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METRIC VARIANTS
OF THE BREZIS-BROWDER ORDERING PRINCIPLE

0. Introduction

Let X be a nonempty set and let < be a quasi-ordering
(i.e., a reflexive and transitive relation) over X. Given a
function ¢:X —» R, call the point 2ze¢ X, ¢ ~ maximal when
z sw implies ¢(2) = ¢(w) {(that is, ¢ iz constant on X(z,s) =
= {weX; z<w}). To astablish under which circumstances it
is true that each elsment of X is bcanded above by a ¢ ~maxi-
mal one, a basic assumptinn must be made about our elements,
name 1y

(H1) each ascending sequence in X has an upper bound
{the ambient space being termed N - inductive in such a case).
Under this framework, the following 1976 Brezis-Browder answer
4] to the considered problem is the start point of our de-
velopments,

Theoren 1. Let the function ¢ be decreasing and
bounded from below, Then, to each x¢ X there corresponds
a ¢-maximal elesment z ¢ X wit. x < 2.

This prineiple, includirg the one of Ekeland (6] and hav-
ing a number of intercsting spplications to convex as well as
nonconvex analysis (as the above references show) has been
generalized for the first time in 1982 by Altman [1] and the
author [12]. A common extensicn of these contributions has
been cbtained in the same year by Galviz ([7]; of. Section 1)
and, respectively, two years later by Tarinici [15], using
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different techniques., Fiaaily, as a unifying effort in this
direction we mention ths 985 Kang statement [8] incorporating
all these results. The ~titainsed contributions ars, of course,
interesting from a prsciical viewpolnt, but we must emphasize
that, in all concrete caser when & raximality principle of

tiis type is to be applied, & substitution of it by the Brezis-
-Erowdesr one is always possible, This fact raises the question
nT whethexr or nct these generalizations of Thaorem 1 are effsc-
tiva. I% de the main aim of the prasent axpositioi to show

ihat the answer 18 negative or, to Ls mors pracise, that the
Keug maximality principls we already quoted 1is nothing but an
gqulvalent tormulstion -7 “he Brezis-Browier one. (A3 a com~
lation of these Zeacty Lt 18 proved in facilon 2 that the
Lnsidlty Teasult estabilshed by the
axtnor in nis {987 pepes i) e =lep wiauwiible to Theorem 1
by sultably cliocsrag tha fosuii>n ¢, Ta %aa light of this
soaclusion, 3% v Yegdtisnds by oasl wusther extensions of this
rioeinle sxist withont heung reduliible to 1t, To solve this

apgrastnoes Lyes Lola

probos@, twe etrasopiew iTa Pollowsd. Ths fivet one is essan~

a1l Zumetiopsl com comel et 2 om0 latts. was decreasing
o o0 the Pugetior ¢ oo te the 1huve developments)
try ¢ Suc woix wllt v Jope in Section 3, The se~

cond ohg 4= Fian<ad so s oo orsriaite version of (H1) and is
syuivalent - a8 iodepsrdsnt reenit ~ with Zorn's maximality
prirelple. wa we nhsll ses le Lsetlon 4. Some further conside-
rationi caout thsge probirsome lr-iuding an sporopriate vecto-
rial treatzment of the variatioanas) Ekelar’s vesult (c¢f. the
above raference) will be given in a fortncoming paper.

1« Results about d-meximal sliements

Let [0, | stand for the extended set of positive numbers
{ordered and metrized in the usual way). Ths following variant
of Theorem 1 will be in sffact for us,

Theorem 2. I3t the function ¢:X -» [0,0! be
decreasing. If, in addition,

{Cy) for each xeX, £>0, there sxiste y = y(x,e}> x witn
¢{y)< e then, conclusion of Theorem 1 holds with ¢{z} = .
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Proof, Letting xe X be given, chonse by {Cf} &L
element y > x with ®{y) < o and apply Theorem 1 0 the atractu-
re (X(y,s),s} and the same funcilop, %v g8t o ¢-moglral ele=
ment 2 ¢ X[y,<) {with, of course, x ¢<%i. Since, sgata (01),
@{2}> 0 leade us to a countradiection, we ure Fferecsd tu accept

that ¢(z} = 0, This ends the argumant, i.s3.d.

So far, Thecrem 2 is & conseyvence oi Thessem 1. But, the
converss i3 2lgo valid as 1t will bs ihe cere trowr ths connlde-
rations helow. Let the notion of [rsal) pssudessatrie nvar X
be nssd %o designate any function G e [0, ] neeioPring
d{x,x} = 0, xe¢ X. Having introduced such arn eiswans. «ail the

point z e X, d-maximal provided z s ugv implias d{u,v} = D
As in the preceding section, we shsll bs irtsrartsd in ssta-
blishing under which conditions ary poins in 4 is hounded
abovs by a d-maximal one. In this divsction, ths following
resgult ig almest immsdiate,.

Proposition 1, Let the conditions of Theo~
rem 2 be Iulfilled =nd, in addition,

(Hy! ffor sasch y ¢ X with ¢(y) = 0 there exists a d-maximal

. point z e X with y < 2.

Thenr, the sbove property is necessarily holdirng.

mp derive concrete ciroumstances under whiok {32) is t¢
be Fuifi.ied @e heve to introduce a number of approprists no-
ticne e well as to indicate some basic facte about ths aa~
cendiecg segusneam o the ambient space, Firstly, the d-Cruchy
oroparsy bairg dafinsd as in the metrical case (d(zn,xn; - 0
a8 n,% -+ o, Osgol, call the (ascending) sequence (xn)nan
in X, d-asymptotic when lim d(xn,xn+12 w i) a8 n 4 oo, OF
course, each (ascending) d-Cauchy ssquence is d~asymptotic
too, the reverse implication being slsz vsiid when all such
sequences are involved, making the global conditions:

(02) each ascending =squence is d-Cauchy,

(C;") each asvending sequence is d-asymptotic,
e mutually equivalent; moreover, each of thess conditions
implies,
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(03) { d is < -asymptotic (%o any xe¢ X, €> 0, there cor-
responds ¥ = y(x,e) > x with d{u,vl<€ for ysugv)
ag8 it can be readily verified., Seoondly, oall the pssudome=-
tric 4, € -triangular whzn, for aach € > 0 there exists 8>o0
suoh that x<y< 2 and d(x,y),d(x,2)<§ Limply d(y,z)<€e. We
remark in this context that, under
(C4) d is < -triangular
the propsrty of being d-Cauchy ie equivalent, for an ascending
sequanoe (xn)neN with ths {woaker in gensral) proypsrty of
bsing d-ssmi-~Cauchy {tc any €> 0 there corrssponds > = n{e)e N
such that p>n impliles d(xn,xp) <€}, Accordingly -~ returning
to the general ocase (modulo (C )) - term an (ascending) se~
quence (xn)ncN in X, -semi-asymptotio when lim inf d(xn'xn+ﬂ'°
as n —» o ; 1t will follow by the sams way as before that the
global conditions
(Cs) eacu asoending sequende is d-semi=-Cuuchy
(05') exch ascending sequence is d-semi~asymptotie
are mutually eduivalent and, moreover, that sach of them
implies
(Cy) [d is < -semi-asymptotic (to any xe X, €> 0, thare
corresponds y = y(x,e)» x with d(y,z)<e , for
2275).
Under these facts, the following particular version - duse
to Kang [8] - of the above proposition may bs formulatad,
Theorem 3. Let the assumption (H1) be valid and
the pseudometric d on X be < ~asymptotic., Than, for each xe¢ X
there exists a d-maximal element ze¢ X with x < z.
Proof. Define a function ¢:X —» [0, ] by

¢(x) = sup {d(u,v); xsugv}, =xecX

O0f course, hypotheses of Theorem 2 are fulfilled, as well as
(Hz) {with z = y). Therefore, Proposition 1 is applicable.
g.0.d, ,

As glready rrecised, a sufficient condition fer {CB) to
be valid is (Cz) or, equivalantly, (Cz’). Concerning tnis
fact, let {Y,z) be a topological space and Oc¢Y a distinguished
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Brezis-Browder ordering principle 5

point, Given the mapping d:Xz——a>Y, call it a Y- pseudometric
on X provided d{x,x) = 0, xe¢ X, and, in such a context, let
,us‘introduoe the notions of d-maximal element and of d-asympto~
tic saquence by the sams (formal) way as before, with Oc¢ R
substituted by Oe¢Y (the limit in the second case baing taken
in the sanse of 7)., As an application of Theorem 3, the follow-
ing d-maximality result due to Galvin [7] will be (methodolo-
gically) useful in the sequel.

The nrem 4, Let the assumption (H1) be fulfilled
and the Y-pseudometric d over X be such that (Cé) plus

(Cr) {o} is a Gg-set

are beins holding. Then, conclusion of Theorem 3 (in ths form
we Jjusit indicated) remains trua,

" oo f. By (Cq, {0} =n {G;; neN} where G, is
oper in Y for each neN. Let w:Y -» [0,%] be defined, for
aach ye¢Y, by

#{y) = o , whan {neN; e Gn} is empty

1§

. inf'{Z'n; ye Gn},'when the same 'set 1s not empty
" and ptit e
e{u,v) = w(d(u,v}), u,veX,

Cleaarly, d{u,v} = 0.¢Y if and only if e{u,v) = 0e¢k (which,
' among others, shows that e 1is a (real) pseudometric over X).
On:the other hand, (Czﬂ'will be surely fulfilled with 4 re-
placed by e. This, along with the preceding statemsn%, ends
the proof. g.e.d.

In particular, when Y = R, anc the pseudometric d on X
is, in addition ¢ ~triangular, Theorem 4 reduces to author’s
maximality result [15] which, as precised there, contains
Altman’s extended variant [1] of Theorem 1. So, Theors - 3 may
be viewed as a common extension of all these results (h:nce,
in particular, an extension of Theorem 1}; but, as a conse-
quence of its proof, the converse of this last assertion is
also valid, making all these statements be reductible to each
another. This fact has, of course, a theoretical impact on the
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above maximelity principles but, in general, not a practical
one since, in many oconerete cases, one or another of them can
be more directly handled than the original Breézis-Browder one;
as a good illustraticva of this assertion we mention the solva-
bility result (gubsumed to Theorem 3) in the above quoted
author s paper. '

2. Matrical Lorn typs resulte

Tet (X,<) be a quasi-crdered set. In the following, we
shgll be interestsd in determining circumstances under which
& point x of X s “oucdqd above by a < -maximal one, z€e X (in-
troduced as: zsw ipplles wgz), This is in fact a standard
maximality problem of Zorn type and the natural way to solve
it is, e.g., that an upper boundedness condition be imposed
on every chain C {or, equivalently, on every well ordered
part W) of (X,<). However, when an additional pseudometric
structure is being added, this (transfinite) method seems to
be somehow difficult to be followed (as a typical example of
this kind being the author s maximality result in [14]) and
the legitimate questior arises whether a denumsrable upper
boundedness condition of the form (H1) cannot replace it. To
get an appropriate answer, the following consequence of Theo~-

rem 2 will be u=sful for us,
Propo=1ition 2, Let the conditions of Theo~-
rem 2 be fulfilled and, in addition assume

(H3) for each ye¢ X with ¢(y) = O there exists a ¢ ~ma=-
ximal point z ¢ X with y <z.

Then, the Zorn property we formulated before is necessarily
h'.lding.

As already precised, the setting in which (H3) is to be
discussed is the pseudometric one; so, let d:X2 —» [0, ] be
such an object, For each x ¢ X and each subset Y of X, let
d{x,Y) denote, as usually, the infimum of all distances
d(x,y), y €Y; under this convention, call the considered
pseudometric d, weakly < -asymptotic when, to any x¢ X, £> 0,
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there corresponds y = y(x,e)> x with d(u,X(v,<)) <€ for
Jsugve At the same time, letting «— denote the dual con-

vergence structure over X (definsd as: X <+ X, whenaver
d(x,x,) > 0 a8 n —» o] ocsll the considered quasi-ordering <,
weakly d-self-closed when for each x ¢ X there exists y: x
with: (xn)neN ascending in X(y,<) and x «— x, imply x <7,
for some neN,

Under these preliminaries, the following Zorn type result
may be formulated.

Theorsesn 5« L8t the quasi-ordered space (X.<)
fulfiling (H1.) be such thai, & pesudomstric d over X may be
determined with

(Cg) d 1s weakly ¢-ucymptotlo

_(Cg) < is weakly d-selif-clomed,

Then, for any xe X, there is a (-maximal 3alement 2 ¢ X with
X2

Procf., Let the funotion ¢1X —» [0,«w]| be definad

as

¢{x) = sup {d{u,x(v,s)); xgusv}, we X

By (Ca)_. comiitions et Thaorem 2 are verified. Morsuvver, let
yeX with ¢iy) = ¢ and let z> y be that intrrduced by (Cg).
We claim 2z ig ¢ -maximal (snd this will compiste tha wuroat,
by Proposition 2). Indeed, letting we X{z,<), it will foliuw,
in view of

d(y.xlv,c)i = 0, veX{w,<},

that an ascending sequence (vn)nen in X{w,<) may be determined
with d»(y.vn) <278 ned (that i, ¥ - vn); this, along with
the cholice of z gives Va$ By for seme ne N (hence wgez), and
the result follows. ¢g.e.d.

Let us call the (ascending) sequence (xn')ncN in X, weakly
d~asymptotic when for each neN, €>, one hLawm d(zp,xq)x's
for somd® p,g . n, p<q; then, s sutfi~i =t 2. 1:lon for (Cg)

is



8 M. Turinici

(010) each ascending sequence is weskly d-asymptotic
as it can be readily seen; at the samo time, it is clear that
(011) < 18 d-self-closed ((xn)neN ascending and x «— x
imply x,<x, neN)
is a sufficient condition for (C9). In particular, with d
being 8 metric over X, the corresponding variant of Theorem 5
reduces to the compactness typs author’s maximality result
[13] proved by a direct Zorn argument and including the varia-
tional Ekeland's principle (6). Of course, Brondsted s contri-
bution [5] in this direction cannot be covered by this result
but, ae proved in [12], it might be viewed, howewer, as a
partic:lar case of Theorem 3.

n

“

3¢ Kaximali.y rrinciples of sequential type

The ~velopments we performed in Section 1 raise the que-
stion of whetner or not extensions of Theorem 1 (or its va-~
viante) exist without being reductible to it. This sesms to
be @ 7ery delicate question; to give an appropriate answer
- of a functivia. type - we Btart from the remark that, as
the decreasing oroperty of the ambisrt function ¢ is basic in
all 'hose treatments, a natural way of extending such state~-
nents is to replace it by another conditions, among which the
ro&t interesting one is (C1). This will require, however,

. sequential treatment of the maximality problem. To be more
pracise, let (X,<) be & quasi-ordered set. Denoting by

ubd (xn) the set of all upper bounds of the sequence (xn)neN
in X, 1let ¢:X —» [0,0] be a given function and call the point
z in X, sequentially ¢-maximal provided X(z,<) cubd (x,) for
ney in X with o(x,) —» 0. The
following statement 1s almost immediate.

Proposition 3. Let the assumptions of Theo=
rem 2 {minus the decreasing property for the function ¢) be
fulfilled. Then, %o each x ¢ X there corresponds a sequentially
¢~naximal point ze X with x 2.

In particular, letting d:x2 — [0,~] be a pseudometric
over X, a good choice for this function is

some ascending sequence (xn)
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¢(x) = sup {d(x,y); x<y}, =xex,

in which case, condition (C1) becomes a < -semi-asymptotic
property of the considered pseudometric. lurthermore, letting
-—» denote the (primal) convergence structure on X (intro-
duced as: X, —» x when d(xn,x) —» () 88 n —» o ) put lim (xn) =
= {xe X; xp, —».x} and olim (xn) = lim (xn)n ubd (xn), for each
(ascending) sequencs (xn)neN in X. The corresponding version
of Proposition 3 may now be stated as follows.

Theoreuan 3. Let the gssuaption (H1) be fulfilled
and the pseudometric d over X be ¢ -semi-~-asymptotic. Then, con-
clusion of Proposition 3 is velid in tha sense X{z,<) ¢
C olim (xn).

By convention, a point 2 € X with the above property will
be referred to as a sequentially d-meximal one. Of courss,
under an extra condition like (04), Theorem 3’ is identical
with Theorem 3 or, equivalently, with Brezis-Browder s order-
ing principle subsumed to Theorem 1, The guestion of whether
this property continues to hold in the absence of (04) remains
openg we conjecture that the answer is negative.

Finally, es another useful choice of our function, let us
consider the case

¢(x) = sup {d(x,X(3,¢)); x<3}, xeX,
whan (01) becomes a weakly < ~semi-agymptotic property for the
considered pseudometric, expressed as

(08’) to each xe¢ X, €> 0 there corresponds y=y(x,e)2> x
with d(y,x(u, ))<5’ J € e

Under the same lines as before, a corresponding version of
Proposition 3 may be formulatedj.in the sequsl, we shall be
interested, however, in exploiting this version to get a se~
quentially type counterpart of Theorem 5 which, in a conve-
nient form, can be given as

Theorem 5, Let the quasi-ordered space {X,<)
fulfiling (H1) be such that, for some pseudometric d over X,
conditions (CB’) as well as
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(Cé ) to any ascending sequence (x neN in X and
X € ubd (xn) there corresponds y = y((xn),x); X
with: (yn)neN ascending in X(x,<) and d(x ) » 0
as p—> o give In<7 for some ne¢N,
hold, Then, conclusion of Theorem 5 remains valid,
Proof. Letting x ¢ X be arbitrary fixed we get, by
(Cs’) in conjunction with Proposition 3 an ascending segquence
(xn)neN in X with x<x,, ne N, and

n'Jn

N

d(xn,x(u,s)) <2"B, neN, x <u.

n

Let y € ubd (xn) be the point imdicated by (H1); we claim each
element z = z((xn),y) >y taken in accordance with»(Cg') is
a ¢ -maximal one (and this will complete the argument). Indeed,
given w3z, it follows, by the above property of (x,) that an
ascending sequence (yn)c:x(w,s) may be determined with
d(xn,yn) — 0 a8 n —» «; this, again with (Cg’), gives y <z,
for some ne N, (hence wgz), which was to be proved. g.e.d.
By convention, a sequence (xn) satisfying the requirement
of (C9’) will be termed strongly bounded above. In particular,
when d is & metric over X, the corresponding variant of Theo-~
rem 5’ with (C ) in place of (Cs) reduces to Theorem 1 in
[14], proved by 8 Zorn technique, A direct (logical) connec=
tion between this result and these of Section 1 oannot be
{generally) established; some further considerations about
this problem will be given elsewhere.

4, Transfinite variants of Theorem 3

As we had already occasion to say (cf. the introductory
part), the second way of extending Brezis-Browder’'s ordering
principle (or, equivalently, its metric variants given in
Section 1) is the ordinaiity one. To be more precise, lat
(X,<) be a quaei-ordersd set and (B4 denoting the class of
all functions £:A —» B) let D = (d;); . be [0, o] ¥-peeudometric
over X where, by the Zermelo principle ([9], Ch.2, Seot.2),
tne index set M can be viewed as a well-ordered one. Calling
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an element z € X, D~maximal provided D{u,v) = O for all u,
veX, z5ugv, the point is (cf, Section 1} to determine con~
ditions under which any element of X is bounded above by a
D~maximal one. To begin with, let us note the fact that
(calling the subset P of M an initial segment whenever
M{m,>) cP for all meP) condition (H1) (basic to the conside-
rations we performed until now) is no more appropriate in this
extended setting, unless M is order isomorphic with an ini-
tial segment of N (ordered in the standard way). So, without
any loss, assume N is order isomorphic with a segment of M;
then (the notion of (ascending) net in X being used to de-
signate each (increasing) mapping p — x_ from the well-or=-
dered set (P,<) to (X,<)) the following ?tranafinite) counter-
part of (H1) must be taken into consideration

(H4) {each ascending net (xp)peP in X, where P is an
initial segment of M, has an uppsr bound
(the ambient space being termed M~-inductive in such a caiig).
Under these preliminsries, an useful answer to the above posed
problem is contained in

Theorem 6, Let the assumption (H4) be valid and,
in addition, each component of D be < -asymptotic. Then, to
each x ¢ X there corresponds a D-maximal element z e X with
X <2,

Proof. Letting x ¢ X be arbitrary fixed, for each
ieM denote by xi(x) the subset of all d;-maximel elements
ye X(x,<) (not empty, by Theorem 3). Now, F(x) being the fa-
mily of all couples (K,f) where K is an initial segment of M
and f:K — X is increasing and K-selective (in the sense
f(p)e Xp(x), for all pe K), Let us introduce an ordering
structure on it by the convention

(K,f) <{H,g) whenever KcH and f = g/K.

Suppose o = (K ,fq)qu is an arbitrary chsin in ¥(x); then,
putting K = U?Kq; qge Q} and defining f£:K —» X by f(p) = fq'(p)
when p €K , it is transparent that (K,f) e F(x) and (K,,f,) <

< (Kof), g€ G, which tells us of is bounded above in F(x).
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By the Zorn maximality principle ([2], §2, Sect.4) we have thaf;
given (K,f) e F(x), a maximal (modulo <) element (H,g)e ¥(x)
exists with (K,f) < (H,g). Assume H is distinct from M and let
r be the first element of M \ H. Treating the function g as an
increasing net (x ) g+ there exists, by (H4), a point x eX

p pe
with xp €X,y P H (hence x sxo); furthermore, given X, € X,
rell, there exists, again by Theorem 3, a point x: e X.(x)

with xos:x:. Putting H* = Hx;{r}, define g*:H* -+ X by
g*/H = g and g¥(r) = x; ; then, clearly, (H¥,g*) is an ele=-
ment of ¥(x) which majorizes strictly (H,g), in contradiction
to its maximality. So, H = M and, in such a case, any upper
bound, z, of (xp)peM {existing by (H4) and satisfying also
X< 2) is our desired element, as it can be directly seen,
Ge0sde

As already precised, when M = N, the corresponding va-
riant of Theorem 6 is reductible to Kang ‘s maximality result
subsumed to Theorem 3. Heturning 7to the generel case, the
fsllowing (pseudo) uniform variant of the above result will
be (uethodolozically) useful for us. Depote by A the diago=-
nal st X (the subset of all (x,x) with x ¢ X) and let U be
a family of subsets of X2 containing A (referred to in the
sequel as a pseudo-uniformity over X under a terminology si=-
miler to that of Kachbin([10]sCh.2, Sect.2)s. The point z e X
will be said to be U-maximzl, provided (u,v) enU, for each
u,ve X, 2<ugv; of course, this property does not change
whan U is replaced by a basis (= cofinal part) of it (cha-
rzeterized as: for each U e U there exists VeV (the consider-
ed tasis index) with U >V). fo get appropriate conditions
under which any point of X is majorized by a U-maximal -one,
call the {sccending) net (xo)peP in X, U -Cauchy when to any
UeU there corresponds p = p(U) € P such that (%,5%,) €U for
all g,re P{p,s), a<r; note that, for the case of an (ascend=-
ing) sequence, this property is sironger than that of being
U-asymptotic {for each LeU there exists n = n(U)e K with
(xm,xm+1}e U for all me ¥{n,<)) but, when all such segusnces
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are involved, the reverse implication is also valid, in the
sense that the global conditions

(.012) each ascending net is ‘U -Cauchy _

(012’) "each ascending sequence is U-asymptotio.
are nutually equivalent, as it ocen be directly seen, Under
these facts, the following answer to the above problem can be
given.

Theorem 7. Let the pseudo-uniformity U on X
fulfiling (C,,) (or (C,5')) be such that, for some basis
V= (V4)yey of 1t, condition (H4) is valid, Then, to eabh
x ¢ X there corresponds a U-maximal point ze¢ X with x <z,

Proof. Denote, for each 1e M

di(xvy) = 0, it (z,y) Evi

w , otherwise

and observe that conditions of Theorem 6 are fulfilled for
the [0,c] ¥-pseudometric D = (d4) ey OVer X. It follows by
the conclusion of the sbove quoted statement ,that, given x¢ X,
a point z ¢ X exists with (a) x<2, (b) s¢usv implies
D{u,v) = O (hence (u,v)e Vy, for all ie M), This completes
the proof in view of the fact fhat V' is cofinal in U. g.2.d.
Sunming up these developments we found that the above
theorems - hence, a fortiori, their “universal® variants based
on a general counterpart of (H4) like

(H4') each ascending net (xp)pcP. where P is a well
ordered set, has an upper bound

as well as on a general index met M - are technically reduc-
tible to Zorn s theorem. But the converse of this faot is
also valid; indeed, letting € be an ordering (that is, an
antisyamstric quasi-ordering) on X with respect to which any
well-ordered part is bounded above, denote by 3(X) tie clees
of all asvending sequences IS (xn)ne! in X. Under the con-
vention

(£ n) = {xpaxy, )0 (Xp q0%p,0)seee}s Te3(X), new,.
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let us put
Up = U{(Z;2(2)); £ ¢ 30}, £en(X),

It i1s now clear that the family U = {Uf; £e¥3(X} 15 a peen-
douniformity over X for which (012’) is being satisfies do,
by Theorem 7 (under its "universal" form) we have that, each
x¢ X is bounded above by a U-maximal element z ¢ X. We want
to show z is ¢-maximal (that is, zs<w implies z = w). Suppose
not3 then, for the function f: 3(X) = N defined as

£((x,)) = arbitrary, when {neN; x, = w} is empty

n
= min {ne:N; X, = w}, in the opposite case

we cannot have (z,w) ¢ Uf, contradicting the U-maximality pro-
perty claimed for z, and ending the argument. In other words,
the "universal" versions of Theorems 6 and 7 are (when taken
as independent results) equivalent formulations of Zorn's
theorem.

Returning to the initial statemenis it is clear that,
when U is a uniformity on X in the sense of Bourbaki ([3],
Ch.2, § 2, Sect.1) the corresponding variant of Theorem 7
is easily shown to contain the maximality Valyi’s result [16]
proved by a direct Zorn argument. Also, we mention that the
statement in Theorsm 6 seems to be the most adequate one in
deriving a further extension of the Nemeth s variational prin-
ciple [11] (appearing as a (normed) vectorial variant of the
one due to Ekeland [6]); we shall give the necessary details
in a forthcoming paper,
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