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REMARK ON A PAPER OF TURINICI'

This note contains three examples of discrete inequalities
which can be proved simultaneously as their continuous analo~-
gles by the same theorem valid on an ordered linear space.

In his paper [8] M.Iurinici proved some kind of comparison
theorem which is valid on an ordered linear space. A8 an appli-
cation of his theorem Turinioci considered Gronwall-Bellman in-
tegral inequalities recently studied by Pachpatte [3]. The aim
of this paper is to show that Turiniol ‘s result can be applied
to Gronwall type discrete inequalities; so, it is a handy tool
for obteining estimations both in the continuous and discrete
oase, We give three examples of new disorete lnequalities
which can be proved using Turinici’s theorenm, '

Following Turiniei denote by X & linear spaocse, ,X+ a none
empty convex and pointed cone in X. The ordering < on X in=-
duced by the cone l(+ is defined in the usual.way xgy iff
y-xex+. A mapping T:X » X is sald to be monotone iff xgy
implies Tx < Ty, Also, T:X » X is called a normal mapping iff

a) T has a unique fixed point z = z(T) e X,

b) 1f x ¢ X is such that x < Tx then x < 3.

Theorem (2.2 [8]()‘. Let T41X, —» X, 1=1,000,%

i=1

be monotone for all i, and 2 T; be a normal mapping. Then
for every solution x ex+ of ’

(1) XST[x + Tox + eee ¢ [x + Ty [x]]eee]]
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we have
(2) x<T, [('1.‘1 + T,) [...[(T1 + eee + Tt_1)[z]] eee]]

where 2z is the unique fixed point of > _ T,.
1=1
Denote by N - the set of positive integers, s - the linear
space of all real sequences x = {xn}“ s by 8, - the cone of
ponnegative sequences. n=1

It is supposed, for f:N —»R

n~-1 n=1
2o fy3=0 and [ £ =1.
J=n J=n

Lemnma 1. Let a€s,, X be nonnegative constant,
The operator ’l‘zs+ ) defined by

n=-1 oo
(3) ?[x] = Xy + Z ayxy
: =1 n=1

is normal, with the unigue fixed point

n=1 oo
2 = xo —rl- (1"’83) .
J=1 n=1

Proof. We can easy cheok that z given above 1is
a fixed point of T, Furthermore if yes_ is such that y < T[y]
then y <z, 8o T is normal. (.8.Ds

Observe that T is monotons.

Theoren 1. Let akes+, k=1,2,.4.,% and Xq be

any nonnegative constant. If x = {xn}:ﬂ_e s, 1s a solution of

Nt
(4) X <X + Z 3;1(131 +
. Ja=1
3q4=1 ! Jgaq-1
2 t
+ Z 832 (sz + eee + Z ajtxjt))’ neX
32-1 jt-‘l
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then
ne1 d4-1
(5) X $x5 + D v (xo+ > ";]2("0"'"‘
j1-1 1 '1281
Jgp-? ot dgq™? .
see + Z v:’;-1 xo TT (1+VJ )ooo)), neN
Jt—1-1 j't'1
where
(6) vlkl = Z ag' "k = 1,2,0.o.to
3=1
Proof, Let us take for y = {Vn}:=1
n=1 oo
(7 T, [vy] = {xo + Z 3333}
. } J=1 n=1
and
n=1 oo
(8) . Tk[y] = {2 8§y3} k = z’ooo’tv
) J=1 n=1

The operators (7) and (8) are monotone. By Lemma 1 the ope-
rator

k=1

ne1 oo
(Z Tk (7] = {xo + Z vjyd} ,

with v defined by /6) is a normal mapping of which the unique
fixad point is

et
- {xo TT (1 + v )} .

J=1 n=1
Hence (5) follows from (2),.
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A

Remark 1. By Remark 2.2 [8] we may obtain
a wagker egtimation of x, namely

n~-1
X, < Xg -|—|— (1 + v;), neWlN,
=1
Inequality (4) for the case t = 2 was considered in [1] and
[2].
As the second example we consider discrete analogs of the
Groowall-Wendroff type inequalities,
Denots by 32 the linaar space of functions x =

= {x 1“’ e 'N2—>R and b 52 the subset of 92 with
n,in=1 =1’ y 8,

x:N2 — [0, w). Furthermore, put 1,k = {1,24e00,k}s Por any
ae 52 we definse

r
(9) Z 8p.q = 2: TT a

Prr9y

r
peT,n B3Py>Pp>ee s >Pp21 k=i
qe"__’i m>a .‘,>q-2>..0>q1\?1

for 1<r<min(n,n)
and

N

Z 85,q = 0 for the cases r> min{n,m) or n<1 ‘of m<1,
’

s

-
B

pe
qe€

I

-
8

For the basic properties of the above summation operstor
see [4].

Lemma 2. Let ac 53, and Xq be a nonnegative con-
stant. The operator Tzsf_ —- sf defined by
n=1 me=1 o oo
(10) T[x] =9xp + 25 D ay 4%y 4
I=1 1=1 n=1 m=1
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is normal with the unique fixed point

m-1 1= *
(11) = 1%Xg U + Z Z p,q)j s
pel, n-1 n=1 m=1
qel,m=1

Proof., It is easy, by using properties of (9) to
check that 2z defined by (11) is the solution of the equation

Furthermors by Theorem 1 in [4] if y < T{y] then y <z, Hence T
is normal. Q.E.D.

Note that T is a monotone mapping on 52

+.
Theorem 2. Let a‘cs?, k=1,0us,t, X, be non-
o0

negative constant, If x = {xn m}:=1 n=1 € sf is a solution of
y

n=1- m=1
{(12) x <Xy + 1
n,m Z Z 31,11 (x‘.j .4 +
J3=1 4= 1749
Jg=1'14-1 |
2
+ Z Z a x +
Joed Josl
Jp=1 11 2772 ( 2"2

Jgu1m1 1447

veo + Z Z a;':'itxjt’it>)’ (n,m) € N°
Jt=1 it=1
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then
By @t Jg=1 141

(13) x, pexp ¢ 25 2. 340, (’o 25 25 ij.iz(‘o*‘“
31-1 11‘1 2-1 12.1

Jpu2-t 14071

ceet D Z vi- . )), (n,m)eN?,

CPRPTE S PSP

g™t 1gy=
where
_ n=-1
(14) % (14 2 (z k)
r=1 pel,n~ 1 k=1
qel,m=1

k
vﬁ o = Z Bg’n k = 1’ooo,t-1' (n,m) €N2o
J=1

Proof of this theorem follows by Lemma 2 in a8 sinmilar way
to that of Theorea 1.

Remark 2, 4 weaker estimation of x, by Remark 2.2
(8] is Xn,m$%n,m (n,m) € N° where %, n 18 °8iven by (14).

The result of Theorem 2 generalizes some cases of inequa-
lities considered in [6] and [7].

In the third example instead operators of summation we use

operators of the form

n=-1 o
(15) tx] = { ] ayxy
=1 n=1
and
n=1 oo
(16) ?[x] = {a, [] x }
J= n=1

acting from 8, into s, for ae 8, Observe that these opera=-
tors are monotone,
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Lemma 3. The operator (16) is normal with the
unique fixed point

n=1 oo
Ne=1=3
(17) z ={a, | | (33)2 .
J=1 n=1

Proof. We prove that 2z given by (17) is the
unigue fixed point of {16). Indeed

n-1 o n-1 -1 so1a1] %
. T - e
r{z] = {a, 17 2 ={a, | T ay T (a;) =
J=1 n=1 J=1 i=1 n=1
n=2=-j . o0
n-1 (1+ PR ne1 ptog]
. i=0 _ 27T _
=44, (aj) = Ja, ]_T (aj) = 2,
j=1 n=1 J=1 n=1

1S

Let y = I[y] and y # z. We get
0
y1=B1TTyj=a1=Z1.
J=1

Suppose y, = z) for k = 1,2,...,m, Hence

m m
Ym+1 = 8pet ]_T Y35 = Bneq ]—[ 25 = Znere
J=1 J=1

So we get Im = 2p for all me I, Therefore 2z 1is the unique

fixed point of T. Let now y ¢ s_ Dbe such that y < T[y]. Hence

upcosing y, €2, for k = 1,2,.s.,m in a similar way we obtain

<,
v
Ve szm+1. From this it follows y €2. GedeDo
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Theorem 3, Let ake B,y k= 1,2,000,te If x€ s,
is a solution of

n-1
(18) X, ﬂ (31
34=1 Jgq-1
t
+ JT:E 332(132 + ene + JT:L athJ ...)), nekN
2 t
then
_ n=1 341
(19) 2,< ] s (J T ¥ (...
. j1 1 1 32'1 2
Jgoq-1 “1-dgtdgog
t
ces vjt-1 jT;T (vjt) coo )), neWN
t
where .
k n-1
v = Z B k = 2'ooo’to
s=1 J=1

Proof. Let us take

n-1 had
Ty [x] = ]_T a?xj
J=1
then

8=1

| n-1 oo
(Z’I‘ [x].{g xj] .
The operator
]
(ji: Ts) is of the form (16),
s=1

Hence by Lemma 3 and (2) we obtain (19).
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Remark 3. PFor the case t = 2, {19) 1s

n-1 \ J1-1 \ FRLFALE o
1 .
x, € 'ﬂ' 331 v;i1 'ﬂ- <v32) y nel,
31:1 3281

By Remark 2.2 [8] we may get another estimation of x, namely
t
'xnsvz TT-(vj) . ne N,
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