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SEMIGROUPS OF NONEXPANDING MAPPINGS 

A c l a s s i c a l theorem of E. Cartan, about i somet r ies of 
a simply connected, complete riemannian manifold M of negat ive 
s e c t i o n a l cu rva tu re , says t ha t a group G of such i somet r ies 
has a common f ixed point i f f there e x i s t s p e l f , such tha t the 
orb i t 

OrbQ(p) » {F(P)| FE G} 

i s bounded i n M. A modern proof of Ca r t an ' s theorem (see [2] 
thm. 9*2) i s based on the Haar i n t e g r a l ( f o r the c losure of G), 
and a notion of barycenter f o r M-valued mapping. A purpose of 
the present note i s to ob ta in Car t an ' s theorem not by using 
the Haar i n t e g r a l , but as a coro l la ry of an elementary r e s u l t 
on semigroups of nonexpanding mappings. In f a c t we s h a l l de-
r i v e a necessary and s u f f i c i e n t condi t ion i n order tha t a s e -
migroup F of nonexpanding self-mappings of M has a common 
f ixed po in t . 

1. The main r e s u l t 
Let M be as above. Ve s h a l l denote by d 

d i s tance on M. By d e f i n i t i o n , a mapping f:U 
ing i f f o r every p,q e M 

(1) d ( f ( p ) , f ( q ) ) S d ( p , q ) . 

Let F be a semigroup (with i d e n t i t y ) cons i s t i ng of nonexpand-
ing self-mappings of M. The o rb i t of p e l ! under F i s the se t 

the geodesic 
•+M i s nonexpand-
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2 M. Skwarczyriski 

Orbp(p) = {f(p)j ft?}. 

For every p,q e M the boundedness of Orbp(p) together with (1) 
implies the boundedness of Orbp(q). Therefore either all 
orbits under F are bounded, or all orbits under F are unbound-
ed. We shall prove 

T h e o r e m 1. Let M, F be as above. In order that 
all mappings belonging to F have a common fixed point it is 
necessary and sufficient, that there exists p e M with the 
following properties: 
i. The orbit P = Orby(p) is bounded, 

ii. For every f ^ f g e F there exists g e F, such that 

(2) g(P) c f ^ P ) n f2(P). 

Before giving the proof of this theorem we shall consider 
two examples: 

E x a m p l e 1. Let us assume that F is a group of 
isometries with bounded orbits. Then ev,ery p e l satisfies con-
ditions i. and ii. (In particular Cartan's theorem follows 
from Theorem 1). To see this note that i. is satisfied by 
assumption. Moreover, for a given g eF and every f c F we have 1 —1 f = g(g f) where g f e F. Therefore, for every p e M 

P = Qrbp(p) » {g((g"1f)(p))» f c p j c g(P). 

Inclusion g(P)cP is obvious, henoe g(P) =» P. The right side 
of (2) is also P (in view of f.,(P) = P and f2(P) = F). There-
fore ii. holds. 

K x a m p 1 e 2. Let us assume that F is a commutative 
semigroup with bounded orbits. Then every pe M satisfies con-
ditions i. and ii. (In particular Theorem 1 shows that F has 
a common fixed point). To see this note that i. holds by 
assumption. As for ii. we shall show that for every f^i'gCF 
inclusion (2) holds with g = f ^ 2 = f 2f 1. Indeed, (2) follows 
from obvious inclusions 
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g(P) = f ^ f g i P ) ) c f ^ p ) 

g(P) = f g i f ^ P ) ) c f 2 ( p ) 

and i i . i s s a t i s f i e d . 
Let us s t a t e some p r o p e r t i e s of the manifold M whioh we 

s h a l l need i n the fo l lowing . Sinoe M i s complete e v e r ; p a i r 
of poin ts p,q e M can be joined by a (minimal) geodesic seg -
ment. Moreover, by the theorem of Hopf-Rinov, a subset of U 
i s compact i f f i t s i s closed and bounded. Next, M s a t i s f i e s 
assumptions of Hadamard's theorem ( c f . [1] , thm. 13.3)» hence 
the exponent ia l mapping Expp:TMp — M i s a diffeomorphism f o r 
every p e l l ; i t fo l lows tha t every geodesic segment in M i s 
uniquely determined by i t s end p o i n t s . I t i s a l so known t h a t 
Exp~1 i n nonexpanding f o r every peM ( o f . [ l ] , thm.13 .1) . 

2. P r o o f of Theorem 1 
Necessi ty i s obvious, s ince, a common f ixed point p s a -

t i s f i e s i . and i i . I t remains t o prove s u f f i c i e n c y . Let us 
assume tha t pc M s a t i s f i e s i . and i i . With P := Orb p (p) , we 
def ine f o r every q e M and f c P 

r f ( q ) := inf { R > 0; f (P ) cB(q ,R)} . 

Obviously f ( P ) c P, hence f (P) c B(q ,H) impl ies t ha t B(jj,R) 
i n t e r s e c t s P and (as a consequence) d i s t ( q , P ) < R . I t fo l lows 
dhat d i s t ( q , P ) $ r f ( q ) . Since f e F was a r b i t r a r y we see t h a t 

r(q ) := i n f j r f ( c ) ; f t p } 

s a t i s f i e s d i s t ( q , P ) ^ r ( q ) . Let us consider M u {»} , the Alexan-
drov compac t i f i ca t ion of !w. Since P i s bounded (by i . ) i t f o l -
lows tha t lim d i s t ( q , P ) = » ; t h i s impl ies tha t lim r (q ) = «>. 

q -»oo q -» oo 
Denote r * := i n f { r ( a ) ; qe m}. Let us chose a sequence q f ie M, 
n = 1 , 2 , . . . such tha t 

l im r(q ) = r * . 
n -»oo 
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S ince r ( q ) becomae i n f i n i t e at i n f i n i t y , the sequenoe qQ must 
be bounded, and we may assume w i t h no l o s s of g e n e r a l i t y t h a t 
qQ oonverges t o some q Q e M. We s h a l l show that qQ i s a common 
f i x e d point f o r P, by proving t h a t 
a) r ( q 0 ) « r * t 

b) r ( f ( q o ) ) « r * , f o r every f e P , 

c) r ( q ^ ) - r * « r ( q 2 ) i m p l i e s t h a t q 1 « q 2 . 

( Indeed , ( a ) , (b) and ( c ) imply t h a t f ( q Q ) - q D ) . 

Ad a ) . Take any e > 0 . I f n i s s u f f i c i e n t l y l&^ge then 
r ( q Q ) < r * + e , and by d e f i n i t i o n of r { q Q ) , t h e r e e x i s t s f Q e P, 
such t h a t 

(3) f n ( P ) c B ( q n , r * + e ) . 

We may chose n s o l a r g e , t h a t d ( q 0 , q n ) < e . This i n e q u a l i t y 
«nd (3 ) imply 

(4 ) f Q ( P ) c B ( q 0 , r * + 2 e ) . 

Prom (4) f o l l o w s that r f (q ) < r * + 2 e , hence r (q ) < r * + 2 e . 
n 

Since e was a r b i t r a r y we have r ( q Q ) < r * . This o b v i o u s l y im-
p l i e s r ( q Q ) = r * , as c la imed . 

Ad b ) . I t s u f f i c e s t o show that r ( f ( q o ) ) < r * . Take any 
e > 0 . Sinoe r ( q Q ) » r * (by ( a ) ) , there e x i s t s h e P, such t h a t 
h (? ) c B ( q Q , r * + e ) . By assumption f e P i s nonexpakding, t h e r e -
f o r e 

( f h ) ( P ) c f ( B ( q 0 , r * + e) c B ( f ( q 0 ) , r * + e ) . 

Xhis shows tha t r f h ( f ( q 0 ) ) $ r * + c , hence r ( f ( q Q ) ) * r * + e . S ince 
e was a r b i t r a r y i t f o l l o w s tha t r ( f ( q )) £ r * , a s c la imed . 

Ad c ) . Let us c o n s i d e r f i r s t the case when r * « 0 . Let us 
adsume (by c o n t r a d i c t i o n ) , tha t t h e r e are p o i n t s q^ j q 2 i n M, 
such that r(q.j ) • 0 , r ( q 2 ) « 0 . Chose € > 0 so B m a l l t h a t the 
b a l l s B(q . J ,c) and B ( q 2 , c ) are d i s j o i n t . Sinoe r f q ^ « 0 
( i = 1 , 2 ) t h e r e e x i s t s f ^ F , such t h a t f ± ( P ) c B ( q i , e ) . Let 
g e P be such that (2) h o l d s . Sinoe 
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g(P) c B ( q v e ) n B(q2,e ) - 0 

It follows that g(P) » 0, a contradiction. 
It remains to oonsider the oaee when r*> 0* Take any e> Oj 

there ex i s t f ^ f g S P , each that f ^ P ) c B(q l tr*+e) . Take g e i 
suoh that (2) holds; I t follows that-

(5) g{P) cB(q1 f r*+e) nB(q2 , r*+c). 

Denote by q„ the midpoint of the (minimal) geodesic segment 
which jo ins q1 and q2{ the length of t h i s segment w i l l bis de-
noted by 2m. Let q be an arb i t rary point in the r ight side of 
(5 ) . Diffeomorphism Exp"1 : M—• TM_ maps points q.* ,q« ,qo,q q* q* * i <• 
in M respect ive ly onto points 0, , v ? , v in TM , see F ig .1 . 

Pig. 1 

On an arb i t rary Riemannian manifold the exponential mapping 
maps the segments of rays emanating from the origin onto geo-
desic segments of the same length. Therefore 

(6) || v., || - m « d(q ,q ^), ||*2|| = m » d(q ,q 2 ) 

and 

(7) |MI = d(q# ,q ) . 

Since B*p~1 s M TMn i s nonexpanding i t follows that 

(8) |l v - v j $ d ( q , q i ) || v - v2|| « d(q , q 2 ) . 
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In view of (6 ) , (7) , (8) an elementary Inequality 

(9) |M|2«max2(||v - v j , ||v ->2||) - n2 

y i e ld s 

(10) d(q„,q)2<s max2(d(q,q1) ,d(q,q2)) - m2. 

By the def in i t ion of q the r ight side i s not greater then 

(r*+e)2-m2. Therefore q c B(q#, V(r*+e)2 - m2) for a l l q in 
the r ight side of (5) . Hence (5) y i e ld s 

g(P) cB( q j f , l/(r*+e) 2 - in 2 ) . 

Consequently r (q )<V^(r*+ e)2-m2, hence o * 

P(q») i V(r*+e)2-m2. 

For suf f i c i en t l y small e , 1|he r ight side i s smaller then r* f 

contradicting the def in i t ion of r * . Therefore (o) holds and 
the proof of Theorem 1 i s oomplete. 

3. Additional remarks 
1. Let q^, q2 be tvo different points of M. Let f 1 f f 2 be 

self-mappings of M suoh that f^M) = {q^J , i « 1,2. Then 
F » {id, f 1 , f 2 } i s a semigroup of nonexpanding mappings, 
which has no common fixed point. 

2. In general a comm'on fixed point of F i s not unique. 
(Consider for example a group of rotat ions around a fixed 
axis in R 3 ) . 

3. In the case when F i s generated by a single non-expand-
ing mapping f Theorem 1 was obtained by S.Weretiski [4] . In h is 
proof the problem i s reduced .to the Brouwer fixed point theo-
rem. Let us remark, that the case when f i s l ipsch i t s i an with 
a oonstant L < 1 i s oovered by a general theorem on oontrao-
tions in metric spaoes (of. [3] p.48)} in th i s case there i s 
the unique fixed point of f . 
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