

Mihai Cristea

WHEN CLOSED MAPS ARE PROPER OR CONTINUOUS

It is frequently of interest in applications to know that a given proper map is closed, or that a closed map is proper. It is known (see [1], [5]) that if E and F are Hausdorff spaces, F a first countable space or a locally compact space and $f:E \rightarrow F$ is continuous and proper, then f is closed. Also it is known (see [1]) that if E and F are Hausdorff spaces, $f:E \rightarrow F$ is closed and for every $y \in F$, $f^{-1}(y)$ is compact, then f is proper. We shall use this theorem to find conditions for a closed map to become a proper map.

We shall also find conditions for a closed map $f:E \rightarrow F$, where E is of the second Baire category, to become continuous on E , with the possible exception of a set of the first Baire category in E .

Throughout this paper, E and F will be Hausdorff spaces.

Theorem 1. Let E be a normal space such that every sequentially compact set from E is compact, F be a first countable space or a locally compact space, $f:E \rightarrow F$ closed such that for every $x \in E$, $V \in V(f(x))$ and $Q \in V(x)$, $f(Q) \cap V \neq \{f(x)\}$. Then f is proper.

Proof. Suppose that there exists $y \in F$ such that $f^{-1}(y)$ is not compact. Then we can find x_i such that $x_i \neq x_j$ for $i \neq j$, $f(x_i) = y$; $i \in N$, and $\{x_i\}_{i \in N} = \emptyset$. We take $V_n \in V(y)$, $V_{n+1} \subset V_n$ a countable base of y if F is a first countable space and $V_n = W$, where $W \in V(y)$ is relatively compact if F is a locally compact space. Choose $Q_i \in V(x_i)$ such that $\bar{Q}_i \cap \bar{Q}_j = \emptyset$

for $i \neq j$. Denote $K = \{x_n\}_{n \in N}$. Let $H = \text{Fr} \bigcup_{i=1}^{\infty} Q_i$. Since K is closed, H is closed and $K \cap H = \emptyset$, we can find U, V open such that $K \subset U$, $H \subset V$ and $U \cap V = \emptyset$. Then for every sequence $y_n \in U \cap Q_n$, $\{y_n\}'_{n \in N} = \emptyset$. We can find $z_n \in U \cap Q_n$ such that $f(z_n) \in V_n$, $f(z_i) \neq f(z_j)$ for $i \neq j$ and $f(z_n) \neq y$ for $n \in N$. Denote $A = \{z_n\}_{n \in N}$ and remark that A is closed. If F is a first countable space, $f(z_n) \rightarrow y$, hence $y \in \overline{f(A)} \setminus f(A)$. If F is locally compact, then $f(z_n) \in \overline{W}$, hence we can find $z \in \overline{W}$ and z_{n_k} a subsequence of z_n such that $f(z_{n_k}) \rightarrow z$ and $f(z_{n_k}) \neq z$ for every $k \in N$. If we denote $B = \{z_{n_k}\}_{k \in N}$, then B is closed and $z \in \overline{f(B)} \setminus f(B)$. We obtained a contradiction, hence f is a proper map, q.e.d.

Corollary 1. Let E be a metric space, F a first countable space, or a locally compact space, $f: E \rightarrow F$ a closed, continuous map such that for every open set $Q \subset E$, $\text{card } f(Q) \geq 2$. Then f is proper.

Corollary 2. Let E be a locally connected, metric space, F a first countable regular space or a locally compact space, $f: E \rightarrow F$ closed such that f carries connected sets into connected sets and such that for every open set $Q \subset E$, $\text{card } f(Q) \geq 2$. Then f is proper.

Proof. Let $x \in E$, $Q \in V(x)$ connected and $V \in V(f(x))$. Then either $f(Q) \subset V$ or $f(Q) \cap \text{Fr} V \neq \emptyset$.

Corollary 3. Let E and F be n dimensional manifolds, E a metric space, $f: E \rightarrow F$ continuous, closed, open or light. Then f is proper.

Theorem 2. Let E be a metrisable, connected, infinite dimensional Fréchet manifold, $f: E \rightarrow F$ continuous and closed. Then f is either a proper map or is the constant map.

Proof. Suppose that f is not constant and let $y \in F$ and $A = f^{-1}(y) \neq \emptyset$. Since E is connected, $\text{Fr} A \neq \emptyset$. Then $\text{Fr} A$ is compact, since, by the same argument as in Theorem 1, we cannot find $x_n \in \text{Fr} A$, $x_i \neq x_j$ for $i \neq j$ and $\{x_n\}'_{n \in N} = \emptyset$. If

$\text{int } A = \emptyset$, it results that $f^{-1}(y)$ is compact. If $\text{int } A \neq \emptyset$, we see that $E \setminus \text{Fr } A$ is nowhere disconnecting (see [4]), hence $E \setminus \text{Fr } A$ is connected and $\text{Int } \text{Fr } A = \emptyset$. Then f is constant on $E \setminus \text{Fr } A$, hence on E , which represents a contradiction, and the theorem is proved.

Theorem 3. Let $n > 2$ and $f: \mathbb{R}^n \rightarrow \mathbb{R}^n$ be continuous and closed. Then either f is a proper map, or there exists $r > 0$ such that f is constant on $\text{CB}(0, r)$.

Proof. Let $y \in \mathbb{R}^n$ and $A = f^{-1}(y) \neq \emptyset$. Then $\text{Fr } A$ is compact, hence there exists $r > 0$ such that $\text{Fr } A \subset \bar{B}(0, r)$. If $A \subset \bar{B}(0, r)$, then A is compact. If not, there exists $z \in \text{Int } A \cap \bar{B}(0, r)$.

Let $b \in \text{CB}(0, r)$. We can join z and b by an arc in $\text{CB}(0, r)$ and since $\text{Fr } A \subset \bar{B}(0, r)$, it results that $b \in \text{int } A$, hence $A \supset \bar{B}(0, r)$.

Theorem 4. Let E be of the second Baire category, F a regular space with a countable base B , $f: E \rightarrow F$ such that for every $S_i \in B$, $f^{-1}(\bar{S}_i)$ is closed. Then f is continuous on E with the possible exception of a set of the first Baire category in E .

Proof. Let $H_i = \bigcap_{j=1}^{\infty} f^{-1}(\bar{S}_i)$. Since $f^{-1}(\bar{S}_i)$ is closed, $\text{int } H_i = \emptyset$. Let $H = \bigcup_{i=1}^{\infty} H_i$. Let now $x \in E \setminus H$ be fixed and $m, n \in \mathbb{N}$ such that $\bar{S}_m \subset S_n$ and $S_m, S_n \in V(f(x))$. Since $x \in \text{int } f^{-1}(\bar{S}_m)$, we can find $U \in V(x)$ such that $f(U) \subset \bar{S}_m \subset S_n$, and since S_i is a base, f is continuous at x .

Corollary 4. Let E be of the second Baire category, F a locally compact space with a countable base and $f: E \rightarrow F$ proper. Then f is continuous on E with the possible exception of a set of the first Baire category in E .

Corollary 5. Let E be of the second Baire category and a first countable space, F a locally compact space with a countable base and $f: E \rightarrow F$. Suppose that f satisfies one of the following conditions:

- a) The graph of f is closed,
- b) f carries compact sets into closed sets and $f^{-1}(y)$ is closed for every $y \in F$.
- c) f carries compact sets into closed sets and for every $x \in E$, $Q \in V(x)$ and $V \in V(f(x))$, $V \cap f(Q) \neq \{f(x)\}$.

Then f is continuous on E with the possible exception of a set of the first Baire category in E .

P r o o f. Let S_i be a base in F such that \bar{S}_i is compact for every $i \in N$ and $x_n \in f^{-1}(\bar{S}_i)$ such that $x_n \rightarrow x$. We shall prove that $f^{-1}(\bar{S}_i)$ is closed for every $i \in N$. In the first case, $f(x_n) \in \bar{S}_i$, hence we can find $y \in \{f(x_n)\}_{n \in N}$, hence $y = f(x)$ and $x \in f^{-1}(\bar{S}_i)$. In the second case, suppose that $f(x_p) \neq f(x_j)$ for $p \neq j$. Then either $f(x) = f(x_k)$ for some $k \in N$, or $f(x) \in \{f(x_n)\}_{n \in N}$. Indeed, $\{x_n\}_{n \in N} \cup \{x\}$ is compact, hence $\{f(x_n)\}_{n \in N} \cup \{f(x)\}$ is closed. Since there exists $y \in \{f(x_n)\}_{n \in N}$, and we can suppose that $y \neq f(x_n)$ for every $n \in N$, it results that $y = f(x)$, hence $x \in f^{-1}(\bar{S}_i)$. Suppose now that $f(x_p) = f(x_j) = z$ for $p \neq j$. Since $f^{-1}(z)$ is closed, it results that $x \in f^{-1}(z) \subset f^{-1}(\bar{S}_i)$. For the third case suppose that $f(x_p) = f(x_j) = z \neq f(x)$ for $p \neq j$. We can find $z_n \in V(x_n)$ such that $z_n \rightarrow x$ and $f(z_p) \neq f(z_j)$ for $p \neq j$ and $f(z_n) \in \bar{S}_i$ for every $n \in N$. As before, we find that $f(x) \in \{f(z_n)\}_{n \in N}$, hence $x \in f^{-1}(\bar{S}_i)$.

REFERENCES

- [1] N. Bourbaki : Topologie générale, Ch.1-2, 3-ème ed., Hermann, Paris.
- [2] Chung Wo Ho : A note on proper maps, Proc. Amer. Math. Soc. 51 (1975), 237-241.
- [3] M. Cristea : Some conditions for continuity, Demonstratio Math. 21 (1988), 609-613.
- [4] W.H. Cutler : Negligible subsets of infinite dimensional Fréchet manifolds, Proc. Amer. Math. Soc. 23 (1969), 668-675.
- [5] R.S. Palais : When proper maps are closed, Proc. Amer. Math. Soc. 24 (1970), 835-836.

[6] H. Pawlak : On some condition equivalent to the continuity of closed functions, Demonstratio Math. 17 (1984), 723-732.

INSTITUTUL DE MATEMATICA, R-70109 BUCURESTI, ROMANIA
Received May 14, 1987.

