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THE DE RHAM COHOMOLOGY OF DIFFERENTIAL SPACES

Introduction \

In [11] we have defined an exterior algebra i(M) on a
differential space M in the sense of Sikorski [12], [13]. In-
troduced there the operator d satisfies the well~-known axioms
of the exterior derivation. So we mey consider ths de Rhnam
complex in our case. Such complexes were considered on andther
differentiable spaces by Smith [15], Spallek [16], [17],
Marshall [2], [7], Mostow [10] and Schwertz [18]. It seems
that these complexes are of interest in global analysis. We
investigate properties of the de Rham cohomology of the com=-
plex (A(M),d) on a Sikorski’s differential space.

In Section 1 we recall some basic notions and notation,

In Section 2 we describe some properties of the Cartesian
product of differential spaces and consider smooth one-para-
meter families of differential forms. Next in Section 3 we
dafine the homotopy operator L for 4, which let us easily give
an axiomatic description of the considered de Rham cohomology.

1. Basic notions and notation

Let (M,C) be & differential space [13], [14]. By 7, we
denote the smallest topology on M such that all functions
from C are continuous, Let C° be a set of real functions on M.
The differential structure C is called generated by C° if C
is the smallest differential structure containing Co. We denote
by Mp the space tangent to (M,C) at the point pc M, Bach ela~
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ment v eMp is an R~linear mapping v:C —» R satisfying the
conditions

vieeP) =a(p)viB) + B(p)v(x) for any o, fecC,
Let ™ := | Mp be a disjoint sum of tangent spaces to (M,C).
peM
Let TC {see {5]) be the differential structure on TM generated
by the set {aost :qec}u{da: o€ C}, where st ¢t TM —» M is the

natural projection and do: TM — R is a function defined by
the formula

(dx)(v) = v(x) for veTM,
Now, let us put
™« {(vi0en,vy) € T Tl K(v,) = o0 = ()}
as well as

TG = (TCx4..xTC) for k = 1,2,000 [5]e
Ky

By Ak(ll), where k = 1,2,..., we denote the set of all
smooth mappings w : ¥y —» R such that the mapping w

M Xeee XM
is skew-symmetric R-k~linear for each point peM [5]. R diregt
sum A(M) = ? Ak(M), where A°(M) = C, together with the cano-
>

nioal operatigns of addition and multiplication is a graded
algebra over R,

Let#%(M) for k> 1 denote the set of all elements
wcAk(H) such that for each point pe M there exist an open
neighbourhood U ¢ T of p and a family of smooth functions

-1
&
ik-1 ’ i1c -oik_1

o(i1,...,a € Cy for (:|.1,...,:!.k__1)¢IclIk .
where I is a finite subset, such that

-1
a (U) = 27 éx AdE; Ases Ado
“l T 1 14 Ty

1.o.ik-1

as well as

= § dox A...Ada ‘0.
E%J 1ieeedy 4 901, 1,

1
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Cohomology of differential spaces 3

Moreover for k = 0 we put °(M) = {0} [11]. One can prove
[11] that the direct sum P M) = ) m“(m) i3 a homogeneous

k20

E4

ideal in the. graded algebra A(M).

Let £ X be a sheaf U r—»Ak(U), UeTs. We denote by.mk
(k = 0y1,000) the sheaf U WLE(U), UeT,. Lot T be the
sheaf of all smooth functions on (M,C) [10]. Evidently for
each k> 1 X is a subsheaf of C-modules of the sheaf AX

of C-modules., Let # = k@%.ﬂk and W= sq)Mk be direct sums of
2 2
the correspondent sheaves. The both sheaves f and MY are

evidently the sheaves of graded algebras. The sheaf X! is

a subsheaf of homogeneous ideals in the sheaf of graded alge~
bras & [11]. Let A= &/%L be a quotient presheaf, Denote by
& the quotient sheaf associated with the quotient preasheaf
A+ I £ en(U), Uery then for each point peU by €, we will
denote below a germ of f at the point p. In the set A (U) of
the cross~-sections of the sheaf ﬁ over U €7, one oan define
in the natural way the operations of additions and exterior
multiplication, Moreover for any Ue 'tc’a direct sum fi(U) -

- k@ ﬁk(U) is a graded algebra over R, In the graded algebra
20

&(M) there exists exactly one operator d: AX(M) —» & +1(u)
for k = 0,1,..s 8atisfying the well-known conditions of ex-
terior derivative (see Th. 3.1 in [11]). Let wcAX(M) be an
arbitrary element, k = 0O,1,... . Recall that for k = 0

A°(M) = C and then (dw)(p) 3= [dw]p for each point p ¢ M, where
[dco]p is the germ of the equivalence class [dw]. Now, let k> 1
and p be an arbitrary point of M, There exist for w an open
neighbourhood Ue'cc of p and an indexed family of smooth .
functions oy seeesoy s oy g €Oy = Cu), (44,0000 )TN,
such that

(101) U(q) = [? 011'..ik doi1/\... Adaik]q

for each point ge U, Then we put
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Aees Ada ] .
"

p

(1.2) (dw)(p) 1= (35 doy 4 Adoy
LR

Denote by %(M) the C-module of all smooth vector fislds
tangent to (M,C).

2. The Cartesian product of differential spaces. Smooth
1-perameter familiss of differential foras

Let (M,C) and (N,D) be differential spaces. For an arbi-
.rary function xeC we denote by & the function o : M*E —»R

given by

(2.1) a=o(opr1,

where pry s MxN —» M is the projeotion of MxN onto M,
Analogously for any BeD let B: MxN —» R be the function

given by

(2.2) B= B°Pr2’

where pr,: MxN —» N is the projection of MxN onto N,
Let CxD be the differential structure on MxN gensrated
by the set of real functions {&: o e Clu{A: PeD}. The diffe-
rential space {MxN, CxD) is called the Cartesian produot of
differential spaces (il,C) and (N,D) [14]. If C is generated
by a set C and D is generated by a set D then the differen-
tial structure CxD is generated by the set {a-cxec } {{3 ﬁcD}
For an arbitrary point poeM let j ¢t N & MxN be the
imbedding given by Po
(2.3) .‘!po(q) = {py,9) for ge M.
For an arbitrary point 9, ¢ N let ;jq t N» iixN be the imbedding
defined by °

(2.4) jq (p) = (p,a,) for peM,
s

It is easy to verify ths following equalities:
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Cohomology of differential spaces 5

(2.5) pr, °Jq° = 1dy,
(2.6) pr, o;lpo = idy,
(2.7) (pr1°:lp°)(q) =p, for qe¥,
(2.8) (pr2°:lq°)(p) =q, for peMe

Let (MxN)( q) be the tangent space to (MxN,CxD) at a
point (p,q). For any tangent vector we (MnN)(p q) Ve put

(209) WM = (jq°pr1)*(p’q)w’
(2.10) WN = (ijprz)*(p’q,w.

It is easy %o see that w = w, + wy and that the veotors wy
and wy satisfy the following conditions:

(2.11) wM(fS) 0 for any PeD,

(2.12) wN(a) =0 for any oe¢ C.

Definition 2.1. A_vector WC(MXN)(p’q) is
said to be parallel to (M,C) if w(B) = O for any feD. A Veo~-
tor we (MxN)(p’q) is said to be parallel to (N,D) if w{x) = 0
for any « ¢ C.

Clearly for any w e(MxN)(p q) the vector wy is parallel
to (M,C) and the vector wy is oarallel to (N, D). It is easy
to see that the subspace (aq)*(ln is the set of all vectors
tangent to {MxN,CxD} at (p,q) parallel to (M,C) and the sub-
space (J ), (N ) 1s the set of all vectors tangent to (MxN,CxD)
at (p,q) parallel to (N,D)., One can prove [14] that the tan~
gent space (MxN)(p'q) is a direct sum of subspaces (Jq *p(M )
and (:] ) q(Nq).

D e finition 2.2. A vector field Z ¢ X{KxN) is
said to be parallel to (M,C) if Z(P) = 0 for any P eD. A vec-
tor field Ze X(MxN) is said to be parallel to {(N,D) if Z(&) =0
for any o€ C.
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6 W. Sasin

Now, let Z ¢ Z(MxN) be an arbitrary vector field tangent
to (MxN,CxD). Let us put

(2.13) Zy(psq) 2= (Jgepr j2(psa)  for (p,q) e U,

1)*(999
(2.14). Zy(psa) &= (Joers) (4 q)2(psa) for (pyq) e MxN,

One can prove the identities:

(2.15) Zy(&) = 2(&) for oeC,
(2.16) Zy(B) =0 for feD,
(2.17) Zyla) =0 for oc¢C,
(2.18) zy(B) = 2(B) for PeD.

So the vector fields Z) and Zy defined by (2.13)-(2.14) are
smooth and parallel to {M,C) and (N,D) respectively. Moreover
Z = Zy + Zy. h

Kow, let X ¢ X(M) be an arbitrary smooth vector field
tangent to (M,C). Let X: MxN —» T()xN) be the mapping given by

(2.19) i(py‘” i= (jq)*pl(p) for ‘PQQ) € MxN,

It is easy to verify that X is a smooth vector field tangent
to {ixN,CxD), parallel to (ii,C) and satisfies the following
condition:

{2,20) X(x) = . (x) for any oeC.

Analogouely for any Y e X(N) we car define the vector field
Y ¢ ¥(MxN) parallel to (N,D) by the following formula

(2.21) Y(p,q) := (3,)uq Yla) for (p,q)eMxN,

One can verify the following identities:

(2.22) [X,Y¥]1=0 for any X e X(i), ¢ ¢ (L},



Cohomology of differential spaces T

(2.23) [X1,X,] = [%4,X,] for any X,,X, ¢ X(M),

(2.24) [¥,,Y,] = [¥4,¥,] for any Y¥,,Y, ¢ E(N).

Now, let ¢ e CxD be an arbitrary real function. Denote by
7 : T(MxN) —» MxN the canonical projection [5]. Let 7, and T,
be the coordinates of m, i.e. T = (J’t1,ﬂ2). Let us put

(2.25) (dye)(v) = vle(*,my(v))) for veT(MxN),
(2.26) (dye)(v) = v(e(m,(v),*)) for veT(MxN),
One can verify that ducp and dN<p are smooth 1-forms on MxN
and
(2.27) de = dy¢ + dyo.

1-form dM¢ i8 called the partial differential of ¢ with res-
pect to M and 1-form dN¢ is called the partial differential
of ¢ with respect to N, It is easy to check the following
identities:

(2.28) J;(dq:)

"

3;(dN<P) for any pel,

(2.29) j;(d?) jg(dM¢) for any qeN,

Now we consider the Cartesian product of (R,E) and (l,C),
where £ is the natural differentisl structure on R generated
by the function 8 = 1d,. If the differential structure C is
generated by C, then the differentiel structure £ xC is gene~
rated by the set {Q}u{&:qe Co}. Let T = %iei(RxM) be the
vector field definsd by (2.13), where %i is the baesis vector
field tangent to (R,E).

For any a»eAk(RxM), keN, let 2pw be the (k~1)=form de-
fined by

(2030) (ZT(A))(V1.noo,vk_1) = w(T(t,p),v1,...,vk_1)

for v1,...,Yk_1 e(RxM)(t’p), (t,p) ¢ RxM,
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8 W. Sasin

Moreover for we A°(RxM) we put lpw = O

It is easy to see that the operator yn: A(RxM) —» A(RxN),
W > 2nW, 18 ExC-linear and satisfies the following condition:
(2.31) (wyAw,) = +(-1)|“’l A 2w

. lplwgh w2 iy w2 wyA W2

for w, ,w, € A(RxM). Of course yq° 2p = O.

We shall prove

Lemma 2.1, Bvery k-form we Ak(RxM) mey be uniquely
presented in the form

(2.32)- we 46A wy + wy,

where wy € Ak'1(RxM) and «, ¢ Ak(RXM) are such forme that
?pWq = 0 and yqw, = 0.

Proof., Putw t=qwandw, = w=donjzqw. Of
course 2qwy = 0 and 2qu0, = 0. It remains to prove the unigue-
ness of the decomposition (2,32), In fact, if w = d8 Aw(‘ + W5,

s

where 2qw; = 0 and 7qu, = O then

W = ZT(déAu{) = ZT(déAw1)'

Hence wy = d8A jpwi = @y = d8 A ppwi. Consequently o) = w,
and
Wy = W= dé/\w1 = w - déAwfl ""12’

Denote by Ao’k(RxM) the €xC~submodule of k-forms
e A¥(RxM) satisfying the condition 2, = 0 and by A'**~1(Rx)
the submodule of the &xC-module Ak(RxM) of all forms of the
form 48 Ay, Where w e Ak'1(RxM) and 2qpw; = 0. From Lenmma 2.1
it follows

Corollary 2.2. The £xC-module AX(RxM) is the
direct sum of the &xC-modules A1’k'1(RXM) and Ao'k(qu).

Now let ®c£€xC be an arbitrary smooth. function on RxM,

Let %’i :t RxM -—» R be the funotion defined by

(2.33) 2 (s,0) = §5| (¢ > olt,p)).
8
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Cohomology of differential spaoces 9

It is easy to see that g—z is smooth. In fact, for an arbitra-
ry point (t,p) e RxM there exist an open interval (a,b) 9t,
an open neighbourhood V e T of p and smooth functions

Oqreeesoy €C, FeC® (R"“) such that

@ |(8,0)xV = g(8, &yseeepx,)]|(a,D)xV,
Then
(2.34) 22 | (8,0)xV = g o (B, Bypeeesig) | (a,0)aV,

From (2.26), (2.27) and (2.34) it is easy to observe the
equality:

. 9¢ .=
(2.35) do = -a—': a8 + aye.

0f ocourse du¢eko'1(RxH) and g—: a6 = dcheA1’0(RxM). Mbre-

over ZT(dcp) = g;g .

Now let (wy)eops Wy € Ak(M). be a 1-parsmeter family of
differential k~forms on (M,C).

Definition 2.3. 1-parameter family (“’t’teR
is called smooth if the function & : RxTM —» R defined by
the formula

(2.36) &')(t.v1,....vk) = “‘t('v"'"’k) for (t,v1....,vk)eRkall

is smooth,

Definition 2.4, TLet (we), o be a smooth
i~parameter family of differential k~forms, Then the k-form
b

§ w, dt defined by
a

(2.37) (F W, dt) (v1,...,vk) 1= ? ut(v1,...,vk) dt
a a

for (v1,....vk) eTkM, is said to be the defined integral
from (‘"t)tcR'
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Example 2.1, Let (‘"t)tcR be & smooth 1-parame-
ter family of k-forms on (M,C) of the form

i1oooik
Wy =20 (ty*) doy Aeee Aday
I 1 k
11oooik - Kk
WherO q GE"C, 0(11,....0(ik€C for (11.000’ik)€IcN

and I is a finite set of indices. Then one .can check that

b b i i

. T RRE ™
§ (Jt dt =Z(§ (' (t.')dt)da1/\ ooo/\dako
a I a

Leama 2.2, 1If (°‘t) teg 18 @ smooth 1-parameter
family of O~forms on a differentiasl space (M,C) then

b b
(2.38) d (f ay dt) = j d ay dt.
a8

Proof, The smoofhneas of 1-parameter family
(x4)4eq Of U-formes means that the function &: RxM —» R de~-
fined by

&(t,p) = aglp) for (t,p)e RxM

is smooth. Thus for any point .pe ¥ there exist an open neigh-
bourhood Ve To of p, a sequence of real numbers Cp9CqreeeyCp
suoh that a = ¢ 0 $8qSese<e = b and functions 3"1""'3'n

€ £k+1’ f51,....ﬁk€c, keXN, such that

&l(ci_1,.°i)lv = Ti(a’ﬁ‘l’...’ﬁk)l(ci—1’ci)xv for i = 1,...,!1.

.Then we hgave

. n
(2.39) (f oy d") V= (Z f 7 (¢, {51,....f5k)dt)

i=1 e
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Cohomology of differential spaces : 11

and
¢y

(2. 40) (5 doy dt)‘V-(Z j dz'i(t,[&1,...,[5k)dt)‘v.

One can easily verify the equa_lity

¢4 ©4
(2.41) (| #y(6BgseeniBiat) = [ agyle,Byaees Belat
1.1 i1

Prom (2.39)-(2.41) it follows that

d(‘i oy at)|V = (z

i‘his finishes the proof.
One can prove
Lemnma 2+3. It

i1aooik _ _
Z(P da11A ooo/\daik SVO,
I

11...ik Kk
CGXC, 0(11....,011k€C, (11,ooc,ik)€ICN » Where

for ¢
I is a finite set, then

av 1oooik _ _
Z dai A see Adai = 0,
1 k

Lenmma 2.4 Ifpe® ™ (Ra) then pq e @ (Rxu).

Proot. Let pe mk+1(RxM). For each point (t,p)e Rxid
there exist an open interval (a,b) st, an open neighbourhood

i1...ik
V of p and samooth functions ¢

j 0003
€ Cv, (11’°’°’ik) €l CNk, y ! k-1 e(exc)(a,b)xV’ﬂj1’..'

k-1

€ (ExC) (g, )70y pmemroy €

""ﬁdk_1‘°v' (31,...,jk_1) €eJcN "', where I and J are fi-

nite subsets of indices, such that
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1 ...i
(2.42) Plﬂ-1((a’b)XV) =Z d‘f 1 k/\ d&11A X Adaik +
I .

+ Zdvj10-ojk-1 Adé AdEJ1A000 Adﬁdk
I

as well as

fgeeed
(2.43) e 1K agy

A ese Ada +
L] L] i
1 k

J1ooojk_ - - -
de d sece Adb = 0O,
+Z A A ﬁj1 /\ Jk_1

Using 2q to (2.42) and (2.43) from Lemme 2.3 and {2.35)
it follows that

Jqevodpoq - _
2ppln ((a,0)xV) = = aw? k1Ad%1A.q.Ad%k1
. -

and

ST 1 G5 AL aaB, = o
3 3 Jk-1

Hence pq pe mk(nxu). .

Corollary 2.5 Letpem(RxM)andy1,y2be
elemsnts from the decomposition (2.32) such that y =

= d8Ap, + pye Then y1e'm V(RxM) and yzem (RxM),

Proof. Since p = de/\y1 + p, and yemk(RxM) by
Lemma 2.4 app = pq€ 5=V (RxM). Because WX(R«M) is an ideal
then also de/\y1 € mk(RXM). But p, = p - dQAp1. Thus
g€ /)2 (RXM).

Now we prove

Lemma 2,6, Let pe m“(nxm n Ao’k(RxM) be an arbi-
trary element and jtz M —» RxM be the imbedding defined by
(2.3)s
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Cohonology of differentiesl spaces 13

Then (;jt(y))t(_:R is a smooth 1-parameter family of k~-forms
on (M,C) from the ideal @*(M) and j S (plat e mE(n).

Proof. Por an arbitrary point p ¢ M there exist an
open neighbourhood Ve o of the point pe¢M, a sequence of
real numbers a = 0p <0q< ess <cp = b, a family of smooth

functions oy g oy O € cV a11".ik'1 ¢ xCy
[N X 9 _
Fin 31 MR ¢ Elog qacy)™V
where (11""’11:-1) elckN "1, J=1,0¢e4yn and I is8 & finite

subset, such that

...i
é‘|(°j-1'°3)"v=‘;dcx1 k

AdO( A ...Ada
3 i1

and

Z°‘i1“.ik'1 do, A Ada; =0 for J =1 n
ity itk e

Hence by seimple calculation one can check:

4]
J
(5 jt(t"d‘ |v =(Z f J’;(y)dt)lv -

J=1 o'_j 1

= Kl JLreeety
Z ( j d(jt = )dt) Ad?‘ti1/\.../\d(;ik-1

J=1 Cj
and
n °3 L.000d
> Z( 5 3 o VTR dt) doy A.eendey =0,
_ J 1 J k=1
=1 I cj_1

Hence it follows that j' jt(p)dtlv emk(V) and consequently

I Iplat e mku),
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14 W. Sasin

3. The homotopy operator on a differentisl space

Now, using the above lemmas, we shall construct the homo-
topy operator for the complex (ﬁ(lﬁ),a).

For an arbitrary we ﬁk(RxM), k> 1, denote by gpw the
element of ﬁk'1(RXM) given by

(3.1) (ZTU)(t’P) = [ZTQ](t,p) for (t,p)eRxM,

where ﬁcAk(V) is. a k-form on an open neighbourhond Vetexc
of p such that w(t,p) = [¢] (t,p)*
The correctness of {3.1) follows from Lemma 2,4,
Let 2ms 'A\k(RxM) - ﬁk"“(Rx_rM), k21, be the mapping defined

by
W > szo

Denote by ﬁo'k(RxM), for k = 1,2,.¢.4 the €&xC-module of
elements w e AS(RxM) such that 2pw= 0 and by A1 X" (R«M) the
submodule of the £xC-module AX(RxM) of all elemente of the
form 35Aw1, Whef\; W, € AX=1(Rxu) and 2pwq = 0. From Lemma 2.1
it follows that A (RxM) is the direct sum of the modules
A0sX(Rxr) ana 412 %"V(man). |

_ Now let we ﬁo’k'1(RxM), k> 1, be an arbitrary element.
For any point pe M there exist an open neighbourhood Ue L1
of p and a seguence of real numbers O = Cp<Cy<esa<c, =1,
a femily of (k-1)-~forms wy € Ao'k'1((ci_1,ci)xU), 1i=1,eee4n,
such that

w(t,q) '_'[Qi](t,q) for (t,q) €(cy_4504)xU, d=1,.0.,n.

Cs
Tk k~1
Of course | jt(wi) dt e A-"'(U) for 1 = 1,se0,00

Cic
Let us put
n ¢y
(3.2) (Ig,w)(p) e [Z § J:(wi)dt] for peM,
i=1 Gy 1 p
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Cohomology of differential spaces 5

Formula {3.2) defines an element Iéwe ﬁk“(u) called the de~
finite integral of we aA%*¥~1(RxM) from 0 to 1. The correctness
of (3.2) follows from Lemma 2.5.

The mapping I, : AC*K"T(Rat) — B¥V0), wie Ilw, 1s
called the integral operator on {i,C).

The composition L = Ig)o 2p ¢ ’A\k(RxM) - ﬁk—1(l}1),
k = 1,2y000, 18 said to be the homotopy operator on (M,C).
If k = 0, define L = O,

Propositio n 3.1, The homotopy operator L is
C-linear and satisfies

(3.3) doL + Lod = 3} - 3.

Proof. It suffices to verify (3.3) for ueﬁo’k(RxM)
and for weﬁ1'k'1(RxM).

Let weﬁo’k(RxM)., For any point peM there exist an open
neighbourhood Ue 15 of p and a sequence of rial numbers

0 = 0y <Cq Ceesa<c, =1, €>0, 8 finite famlily of functions

i...1
PR k
1
such that

€ (Exc)(cl-1_e’cl+s)xuj 0(11,..-.aik€ CU' (11,...,ik)CI,

[ dqenedy _
w(t,q) = l "{ doy A .../\d&1
I 1 kl(t,q)
fOI‘ (tQQ) € ('01_1-€,cl+5)XU, 1 = 1'.oo’no

Then by (3.2) we have

L(do) (p) = Li(2p(dw))(p) =

N i .uoi
n cl .'3q>1 k
= Pl Jdo, A eee Ado, Jat] =
2 2\ i 1,
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16 W. Sasin

i,...1 iieeedl
1 k(c1,°) - (P1 k(cl-1"))dai1’/\°'°/\daik =

1 i - p
n
= 30 (35,1 - 3 _@)(e) = Steile) - i)le).

It is obvious that pw= 0 for we A’*X(R M), Thus
(doL)(w) = 0. Therefore (3.3) is true for wer'k(QxM).

Now, let weA1’k'1(RxM). For an arbitrary point p ¢ M there
exist an open neighbourhood Ue T of p and a saquence of resal
numbers 0 = Cp<0y<eenc<ey =1, €£> 0, a finite family of

i [ ¥ ] .i
functions ¢ 1 k-1 ¢

_ 1
€ Cy» (11,...,ik_1)eI', 1= 1,2,0eeym, such that

€ (GXC) (01_1~€.Cl+E)XU’°‘i1 L ’aik-1

...i
w(t,q) = 24’1 k=1 48Ade; Aueenddy
I 1 1 k=1 (tQQ)

for (t,q) € (01_1-5'01‘.'5)*[]' ls= 1.00..ﬂ0
Hence using (2.35) we obtain

aw(t,q) »

(tﬂ).

X3 01
a 1 k-1
ot

- 1,000
-[E : ’]_-—._. de + d! 1 k-1 )AdS Ada11/\...z\d0rik :|
1 =1

II

(t,q)’

150001
1 k-1/\d§/\dai Aooo/\ﬁi
1 1 k-1

JSu

for (t,9) ¢ (01_1-e,ol+c)xU, 1= 1,000,
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Thus from (3.1) it follows that
A i1oooik 1
p{dw)(t,9) = |~ dy, ¢ TUAdR; A eee AdG
T ’ ? ¥ 14 tee1](t,9)

for (t,q) e (c1_1-s,c1+e)xU, l=1,ce0,0,
Therefores by (3.2) we have

(3.5) L(dw)(p) = I}(zp(dw))(p) =

c
m 1 i1...ik-1
= - Z Z ‘f d @ (t.") dai‘/\ eece dui .

et I' oy, 1 ’ k=1]p

Prom the other hand we have

(3.6) L{w)(p) = I)(zq(w))(p) =
1] °
1,000l
- [Z PTIHN4,0) doy Aeesndey } .
121 I' o, 1 k=1jp

Prom (3.5) and {3.6) it follows that

L{dw) (p) + d(L(w))(p) = O

for any peM and we 31’k'1(Rxll).
Thus

(3.7) (Loa + 3oL)(w) = 0 for any U€£\1’k-1(R!u).

It 1s easy to ses that

j:(w) = 0 for any we 21'1"1(qu) and tcR,

In partioular j:(w) = j;(u:) = O, Hence and from (3.7) it
follows that

L(dw) + d(L(w)) = Sjw- Fw
‘for any wel!? "V (RaM), This fintshes the proof of (3.3).
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The following lemma is an analogue of Poincare lemma in
manifolds.
Lemma 3.2. Let (M,C) be a differential space which
is locally smoothly contractible [9]. Then the sequence
4y

N i
(3.8) 0 —» ker AK kK Ak K yer Ak

- 0
of sheaf homomorphism, where 1, is the injection, is locally
exact.

Proof. This follows immediately from (3.3).

The de Rham group of degree k: O of (M,C}) ies the group

HE(M) = ker d,/d,_,(A%1(m)).

One has HO, (M) = ker 4
dR o

It is easy to prove that for paracompact differential
spaces for all k> O the sheaf A¥ is fine [4]. This is a sim-
ple consequence of the existence of smooth partition of unity
in paracompact differential spaces [5].

Let us danote by ﬁk(M,R) the k~th éech cohomology group
of (M,C) with coefficlents in the real constant sheaf, Simi-
larly to Theorem 4.3 in [2] one can prove

Theorem 3.3, If(M,C) is locally smoothly con-
tractible and paracompact differential space, then

(309) B H(li‘R(M) = l\"lk(M,R) for k = 0,1,2,.0. .

In the sequal 1et X be the categorj whose objects are -
pairs (M,N) of differential spaces admitting smooth partition
of unity to any open cover with N as a closed differential
subspace of M, and whose morphism are smooth mapping of these
pairs (see [2]). The category UL is an admissible category
for a cohomology theory in the sense of Eilenberg-Steenrod [3].

For each pair (M,N) in Ol with imbedding i : N —» M we
put AX(M,N) = ker 1*, where 1i* : Kkgu) - ﬁk(N). Since
d 1" = 1*0d,, it follows that d, induces a homomorphism
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(3.10) d, + %N - B ,m).

Let us put Dk(M,N) = ker Ek‘ :
In this way we obtain a complex [2]

~ ~

A d d
(3.11)  oeo —» AE=V(u,5) =L 2k 0,N) Kb A% (4, N) > ... .

The de Rham group of degree k> 0 of the pair (M,N) is
the group '

HER(0,8) = DX(M, M)/, (4% (,m)).

Obgerve that HgR(M,N) = D°(M,N).

If £: (M,N) —» (M,N’) is a morphism, then the equality
faof*- fza implies that there is a canonically associated ho-
momorphism

(3.12) HER(£): Hi (M, W) qngg(u,u).

Hip = (HgR)k-0,1,2,..o is a contravariant functor from the

category O into the category of graded abelian groups and

homomorphisms of degree 0. Applying HgR to the sequenace

(N,¢) —i> (H.ﬁ)-—iv (M,N) one obtains

’

» i*
(3.13)  Hi(%,1) Ao w0 Lo BN, ke 0,1,2,000

One can prove

Lemma 3.4, Let {M,C) be a differential spsce.
which admits smooth partition of unity subordinate to any
open cover. Then for any closed differential subspacse (N,CN)
the mapping 1* : ﬁk(m)-—> ﬁk(N), k= 0,1,2,000, iB8 surjective,

From Lemma 3.4 it follows that the sequences

" 1
(3.14) 0 — A%u,5) — %) —» A5(N) > 0, ke0,1,2,...

are exact.
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Let b%; g (N) ~*~H§+1(M N) be a conneocting homomorphiam
for k'= 0,1,2,¢0s (4], [2]s The collection & = (5)k Kn0,1,2, 000
is a nestural trensformation of degree 1 from the functor
Hjyp on (M,N) to the functor H;, on N.

Now one can prove (see [23)

Theoren 3.5 The pair (HdR,S) is a cohomology
theory of UL, (HdR,S) satisfies the following axioms:

1. Homotopy Axiom. If f,g:(M,N) —» (M,N} are smoothiy
homotopic, then

HdR(f) = HdR(S)'

2. Exactness Axiom. For any pair (M,N) of UL the sequence
* *
0 —» BR(H,N) - ... —>H§R(M,N)-—1> H:;R(H) 1, Hg (H) s,
—> Hk+1(l,N) —» obtained from (3.13) and &k by composition
is exact.

3. Bxcision Axiom., Let (M,i) be a pair of & and U be an
open subset of whose closure U is contained in the interior
of N, If (M-U,N~-U} with induced differential structures is
an objeot of ¢{ and the inclusion map J: (M-U,N-U) —» (M,N) is
a morphism, then

Hyp(3)t Hyp(¥,N) —> Hyp(M-U,¥-U)

is an isomorphism,
4, Dimension Axiom, If P is a one-point differential
space, then

H)p(P) = R and HEL(P) =0 for k= 1,2,u.. .
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