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SEMIGROUPS OF NONEXPANDING MAPPINGS

A classical theorem of E, Cartan, about isometriea of
a s8imply connected, complete riemannian manifold M of negative
sectional ocurvature, says that a group G of such isometriss
has a common fixed point iff there exists pe¢ M, such that the
orbit

orbg(p) = {£(p); fec}

is bounded in M. A modern proof of Cartan’s theorem (see [2]
thm, 9.2) is based on the Haar integral (fgr the closure of G),
and a notion of barycenter for M-valued mapping. A purpose of
the present note is to obtain Cartan’s theorem not by using
‘the Haar integral, but as a corollery of an elementary result
on semigroups of nonexpanding mappings. In fact we shall de-
rive a necessary and sufficient condition in order that a se-
migroup F of nonexpanding seif-mappings of M has a common
fixed point,

1. The main result

Let M be as above. We shall denote by d the geodesic
distance on M, By definition, a mapping f:M —» M is nonexpand-
ing if for every p,qe M

(1) d(f(P)of(Q))sd(pQQ)o

Let F be a semigroup (with identity) consisting of nonexpand-
ing self-mappings of M. The orbit of pe M under F is the set

- 241 -



2 M. Skwarczyriski

orbp(p) = {f(p); £¢cF}

For every p,q ¢ M the boundedness of Oer(p) together with (1)
implies the boundedness of Oer(q). Therefore either all
orbits under F are bounded, or all orbits under F are unbound=-
ed. We shall prove

Theorem 1, Let M, F be as above. In order that
all mappings belonging to F have a common fixed point it is
necessary and sufficient, that there exists pe Il with the
following properties:

i, The orbit P = Oer(p) is bounded.

ii, For every f1,f2e F there exists g e F, such that

(2) - g(P) c £,(P) n £,5(P).

Before giving the proof of this theorem we shall consider
two examples:

Examnp i,e 1. Let us sssume that F is a group of
isometries with bounded orbite. Then emﬁry pelM satisfies oon-
ditions i. and ii. (In particular Cartan‘s theorem follows
from Theorem 1}, To see this note that i, is satisfied by
assumption., Moreover, for a given g ¢ F and every f¢ F we have
f = g(g'1 f) where g" f e F. Therefore, for every pe M

P = orby(p) = {e((&'2)(p))s £e P} ca(p).

Inclusion g(P)c P is obvious, hence g(P) = P. The right side
of (2) is slso P (in view of f1(P) = P and f,(P) = F). There-
fore ii, holds,

Example 2. Let us assume that F is a commutative
semigroup with bounded orbits. Then every pe il satiafies con-
ditions i, and ii. (In particulsr Theorem 1 shows that F has
a common fixed point). To see this note that i, holds by
assumption. 4s for ii. we shall show that for every f1,f25 F
inclusion (2) holds with g = f1f2 = f2f1. Indeed, (2) follows
from obvious inclusions
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g(p)

f1(f2(P)) Cf1(P)

g(P)

£5(£,(P)) c£,(P)

and 1ii, is satisfied.

Let us state some properties of the manifold M which we
shall need in the following. Since M is complete every pair
of points p,g €M can be joined by a (minimal) geodesic seg=-
ment. Moreover, by the theorem of Hopf-Rinov, a subset of M
is compact iff its is closed and bounded. Next, M satisfies
assumptions of Hadamard ‘s theorem {cf. [1], thm. 13.3), hence
the exponential mepping Expp:TM —» M is a diffeomorphism for
every pe M; it follows that every geodesic segment in M is
uniquely determined by its endpoints, It is also known that
Exp;1 in nonexpanding for every pe M (of. [1], thn.13.1}),

2, Proof of Theorem 1

Necessity is obvious, since. 2 common fixed point p sa-
tisfies i, and ii. It remains to prove sufficiency. Let us
assume that pec M satisfies i, and ii, With P := Orbg(p), we
define for every ge M and fe F

r.(q) = inf {R>0; £(P) cB(q,r)}.

Obviously f(P)c P, hence f(P)c B(q,R) implies that B(g,R)
intersects P and (es a consequence) dist(g,P) <R. It follows
dhat dist(q,P)s.rf(q). Since f ¢ F was arbitrary we see that

r{g) := inf{rf(q); fe F}

satisfies dist(q,P) ¢r(q). Let us consider ii u {w}, the Alexan-
drov compactification of M. Since T is bounded (by i.,) it fol=-
lows that 1lim dist(g,P) = o ; this implies that 1lim r(g) = e,

Qq-+oo g-—+oo
Denote r* := inf{r(q); qe M}. Let us chose & sequence 9, € b,
n = 1,2,... such that

lim r(q ) = ¥,

n-—+>o
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Si-nce-r(q) becomes infinite at infinity, the sequence 9, nust
be bounded, and we may assume with no loss of generality that
q, converges to0 somse q,€ M. We shall show that 9, is a common
fixed point for F, by proving that
a) r(g,) = ¥
b) r(f(q,)) = r*, for every feP,
¢) rla,) = r¥* = r(q,) implies that q, = q,.
(Indeed, (a), (b) and (o) imply that f(qo) = qo).

Ad 8). Take any €¢> 0, If n is sufficiently la~ge then
r(qn) <r*4e¢, and by definition of r(qn), there exists fne P,
such that

(3) £,(P) c Bla,, r*+e).

We may chose n so large, that d(qo,qn)<e o This inequality
and (3) imply

(4) £,(P) c Blgy, r¥+2e),

Prom (4) follows that T, (qo)sr*+2e, hence r(q ) s r*42¢.
n

Since ¢ was arbitrary we have r(qo)s r*, This obviously im~-
plies r(q ) = r*, as claimed.

Ad b), It suffices to show that r(f(qo))sr*. Take any
e> 0. Since r{q ) = r* (by (a)), there exists h e F, such that
h(P) cB(qo,r*+€). By assumption fe¢ F i8 nonexpamding, there-
fore

(£n)(P) c £(B(q ,2*+¢) < B(£(q ) ,r"+¢),

Ihis shows that T, (£(q )) <r*+e, hence r(f(q )) € r¥+e. Since
¢ was arbitrary it follows that r(f(qo)) <r*, as claimed.

Ad ¢). Let us consider first the cese when r¥* = 0, Let us
:gssume (by contradiction), that there are points g, # q, in N,
such that r(q1) = 0, r(q2) = O, Chose ¢> 0 so small that the
balls B(q.l,c) and B(qz,e) are disjoint. Since r(qi) =0
(£ = 1,2) there exists f, ¢ F, such that f,(P) cB(qi,e). Let
g € F be such that (2) holds, Since
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S(P)C B(q1p€)f\B(Q2'°) = ¢

it follows that g(P) = ¢, a contradiction.

It remeins to consider the ocase when r*> 0. Take anmy €> 0}
there exist f,,f,¢ F, such that fi(P)<:B(qi,r*+e). Take g ¢ P
such that (2) holds; it followe that

(5) g(P) cB(q,, r*+¢) nB(g,, r*+c).

Denote by q, the midpoint of the (minimal) geodesic segment
which joins qi and q,; the length of this segment will be de-

noted by 2m., Let g be an arbitrary point in the right side of
(5). Diffeomorphism Exp;1 : M —a-TMq* maps points q, ,94,9,9
*

in M respeoctively onto points O, Vis Voo V in TMq s See Fig,1,
*

Fig.1

On an arbitrary Riemannian manifold the exponential mapping
maps the segments of rays emanating from the origin onto geo-
desic segments of the same length. Therefore

(6) ”v1" =0 = d(q !q1)’ "72" =0 = d(q ’q?,
and
(1 lvll = a(q,,9).

Since EXp;‘ : M —»TH  is nonexpanding it follows that
* *

(8) v = vill dla,aq) |Iv = vyll<dlq,a,).
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In view of (6), (7), (8) an elsmentary inequslity

(9) Ivl? < max®(llv = vy, v =" v,1) - w?
yields
(10) a(q,,9)%< max®(a(a,9,),d(9,3,)) - .

By the definition of q +the right side is not greater then

(r*+e)2-m2. Therefore g € B(q,, VQr*+e)2 - m2) for all q 4in
the right side of (5). Hence (5) yields

S(P) CB(Q*, U (r*"’e)z.'mz)-
Consequently rg(.q*)s V' (r*+ 'e)2—m2, hence
r(a,) < Vir*+e)2-n?,

For sufficiently small ¢, jhe right side is smaller then r*,
contradicting the definition of r*, Therefore (¢) holds and
the proof of Theorem 1 is complete,

3. Additionel remarks

1. Let 93s 95 be two different pointa of M. Let f1, f2 be
self-mappings of M such that f,(M) = {q;}, 1 = 1,2, Then
P = {id4, £y fe} is a semigroup of nonexpanding mappings,
which has no ¢ommon fixed point,

2. In general a comkion fixed point of F is not unique.
(Cona;der for example a group of rotations around a fixed
axis in R3).

3. In the case when F is generated by a single non-expand~
ing mapping f Theorem 1 was obtained by S.Weretiski [4]. In his
proof the problem is reduced to the Brouwer fixed point theo-
rem, Let us remark, that the case when f is lipschitszian with
a constant L <1 is ocovered by a general theorem on ocontrac-
tions in metric spaces (of. [3] p.48); in this case thers is
the unique fixed point of f.
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