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0. Introduction 
Let X be a nonempty set and le t i be a quasi-ordering 

( i . e . , a r e f l e x i v e and t r a n s i t i v e r e l a t ion ) over X. Given a 
function tp : X R , c a l l the point z e X, <p - maximal when 
z$w implies <*>(z) = <p(w) (that i s , <p i s constant on X ( z , 0 = 
= { w e X ; z s w } ) . To e s t a b l i s h under which circumstances i t 
i s true that each element of 1 i s bounded above by a <p -maxi-
mal one, a basic assumption must be made about our elements, 
namely 

(H.j) each ascending sequence in X has an upper bound 
(the ambient space being termed N- inductive in such a c a se ) . 
Under th i s framework, the following 1976 Brezis-Browder answer 
F4 ] to the considered problem i s the s t a r t point of our de-
velopments. 

T h e o r e m 1. Let the function <f be decreasing and 
bounded from below. Then, to each x e X ¿here corresponds 
a <f-maximal element z t X. wit.- x s z. 

This pr incip le , including the one of Ekeland [6] and hav-
ing a number of interes t ing appl icat ions to convex as well as 
nonconvex ana lys i s (as the above references show) has been 
generalized for the f i r s t time in 1982 by Altaian [l] and the 
author [12]. A common extension of these contributions has 
been obtained in the same y«ar by Galvi& ( [ 7 ] | o f . Section 1) 
and, re spec t ive ly , two years l a t e r by Turinici [15], using 
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different techniques. Finally, as a unifying effort in thie 
direction we mention the ¡385 Kang statement [8] incorporating 
all these results. The obtained contributions are, of course, 
interesting from a practical viewpoint, but we must emphasize 
that, in ell concrete cases when a maximality principle of 
triis type is to be applied, a substitution of it by the Brezis-
-Browder one is always possible. This fact raises the question 
of whether or net these generalizations of Theorem 1 are effec-
tive. IS .Is the main aim of the present exposition to show 
that the answer is negative or, to ba more precise, that the 
Kfijig caaximality principle we already quoted is nothing but an 
fc'julialent formulation "he Brezia-Browdar one. (As a com-
pletion of them fsctt- it is proved in Section 2 that the 
tiompartftcfp tjrrs l-vcu ^slity ra suits edtabiiahed by the 
sutnoj? In uis pap«u- n ! -'-a f-l9t> .lî.'Si.ic'i-i fcl« to Theorem 1 
fev suitably o h o c - 8 i b * fa, vsi sn y;, la light of this 
coaclaaloo, ii i« T^iti,*»*« tc aai: -»i-ai;her extensions of this 
principle axial b« reiuo* ibis te it, To solve this 
proii.sa, twr- etr a i f e ¿ " - a followsfit*, first one is assen-
t's, 11? function*? ;•.>.« " > tr rut 1% •.*..<••. ¿.^ decreasing 
pv-jmvrv t$w fvzcti v i ?,>•.« . tr th«; ---.'.'ve developments) 
by c-'-v-; t.:\i* <?.-ll>. oce \n Section 3. The sa-
cs Bd iu ^surlad e :i r ^ - u t e version of (H^) and is 
*'}uival«sfli - as .icdefcwndact! rsp'ut - with Zorn's maximality 
principle, as we ohall sa«j is? ^sctJon 4. Some further conslda-
rat Low? about ih-sse probi' i/v-iKciing an impropriate vecto-
rial treatment of tha rariatioaaJ Ekeiar/l's result (cf. the 
above reference) will be given in a fortneoming paper. 

1. Results about d-maximal elements 
Let [o, co] stand for the extended set of positive numbers 

(ordered and metrized in the usual way). The following variant 
of Theorem 1 will be in effect for ua. 

T h e o r e m 2. lit the function <fsX [o,»] be 
decreasing. If, in addition, 

(C-j) for each x e X, £>0, there exists y = y(x,e)? x with 
<p(y)< t then, conclusion of Theorem 1 holds with <f{zi - 0. 

- 214 -



3 

P r o o f . L e t t i n g x e X b e g i v e n , c h o o s * ; b y ( C , } s r . 

e l e m e n t y ? x w i t h < p ( y ) < < » a n a a p p l y T h e o r e m 1 t o - t h e a t r a c l u -

r e ( X ( y , s ) » $ ) a n d t h e e a m a f u n c t i o n , t o g e t a f " - i s ^ k ' e l e -

m e n t * e X ( y ) ( w i t h , o f c o a r s e , x ( z u S i n o « , s g f l i U j { C ^ ) , 

< f ( z ) > 0 l e a d s a s t o a c o n t r a d i c t i o n , i c e f r v r c a t i t w a c c e p t 

t h a t 4 > { z i = 0 . T h i s e n d s t h e a r g u m e n t . - j . « . d . 

S o f a r , T h e o r e m 2 i s a c o n s e q u e n c e o f T f c t f u v : e s 1 » B » * # t h e 

c o n v e r s e l a a l s o v a l i d a s i t w i l l b o t U s c a f e - f r o » t h a c o & s l d e -

r a t i o n s b e l o w . L e t t h e n o t i o n o f ( r e a l ) p s e u d o c s t r l c o v a r X 

b e u s e d t o d e s i g n a t e a n y f u n c t i o n d s X 2 — » • ] n i ¿ i - f ^ l n g , 

d ( x , r ) = 0 , x e X . ' ¡ l a v i n g i n t r o d u c e d s u c h a n e l s ¡ » a fit. t h e 

p o i n t z e X , d - m a x i r a a l p r o v i d e d z s u $ v i m p l i e s d ( u „ v j » 

A s i n t h e p r e c e d i n g s e c t i o n , w e s h s l l b e i n t s s r a ^ t e d i n s s t a -

b l i s h i n g u n d e r w h i o h c o n d i t i o n s a n y p o i n t i n X i s b o u n d e d 

a b o v e b y a d - m a x i m a l o n e . I n t h i s d i r e c t i o n , t h s f o l l o w i n g 

r e s u l t 1 b a l m o s t i m m e d i a t e . 

p r o p o a i t i o n 1 . L e t t h e c o n d i t i o n s o f T h e o -

r e m 2 b e f u l f i l l e d a r i d , i n a d d i t i o n , 

( H ^ i f f o r e a c h y t X w i t h < p ( y ) = 0 t h e r e e x i s t s a d - m a x i m a l 

p o i n t z e X w i t h j i z , 

T h e n , t n e « b o v * p r o p e r t y i s n e c e s s a r i l y h o l d i n g * 

d e r i v e c o n c r e t e c i r o u m s t a n c e s u n d e r w h i o i x ( J i g ) i e t o 

b e f u l f i l l e d m h a v e t o i n t r o d u c e a n u m b e r o f a p p r o p r i a t e n o -

t i o n ? a e w e l l a s t o i n d i c a t e s o m e b a s i c f a c t s a b o u t t k « j a a -

o e n d i c g e e q u a n e - s s o i t h e a x b i & n t s p a c e . F i r s t l y , t h e d - C s ' u o i i y 

p r o p e r t y b a i t g d e f i n e d a s i n t h e m e t r i c a l c a s e { d ( x „ , x „ 1 0 
Jul H i 

a s a , i t > o o , o j j f f l j , c a l l t h e ( a s c e n d i n g ) s e q u e n c e 

i n X , d - a e y m p t o t i c w h e n l i m d ( x n , x n + . , } « | 0 a e n « . o f 

c o u r s e , e a c h ( a s c e n d i n g ) d - C a u c h y s e q u e n c e i s d - a s y m p t o t i e 

t o o , t h e r e v e r s e i m p l i c a t i o n b e i n g a l s o v a l i d w h e n a l l s u c h 

s e q u e n c e s a r e i n v o l v e d , m a k i n g t h e g l o b a l c o n d i t i o n s : 

( C 2 ) e a c h a s c e n d i n g s e q u e n c e i s d - C a u c h y , 

( C g ' ) e a c h a s c e n d i n g s e q u e n c e i s d - a s y m p t o t i o , 

b e m u t u a l l y e q u i v a l e n t ; m o r e o v e r , e a o h o f t h e s e c o n d i t i o n s 

i m p l i e s , 
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(C^) f d i s < -asymptotic (to any x e X, £>o, there cor-
responds y ® y (x , e) ^ JC with d(u,v)< e for y $ u $ v) 

ae i t can be r ead i l y v e r i f i e d . Seoondly, c a l l the pseudome-
t r i c d, £ - t r i angu l a r whyn, for each e > 0 there e x i s t s 5>o 
each that x ^ y ^ z and d (x , y ) , d (x , z )<6 imply d ( y , z ) < e . We 
remark in t h i s context tha t , under 

(C^) d i s $ - t r i a n g u l a r 
the property of being d-Cauchy i s equ iva lent , for an ascending 
sequenoe (* n ) n e j} with the (weaker in genera l ) proV^rty of 
being d-sani-Cauchy ( to any e>0 there corresponds = n{£ ) c N 
such that p » n implies d(3fn ,xp) <£)• Accordingly - returning 
to the genera l oase (modulo (C^)) - term an (ascending) s e -
quenoe ( * n ) n e j i in X, d-semi-asyaiptotio when lim inf d f x ^ x ^ ) » © 
as n —• 001 i t w i l l follow by the same way as before that the 
g loba l conditions 

(C^) eaon ascending sequenoe i s d-aemi-Cauohy 
(C^') e tch ascending sequence i s d-seoii-asymptotio 

are mutually equivalent and, moreover, that aach of them 
impl ies 

(C^) d i s $ -semi-asymptotic (to any x e X, e> 0, thare 
corresponds y = y (x , e )£ x with d(y ,z)<e , for 
z * y ) . 

Under these f a c t s , the following pa r t i cu l a r version - due 
to Kang [8] - of the above proposition may ba formulated. 

T h e o r e m 3. Let the assumption (H1) be va l id and 
the pseudometric d on X be $-asymptot ic . Than, for each xe X 
there e x i s t s a d-maximal element ze X with x $ z . 

P r o o f . Define a funct ion <piX [0, <*>] by 

<f(x) = sup {d(u ,v ) ; x $ u « v } , x e X. 

Of course, hypotheses of Theorem 2 are f u l f i l l e d , as we l l as 
(H2) (with z = y ) . Therefore, Proposit ion 1 i s app l i cab le , 
q . e . d . 

As already precised, a s u f f i c i e n t condition for (C^J to 
be va l id i s (C2) or, equ iva l an t l y , (C2 ' ) . Concerning t n i s 
f a c t , l e t (Y , t j be a topologica l space and OeY a d is t inguished 
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p 
point. Given the mapping d : X — • Y , ca l l It a I - pseudometric 
on X provided d(x,x ) > 0, z e X , and, In such a context, let 

fus introduce the notions of d-maximal element and of d-asympto-
tic sequence by the same (formal) way as before, with Oe R 
substituted by O d (the limit in the second oase being taken 
in the sense of t ) . As an application of Theorem 3» the fo l low-
ing d-maxiaality result due to Galvin [7] w i l l be (methodolo-
g ica l ly ) useful in the sequel. 

T h e o r e m 4. Let the assumption (H^) be f u l f i l l e d 
and the Y-pseudometric d over X be such that (Cg ) plus 

C7) {o } i s a Gg-set 

are beins holding. Then, conclusion of Theorem 3 ( in the form 
we just indicated) remains true. 

o o f . By (C 7 ; , { o } = n {Gn ; n£ n} where GQ i s 
open in Y for each a e N. Let 4>:Y — [ 0 , ° ° ] be defined, for 
aach y e Y, by 

f ( y ) = 00 , whan { n e N j y e Gn } i s empty 

= inf {2~ n j y c G n } , when the same set is not empty 
and pat 

a(u;v) = v ( d ( u , v } ) , u ,veX . 

eiefirly, d(u,v) = O.eY i f and only i f e (u,v ) = OeH (which, 
among others, shjows that e i s a ( rea l ) pseudometric over X). 
On' the other hand, (C2 ' ) w i l l be surely f u l f i l l e d with d r e -
placed by e. This, along with the preceding statement, ends 
the proof, q .e .d . 

In particular, when Y = H, anc the pseudometric d on X 
i s , in addit ion<- t r iangular , Theorem 4 reduces to author's 
maximality result [15] which, as precised there, contains 
Altman's extended variant [1] of Theorem 1. So, The ores 3 ¿nay 
be viewed as a common extension of a l l these results (h:;nce, 
in particular, an extension of Theorem 1); but, as a conse-
quence of i t s proof, the converse of this las t assertion i s 
also va l id , making a l l these statements be reductible to each 
another. This fact has, of course, a theoretical impact on the 
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above maximality p r i n c i p l e s b a t , In genera l , not a p r a c t i c a l 
one s i n c e , in many oonorete o a s e s , one or another of them oan 
be more d i r e c t l y handled than the o r i g i n a l Brezis-Browder one) 
aa a good i l l u s t r a t i o n of t h i s a s s e r t i o n we mention the s o l v a -
b i l i t y r e s u l t (subsumed to Theorem 3) in the above quoted 
a u t h o r ' s paper. 

2. Matr ioal l o rn type r e s u l t s 
Let be a quasi-c-rdered s e t . In the fo l lowing , we 

s h a l l be in te re s t ed in determining circumstances under which 
6 point x of X te TJoucd-.d above by a $ -maximal one, z e X ( i n -
troduced ass z i w implies w $ z ) . This i s in f a c t a standard 
maximality problem of Zorn type and the natura l way to so lve 
i t i s , e . g . , that an upper boundedness condit ion be imposed 
on every chain C (o r , e q u i v a l e n t l y , on every well ordered 
part W) of ( X , £ ) . However, when an add i t iona l pseudometric 
s t ruc ture i s being added, t h i s ( t r a n s f i n i t e ) method seems to 
be somehow d i f f i c u l t to be followed ( a s a t y p i c a l example of 
t h i s kind being the a u t h o r ' s maximality r e s u l t in [14]) and 
the l eg i t imate quest ion a r i s e s whether a denumerable upper 
boundedness condition of the form (H1) cannot rep lace i t . To 
get an appropriate answer, the fol lowing consequence of Theo-
rem 2 w i l l be use fu l fo r us . 

P r o p o s i t i o n 2. Let the condit ions of Theo-
rem 2 be f u l f i l l e < i and, in addi t ion assume 

(H3) J f o r each j t I with <p(y) * 0 there e x i s t s a $-ma-
[ximal point z e X with y $ z . 

Then, the Zorn property we formulated before i s n e o e s s a r i l y 
holding . 

As already preoi sed , the s e t t i n g in which (H^) i s to be 
discussed i s the pseudometric one; s o , l e t d :X 2 [0,00] be 
such an o b j e c t . For each x e X and each subset Y of X, l e t 
d(x,Y) denote, a s u s u a l l y , the infimum of a l l d i s t a n c e s 
d ( x , y ) , y eYj under t h i s convention, c a l l the considered 
pseudometric d, weakly <-asymptot ic when, to any x e X, £ > 0 , 
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there corresponds y * y ( x , e ) ^ x with d (u ,X (v ,$ ) ) < £ f o r 
u $ v . At the eame time, l e t t ing •*— denote the dual con-

vergence structure over X (defined ast z x f l whenever 
d (x ,x n ) - + 0 as n m] c a l l the considered quasi-ordering $ , 
weakly d-se l f -c losed when f o r eaoh x e X there ex is ts y >. x 

with: ( x n ) n e N ascending in X(y,$) and x xQ imply x n « y , 
f o r some n e N. 

Under these prel iminaries, the fo l lowing Zorn type result 
may be formulated. 

T h e o r e m 5< Let the quasi-olrdered spaoe ) 
f u l f i l i n g (H^) be such thai , e peeudometric d over X may be 
determined with 

(Cg) d i s weakly <-asymptotic 
(Cg) ^ i s weakly d-ss l f -o loaad. 

Then, f o r any x e X, there i s a ^-maximal aletent t c l with 
x $ z . 

P r o o f . Let the function cpiX [0, «>] be deficad 
as 

<f(x) « aup { ( J ( f l , I ( » , s ) ) j x i s u i * } , n I , 

By (C g ) , coa l i t ions of Theorem 2 are v e r i f i e d . Moreover, l e t 
y eX with f i y ) » 0 and le t z ^ y be that lntrr>di>r#d b.v (Cg) . 
We claim z i s $-maximal (and th is w i l l compiate tha ¡ r oo f , 
by Proposition 2 ) . Inde«d t l e t t ing w t l f i ^ l , i t w i l l f o l l ow , 
in view of 

d ( y ,X ( v , < } j = 0, v e X(w,<) , 

that an ascending sequence ( v n ) B £ f l may be determined 
with d ( y , v n ) < 2 ~ n , n e t (that i s , y v n ) | th is , along wit1; 
the choice of z gives v n < z, f o r ao&a n e N (nance w<:z ) , and 
the result fo l lows , q-e .d . 

Let us c a l l the (ascending) sequence (x0 )n e J S in X, weakly 
d-asymptotic when f o r each n e N, e>iC, aae hsu d ( x „ , x „ ) < e 
f o r some o,q t n, p<q$ then, a suf f i i l - -nt -i. r- i « I on f o r (C g ) 
i s 
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(C^Q) each ascending sequence i s weakly d-asymptotic 
as i t can be readi ly seen; at the sang time, i t i s clear that 

( C ^ ) h l e d - s e l f - c l o sed ascending and x — x^ 
1 imply x f l < x, n e N) 

i s a su f f i c ient condition f o r (C^) . In part icular , with d 
being a metric over X, the corresponding variant of Theorem 5 
reduces to the compactness type author's maximality result 
[13] proved by a direct Zorn argument and including the va r i a -
t ional Elteland's principle [fa]. Of course, Brondsted's cont r i -
bution [ 5 ] in this direction cannot be covered by this result 
but, as proved in [12], i t might be viewed, however, as a 
pa r t i e ; l a r case of Theorem 3. 

3. Maxima?ivy principles 0 f sequential type 
Ihe . f-'jelopments we performed in Section 1 ra ise the que-

stion of whether or not extensions of Theorem 1 (or i t s va -
r iants) exist without being réductible to i t . This seems to 
09 a very delicate question; to give an appropriate answer 
- of a functi.Vi.a". type - we start from the remark that, as 
the decreasing property of the ambier.t function <p i s basic in 
a l l :hose treatments, a natural way of extending such s ta te -
ments is to replace i t by another conditions, among which the 
TOE-t interesting one is ( C ^ . This w i l l require , however, 
a sequential treatment of the maximality problem. To be more 
precise, let (X,s ) be a quasi-ordered set. Denoting by 
ubd (xQ ) the set of a l l upper bounds of the sequence ( x Q ) n £ j j 
in X, let tp:X [0,00] be a given function and ca l l tùe point 
2 in X, sequentially <p-maximal provided X (z ,ç ) c ubd ( x Q ) f o r 
some ascending sequence ( * n ) n e j j in X with <p(xn) 0. The 
Following statement i s almost immediate. 

P r o p o s i t i o n 3. Let the assumptions of Theo-
rem 2 (minus the decreasing property fo r the function <p) be 
f u l f i l l e d . Then, to each x e X there corresponds a sequentially 
if-maximal point z e X with x $ z . 

In part icular , l e t t ing d:X [O,00 ] be a pseudometric 
over X, a good choice f o r this function i s 
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ep{xj = sup { d ( x , y ) ; x $ y } , x e X, 

in which case , condition (C^ becomes a $-semi-asymptotic 
property of the considered pseudometric. iurthermore, l e t t i n g 
— • denote the (primal) convergence s t ructure on X ( i n t r o -
duced a s : xn x when d ( x n , x ) - > 0 as n — < » ) put lim (x f l) = 
= { x e X ; xQ —• x } and olim (x f l) = lim (x n ) n ubd ( x n ) , f o r each 
(ascending) sequence ( * n ) n e j f in x» corresponding version 
of Proposit ion 3 may now be stated as fo l lows. 

T h e o r e m 3'• Let the ossumption (H,j) be f u l f i l l e d 
and the pee udometric d over X be .< -semi-asymptotic. Then, con-
clusion of Proposition 3 i s valid in tha sense X(z,<) c 
c olim ( x n ) . 

By convention, a point ^ e X with the above property w i l l 
be re ferred to as a sequent ia l ly d-maximal one. Of course, 
under an ex t ra condition l ike (C^), Theorem 3' i s i d e n t i c a l 
with Theorem 3 or , equivalent ly , with Brezis-Browder's order-
ing principle subsumed to Theorem 1, The question of whether 
t h i s property continues to hold in the absence of (C^) remains 
open; we conjecture that the answer i s negative. 

Final ly , as another useful choice of our function, l e t us 
consider the case 

cp{x) «= sup { d ( x , X ( y , « ; ) ) j x $ y } , x e X, 

when {C^) becomes a weakly £-semi-asymptotic property for the 
considered pseudometric, expressed as 

(Cg') J to each x e X, e > o there corresponds y = y ( x , e ) j x 
[ with d(y,X{u, ) ) < £ , y . < u . 

Under the same l ines as before, a corresponding version of 
Proposition 3 may be formulated}, in the sequel, we shall be 
interested , however, in exploiting t h i s version to get a se-
quentially type counterpart of Theorem 5 which, in a conve-
nient form, can be given as 

T h • o r e m 5 ' . Let the quasi-ordered spaoe (X,$) 
f u l f i l i a g (H1) be such t h a t , for son» pseudometric d over X, 
conditions tCp') as well as 
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(Cg ) to any ascending sequence ( x n ) n e j j in X and 
x e ubd (xn) there corresponds y « y ( ( x n ) , x ) £ x 
with: (7 n ) n e N ascending in X(x,$) and d(xQ ,yn ) -»-0 
as q—• 00 give y Q $ y for some neN, 

hold. Then, conclusion of Theorem 5 remains va l id . 
P r o o f . Letting x e X be arbi trary fixed we get , by 

(Cg') in conjunction with Proposition 3 an ascending sequence 
U n ) n e N in X with x neN, and 

d(xn ,X(u,S)) < 2"n , neN, xQ $ u. 

Let y e ubd (xn ) be the point indicated by (H^); we claim each 
element % = z ( ( x n ) , y ) ^ y taken in accordance with (C^' ) i s 
a <-maximal one (and th i s w i l l complete the argument). Indeed, 
given w^z , i t follows, by the above property of (xn ) that an 
ascending sequence (yQ )cX(w,^) may be determined with 
d (x n , y n ) 0 as n -> » j t h i s , again with (Cg' ) , g ives 
for some neN, (henoe w ^ z ) , which was to be proved, q . e . d . 

By convention, a sequence (xQ) s a t i s f y ing the requirement 
of (Cg') w i l l be termed strongly bounded above. In par t i cu l a r , 
when d i s a metric over X, the corresponding variant of Theo-
rem 5' with (C^Q) in plaoe of (Cg) reduces to Theorem 1 in 
[14] , proved by a Zorn technique. A direct ( l og i c a l ) connec-
tion between th i s r e su l t and these of Section 1 cannot be 
(genera l ly ) establ ished; some further considerations about 
th i s problem w i l l be given elsewhere. 

4. Transf ini te var iants of Theorem 3 
As we had already occasion to say ( c f . the introductory 

par t ) , the second way of extending Brezis-Browder's ordering 
principle (or , equiva lent ly , i t s metric var iants given in 
Section 1) i s the ordinal i ty one. To be more precise , l e t 
(X,$) be a quasi-ordered set and (B* denoting the c l a s s of 
a l l functions f :A —• B) l e t D • ( ¿¿ J ie j j be [o, <»] M-peeudometric 
over X where, by the Zermelo principle ( [ 9 ] , Ch.2, Sec t .2 ) , 
tne index set M can be viewed as a well-ordered one. Cal l ing 
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an element z eX, D-maximal provided D(u,v ) = 0 f o r a l l a, 
v e X, the point i s ( o f . Seotion 1) to determine con-
d i t i ons under which any element of X i s bounded above by a 
D-maximal one. To begin wi th , l e t us note the f a c t that 
( c a l l i n g the subset P of M an i n i t i a l segment whenever 
M(m,£) c p f o r a l l m e P) condi t ion ( H ^ (basic to the conside-
ra t i ons we performed unt i l now) i s no more appropriate in th i s 
extended s e t t i n g , unless M i s order isomorphic with an i n i -
t i a l segment of N (ordered in the standard way) . So, without 
any l o s s , assume N i s order isomorphic with a segment of M; 
then ( the notion of (ascending) net in X being used to de-
signate each ( increas ing ) mapping p i— x from the w e l l - o r -
dered set ( P . O to ( X , * ) ) the f o l l ow ing ( t r a n s f i n i t e ) counter-
part of (H^) must be taken in t o considerat ion 

(H^) feach ascending net ( x p ) p e p i n x i where P i s an 
} i n i t i a l segment of M, has an upper bound 

( the ambient space being termed M-inductive i n such a ca^e ) . 
Under these pre l iminar ies , an useful answer t o the above posed 
problem i s contained in 

T h e o r e m 6. Let the assumption (H^) be va l i d and, 
in add i t i on , each component of D be <-asymptot ic . Then, to 
each x e X there corresponds a D-maximal element z e X with 
x $ z . 

P r o o f . Le t t ing x eX be a rb i t ra ry f i x e d , f o r each 
i e l l denote by X^(x) the subset of a l l d^-maximal elements 
y e X ( x , < ) (not empty, by Theorem 3 ) . Now, J ( x ) being the f a -
mily of a l l couples ( K , f ) where K i s an i n i t i a l segment of M 

and f : K — X i s increasing and K - s e l e c t i v e ( i n the sense 
f ( p ) e X p ( x ) , f o r a l l p e K ) . Let us introduce an ordering 
structure on i t by the convention 

( K , f ) 4 (H,g ) whenever K c H and f = g/K. 

Suppose <L * ( K Q» f q )q C Q i s a n a rb i t rary chain in ? ( x ) ; then, 
putting K » U ( K q { q e Q } and de f in ing f : K X by f ( p) » f q ( p ) 
when p e K q , i t i s transparent that ( K , f ) t J ( x ) and ( K q , f q ) $ 

( K , f ) , q c Q , which t e l l s us oC i s bounded above in 7 ( x ) . 
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By the Zorn maximality p r i n c i p l e ( [ 2 ] , §2, Sect .4 ) we have tha t , 
g i ven ( K , f ) e J ( x ) , a maximal (modulo $ ) element ( H , g ) e i ( x ) 
e x i s t s with ( K , f ) $ ( H , g ) . Assume H i s d i s t i n c t from M and l e t 
r be the f i r s t element of M \ H. Treat ing the func t i on g as an 
increas ing net ( X p ^ j j » there e x i s t s , by (H^) , a point xQ e X 
with PeH (hence x ^ x 0 ) ; furthermore, g iven xQ e X, 
r e M, there e x i s t s , again by Theorem 3, a point x* e X^x^ 
with Putt ing H* = H u { r } , de f ine g*sH* X by ' 
g*/H = g and g * ( r ) = x * ; then, c l e a r l y , ( H * , g * ) i s an e l e -
ment of 3*(x) which major izes s t r i c t l y ( H , g ) , in con t rad i c t i on 
to i t s maximality. So, H = M and, in such a case, any upper 
bound, z , of ( * p ) p e j j ( e x i s t i n g by (H^) and s a t i s f y i n g a lso 
x $ z ) i s our desired element;, as i t can be d i r e c t l y seen, 
q . e . d . 

As already prec ised , when M = N, the corresponding va -
r i an t of Theorem 6 i s r educ t ib l e to Kang's maximality r e su l t 
subsumed to Theorem 3. Returning i o the genera l case, tiie 
f o l l ow ing (pseudoj uniform var iant of the above r e s u l t w i l l 
be (methodo log i ca l l y ) use ful f o r us. Denote by A the d iago -
nal of X ( the subset of a l l ( x , x ) with x eX ) and l e t U be 
a family of subsets of X2 containing A ( r e f e r r e d to in the 
sequel as a pseudo-uniformity over X under a terminology s i -
milar to that of Kachbin ( [10]» Ch.2, S e c t . 2 ) . The point z e X 
w i l l be said to be U-maximal, provided ( u , v ) e n U , f o r each 
u,v t X, z $ u $ v ; of course, th is property does not change 
when U i s replaced by a basis (= c o f i n a l par t ) of i t ( cha-
rac t e r i z ed as: f o r each U e U there e x i s t s VeV" (the cons ider -
ed basis index) with U ^V ) . To get appropriate condi t ions 
under which any point of X i s majorized by a U-maximal one, 
c a l l the (ascending) net (Xp ) p e p in X, U -Cauchy when to any 
U e U there corresponds p = p(U) e P such that ( x Q , x r ) eU f o r 
a l l q , r e P ( p , $ ) , q$ r ; note tha t , f o r the case of an (ascend-
ing ) sequence, th i s property i s stronger than that of being 
U-asycpto t i c ( f o r each l eU there e x i s t s n = r(TJ) e K with 
' xm , xm+1' c " ® e " T ( n » i ) ) but, when a l l such sequences 
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are involved, the reverse impl ica t ion i s a l so v a l i d , i n the 
sense t h a t the g loba l condi t ions 

CC12) each asoending net i s U-Cauahy 
( C 1 2 ' ) each ascending seqaenae i s U-asymptot ic 

are mutually equ iva len t , as i t can be d i r e c t l y seen. Under 
these f a c t s , the fol lowing answer to the above problem can be 
given. 

T h e o r e m 7. Let the pseudo-uniformity U on X 
f u l f i l i n g (C1 2) (or {C 1 2 ' ) ) be suoh t h a t , f o r some b a s i s 
V = ( V J ^ J J of i t , condi t ion (H4) i s v a l i d . Then, to eabh 
x e X there corresponds a U-maximal point z e X with x < z . 

P r o o f . Denote, f o r eaoh i e M 

d ± (x ,y ) - 0, i f (* ,y) e V± 

oo, otherwise 

and observe tha t condi t ions of Theorem 6 are f u l f i l l e d f o r 
the [ 0 , ~ r -pseudo me t r i e D = ^ i ^ i e i i ^ fo l lows by 
the conclusion of the above quoted statement . t h a t , given x c X, 
a point z e X e x i s t s with (a) x c z , (b) * < u « v impl ies 
D(u,v) « 0 (henoe ( u . v J e V ^ , f o r a l l i t 1 ) , This completes 
the proof i n view of the f a o t f h a t V i s c o f i n a l i n U . q . a . d . 

Summing up these developments we found tha t the above 
theorems - hence, a f o r t i o r i , t h e i r "un ive rsa l " v a r i a n t s based 
on a genera l counterpar t bf (H^) l i k e 

(H^'J each asoending net ( x p ) p e p where P i s a wel l 
ordered s e t , has an upper bound 

as wel l as on a genera l index se t M - are t echn ica l ly w d u c -
t i b l e t o Zorn s theorem. But the converse of t h i s f ao t i s 
a l so v a l i d | indeed, l e t t i n g < be an ordering ( t ha t i s , aa 
antisymmetric quas i -o rder ing) on X with rospec t t o which «ny 
wel l -ordered par t t s bouoded above, denote by 5 (1) tbm « l o s s 
of a l l amending sequences E * ^n^neK i n I » Coder the con-
vent ion 

( E { n) = { * n . * n + 1 U * n + 1 , * n + 2 ) , . . . } ' ^ c ; 5 ( X ) , n e N, 
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let us put 

Uf = U { ( S | f ( 2 ) ) i S e J(X) } , f € W 3 { x ) . 

I t i s now clear that the family 1! = { u f j f e K ^ X ' } is a pseu-
douniformity over X for which ( C ^ ' ) being sat is f ies do, 
by Theorem 7 (under i t s "universal" form) we have that, each 
x€ X is bounded above by a U-maximal element ze X. We want 
to show z i s ^-maximal (that i s , z$w implies z = w). Suppose 
not; then, for the function f : 3(X) N defined as 

f ( ( x Q ) ) = arbitrary, when (neN ; xn = w} is empty 

= min {n e Nj xQ = w}, in the opposite case 

we cannot have (z,w) e U ,̂, contradicting the U-maximality pro-
perty claimed for z, and ending the argument. In other words, 
the "universal" versions of Theorems 6 and 7 are (when taken 
as independent results) equivalent formulations of Zorn's 
theorem. 

Returning to the in i t i a l statements i t is clear that, 
when U is a uniformity on X in the sense of Bourbaki ( [ 3 ] , 
Ch.2, § 2, Sect.1) the corresponding variant of Theorem 7 
is easily shown to contain the maximality Valyi 's result [16] 
proved by a direct Zorn argument. Also, we mention that the 
statement in Theorem 6 seems to be the most adequate one in 
deriving a further extension of the Nemeth's variational prin-
ciple [ 1 1 ] (appearing as a (normed) vectorial variant of the 
one due to Bkeland [6 ] ) } we shall give the necessary details 
in a forthcoming paper* 
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