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Introduction 
In [11] we have defined an exterior algebra A(M) on a 

d i f f e r e n t i a l space H in the sense of Sikoreki [12], [13]. In-
troduced there the operator d s a t i s f i e s the well-known axioms 
of the exterior derivation. So we ma; consider the de Rham 
complex in our case. Such complexes were considered on another 
d i f f e r e n t i a t e spaces by Smith [15], Spallek [1b], [ 17] , 
Marshall [ 2 ] , [7], Mostow [10] and Schwartz [ i s ] . I t seems . 
that these complexes are of interest in global ana lys i s . Ve 
invest igate properties of the de Rham cohomology of the com-
plex (A(M),£) on a S ikorsk i ' s d i f f e r e n t i a l space. 

In Section 1 we r e c a l l some basic notions and notation. 
In Seotion 2 we describe some properties of the Cartesian 
product of d i f f e r e n t i a l spaces and consider smooth one-para-
meter fami l ie s of d i f f e r e n t i a l forms. Next in Section 3 we 
define the homotopy operator L for 3, which le t us eas i ly give 
an axiomatic description of the considered de Rham cohomology. 

1. Basic notions and notation 
Let (M,C) be a d i f f e r e n t i a l space [13], [14]. By we 

denote the smallest topology on M such that a l l functions 
from C are continuous. Let C0 be a set of r ea l functions on M. 
The d i f f e r e n t i a l structure C i s called generated by Cq i f C 
I s the smallest d i f f e r e n t i a l structure containing CQ. Ve denote 
by M the space tangent to (M,C) at the point pe l l , Bach e l e -
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2 W. Sasin 

ment v £Mp is an R-linear mapping v:C R satisfying the 
condition: 

v(w.|5) =a (p )v (P ) + li( p)v(cx) for any a,|5eC. 

Let TM := 1J M be a disjoint sum of tangent spaoes to (M,C). 
peM p 

Let TC -(see [5] ) be the di f ferential structure on TM generated 
by the set {aojt : otec} u {da : cxe c}t where 3t t TM —• M is the 
natural projection and da: TM R is a function defined by 
the formula 

(doi)(v) - v(cx) for v £ TM. 

Now, let us put 

T̂ M « { ( V 1 ( . . . , v k ) £ TMx.. ,xTM: JCfv^ « . . . = Jt(vk)} 

as well as 

TkC - (TC*...xTC) t for k « 1 , 2 , . . . [ 5 ] . 
T*M 

1. 
By A (M), where k • 1 ,2 , . . . , we denote the set of a l l 

smooth mappings <0 s T^M—•R such that the mapping cj|M x xJJ 
' p " ' p 

is skew-symmetric R-k-linear for each point peM [5]. A direot 
sum A(M) a ® Ak (M), where A (M) • C, together with the cano-

k>0 
pioal operations of addition.and multiplication is a graded 
algebra over R. 

v 
Lat—®lA{M) for k^1 denote the set of a l l elements 

coeA^tM) such that for each point p£M there exist an open 
neighbourhood U e t^ of p and a family of smooth functions 
0<i1 a i w ' ^ . . . i ^ ^ u f o r ( i i l n l , l c | t 1 ' 
where I is a f in i te subset, such that 

cj|jr"1(U) » da« * a dp 4 a... a dcr4 
I I r * * l k - 1 11 k-1 

as well as 

"S"1 Oil J dot. A ... A dc«j • 0. 
^ 1 ' " k-1 X1 k-1 
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Cohomology of d i f f e rent ia l spaces 3 

Moreover for k ~ 0 we put 33t°(M) = { o } [ l l ] . One can prove 

[11] that the direct sum 3Jt(M) = 0 32flk(M) i s a homogeneous 
kiO 

ideal in the. graded algebra A(M). 
Let be a sheaf U v -*A k (U ) , U e T j . We denote by 33lk 

(k - 0 , 1 , . . . ) the sheaf U »-»• 3f lk (U) , U e Let t be the 
sheaf of a l l smooth functions on (U,C) [10]. Evidently for 
each k.? 1 i s a subsheaf of C-modules of the sheaf A 
of €-modules. Let A « ® <ftk and tSl = 033"lk be direct sums of 

k*0 k^O 
the correspondent sheaves. The both sheaves <ft and Wl are 
evidently the sheaves of ¿raded algebras. The sheaf W. i s 
a subsheaf of homogeneous ideals in the sheaf of graded a lge -
bras eft [ 1 1 ] . Let A » A/Wt be a quotient presheaf. Denote by 
n the quotient sheaf associated with the quotient preasheaf 
A . I f {; c A (U) , U c XQ then for each point pe l ) by we w i l l 
denote below a germ of £ at the point p. In the set ,ft(U) of 

A 
the cross-sections of the eheaf A over 0 ctj, one can define 
in the natural way the operations of additions and exterior 
multiplication. Moreover fo r any U e t c ' a direct sum it (U) • 
- 0 A k (U ) i s a graded algebra over R. In the graded algebra 

k?0 
A(M) there exists exaotly one operator d: &k(M) A k + 1 (M ) 
for k - 0 , 1 , . . . satisfying the well-known conditions of ex-
ter ior derivative (see Th. 3.1 in [ l l j ) . Let coe,ftk(M) be an 
arbitrary element, k = 0,1 Recall that for k » 0 

A°(M) - C and then (dco)(p) [do ] p f o r each point pell!, where 
[dco]p i s the germ of the equivalence class [dw]. Now, let k^1 
and p be an arbitrary point of M. There exist fo r w an open 
neighbourhood U e of p and an indexed family of smooth w k 
functions o^ , . . . , 0 ^ , o^ ^ e C y - c f U ) , ( i 1 , . . . c I cH , 

such that 

(1.1) w(q) = a . * do, a . . . Ada 
L j 1 * ' k 

for each point q c U. Then we put 

*kJ 
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4 V. Sasin 

(1.2) (dw)(p) 21! dotj 4 A da. A ... A da4 • L I 1 * * * k kJp 

Denote by 3E(M) the C-module of all smooth vector fields 
tangent to (M,C). 

2. The Cartesian product of differential spaces. Smooth 
1-parameter families of differential forms 

Let (M,C) and (N,D) be differential spaces. For an arbi-
-£ary function cx e C we denote by oi the function « : M*B — • R 
given by 

(2.1) a « a o pr1, 
where pr1 s MxN — M is the projection of M*N onto M. 

Analogously for any ft e D let (5 j M*N - + B be the. function 
given by 
(2.2) 0 = fi o pr2, 

where pr2: M*N — • N is the projection of MxN onto N. 
Let C»D be the differential structure on MxN generated 

by the set of real functions {a : a e c} u {¡i : ft e D}. The diffe-
rential spaoe (MxN, C*D) is called the Cartesian produot of 
differential spaces (M,C) and (N,D) [14]. If C is generated 
by a set CQ and D is generated by a set DQ then the differen-
tial structure C*D is generated by the set ja : cxc CQ|u|p: (5eD0|. 

For an arbitrary point p^ e M let j t N -*• MxN be the 
imbedding given by 0 

(2.3) (q) = (P_,q) for q e M. 

For an arbitrary point q c N let j : N -*• M*N be the imbedding 
0 defined by 

(2.4) j. (p) = (p,9 J for peM. 

It is easy to verify the following equalities: 
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Cohomology of d i f f e r e n t i a l spaoes 5 

(2 .5 ) I«-, ° i q o -

(2 .6 ) p r 2 » j » i d N , 
o 

( 2 . 7 ) ( P V D P )(Q) - P0 Q« N. 
o 

(2 .8 ) (pr2°3q = f o r p £ M * 

Let (M*N)» - i be the tangent spaoa to (MxN,C*D) at a 
v P»q I 

point ( p , q ) . POP any tangent vector we (MxN)^p q j we put 

WM = ( V p P 1 , » ( p , q ) W * 

(2.10) wK - ( d p ° p r 2 U ( p , q ) w -

I t i s easy to see that w = WJJ + WJJ and that the veotors w^ 
and wH s a t i s f y the fo l lowing condit ions: 

( 2 . 1 1 ) = 0 F O R A N ? 

( 2 . 1 2 ) WJJ(o) = 0 f o r any a c C . 

D e f i n i t i o n 2.1. A vector we (M*N) ^ q j i s 
said to be para l l e l to (M,C) i f w(/3) = 0 f o r any li t D. A vec -
tor we (M*M)jp q j i s said to be para l l e l to (N,D) i f w(ot) = 0 
f o r any cx e C. 

Clearly f o r any w e(MxN)^p q j the vector i s para l l e l 
to (M,C) and the vector wK i s para l l e l to (N fD) . I t i s easy 
to see that the subspace ( o n L ( k , J i s the set of a l l vectors q * p 

tangent to (MxN,CxD) at ( p ,q ) para l le l to (M,C) and the sub-
space ( 3 _ L n ( B L ) i s the set of a l l veotors tangent to (M*N,C*D) p * q q 
at (p ,q ) para l l e l to (N,D). One can prove [14 ] that the tan-
gent space (MxN)# , i s a d i rect sum of eubspaces ( j _ L . j M ) 

• \ p»q I q *p p 
and ( j p ) * q ( N q ) . 

D e f i n i t i o n 2.2. A vector f i e l d Z eS(MxN) i s 
said to be para l l e l to (M,C) i f Z(/i) 0 f o r any ft e D. A vec -
tor f i e l d Z e 3E(M*N) i s said to be para l l e l to (N,D) i f Z (a ) =0 
f o r any a e C. 
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6 W. Sasin 

Now, l e t ZeX(M*N) be an arbi t rary vector f i e l d tangent 
to (M*N,C*D). Let us put 

(2.13) ZM(p,q) (3 q ° l » 1 ) # (p q)Z(P»q) for ( p,q ) e M*N, 

(2.14). ZN(p,q) := ( j po pr2)< ( jZ( p,q ) for (p,q)eM*N. 

One can prove the i d e n t i t i e s : 

(2.15) ZM(a) = Z(a) for a e C, 

(2.1b) ZM((5) =0 for ft e D, 

(2.17) ZN(S) « 0 for cx e C, 

(2.18) Zw(fl) = Z(p>) for (i c D. 

So the vector f i e l d s ZM and ZK defined by (2 .13) - (2 .14) are 
smooth and para l l e l to (M,C) and (N,D) respec t ive ly . Moreover 
Z - ZM + Z J J . 

Now, l e t X c 2E(M) be an arbi trary smooth vector f i e l d 
tangent to (5,C). Let X: M*N -*• T{Jfl*N) be the mapping given by 

(2.19) X(p,q) U q ) * p * (p ) for (p,q)eM*N. 

It i s easy to ver i fy that X i s a smooth vector f i e l d tangent 
to (MxN,C*D), pa ra l l e l to (M,C) and s a t i s f i e s the following 
condition: 

(2.20) X(a) = a ( « ) for any « e C . 

Analogously for any Y e X(N) we can define the vector f i e l d 
Y e 2(M*N) para l l e l to (N,D) by the following formula 

(2.21) Y(p,q) := U p ) * q Yiq ) for (p,q)eM*N. 

One can ver i fy the following i d e n t i t i e s : 

(2.22) [X,Y] = 0 for any X e 3E ( a i ) , Y e X{K), 
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Cohomology of d i f f e r e n t i a l spaces 7 

( 2 . 2 3 ) [ X 1 » X 2 ] = [ X 1 ' X 2 l f o r a n 3 f X 1 , X 2 e 3 £ i M > i 

( 2 . 2 4 ) - [T1 ,T2 ] f o r any Y 1 t Y 2 t X(N). 

How, l e t 9 e C*D ba an a r b i t r a r y r e a l funct ion* Denote by 
jt : T(M*N) -*• M*N the canonical p r o j e c t i o n [ 5 ] . Let Jt̂  and Jr2 

be the coord inates of at, i . e . 31 = (Jt^ Jig)« Let us put 

( 2 . 2 5 ) (dMcp)(v) = v{cp{ • , 3 t 2 (v ) ) ) f o r veT(M«K), 

( 2 . 2 6 ) (dNcp)(vj = v(cp(3t1 (v) )) f o r v e T(M*N). 

One can v e r i f y tha t d t̂p and are smooth 1 - forms on MxH 
and 

( 2 . 2 7 ) dip = dMtp + djjcp. 

1 - fo rm djj<p i s ca l l ed the p a r t i a l d i f f e r e n t i a l of <p w i th r e s -
pect to M and 1- form dN<f> i s c a l l e d the p a r t i a l d i f f e r e n t i a l 
of <p with respec t to N. I t i s easy t o check the f o l l o w i n g 
i d e n t i t i e s : 

( 2 . 2 8 ) d*(dcp) = jp(dN<p) f o r any p e M, 

( 2 . 2 9 ) jj(d<p) = ^(dM<e) f o r any q e N . 

Wow we consider the Car tes ian product of (R,E) and (M,C), 
where £ i s the n a t u r a l d i f f e r e n t i a l s t r u c t u r e on R generated 
by the f u n c t i o n 6 = i d R . I f the d i f f e r e n t i a l s t r u c t u r e C i s 
generated by CQ then the d i f f e r e n t i a l s t r u c t u r e £ *C i s gene-
ra ted by the se t { 5 } u {of: cxe C 0 } . Let T = e 3E(H*M) be the 
v e c t o r f i e l d def ined by ( 2 . 1 3 ) , where ^ i s the bas i s v e c t o r 
f i e l d tangent to (R,£). 

For any weAk(RxM), k e N, l e t 2 T u b e the ( k - D - f o r m de-
f i n e d by 

( 2 . 3 0 ) ( • • , . . « . . v k _ . , ) := w ( T ( t , p ) , v 1 , . . . , v k _ 1 ) 

f o r v ^ . . . , ? ^ e (RxM) ( t ^ p )» ( t . p ) e R*M. 
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8 W. S a s i n 

M o r e o v e r f o r u e A ° ( R * M ) we p u t j ^ u ' m 0 . 

I t i s e a s y t o s e e t h a t t h e o p e r a t o r ¿ T : A ( R * M ) — * - A ( R « U ) , 

co 2<pw» i - 8 t * C - l i n e a r a n d s a t i s f i e s t h e f o l l o w i n g c o n d i t i o n : 

l u l l 
( 2 . 3 1 ) A = A c j 2 + w I a 2 T u 2 

f o r w 1 f w 2 e A ( R * M ) . O f c o u r s e <> 2 T » 0 . 

We s h a l l p r o v e 

L e m m a 2 . 1 . B v e r y k - f o r m c j e A k ( R x M ) may b e u n i q u e l y 

p r e s e n t e d i n t h e f o r m 

( 2 . 3 2 ) ' w « d § A + w 2 , 

1 k 
w h e r e co^ e A ( f i * M ) a n d <*>2 e A ( R * M ) a r e s u c h f o r m s t h a t 

^ u ) . , = 0 a n d i T u 2 - 0 . 

P r o o f . P u t ¿ ^ w a n d Wg s « to - d § A 2 T u . O f 

c o u r s e ^gAJ » 0 and * r e m a i n s t o p r o v e t h e u n i q u e -

n e s s o f t h e d e c o m p o s i t i o n ( 2 . 3 2 ) . I n f a o t , i f to « d S A u ^ + W g , 

w h e r e » 0 a n d Z j ^ = 0 t h e n 

= 2 T ( d § A w ^ ) « j j i d S A u ^ . 

H e n c e w^ - d 9 A = co^ - d S A ^ U j . C o n s e q u e n t l y • 

a n d 

c j g = u - d § a u^ = w - d6 a « u>2* 

0 k 
D e n o t e by A ' ( R * M ) t h e £ * C - s u b m o d u l e o f k - f o r m s 

o j e A k ( R x M ) s a t i s f y i n g t h e c o n d i t i o n = 0 a n d A 1 , k " 1 ( R x M ) 

t h e s u b m o d u l e o f t h e £ x C - m o d u l e A k ( R x M ) o f a l l f o r m s o f t h e 
_ k 1 

f o r m d9 a co^, w h e r e ^ e i ( R * M ) a n d = 0 . P r o m Lemma 2 . 1 

i t f o l l o w s 

C o r o l l a r y 2 . 2 . T h e fcxc-module A k ( R x M ) i s t h e 

d i r e c t sum o f t h e t x C - m o d u l e s A 1 » k " 1 ( R x M ) a n d A 0 , k ( R x M ) . 

Now l e t <pe £ x C b e a n a r b i t r a r y s m o o t h , f u n c t i o n o n R x U . 
3<p 

L e t : R*M R b e t h e f u n c t i o n d e f i n e d b y 

( 2 . 3 3 ) l f ( s . P ) = l t l ( t 
' fl 
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Cohomology of d i f f e r e n t i a l epaoee 9 

I t ie easy to see that i s smooth. In f a c t , f o r an a r b i t r a -
ry point ( t , p ) e R*M there ex i s t an open i n t e r v a l (a ,b) 9 t , 
an open neighbourhood V e t ^ of p and smooth funct ions 
o . l f . . . , a n eC, tf-eC00 (Rn + 1) such that 

« n ) | ( a , b ) x V . 

Then 

(2.34) | | | (a,b)xV - ^ • (§, a v . . . , 5 < n ) | (a,b)xV. 

From (2 .26) , (2.27) and (2.34) i t i s easy to observe the 
eq u a l i t y t 

(2.35) d<p - | f d§ + dM<p. 

Of course dM<p e A 0 * 1 (RxM) and | f d8 = dRcp e A1 »°(R*M). More-

over 2t(<3«P) - | f . 
Now l e t ( w t ) t e 8 » w^tA (M), be a 1-parameter family of 

d i f f e r e n t i a l k-forms on (M,C). 
D e f i n i t i o n 2.3* 1-parameter family ( " t ' t e R 

i s cal led smooth i f the func t ion u : RxT̂ M R defined by 
the formula 

(2.36) w ( t , v 1 f . . . , v k ) - u t ( v 1 , . . . , v k ) f o r {t,v1 , . . . ,vk)eRxTkM 

i s smooth. 
D e f i n i t i o n 2*4. Let ( w

t ) t e R be a smooth 
1-parameter family of d i f f e r e n t i a l k-forms. Then the k-form 
b 
f dt defined by 
a 

b b 
(2.37) ( j wt d t ^ ( v 1 t . . . , v k ) t - j u t ( v 1 , . . . t v k ) dt 

a a 
f o r ( v 1 , v k ) c J^M, i s said to be the defined i n t e g r a l 
f*om ( w t ) t c R * 
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10 W. Saein 

E x a m p l e 2 .1 . Let (^-t ^tcR b a a s m o o t h 1-parame-
t e r family of k-forms on (M,C) of the form 

i « . . . i j j 
c^ - S H v ( t , * ) da^ A . ^ A d o ^ , 

I 1 k 
• • • iu i-

where® c£*C, o<4 eC for ( L , . , , , i u ) e I c H 
11 xk 1 K 

and I i s a f i n i t e Bet of ind ices . Then one can check that 

j u t dt = ( j < P 1 k ( t , * ) d t ) d ^ a . . . a dotjj. 

L e m m a 2 .2 . If (cxt) t e R i s a smooth 1-parameter 
family of O-forms on a d i f f e r e n t i a l space (M,C) then 

(2.38) d ( J o t d t ) - J d ott dt . 

P r o o f . The smoothness of 1-parameter family 

>teR ' 
f ined by 
(o^'teR of O-forms means that the f u n c t i o n « : R*M -*• H de-

oc(t,p) « a t ( p ) for ( t ,p)cRxM 

i s smooth. Thus for any point .pe M there ex i s t an open neigh-
bourhood V c XQ of p, a sequence of r e a l numbers c Q , c . | , . . . ,oQ 

suoh that a « oQ < . . . < c n = b and funotions » . . . * 
£ ^k+1 * ^ » • • • « ^ k € ° « k c K, such that 

&|(<5i_ 1 . ° i , x V " ^kH < c i - i » c i , x V f 0 T i - 1 . . . . . B . 

Then we have 

b n ° i 
(2.39) (f at d t ) V - ( X j T ( t J ¡j ) d t ) 

a i »1 c ^ 
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Cohomology of d i f f e r e n t i a l space s 11 

and 
b n c i 

V. ( 2 . 4 0 ) ( J d a t d t ) V - j d a r i ( t , P 1 , . . . , P k ) d t ) 
a 1«1 c ^ 

One can e a s i l y v e r i f y the e q u a l i t y 

d c ± 

( 2 . 4 1 ) d ( j 2 r l ( t , p 1 , . . . , p k ) d t ) . j d j r l ( t , p 1 , . . . f & k ) d t . 

° i - 1 c i - 1 

From ( 2 . 3 9 ) - ( 2 . 4 1 ) i t f o l l o w s t h a t 

b b 
d ( j a , d t ) | v = ( j d a t d t ) | v . 

a a 

Th i s f i n i s h e s the proof . 
One can proy* 
L e m m a 2 . 3 . I f 

<p daA A . . . Ado^ = 0 , 
I 1 k 

f or <p 1 k c £ x C , a , eC , ( i . , . . . , i j e I c Nk , where 
1 k I K 

I i s a f i n i t e s e t , then 

? . g^ da^ A . . . Ada^ B 0 . 
I, 1 k 

L e m m a 2 . 4 . I f y e2 i l k + 1 (R*M) then ¿ T pe 33tk(RxM). 

P r o o f . Let ( i t m k + 1 (R*M). For each point ( t ,p)eR*M 
the r e e x i s t an open i n t e r v a l ( a , b ) a t , an open neighbourhood 

V of p and smooth f u n c t i o n s <p 1 k e (£*C ) ( a b ^ y . « ^ ».••!<*! c 

j • » . j * ^ k 

e Cy, ( i 1 t . . . , i k ) £ l cN k , V k " 1 e (£*C) (a>b)xV, Pj , . . . 

. . . , / i j e Cy, ( j 1 , . . . ) c J c Nk~1, where I and J a re f i -
k-1 

n i t e s u b s e t s of i n d i c e s , such tha t 
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12 W. Saein 

( 2 . 4 2 ) U " 1 ( ( a t b ) x V ) d c p i r " i k A d ^ a . . . ac&j^ + 
I 1 k 

_—i 3l***<)lr_1 - - — 
+ 2_i<Jl|> ' A d S A d p j A . . . A d (ij 

I 1 k 

as w e l l as 

- -

cp dot, a . . . a do, + 
1 k I 

r—i <J • • • J lr-1 - -
+ > , d v 1 a d8 a d ft, a . . . Ad fij = 0 . 

j 3 1 «>k-1 

Using 2 t to ( 2 . 4 2 ) and ( 2 . 4 3 ) from Lemma 2 . 3 and ( 2 . 3 5 ) 
I t f o l l o w s tha t 

2 T t i| jc" 1 ( (a ,b) x V) = d tp 3 ' 1 "" 1 * ' 1 A d P j A . , . A d | a 
* 1 k-1 i 

and 

Ed 1 • • • J lr_1 
^ 1 *• 1 dp. A . . . Adu, - 0 . 

J J 1 J k - 1 

Hence ¡>T (J6 33Tk(RxM). 
C o r o l l a r y 2 . 5 . Let pe ffllk(RxM) and j j 2 b e 

elements from the decomposition ( 2 . 3 2 ) such tha t ¿i = 
= d§ a jj.| + f j 2 . Then ^ e 33Xk""1 (RxM) and ¿ig e "Stl k(RxM). 

P r o o f * Since y * dQAy^ + pg an<* m*(R*M) by 

Lemma 2 . 4 ¿T(J = ^ c 33t (RxK). Because 331 (R*M) i s an i d e a l 
- k — then a l so d e A ^ e 3Jl"-(RxM). But ¿j2 = H ~ d Q A ^ . Thus 

6 ®tk(RxM). 
Now we prove 

k O k 
L e m m a 2 . 6 . Let ¿j e "3ft (RxM) n A • (RxM) be an a r b i -

t r a r y element and M RxM be the imbedding def ined by 

( 2 .3 ) . 
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Than U ^ ^ t e R i s a s m o o t h 1-parameter family of k-forms 

on (M,C) from the ideal 33ïk(M) and J jJ({j)dt e 3Hk(M). 
a 

P r o o f * For an arbitrary point pcH there exist an 
open neighbourhood Vet^ of the point pcM, a sequenoe of 
rea l numbers a « oQ <c^< . . . <cQ • b, a family of smooth 

i<i > • • Ai- * 
functions a , . . . . . a . e " ~ oij e (m, a . ¿ / . „ 1*0«-, 

J l 1 j l k - 1 [ Ì « 6 < « J - 1 * V 

subset, suah that 

S
A1 * * * xlr 

do» A d«j a . . . a dô. 
r i J 1 ! JAk-1 

where ( ^ , . . . , 1 ^ 1 eIcN k " 1 , j - 1 , . . . , n and I i s a f i n i t e 

i«••»iv 

and 

X i f 1 * k ' 1 do, a . . . Ada, - 0 for j = 1 , . . . , n . 

Hence by simple calculation one can check: 

/ b n 

( J a K e ) « ) ! • - ( s j djif ) « ) ! • -
J-1 o im1 

J-1 X 

and c 

¿ S ( J 
j - i x Cj_1 

b , 
Hence i t follows that J )dt | V e WT{V) and consequently 

b • v a 
J jJiti-jdt £ ® n m . 
a 
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3. The homotopy operator on a d i f f e r e n t i a l Sftaoe 
Now, using the above lemmas, we sha l l oonstruct the homo-A - A 

topy operator for the complex (A(M),d). 
Ajr 

For an arbi trary ot A (RxM), k£ 1, denote by ¿ x " t h e 

element of Ak_1(R*M) given by 

(3.1) (2T i j ) ( t ,p) [ 2 T $ ] ( t , p ) f o r (*.P)«H«M» 

where i s . a k-form on an open neighbourhood V c r t p 

of p such that to(t,p) = [?] ( t p ) . 
The correctness of (3*1) follows from Lemma 2.4* 

by 
Let 2 t i ik(R*M) -+> ik"1(RxM), k * 1 , be the mapping defined 

U) 

Denote by A0,k(R*M), for k = 1 , 2 , . . . , the € *C-module of 
elements o e Ak(R*M) such that u= 0 and by A1'k"1(R*M) the 
submodule of the £*C-module Ak(R*M) of a l l elements of the 
form dQAw.j, where cô  e ik~^(R*M) and ¿jio-j = 0. Prom Lemma 2.1 
i t follows that Ak(R*M) i s the direct sum of the modules 
A0,k(R*M) and A1,k"1(R*M). 

Now l e t cjc A0 , k"1 (R«M), be an arb i t rary element, 
for any point peM there ex is t an open neighbourhood U c Tq 
of p and a sequence of r e a l numbers 0 = c0 < c.j < . . . < cQ = 1, 
a family of (k-1 )-forms e A°'k"1 ( (o^. , , c i ) *U) , i = 1 , . . . , n , 
such that 

" ( t , q ) = [w i ]{- t fq) f o r ( t . q ) c (C i .^CiJxU, i = 1 , . . . , n . 

c i 
Of course J ^ ( " j . ) dteAk~1(U) for i = 1 , . . . , n . 

c i-1 

Let us put 

(3 .2) ( l jw) (p ) s 
E j J > i ) d t 
i= 1 c i -1 

for p e M. 
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Formula (3.2) defines an element ue Ak~1 (li) called the de-
f i n i t e integral of wc A ° ' k " 1 (RxM) from 0 to 1. The correctness 
of (3.2) follows from Lemma 2.5. 

The mapping i j : A 0 , k ~ 1 (Rxil) Ak"1 (M), u (-»> I^u, is 
called the integral operator on (M,C). 

The composition L = i j o £T : £k(R*M) £ k _ 1 (M ) , 
k = 1 , 2 , . . . , i s said to be the homotopy operator on (M,C). 
I f k = 0, define L = 0. 

P r o p o s i t i o n ' 3.1. The homotopy operator L i s 
C- l inear and sat isf ies 

(3.3) d°L + Lod = d* - 3*. 

P r o o f . I t suff ices to ver i fy (3.3) for u e i°»k(ii*M) 
and for w cA1 , k~1 (R*M). 

aq 1. 
Let we A ' (RxM)* For any point peM there exist an open 

neighbourhood Ue z^ of p and a sequence of raal numbers 
0 = cQ <c1 < . . . <c n = 1, e > 0, a f i n i t e family of functions 

• •. i j j 

1 e ( e x C , ( c l _ 1 - £ , c l + e ) X U ' « i 1 " - - » 0 ( i k e CU' ( ^ . . . . . i k J e l , 

such that 

w ( t , q ) = T Ctoij A . . . A dOo 
x 1 ^l xk ( t , q ) 

for ( t , q ) e ( o j ^ - e . C j + eJxU, 1 = i , . . . , n . 
Then by (3.2) we have 

L(du)(p) = xJ ( 2 T (du ) ) (p ) 

n C1 

e J I —, 
1-1 c 1-1 

da., A . . . Ada, |dt 
X1 xk 
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. . . I v 
5 H S (* k ( c i » * ) - v V " k < c i » i » , ) ) d a i A . . . A d a i 
1=1 I 1 1 1 

a 

= 2 O i M - 3C { w , ) ( p ) = 3 * M ( p ) - d * M ( p ) . 
1=1 1 1 - 1 

I t i s obvious that 2 t u = 0 f o r u e A ° » k ( R M). Thus 
(doL)(u) = 0 . Therefore ( 3 . 3 ) I s true f o r w e A 0 , k lRxM). 

Nov,-let w e (RxM). For an a r b i t r a r y point peM there 
exist an open neighbourhood U e t c of p and a sequenoe of r e a l 
numbers 0 » c Q < o 1 < . . . < om = 1, e> 0, a f i n i t e family of 

functions <p 
1 

i r * , 1 k - i £ ^ * C ' ( c l _ 1 - e , c l + E ) * 0 , a i 1
 8 i w ' 

€ Cy, ( i 1 , i k _ 1 ) € I ' , 1 » 1 , 2 , » . . ,01, such that 

w ( t , q ) 
r̂—| . . . i j . j _ _ 

> ,<P d8 a do4 A . . . Ado<< 
I ' l 

L1 k-1 ( t , q ) 

f o r ( t , q ) £ ( o ^ - E . C j + EjxU, 1 » 1 , . . . , m . 

Hence using (2.35) ve obtain 

. I ' V 

i r * , 1 k - i 
clw(t,q) 

at d8 + dM <p 
l 1 , # , i k - 1 Ad8Ada4 a.. .Ada 4 

/ X1 k-1 (tfl) 

- I i j • t l l u 4 
y dM <p " a dS a da^ a . . . a dot̂  

I ' 1 1 k-1 ( t , q ) 

f o r ( t , q ) c ( c l i _ 1 - e , o l + £ ) K U , 1 « 1 , . . . , n . 
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Thus from (3.1 J i t follows that 

2T(dw)(t ,q) = E d M * 
I' 1 

i r * , i k - i A dcij A . . . A do. 
k-1 ( t , q ) 

for ( t , q ) e (c-^.j-e.c-j + ehU, 1 = 1 
Therefore by (3.2) we have 

.in. 

(3 .5) L(du)(p) - l J ( z T ( du ) ) (p ) 

m i., • • • i . 
- E E / 

L i - i i ' c l - 1 i 

From the other hand we have 

(3.6) L(w)(p) - l j ( 2 l ( w j ) { p ) 

) da^ A . . . dai 
1 k-1 

f ( 
i r * , 1 k - i 

1-1 I c 1 - 1 

( t , * ) DA, A . . . ADOF4 
l 1 k-1 

Prom (3 .5) and (3 .6) i t follows that 

L(dw)(p) + d(L(h>)) ( p) - 0 

for any p c M and coe A1,k"1(R*M). 
Thus 

(3 .7) (Lod + doL)(to) • 0 for any u e A.1 •k~1 (R»M). 

I t i s easy to see that 

^ ( u ) « 0 for any we A1,k"1(RxM) and t t R. 

In par t ioa la r J * M » d * M - 0. Henoe and from (3 .7) i t 
follows that 

L(dw) + d(L(<o)) « J * w - J*w 

for any a»cA1 'k"1(RxM). This f in i shes the proof of ( 3 . 3 ) . 
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18 W. Sas in 

The fo l lowing lemma I s an analogue of ?o incare lemma i n 
mani fo lds . 

L e m m a 3 . 2 . Let (MtC) be a d i f f e r e n t i a l spaoe which 
i s l o c a l l y smoothly c o n t r a c t i b l e [9 ] . Then the sequenoe 

A 

A1. i l f Air ^Ir a 1. , 1 
(3 .8 ) 0 ker AK — A K — ^ ker <ftK+1 0 

of sheaf homomorphism, where i ^ i s the i n j e c t i o n , i s l o c a l l y 
e x a c t . 

P r o o f . This fo l lows immediately from (3 .3)* 
The de Rham group of degree 0 of (M,C) i s the group 

HJ r (M ) - k e r d k / d k - 1 ( A k ~ 1 ( M ) ) . 

One has = ker d Q . 

I t i s easy t o prove t h a t f o r paracompact d i f f e r e n t i a l 
spaces f o r a l l k> 0 the sheaf Ak i s f i n e [4] . This i s a s im-
ple consequence of the ex i s t ence of smooth p a r t i t i o n of uni ty 
i n paracompact d i f f e r e n t i a l spaces [5] . 

vjf V 
Let us denote by H (M,R) the k - t h Cech cohomology group 

of (M,C) with c o e f f i c i e n t s i n the r e a l cons tan t s h e a f . S imi-
l a r l y t o Theorem 4 .3 i n [2] one can prove 

T h e o r e m 3 . 3 . I f (M,C) i s l o c a l l y smoothly con-
t r a c t i b l e and paraoompact d i f f e r e n t i a l spaoe, then 

(3 .9) . HdR(M> s Hk(M,R) f o r k = 0 , 1 , 2 , . . . . 

I n the sequal l e t 01 be the category whose o b j e c t s are 
p a i r s (M,N) of d i f f e r e n t i a l spaces admi t t ing smooth p a r t i t i o n 
of uni ty t o any open cover with N as a closed d i f f e r e n t i a l 
subspace of M, and whose morphism are smooth mapping of these 
p a i r s (see [ 2 ] ) . The category 01 i s an admiss ib le ca tegory 
f o r a cohomology theory i n the sense of Ei lenberg-Steenrod [3]. 

For each pa i r (M,N) i n 01 wi th imbedding i : N -*• M we 
put Ak(li,N) = ker i " , where i* : Ak(lt) Ak(N). Since 
A * * A A d^oi = i ° d k , i t fo l lows t h a t d^ induoes a homomorphism 
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(3.10) d k : Ak(M,N) Ak+1(M,N). 

Let us put D (M,N) - ker d^. 
I n t h i s way we obta in a complex [2] 

A* 

(3.11) . . . Ak"1(M,N) JE=VAk(M,N) Ak+1(M,N) . . . . 

The de Rham group of degree k^O of the p a i r (M,N) i s 
the group 

Hk
R(ld,H) - Dk(M,B)/dk_1(Ak-1(U,N)). 

Observe tha t H^R(UtN) - D°(M,N). 
I f f : (M,N) —(M',N') i s a morphism, then the equa l i ty 

A « * A 

d°f • fod implies tha t there i s a canonical ly associa ted ho-
momorphism 

(3.12) H k g ( f ) : H k
R ( M ' , » ' ) - > H k ^ ( l l t N ) . 

HdR * ^HdR^k«0 1 2 . o i B a c o n t r a v a P i a n * func to r from the 
category Ct i n to the category of graded abe l ian groups and 
homomorphisms of degree 0 . Applying HdR to the sequence 

(N,0) (11,0) — ^ (M,N) one obtains 

3* i* 
(3.13) Hk

R(M,N) • Hk
R(M) — • Hk

R(N), Jc - 0 , 1 , 2 , . . . . 

One can prove 
L e m m a 3 .4 . Let (U,C) be a d i f f e r e n t i a l space, 

which admits smooth p a r t i t i o n of unity subordinate to any 
open cover . Then f o r any closed d i f f e r e n t i a l subspsce 
the mapping i * : Ak(M) —• Ak(N), k - 0 , 1 , 2 , . . . , i s s u r j e c t i v e . 

From Lemma 3.4 i t fol lows tha t the sequences 

i* 
(3.14) 0 Ak(M,N) —• Ak(M) * Ak(N) — 0 , k = 0 , 1 , 2 f . . . 

are exac t . 
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20 W. Sasin 

Let 6k: HdR(N) —• HdR^(M,N) be a connecting homomorphism 
tot kv - 0 ,1 ,2 , . . . [4], [2] . The collection 6 - (6 ) k k _ 0 1,2,.., 
is a natural transformation of degree 1 from the functor 
Hdfi on (M,N) to the functor H.R on N. 

Now one can prove (see [2j) 
T h e o r e m 3.5. The pair (HdR,S) i s a eohonology 

theory of C/l. (H<jg» satisf ies the following axiomss 
1. Homotopy Axiom. I f f ,g: (M,N) —• (M,K) are smoothiy 

homotopio, then 
H dR ( f ) - HdRi8 )-

2. Exactness Axiom. For any pair (U,N) of C/l the sequenoe 
. 1* v i* Ir 

0 - *H ° r (M ,N ) . . . - » -HjH (M tH)- i> HjR(M) — • H j j ( I ) - S - * 

H^1 (M,N) —obtained from (3.13) and 6k by composition 
is exact. 

3. Bxcision Axiom. Let (M,i?) be a pair of VI and U be an 
open subset of whose closure U is oontained in the interior 
of N. I f (M-U.N-U) with induced dif ferential structures is 
an object of (K and the inclusion map j i {M-U.H-U) —• (M,H) i s 
a morphism, then 

Hd R (d) . HdR(M,N) HdR(M-U,N-U) 

is an isomorphism. 
4. Dimension Axiom. I f P is a one-point di f ferentia l 

space, then 

H° R(P ) » R and h£ r (P ) = 0 for k = 1,2 
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