in A^{k-1}(R \times M)$ and $\mathcal{I}_T \omega_1 = 0$. From Lemma 2.1 it follows

Corollary 2.2. The $\mathcal{E} \times C$ -module $A^k(R \times M)$ is the direct sum of the $\mathcal{E} \times C$ -modules $A^{1,k-1}(R \times M)$ and $A^{0,k}(R \times M)$.

Now let $\varphi \in \mathcal{E} \times C$ be an arbitrary smooth function on $R \times M$. Let $\frac{\partial \varphi}{\partial t} : R \times M \rightarrow R$ be the function defined by

$$(2.33) \quad \frac{\partial \varphi}{\partial t}(s, p) = \left. \frac{d}{dt} \right|_s (\varphi(t, p)).$$

It is easy to see that $\frac{\partial \varphi}{\partial t}$ is smooth. In fact, for an arbitrary point $(t, p) \in R \times M$ there exist an open interval $(a, b) \ni t$, an open neighbourhood $V \in \tau_C$ of p and smooth functions $\alpha_1, \dots, \alpha_n \in C$, $\gamma \in C^\infty(R^{n+1})$ such that

$$\varphi|_{(a,b) \times V} = \gamma(\bar{\theta}, \bar{\alpha}_1, \dots, \bar{\alpha}_n)|_{(a,b) \times V}.$$

Then

$$(2.34) \quad \frac{\partial \varphi}{\partial t}|_{(a,b) \times V} = \gamma'_1 \circ (\bar{\theta}, \bar{\alpha}_1, \dots, \bar{\alpha}_n)|_{(a,b) \times V}.$$

From (2.26), (2.27) and (2.34) it is easy to observe the equality:

$$(2.35) \quad d\varphi = \frac{\partial \varphi}{\partial t} d\bar{\theta} + d_M \varphi.$$

Of course $d_M \varphi \in \Lambda^{0,1}(R \times M)$ and $\frac{\partial \varphi}{\partial t} d\bar{\theta} = d_R \varphi \in \Lambda^{1,0}(R \times M)$. Moreover $\mathcal{I}_T(d\varphi) = \frac{\partial \varphi}{\partial t}$.

Now let $(\omega_t)_{t \in R}$, $\omega_t \in \Lambda^k(M)$, be a 1-parameter family of differential k -forms on (M, C) .

Definition 2.3. 1-parameter family $(\omega_t)_{t \in R}$ is called smooth if the function $\tilde{\omega} : R \times T^k M \rightarrow R$ defined by the formula

$$(2.36) \quad \tilde{\omega}(t, v_1, \dots, v_k) = \omega_t(v_1, \dots, v_k) \text{ for } (t, v_1, \dots, v_k) \in R \times T^k M$$

is smooth.

Definition 2.4. Let $(\omega_t)_{t \in R}$ be a smooth 1-parameter family of differential k -forms. Then the k -form $\int_a^b \omega_t dt$ defined by

$$(2.37) \quad \left(\int_a^b \omega_t dt \right) (v_1, \dots, v_k) := \int_a^b \omega_t(v_1, \dots, v_k) dt$$

for $(v_1, \dots, v_k) \in T^k M$, is said to be the defined integral from $(\omega_t)_{t \in R}$.

Example 2.1. Let $(\omega_t)_{t \in R}$ be a smooth 1-parameter family of k -forms on (M, C) of the form

$$\omega_t = \sum_I \varphi^{i_1 \dots i_k}(t, \cdot) d\alpha_{i_1} \wedge \dots \wedge d\alpha_{i_k},$$

where $\varphi^{i_1 \dots i_k} \in \mathcal{E} \times C$, $\alpha_{i_1}, \dots, \alpha_{i_k} \in C$ for $(i_1, \dots, i_k) \in I \subset \mathbb{N}^k$ and I is a finite set of indices. Then one can check that

$$\int_a^b \omega_t dt = \sum_I \left(\int_a^b \varphi^{i_1 \dots i_k}(t, \cdot) dt \right) d\alpha_{i_1} \wedge \dots \wedge d\alpha_{i_k}.$$

Lemma 2.2. If $(\alpha_t)_{t \in R}$ is a smooth 1-parameter family of 0-forms on a differential space (M, C) then

$$(2.38) \quad d \left(\int_a^b \alpha_t dt \right) = \int_a^b d \alpha_t dt.$$

Proof. The smoothness of 1-parameter family $(\alpha_t)_{t \in R}$ of 0-forms means that the function $\tilde{\alpha}: R \times M \rightarrow R$ defined by

$$\tilde{\alpha}(t, p) = \alpha_t(p) \quad \text{for } (t, p) \in R \times M$$

is smooth. Thus for any point $p \in M$ there exist an open neighbourhood $V \in \tau_C$ of p , a sequence of real numbers c_0, c_1, \dots, c_n such that $a = c_0 < c_1 < \dots < c_n = b$ and functions $\gamma_1, \dots, \gamma_n \in \mathcal{E}_{k+1}$, $\beta_1, \dots, \beta_k \in C$, $k \in \mathbb{N}$, such that

$$\tilde{\alpha}|_{(c_{i-1}, c_i) \times V} = \gamma_i(\bar{\theta}, \bar{\beta}_1, \dots, \bar{\beta}_k)|_{(c_{i-1}, c_i) \times V} \quad \text{for } i = 1, \dots, n.$$

Then we have

$$(2.39) \quad \left(\int_a^b \alpha_t dt \right)|_V = \left(\sum_{i=1}^n \int_{c_{i-1}}^{c_i} \gamma_i(t, \bar{\beta}_1, \dots, \bar{\beta}_k) dt \right)|_V$$

and

$$(2.40) \quad \left(\int_a^b d\alpha_t dt \right) | v = \left(\sum_{i=1}^n \int_{c_{i-1}}^{c_i} d\gamma_i(t, \bar{\beta}_1, \dots, \bar{\beta}_k) dt \right) | v.$$

One can easily verify the equality

$$(2.41) \quad d \left(\int_{c_{i-1}}^{c_i} \gamma_i(t, \bar{\beta}_1, \dots, \bar{\beta}_k) dt \right) = \int_{c_{i-1}}^{c_i} d\gamma_i(t, \bar{\beta}_1, \dots, \bar{\beta}_k) dt.$$

From (2.39)-(2.41) it follows that

$$d \left(\int_a^b \alpha_t dt \right) | v = \left(\int_a^b d\alpha_t dt \right) | v.$$

This finishes the proof.

One can prove

Lemma 2.3. If

$$\sum_I \varphi^{i_1 \dots i_k} d\bar{\alpha}_{i_1} \wedge \dots \wedge d\bar{\alpha}_{i_k} = 0,$$

for $\varphi^{i_1 \dots i_k} \in \mathcal{E} \times C$, $\alpha_{i_1}, \dots, \alpha_{i_k} \in C$, $(i_1, \dots, i_k) \in I \subset \mathbb{N}^k$, where I is a finite set, then

$$\sum_I \frac{\partial \varphi^{i_1 \dots i_k}}{\partial t} d\bar{\alpha}_{i_1} \wedge \dots \wedge d\bar{\alpha}_{i_k} = 0.$$

Lemma 2.4. If $\mu \in \mathcal{M}^{k+1}(R \times M)$ then $\mathcal{L}_T \mu \in \mathcal{M}^k(R \times M)$.

Proof. Let $\mu \in \mathcal{M}^{k+1}(R \times M)$. For each point $(t, p) \in R \times M$ there exist an open interval $(a, b) \ni t$, an open neighbourhood V of p and smooth functions $\varphi^{i_1 \dots i_k} \in (\mathcal{E} \times C)_{(a, b) \times V, \alpha_{i_1}, \dots, \alpha_{i_k}}$ $\in C_V$, $(i_1, \dots, i_k) \in I \subset \mathbb{N}^k$, $\psi^{j_1 \dots j_{k-1}} \in (\mathcal{E} \times C)_{(a, b) \times V, \beta_{j_1}, \dots, \beta_{j_{k-1}}} \in C_V$, $(j_1, \dots, j_{k-1}) \in J \subset \mathbb{N}^{k-1}$, where I and J are finite subsets of indices, such that

$$(2.42) \quad \mu |_{\pi^{-1}((a,b) \times V)} = \sum_I d\varphi^{i_1 \dots i_k} \wedge d\bar{\alpha}_{i_1} \wedge \dots \wedge d\bar{\alpha}_{i_k} + \\ + \sum_I d\psi^{j_1 \dots j_{k-1}} \wedge d\bar{\theta} \wedge d\bar{\beta}_{j_1} \wedge \dots \wedge d\bar{\beta}_{j_{k-1}}$$

as well as

$$(2.43) \quad \sum_I \varphi^{i_1 \dots i_k} d\bar{\alpha}_{i_1} \wedge \dots \wedge d\bar{\alpha}_{i_k} + \\ + \sum_J d\psi^{j_1 \dots j_{k-1}} d\bar{\theta} \wedge d\bar{\beta}_{j_1} \wedge \dots \wedge d\bar{\beta}_{j_{k-1}} = 0.$$

Using \mathcal{I}_T to (2.42) and (2.43) from Lemma 2.3 and (2.35) it follows that

$$\mathcal{I}_T \mu |_{\pi^{-1}((a,b) \times V)} = - \sum_I d\psi^{j_1 \dots j_{k-1}} d\bar{\beta}_{j_1} \wedge \dots \wedge d\bar{\beta}_{j_{k-1}}$$

and

$$\sum_J \psi^{j_1 \dots j_{k-1}} d\bar{\beta}_{j_1} \wedge \dots \wedge d\bar{\beta}_{j_{k-1}} = 0.$$

Hence $\mathcal{I}_T \mu \in \mathcal{M}^k(R \times M)$.

Corollary 2.5. Let $\mu \in \mathcal{M}^k(R \times M)$ and μ_1, μ_2 be elements from the decomposition (2.32) such that $\mu = d\bar{\theta} \wedge \mu_1 + \mu_2$. Then $\mu_1 \in \mathcal{M}^{k-1}(R \times M)$ and $\mu_2 \in \mathcal{M}^k(R \times M)$.

Proof. Since $\mu = d\bar{\theta} \wedge \mu_1 + \mu_2$ and $\mu \in \mathcal{M}^k(R \times M)$ by Lemma 2.4 $\mathcal{I}_T \mu = \mu_1 \in \mathcal{M}^{k-1}(R \times M)$. Because $\mathcal{M}^k(R \times M)$ is an ideal then also $d\bar{\theta} \wedge \mu_1 \in \mathcal{M}^k(R \times M)$. But $\mu_2 = \mu - d\bar{\theta} \wedge \mu_1$. Thus $\mu_2 \in \mathcal{M}^k(R \times M)$.

Now we prove

Lemma 2.6. Let $\mu \in \mathcal{M}^k(R \times M) \cap A^{0,k}(R \times M)$ be an arbitrary element and $j_t: M \rightarrow R \times M$ be the imbedding defined by (2.3).

Then $(j_t^*(\mu))_{t \in R}$ is a smooth 1-parameter family of k -forms on (M, C) from the ideal $\mathfrak{M}^k(M)$ and $\int_a^b j_t^*(\mu) dt \in \mathfrak{M}^k(M)$.

P r o o f. For an arbitrary point $p \in M$ there exist an open neighbourhood $V \in \tau_C$ of the point $p \in M$, a sequence of real numbers $a = c_0 < c_1 < \dots < c_n = b$, a family of smooth functions $\alpha_{i_1}, \dots, \alpha_{i_{k-1}} \in C_V$, $\alpha_j \in \mathcal{E}(c_{j-1}, c_j) \times C_V$, where $(i_1, \dots, i_{k-1}) \in I \subset \mathbb{N}^{k-1}$, $j = 1, \dots, n$ and I is a finite subset, such that

$$\mu|_{(c_{j-1}, c_j) \times V} = \sum_I d\alpha_j^{i_1 \dots i_{k-1}} \wedge d\bar{\alpha}_{i_1} \wedge \dots \wedge d\bar{\alpha}_{i_{k-1}}$$

and

$$\sum_I \alpha_j^{i_1 \dots i_{k-1}} d\bar{\alpha}_{i_1} \wedge \dots \wedge d\bar{\alpha}_{i_k} = 0 \quad \text{for } j = 1, \dots, n.$$

Hence by simple calculation one can check:

$$\begin{aligned} \left(\int_a^b j_t^*(\mu) dt \right) |_V &= \left(\sum_{j=1}^n \int_{c_{j-1}}^{c_j} j_t^*(\mu) dt \right) |_V = \\ &= \sum_{j=1}^n \sum_I \left(\int_{c_{j-1}}^{c_j} d(j_t^* \alpha_j^{i_1 \dots i_{k-1}}) dt \right) \wedge d\bar{\alpha}_{i_1} \wedge \dots \wedge d\bar{\alpha}_{i_{k-1}} \end{aligned}$$

and

$$\sum_{j=1}^n \sum_I \left(\int_{c_{j-1}}^{c_j} j_t^* \alpha_j^{i_1 \dots i_{k-1}} dt \right) d\bar{\alpha}_{i_1} \wedge \dots \wedge d\bar{\alpha}_{i_{k-1}} = 0.$$

Hence it follows that $\int_a^b j_t^*(\mu) dt |_V \in \mathfrak{M}^k(V)$ and consequently $\int_a^b j_t^*(\mu) dt \in \mathfrak{M}^k(M)$.

3. The homotopy operator on a differential space

Now, using the above lemmas, we shall construct the homotopy operator for the complex $(\hat{A}(M), \hat{d})$.

For an arbitrary $\omega \in \hat{A}^k(R \times M)$, $k \geq 1$, denote by $\mathcal{Z}_T \omega$ the element of $\hat{A}^{k-1}(R \times M)$ given by

$$(3.1) \quad (\mathcal{Z}_T \omega)(t, p) := [\mathcal{Z}_T \xi]_{(t, p)} \quad \text{for } (t, p) \in R \times M,$$

where $\xi \in A^k(V)$ is a k -form on an open neighbourhood $V \in \tau_{\xi \times C}$ of p such that $\omega(t, p) = [\xi]_{(t, p)}$.

The correctness of (3.1) follows from Lemma 2.4.

Let $\mathcal{Z}_T: \hat{A}^k(R \times M) \rightarrow \hat{A}^{k-1}(R \times M)$, $k \geq 1$, be the mapping defined by

$$\omega \mapsto \mathcal{Z}_T \omega.$$

Denote by $\hat{A}^{0, k}(R \times M)$, for $k = 1, 2, \dots$, the $\xi \times C$ -module of elements $\omega \in \hat{A}^k(R \times M)$ such that $\mathcal{Z}_T \omega = 0$ and by $\hat{A}^{1, k-1}(R \times M)$ the submodule of the $\xi \times C$ -module $\hat{A}^k(R \times M)$ of all elements of the form $\hat{d}\bar{\omega} \wedge \omega_1$, where $\omega_1 \in \hat{A}^{k-1}(R \times M)$ and $\mathcal{Z}_T \omega_1 = 0$. From Lemma 2.1 it follows that $\hat{A}^k(R \times M)$ is the direct sum of the modules $\hat{A}^{0, k}(R \times M)$ and $\hat{A}^{1, k-1}(R \times M)$.

Now let $\omega \in \hat{A}^{0, k-1}(R \times M)$, $k \geq 1$, be an arbitrary element. For any point $p \in M$ there exist an open neighbourhood $U \in \tau_C$ of p and a sequence of real numbers $0 = c_0 < c_1 < \dots < c_n = 1$, a family of $(k-1)$ -forms $\omega_i \in A^{0, k-1}((c_{i-1}, c_i) \times U)$, $i = 1, \dots, n$, such that

$$\omega(t, q) = [\omega_i]_{(t, q)} \quad \text{for } (t, q) \in (c_{i-1}, c_i) \times U, \quad i = 1, \dots, n.$$

Of course $\int_{c_{i-1}}^{c_i} j_t^*(\omega_i) dt \in A^{k-1}(U)$ for $i = 1, \dots, n$.

Let us put

$$(3.2) \quad (I_0^1 \omega)(p) := \left[\sum_{i=1}^n \int_{c_{i-1}}^{c_i} j_t^*(\omega_i) dt \right]_p \quad \text{for } p \in M.$$

Formula (3.2) defines an element $I_0^1 \omega \in \hat{A}^{k-1}(M)$ called the definite integral of $\omega \in \hat{A}^{0,k-1}(R \times M)$ from 0 to 1. The correctness of (3.2) follows from Lemma 2.5.

The mapping $I_0^1 : \hat{A}^{0,k-1}(R \times M) \rightarrow \hat{A}^{k-1}(M)$, $\omega \mapsto I_0^1 \omega$, is called the integral operator on (M, C) .

The composition $L = I_0^1 \circ \gamma_T : \hat{A}^k(R \times M) \rightarrow \hat{A}^{k-1}(M)$, $k = 1, 2, \dots$, is said to be the homotopy operator on (M, C) . If $k = 0$, define $L = 0$.

Proposition 3.1. The homotopy operator L is C -linear and satisfies

$$(3.3) \quad \hat{d} \circ L + L \circ \hat{d} = j_1^* - j_0^*.$$

Proof. It suffices to verify (3.3) for $\omega \in \hat{A}^{0,k}(R \times M)$ and for $\omega \in \hat{A}^{1,k-1}(R \times M)$.

Let $\omega \in \hat{A}^{0,k}(R \times M)$. For any point $p \in M$ there exist an open neighbourhood $U \in \tau_C$ of p and a sequence of real numbers $0 = c_0 < c_1 < \dots < c_n = 1$, $\varepsilon > 0$, a finite family of functions $\varphi^{i_1 \dots i_k} \in (\varepsilon \times C)(c_{l-1} - \varepsilon, c_l + \varepsilon) \times U$, $\alpha_{i_1}, \dots, \alpha_{i_k} \in C_U$, $(i_1, \dots, i_k) \in I$, such that

$$\omega(t, q) = \left[\sum_I \varphi^{i_1 \dots i_k} d\bar{\alpha}_{i_1} \wedge \dots \wedge d\bar{\alpha}_{i_k} \right]_{(t, q)}$$

for $(t, q) \in (c_{l-1} - \varepsilon, c_l + \varepsilon) \times U$, $l = 1, \dots, n$.

Then by (3.2) we have

$$\begin{aligned} L(\hat{d}\omega)(p) &= I_0^1(\gamma_T(\hat{d}\omega))(p) = \\ &= \left[\sum_{l=1}^n \int_{c_{l-1}}^{c_l} \left(\sum_I j_t^* \left(\frac{\partial \varphi^{i_1 \dots i_k}}{\partial t} \right) d\alpha_{i_1} \wedge \dots \wedge d\alpha_{i_k} \right) dt \right]_p = \end{aligned}$$

$$\begin{aligned}
 &= \left[\sum_{l=1}^n \sum_{I'} \left(\frac{\varphi^{i_1 \dots i_k}(c_1, \cdot)}{1} - \frac{\varphi^{i_1 \dots i_k}(c_{l-1}, \cdot)}{1} \right) d\alpha_{i_1} \wedge \dots \wedge d\alpha_{i_k} \right]_p = \\
 &= \sum_{l=1}^n \left(j_{c_l}^*(\omega) - j_{c_{l-1}}^*(\omega) \right)(p) = j_1^*(\omega)(p) - j_0^*(\omega)(p).
 \end{aligned}$$

It is obvious that $\mathcal{I}_T \omega = 0$ for $\omega \in \hat{A}^{0,k}(R \times M)$. Thus $(\hat{d} \circ L)(\omega) = 0$. Therefore (3.3) is true for $\omega \in \hat{A}^{0,k}(R \times M)$.

Now, let $\omega \in \hat{A}^{1,k-1}(R \times M)$. For an arbitrary point $p \in M$ there exist an open neighbourhood $U \in \tau_0$ of p and a sequence of real numbers $0 = c_0 < c_1 < \dots < c_m = 1$, $\varepsilon > 0$, a finite family of functions $\varphi^{i_1 \dots i_{k-1}} \in (\varepsilon \times C)_{(c_{l-1}-\varepsilon, c_l+\varepsilon) \times U}^{i_1, \dots, i_{k-1}}$ $\in C_U$, $(i_1, \dots, i_{k-1}) \in I'$, $l = 1, 2, \dots, m$, such that

$$\omega(t, q) = \left[\sum_{I'} \varphi^{i_1 \dots i_{k-1}} d\bar{\theta} \wedge d\bar{\alpha}_{i_1} \wedge \dots \wedge d\bar{\alpha}_{i_{k-1}} \right] (t, q)$$

for $(t, q) \in (c_{l-1}-\varepsilon, c_l+\varepsilon) \times U$, $l = 1, \dots, m$.

Hence using (2.35) we obtain

$$\begin{aligned}
 \hat{d}\omega(t, q) &= \\
 &= \left[\sum_{I'} \left(\frac{\partial \varphi^{i_1 \dots i_{k-1}}}{\partial t} d\bar{\theta} + d_M \varphi^{i_1 \dots i_{k-1}} \right) \wedge d\bar{\theta} \wedge d\bar{\alpha}_{i_1} \wedge \dots \wedge d\bar{\alpha}_{i_{k-1}} \right] (t, q) = \\
 &= \left[\sum_{I'} d_M \varphi^{i_1 \dots i_{k-1}} \wedge d\bar{\theta} \wedge d\bar{\alpha}_{i_1} \wedge \dots \wedge d\bar{\alpha}_{i_{k-1}} \right] (t, q),
 \end{aligned}$$

for $(t, q) \in (c_{l-1}-\varepsilon, c_l+\varepsilon) \times U$, $l = 1, \dots, m$.

Thus from (3.1) it follows that

$$\mathcal{I}_T(\hat{d}\omega)(t, q) = \left[- \sum_{I'} d_M \int_1^{c_1} \varphi^{i_1 \dots i_{k-1}} \wedge d\bar{\alpha}_{i_1} \wedge \dots \wedge d\bar{\alpha}_{i_{k-1}} \right] (t, q)$$

for $(t, q) \in (c_{l-1} - \varepsilon, c_l + \varepsilon) \times U$, $l = 1, \dots, m$.

Therefore by (3.2) we have

$$(3.5) \quad L(\hat{d}\omega)(p) = I_0^1(\mathcal{I}_T(\hat{d}\omega))(p) =$$

$$= \left[- \sum_{l=1}^m \sum_{I'} \int_{c_{l-1}}^{c_l} d \int_1^{c_1} \varphi^{i_1 \dots i_{k-1}}(t, \cdot) d\alpha_{i_1} \wedge \dots \wedge d\alpha_{i_{k-1}} \right] p.$$

From the other hand we have

$$(3.6) \quad L(\omega)(p) = I_0^1(\mathcal{I}_T(\omega))(p) =$$

$$= \left[\sum_{l=1}^m \sum_{I'} \int_{c_{l-1}}^{c_l} \int_1^{c_1} \varphi^{i_1 \dots i_{k-1}}(t, \cdot) d\alpha_{i_1} \wedge \dots \wedge d\alpha_{i_{k-1}} \right] p.$$

From (3.5) and (3.6) it follows that

$$L(\hat{d}\omega)(p) + \hat{d}(L(\omega))(p) = 0$$

for any $p \in M$ and $\omega \in \hat{A}^{1, k-1}(R \times M)$.

Thus

$$(3.7) \quad (L \circ \hat{d} + \hat{d} \circ L)(\omega) = 0 \quad \text{for any } \omega \in \hat{A}^{1, k-1}(R \times M).$$

It is easy to see that

$$j_t^*(\omega) = 0 \quad \text{for any } \omega \in \hat{A}^{1, k-1}(R \times M) \quad \text{and } t \in R.$$

In particular $j_1^*(\omega) = j_0^*(\omega) = 0$. Hence and from (3.7) it follows that

$$L(\hat{d}\omega) + \hat{d}(L(\omega)) = j_1^*\omega - j_0^*\omega$$

for any $\omega \in \hat{A}^{1, k-1}(R \times M)$. This finishes the proof of (3.3).

The following lemma is an analogue of Poincare lemma in manifolds.

Lemma 3.2. Let (M, C) be a differential space which is locally smoothly contractible [9]. Then the sequence

$$(3.8) \quad 0 \rightarrow \ker \hat{A}^k \xrightarrow{i_k} \hat{A}^k \xrightarrow{\hat{d}_k} \ker \hat{A}^{k+1} \rightarrow 0$$

of sheaf homomorphism, where i_k is the injection, is locally exact.

Proof. This follows immediately from (3.3).

The de Rham group of degree $k \geq 0$ of (M, C) is the group

$$H_{dR}^k(M) = \ker \hat{d}_k / \hat{d}_{k-1}(\hat{A}^{k-1}(M)).$$

One has $H_{dR}^0(M) = \ker \hat{d}_0$.

It is easy to prove that for paracompact differential spaces for all $k \geq 0$ the sheaf \hat{A}^k is fine [4]. This is a simple consequence of the existence of smooth partition of unity in paracompact differential spaces [5].

Let us denote by $\check{H}^k(M, R)$ the k -th Čech cohomology group of (M, C) with coefficients in the real constant sheaf. Similarly to Theorem 4.3 in [2] one can prove

Theorem 3.3. If (M, C) is locally smoothly contractible and paracompact differential space, then

$$(3.9) \quad H_{dR}^k(M) = \check{H}^k(M, R) \quad \text{for } k = 0, 1, 2, \dots$$

In the sequel let \mathcal{C} be the category whose objects are pairs (M, N) of differential spaces admitting smooth partition of unity to any open cover with N as a closed differential subspace of M , and whose morphism are smooth mapping of these pairs (see [2]). The category \mathcal{C} is an admissible category for a cohomology theory in the sense of Eilenberg-Steenrod [3].

For each pair (M, N) in \mathcal{C} with imbedding $i : N \rightarrow M$ we put $\hat{A}^k(M, N) = \ker i^* : \hat{A}^k(M) \rightarrow \hat{A}^k(N)$. Since $\hat{d}_k \circ i^* = i^* \circ \hat{d}_k$, it follows that \hat{d}_k induces a homomorphism

$$(3.10) \quad \tilde{d}_k : \hat{A}^k(M, N) \rightarrow \hat{A}^{k+1}(M, N).$$

Let us put $D^k(M, N) = \ker \tilde{d}_k$.

In this way we obtain a complex [2]

$$(3.11) \quad \dots \rightarrow \hat{A}^{k-1}(M, N) \xrightarrow{\tilde{d}_{k-1}} \hat{A}^k(M, N) \xrightarrow{\tilde{d}_k} \hat{A}^{k+1}(M, N) \rightarrow \dots$$

The de Rham group of degree $k > 0$ of the pair (M, N) is the group

$$H_{dR}^k(M, N) = D^k(M, N) / d_{k-1}(\hat{A}^{k-1}(M, N)).$$

Observe that $H_{dR}^0(M, N) = D^0(M, N)$.

If $f: (M, N) \rightarrow (M', N')$ is a morphism, then the equality $\hat{d} \circ f^* = f^* \hat{d}$ implies that there is a canonically associated homomorphism

$$(3.12) \quad H_{dR}^k(f): H_{dR}^k(M', N') \rightarrow H_{dR}^k(M, N).$$

$H_{dR} = (H_{dR}^k)_{k=0,1,2,\dots}$ is a contravariant functor from the category \mathcal{C} into the category of graded abelian groups and homomorphisms of degree 0. Applying H_{dR}^k to the sequence $(N, \emptyset) \xrightarrow{i} (M, \emptyset) \xrightarrow{j} (M, N)$ one obtains

$$(3.13) \quad H_{dR}^k(M, N) \xrightarrow{j^*} H_{dR}^k(M) \xrightarrow{i^*} H_{dR}^k(N), \quad k = 0, 1, 2, \dots$$

One can prove

Lemma 3.4. Let (M, C) be a differential space which admits smooth partition of unity subordinate to any open cover. Then for any closed differential subspace (N, C_N) the mapping $i^*: \hat{A}^k(M) \rightarrow \hat{A}^k(N)$, $k = 0, 1, 2, \dots$, is surjective.

From Lemma 3.4 it follows that the sequences

$$(3.14) \quad 0 \rightarrow \hat{A}^k(M, N) \rightarrow \hat{A}^k(M) \xrightarrow{i^*} \hat{A}^k(N) \rightarrow 0, \quad k=0, 1, 2, \dots$$

are exact.

Let $\delta^k: H_{dR}^k(N) \rightarrow H_{dR}^{k+1}(M, N)$ be a connecting homomorphism for $k = 0, 1, 2, \dots$ [4], [2]. The collection $\delta = (\delta^k)_{k=0,1,2,\dots}$ is a natural transformation of degree 1 from the functor H_{dR} on (M, N) to the functor H_{dR} on N .

Now one can prove (see [2])

Theorem 3.5. The pair (H_{dR}, δ) is a cohomology theory of \mathcal{C} . (H_{dR}, δ) satisfies the following axioms:

1. Homotopy Axiom. If $f, g: (M, N) \rightarrow (M, N)$ are smoothly homotopic, then

$$H_{dR}(f) = H_{dR}(g).$$

2. Exactness Axiom. For any pair (M, N) of \mathcal{C} the sequence $0 \rightarrow H_{dR}^0(M, N) \rightarrow \dots \rightarrow H_{dR}^k(M, N) \xrightarrow{j^*} H_{dR}^k(M) \xrightarrow{i^*} H_{dR}^k(N) \xrightarrow{\delta^k} H_{dR}^{k+1}(M, N) \rightarrow \dots$ obtained from (3.13) and δ^k by composition is exact.

3. Excision Axiom. Let (M, N) be a pair of \mathcal{C} and U be an open subset of whose closure \bar{U} is contained in the interior of N . If $(M-U, N-U)$ with induced differential structures is an object of \mathcal{C} and the inclusion map $\tilde{j}: (M-U, N-U) \rightarrow (M, N)$ is a morphism, then

$$H_{dR}(\tilde{j}): H_{dR}(M, N) \rightarrow H_{dR}(M-U, N-U)$$

is an isomorphism.

4. Dimension Axiom. If P is a one-point differential space, then

$$H_{dR}^0(P) = R \quad \text{and} \quad H_{dR}^k(P) = 0 \quad \text{for } k = 1, 2, \dots$$

REFERENCES

- [1] G. Bredon: Sheaf theory, McGraw-Hill, New York, 1967.
- [2] M. Breuer, Ch.D. Marshall: Banachian differentiable spaces, Math. Ann. 237 (1978), 105-120.

- [3] S. Eilenberg, N. Steenrod : Foundations of algebraic topology, Princeton University Press, Princeton, 1952.
- [4] R. Godement : Theorie des faisceaux, Hermann, Paris, 1958.
- [5] A. Kowalczyk : Tangent differential spaces and smooth forms, Demonstratio Math. 13 (1980), 893-905.
- [6] A. Kowalczyk : On partition of unity in differential spaces, Bull. Acad. Polon. Math. 28 (1980), 391-395.
- [7] Ch.D. Marshall : The de Rham cohomology of subcartesian spaces, J. Differential Geometry 10 (1975), 575-588.
- [8] Ch.D. Marshall : Calculus on subcartesian spaces, J. Differential Geometry 10 (1975), 551-574.
- [9] M.A. Mostow : The differentiable space structure of Milnor classifying space, simplicial complexes and geometric realizations, J. Differential Geometry 14 (1979), 255-293.
- [10] W. Sasin, Z. Żekanowski : On some sheaves over a differential space, Arch. Math. 4, Scripta Fac. Sci. Nat. UJEP Brunensis 18 (1982), 193-200.
- [11] W. Sasin : On some exterior algebra of the differential forms over a differential space, Demonstratio Math. 19 (1986), 1063-1075.
- [12] R. Sikorski : Abstract covariant derivative, Colloq. Math. 18 (1967), 251-272.
- [13] R. Sikorski : Differential modules, Colloq. Math. 24 (1971), 45-70.
- [14] R. Sikorski : Wstęp do geometrii różniczkowej, PWN, Warszawa, 1972.
- [15] J.W. Smith : The de Rham theorem for general spaces, Tôhoku Math. Journ. 18 (1966), 115-137.
- [16] K. Spallek : Differential forms on differentiable spaces, Rend. Mat. 4 (1971) 231-258.

- [17] K. Spallek : Differential forms on differentiable spaces, II, *Rend. Mat.* 5 (1972), 375-389.
- [18] J. Schwartz : De Rham's theorem for arbitrary spaces, *Amer. J. Math.* 77 (1955), 29-44.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
00-661 WARSZAWA, POLAND

Received July 8, 1988.

