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IDEMPOTENT POLYNOMIALS OVER RINGS 

0 . Let « (A,F) be an algebra. A polynomial f ( x . , , . . . , x Q ) 
over i s said to be idempotent I f f ( x , . . . , x ) • x for a l l 
x e A. By the idempotent reduot 3 we mean the algebra 
(A t̂fl (F ) ) where til (P) i s the set of a l l idempotent polynomials 
over 

In this paper we f i r s t prove the following: there are two 
idempotent ternary ring polynomials such that each idempotent 
polynomial over a oommutative ring i s a composition of them 
(see Theorem 1) . This result i s an answer for the f i r s t prob-
lem stated in [2] by J . Dudek and J . Pionka, in the case of 
commutative rings. Moreover, in general thiB oannot be d?ne 
by means of binary polynomials. We give also a part ial answer 
for the second problem of [2] (see Theorem 2 ) . 

Problems of this kind were studied by many authors, e . g . 
0 . Webb [8 ] , J . Siupaoki [6] , W. Sierpiriski [ 5 ] , R. Quae ken-
bush [ 4 ] , A. Szendrei [7] . 

1. By a ring p = ( P , + , - , • ) we shall always mean a commu-
tat ive (associat ive) r ing. The following statement i s obvious» 
every n-ary polynomial g ( x ^ , . . . , x n ) over p can be written 
(not uniquely) in the form 

(1) g ( x 1 t . . . , x n ) = txa) + g2(x^t...,xa) 

where 
g 1 ( x 1 , . . . , x n ) = d i x i 

1i i*n 

- 193 -



2 Cz. S i tarczyk 

and 

« 2 ( x 1 x n ] " d i 1 i * i 1 * i , + • •* 
• k i ^ i g i n 1 * 1 * 

+ d. , x* x , 
-i < n

 l 1 # , , l k V " k l i , . . . »ijji n 

where ,' . . .»d^ ^ are i n t e g e r s , f o r , . . . e 
r i ^ 1 * k 

e \ 1 , . . . , n ) . Let us add that by dx wg mean dx • x+ . . . + x , 
d - t i m e s 

f o r d> 0 , dx = ( - x ) + . . . + ( - x ) , f o r d < 0 , Ox « 0 , where 0 i s 
kfl-times 

the zero element of P . 
We denote by n̂ , the number of uninomials of degree r 

oocuring i n a f i x e d from (1) of g ( x . , , . . . ,x Q ) with the s i g n 
p lus . 

I f 

(2) S d ± - 1 
i«n 

then the number of uninomials of degree 1 of the polynomial 
g 1 ( x 1 x„) = wi th the s i g n plus i s g r e a t e r by 1, 

1 1 1 i i * n 
then the number of uninomials of degree 1 with the s i g n minus. 
Henoe 

(3) g 1 (x1 x n ) = ^ + f o r soma 
m^-1 

and 21] ( X J - X „ J denote the sum of m i-1 components of the form 3 8 1 

( x j - x s ) , where j t s e { 1 , . . . , n } . 

I f 

(4) ' 2 U i i i - 0 , . . . , ZH d. i = o , 
1 ? 1 * • • k 1 < i 1 t i 2 i n c 1 < i 1 ( . . . , i k i n 
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Idempotent polynomials over rings 3 

then the number of uninomiale of degree r with.the sign plus 
i s equal to the number of uninomials of the degree r with the 
sign-minus (for r = 2 , . . . , k ) . Thus 

(5) g 2 U 1 , . . . , x n ) = 

= 21] ( x i 1 x i 2 " x j 1 x j 2 ) + ••• ( a : t1•••x tk• : , ts1••• : , csk ,• 
m2 mk 

Let 

Six-, xn ) = 6 l ( x 1 t . . . , x n ) + g 2 ( x 1 , . . . , x n ) 

be a fixed representation of-g, where ĝ  and g2 are of the 
form (3) , (5) respectively. So g ( x l f . . . , x n ) i s idempotent. 
And conversely: 

L e m m a 1. Every idempotent polynomial g(x.|, . . . ,x f l) 
over an arbitrary ring P = (P,+,- ,•) can be expressed 

in the form 

8(x.j»• • • »xQ) «= ĝ  (x^,. •. JXQ) + g 2 ( x 1 , . . . ,xn) 

where g1 i s of the form (3) and g 2 ( x 1 . . , x n ) i s of the form 
(5) . 

P r o o f . Let 

g (x .| , . . . ,x n ) » g 1 ( x l , . . . , x Q ) + g 2 ( x 1 . , x n ) 

be an idempotent polynomial over P (see (1))* It i s enough to 
show that g ( x 1 , . . . t x n ) » h 1 ( x 1 . . , x Q ) + h 2 ( x 1 . . , x n ) where 
h 1 ( x 1 , . . . , x Q ) s a t i s f i e s (2) and h 2 ( x 1 , . . . t x Q ) s a t i s f i e s (4) . 
Substituting x1 for a l l variables in g ( x 1 t . . . t x f l ) we get 

( S a±)*i + ( S ^ 0 * 1 + — 
1*i«n 1<i1fi2<n 1 2 

i , . . . n 
X1 • x r 
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Cz. Sitarczyk 

So 

(1 - S d 0 « ! - ( s - i i > ? - . . . 
K i ^ i ^ n 1 ¿ 

9 • • • 9 ljji fi 
- ( S 

Ui 

holds in P . Hefioe 

g ( x 1 , . . . , x n ) » g ( * 1 t . . . , x n ) + O -

= g { x i , . . . , x n ) + ( i - s « i ) * , ( x : 

- ( i - z : d i ) x 1 + s « A + s \ Í . H * Í 9 -
1<i<n 1í i í n ls i i 1 t l 2$i i 1 ' 1 ¿ 

- ( S d S 

- ( d i r . . i k ) * ï " h i t x V " » » n í + h2{x1 
i . | , . . . n 

dj j Xi •••x1 

where 

h l ( x 1 , . . . t x a ) - (i - ZU d i )x 1 + ZÜ d ^ 
1(Ud Uisn 

and 

h2 (*1 xa> ' d i 1 i j * i 1 V ( 2 2 «1 ,1 , ) 
l ^ i ^ i g i n 1 2 1 2 Msi-pigSn 1 2 

d i « i J * 1 + — + 

2 2 d4 i *± - . » i - ( S S — 0 * 1 

- 196 -



Idempotent polynomials over r i n g s 

and h1 s a t i s f i e s (2) and h 2 s a t i s f i e s ( 4 ) . This oompletes the 
proof of the lemma. 

In the sequel the fo l lowing idempotent polynomials w i l l 
play an important r o l e 

f 0 ( * l » x 2 , x 3 ' = X1 + x 2*3 ™ 

T ^ i x ^ f X g f X ^ ) = + Xg " Xy 

and 

' ' ' ' , x 2 n + 1 ^ = X1 + x2* * *xn+1 " xn+2** , x2n+1 

f o r n > 2 . Note t ha t 

f 1 , f o ^ x 1 » x 2 » x 3 ^ » f o ^ x 1 » x 4 » x 5 ^ = X1 + x2*3 " X4X5 = 

" , x 2 , x 3 , x 4 , x 5 ^ * 

In gene ra l we have 
L e m m a 2. For each n > 2 , the polynomial f f l i s a 

composit ion of f Q and f ^ . 
P r o o f . Observe t h a t the fo l lowing formulas are t r u e 

( i ) f Q ( x 1 . * 2 n + 1 ) -

= f k + 1 ^ f k + 1 ' X 1 » f k ^ x 1 , x 2 ' * ' * ' x k + 1 ' x 2 k + 2 ' * * * , x 3k+1 '» 

x k + 2 , . . . . * 2 k + 1 » f k ^ x 1 , x 3 k + 2 * *'*'X4k+1»xk+2»•*'»x2k+1*» 

x2k+2* * '* ' x 3k+1* , X 1 , x 2k+2* * ' * , x 3 k + 1 ' X 1 » x k + 2 » ' ' * ' x 2 k + 1 * ' 

f o r n * 2k, k 1 1 . 

( i i ) V X 1 x2n+1} " 
. > ' ' i 

= fk+1^ fk+1^ X1» k+1(*i»*2»•••»xk+2»x2k+3»'* * »x3k+3^» 

x k+3* ' '* , x 2k+2» f k+1* X 1 ' x 3 k + 3 " ' * »x4k+3'xk+3'•••*x2k^2»x3k+3 ,» 

x2k+3» *••» x 3k+2*» X 1 r X 2k+3 '*•• , x 3k+2 ' x 1» x k+3 X2k+2J 

f o r n • 2k+1, k £ 1. 
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6 Cz. S i tarczyk 

We give only the proof f o r ( i ) 

fk+1^ fk+1^x1 » fk^x1 »x2» , ,**xk+1 ,x2k+2'"** ,x3k+1^ ' x k + 2 ' * ' * , x 2 k + 1 » 

f k ( x 1 , x 3 k + 2 ' * * ' , x 4 k + 1 , x k + 2 » ' * * » x 2 k + 1 ^ , x 2 k + 2 ' * ' ' » x 3 k + 1 ' ' 

X 1 , x 2 k + 2 ' * * ' , x 3 k + 1 ' X 1 * x k + 2 * * * * , x 2k+1* " 

= x 1 , + ( x 1 + x 2 . . . x k + 1 - x 2 l c + 2 . . . * 3 k + 1 ) x k + 2 . . . x 2 k + l -

" *X1 + x 3k+2* ' , x4k+1 ~xk+2*' , x2k+1 , x2k+2* * *x3k+1 +x1x2k+2! ,_lxJfci-1" 

" x1xk+2* * *x2k+1 = x 1 + x 1 x k+2* * , x 2k+1 + x 2* * *xk+1xk+2* *!x2k+1 " 

- x k + 2 ' " * 2 k + 1 x 2 k + 2 , , , x 3 k + l " x 1 x 2 k + 2 " , x 3 k + 1 " 

' x 2k+2*** x 3k+1 x 3k+2* '* x 4k+1 + x k+2* * , x2k+1 x2k+2* * , x 3 k + r * 

+ x1x2k+2* * *x3k+1~x1xk+2* * * x 2k+t " x 1 + x 2 * • vx2k+T~x2k-«:2# ***4k+l" 

• * i + * 2 , , , x n + l " x n + 2 * , * x 2 n + 1 ™ f n ^ x 1 ' * * * , x 2 n + 1 ' * 

Using these formulae we see that any f Q i s a composition of f Q 

and-f^ , 
T h e o r e m ' 1 . - J n en arb i t rary r ing P » _ j t P , + , - , * ) 

every idempotent polynomial g ( x . j . ,x Q ) ( "n^D-over R i s 
a composition o f " f and f^« 

P r o o f . The proof_j*roceeds on induotion with respeot 
to k (see formula ( 1 ) ) . 

Let 

(6) g ( x 1 t . . . , x n ) « g 1 ( x 1 xQ) + g 2 ( x 1 , x n ) 

where g^ and g 2 are of the form (3)« (5)« r e s p e c t i v e l y . I f 
k - 1 / t h e n g ( x 1 t . . . » x Q ) - g1 (k, . . , x Q ) . Then by (5 ) 

g ( x 1 t . . . , x n ) - g 1 ( x 1 , . . . , * n ) • x + "Z2 ( * j - * r ) -
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Idempotent polynomials over r ings 7 

m^-2 m.j-3 

- t^t,(xitxyxr)txB,xx) • ( v V ' 
"1-3 

This shows tha t g ( x . , , x n ) i s a composition of f ^ . 
Assume tha t the statement holds f o r each k $ h . Let (6) 

hold and k • h+1. Then 

g ( z 1 , . . . , x n ) • w ( x 1 f . . . , x n ) + (x4 - x . . . . x . ) i n i n i h + 1 31 3 
"h+l " " h + 1 

vhere 

w ( x 1 f . . . , x n ) - x t + S + S ( * i . « i - x i * i 9
] * 

M 4 m I t I t mg 

+ (Xj • • Xj ••/•XJ )• 1 h ¿1 Jk '1 J h 
°h 

Then 

g ( x 1 , . . . y X ) - W ( X 1 , . . . , * ) + (x. ••«Xj *Xj • •»xj J + 1 n i n i 1 i h + 1 3h 

+ 2 (X »««X, " X •••X- ) " 
_ - r 1 h+1 81 h 
°h+1-1 

" 'h+1 » • • • • * * * ,xd-j ' * * * ' + 

+ ¿ J ( x _ . . . x _ - x_ , . . x _ )• 
• w ' ^ 1 ^ 

Repeating t h i s s tep («^. . i - l ) times we conclude that 
g ( x 1 , . . . , x a ) i s a composition of w and Applying now 
lemma 2 and the induct ional assumption we get our a s se r t i on . 
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8 Cz. Sitarczyk 

R e m a r k . Theorem 1 says that in an arbitrary r ing 
every idempotent polynomial can be constructed from idempotent 
terhary polynomials. The following example shows that in gene-
r a l th i s cannot be done by means of binary polynomials. 

S x a m p l e . Let B = (B ,+ , * ) be a non-degenerated p 
Boolean ring ( i . e . s a t i s f i e s x = x ) . So we have only two 
es sent ia l ly binary polynomials ( i . e . depending on each var iab-
le ) in B , namely x v y = x + y + xy, XAy = xy. Then the a lge-
bra (B,v,a) i s a d i s t r ibut ive l a t t i c e . The polynomial j i (x ,y ,z)« 
- x + y + z i s idempotent in 8 . I t s a t i s f i e s the i d e n t i t i e s 

(7) h(x,x ,y) = h(x ,y ,x) = h(y ,x ,x) = y . 

However h(x ,y ,z ) i s not a composition of v and a . In faot in 
every non-degenerated l a t t i c e we have only nine e s sent i a l ly 
ternary polynomials (see [ l ] ) , and none of them s a t i s f i e s ( 7 ) . 

T h e o r e m 2. The idempotent reduct, of every ring 
P » ( ? »+» -» • ) i s polynomially equivalent to an algebra (P,p) 
of type (4) . 

Reoall that two algebras (A,P i) (1=1,2) are called poly-
nomially equivalent i f the se t s A(P^) and A(F2) o f their 
polynomials are equal. 

P r o o f . Put p(x1 = + x 2 - x-j + *2 X 4 " 
- x 2 Xy Sinoe p i s idempotent so by Theorem 2 i t i s a com-
position of fQ and f ^ . 

Henoe i t s u f f i c e s to show that each fQ and f^ i s a compo-
s i t i o n of p. In f a c t , we have 

f 1 ( »Xp ) 

q n ( x 1 . x ^ x - J 1 » a 2 * 3 

Pui'ther 

and 

f 1 ( x 1 , q ; , ( x v x 9 ) , q , ( x 5 , x J ) = x ) 1 » 1 2 2 ' 3 
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Idempotent polinomiale over r ings 9 

which consequently gives 
2 

f^ (x^ (x-j,!^»*-)) »<5 ) ^ * x^+xgx^-x^ * *x2 ,x3^* 

This oompletes the proof of the theorem» 
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