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IDEMPOTENT POLYNOMIALS OVER RINGS

0. Let &K = (A,F) be an algebra. A polynomial f(Xy,eeceoXp)
over )k is said to be idempotent if f£(X,...,x) = x for all
x ¢ A, By the idempotent reduct J (%) we mean the algebra
(A, (P)) where Jl (F) is the set of all idempotent polynomials
over Mk,

In this paper we first prove the following: there are two
idempotent ternary ring polynomials such that each idempotent
polynomial over a commutative ring is a composition of them
(see Theorem 1). This result is an answer for the first prob-
lem stated in [2] by J., Dudek and J. PZonka, in the case of
" commutative rings. Moreover, in general this oannot be done
by means of binary polynomials. We give also a partial answer
for the second problem of [2] {see Theorem 2).

Problems of this kind were studied by many asuthors, e.ge.
D. Webb [8], J. Stupeoki [6], W. Sierpidski [5], R. Quacken~
bush [4], A. Szendrei [7].

i. By a ring P = (P,+,-,*) we shall always mean a commu-
tative (associative) i*ing. The following statement is obvious:
every n-ary polynomial g(x1,...,xn) over P can be written
{not uniquely) in the form

(1) 3(11""'xn) = 81(111"‘9111) + 82(11’000,xn)

where
81(11"on'xn) = Z dixi
1¢ign
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2 Cz. Sitarczyk

and

52(11,c00gxn) = Z di1izxi1x12 t oo
1¢14,1,¢n

+ D P N T
1511,...,iksn

where di,d:11 seeesdy N are integers, for 1,1 ,s..,1y ¢

¢ {1,000,n}s Lot us add that by dx we mean dX = X+ «es +X,

d-times
for 4> 0y dx = (=X} + ess + (=x), for d <0, 0x = 0, where 0 is

id-timea
the zero element of P ,

We denote by m, the number of yninomials of degree r
oocuring in g fixed from (1) of g(x1,...,xn) with the sign
plus,

If

(2) 22 dy =1

1<ign

then the number of uninomidls of degree 1 of the polynomial

g1(x1,...,xn) = ? dgx; with the sign plus is greater by 1,
1sisn
then the number of uninomials of degree 1 with the sign minus,

Henoe
(3) By(Xqpeeeyx ) = x5 + 2 (xj-xs), for some 1<ign
m1-1

and Z' (xj-xs) denote the sum of m1-1 components of the form
m,=-1 . .
1 .

(xj-xs), whera j,s ¢ {1,...,n}.
If

(4) > di112 = Oyena, > di1"°ik = 0,
1si1,125n 1si1,...,iksn '
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Idempotent polynomials over rings 3

then the number of uninomials of degree r with_ the sign plus
is equal to the number of uninomials of the degree r with the
sign-minus (for » = 2,...,k). Thus

(5) Bo(Xqseee,xy) =

= 2> (X, X; ~X. X. ) + eee + (%, ceeX. =X_ eeeX_ )
o Mt i mZ BT Tyt ey
2 k
Let

g(x1,...,xn) = g1(x1,...,xn) + 52(x1,...,xn)

be a fixed representation of' g, whsre 84 and g, are of the
form (3), (5) respectively., So g(x1,...,xn) is idempotent,
And conversely:

Lemma 1. Bvery idempotent polynomial g(x1,...,xn)
(n21) over an arbitrary ring P = (P,+,~,*) can be expressed
in the form

S(X1'ooo,xn) = 81(x1.oo.,xn) + 82(11'.,.,xn)

where g, is of the form (3) and 32(x1.....xn) is of the form

(5).
Proof., Let

8(11,...,Xn) = 81(x1,o-o,xn) + 82(x1;...,xn)

be an idempotent polynomial over P (see (1)), It is enough to
show that g(xy,ece,x,) = h1(x1,...,xn) + By(xg,e00yx,) where
h1(x1,...,xn) satisfies (2) and hy(Xqsee0,X,) satisfies (4).
Substituting x, for all variables in 3(11,...,xn) we got

( S- di)x1 + ( 30 4y )x$ + eos

1<si¢n 1411,12<n 1>2

. k
+ ( > 611"'1k)x1 = x,.
1511,...,iksn
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(1 - > di)x1 -( 2= d1112)x$ = eee

1<ig<n 1:11 ,i2sn
- : d k
( 2 11.'.1k)x1 = 0

1‘11,000,1k\
holds in P. Hence

8(!1,-..,xn) = 5(11'000.xn) +0s=

k
8(!1 'oo...’xn)"' (1 - Z di)x1 - sse ™ ( Z d11 ...ik)x1 =
1$isn 1511,...,11(5!1

1<i<n 1<icn 1511,12sn 2
2
ol ( Z d1112)x1 + see # Z di1°"1k i o..xik
1511,12“1 . 1si'1,...,1ksn
..( >3 d )xk-h(x x.) + hy(x x.)
11"’11: 1 19 n 2'711°°* %"
1€i, 50001 ¢ .
1°* » k\
where
h1(x1,...,1n) = (1 - Z 61)11 + Z dixi
1<i<n i<i<n
and

2
hz(x."oc..xn) = Z di i 81111 ( Z di i )81 +* ooe +

1€1,,1,¢n 172 1€i,,1¢n
2 IBIPIL OELTL ] (D= "11...1,‘)"11:
1<11'000.1k\ 1‘11.0.0'ik<n '
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Idempotent polynomials over rings 5

and h, satisfies (2) and h, satisfies (4). This completes the
proof of the lemma,

In the sequel the following idempotent polynomials will
play an important role

fo(x1,x2,x3) = Xy + XoXq - xf

f1(x1,x2,x3) Xy + Xy = Xg
and
FalXqsenesBopq) = Xq + Xpeeexp 4 - Xne2°**X2n+1
for n >2. Note that
f1(xi,fo(x1,xz,xj),fo(x1,x4,xs)) =Xy + XXy = XXp =
= f2(x1,x2,x3,x4,x5).

In general we have

Lemma 2, For each n3» 2, the polynomial fn is s
composition of fo and f1.

Prooft, Obsserve that the following formulas are true

(i) fn(x1,...,!2n+1) =

= Tieat it (20 T (Xq s X0 e s Xie o Xppp0 e sZ g )
e R SV TOTRELYE WU S TRTETE SRR B

VU STERYE SUSREEE SPE FSYSPYTTRTE SYNRTE J0E SPYTPRYL JONps It
for n = 2k, k21,

{11) fn(x.!,...,xzm_.l) =

1 ' \ .
I CINRYC T WPTC N ST NIPYE PTWETITIN SRV P
\
Xiee30e V0%oks20 Tiat (X190 %300 30000 0% 1y 30Ty 300000220 X310 3) »

12k+3’. ) '13k+2) .11 'xzk*B,-o . ’13k+2,x1 ,xk+3, eee ,12k+2)

for n = 2k+1, k21,
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We give only the proof for (i)
SWRLESURL E SPE SN E ST P TITTE S EE SYSPTRILIL SR FE WU TRRRRE SOORT
fk(x1 ,ka+2,-oo ‘14k+1 ,xk+2’ooo,x2k+1 ) ,12k+2,o"o ,ka+1 ) *

X19%2k427 %+ * %3141 1% 10 Xkg 2800 2 1% 2p 1) =

Xyt ( Xy 4o o X1 %ok420 *+ %3kt Fka2e * + %2kt
= (X000 20X 41 Xie2* * * Rk 1 F2ka20 * X3k X1 % 2k4 200 B
- Xi%pazee ok T X Kot e Tt P2 s Xokeat

T Tke2 o T2k+1%2k420 0 ¥ 3ke1 1% 2k420 0 X 3k41 T

T Xok+2°* * X317 3k420 ¢ XAkt ka2t X 2ka 172k 4200 T ke T

* X Xok+20 X3kt F 1 k420 X2kt = KXo o X ¥ X2k k2 T k1™

x1+82.. oxn+1.-xn+20 . 012n+1 = fn(x.‘ geee .82M1') .

Using these -formulas we see that any fn is a compoaition of fo
and»‘fﬁ . .
Theorem *1, -—lnhan arbitrary ring P=_(P,+,~,*)
every idempotent polynomial g(x1,...,xn) tn>1)-over 'P is
e composition of'fo and f1.
Proof. The proof_proceeds on induction with respsot
t0 k (see. formula (1)), . :
Let

(6) 8(!1,00;.xn) - 51(11 .ooo.!n) + 82(11,.oo,xn)

where g, and g, are of the form (3), (5), respectively. If
k = 4, then 3(11,....xn) - g1(i1,....xn). Then by (5)

8(!1,000.111) = 81(31’ooo.xn) = X 4+ 21 ~(xd"xr) .' -
m1-
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Idempotent polynomials over rings T

= xi+(xj-xr)+ > (xa'xt)'f1(x1"3""r)*"s"t)‘" > (xp-xq)-

= f1(f1(xi,xj,xr),_xe,xt) + > (xp-xq).
By-3
This shows that g(x.‘....,xn) is a composition of f,.
Assume that the statement holdes for each k< h, Let (6)
hold and k = h+l, Then

3(11....,xn) L '(x1gaoo'xn) + 2 (xi1ootxih+1-xj1..ox

B +1

In+t )

where

w(x1,...,xn) -x + 30 (xj-xr) + 32 (111112-::31:32) +
m1-1 m, .

+ 2 : (xi oo_pxi - !J oof.xd ).
1 h 1 h
my,

Then
3("1"""11) = "(31"""‘11)1* (xi1°°‘xih+1‘x31"'xih) *

+ (x seeX = X  eseX ) -
2_1 Ty Thed 84 8h
P

= fh+1 (W(x1 gese ’xn) .111 A XX) 'xih+1 ,131 pesoe .x

)
:1h+1 *

+ (! e - X seX )o
m2_1 R VO L e
h+1

Repeating this step (mh+1-1) times we conclude that
g(x1,...,xn) is a composition of w and T, 41 Applying now
lemma 2 and the inductional assumption we get our assertion,
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Remar k., Theorem 1 says that in an arbitrary ring
every idempotent polynomial can be constructed from idempotent
terhary polynomials. The following example shows that in gene~
ral this cannot be done by means of binary polynomials.

Example. Let B= (B,+,°) be a non-degensrated
Boolean ring (i.e. satisfies x% = x). So we have only two
essentially binary polynomials (i.s. depending on each variab=-
le) in B, namely Xvy = X + 3y + Xy, XAY = Xy. Then the alge~
bra (B,v,A) is 8 distributive lattice. The polynomial h(x,y,z)=
= X +y + 2 is idempotent in B. It satisfies the identities

(7 h(x,x,y) = h(x,y,x) = h(y,x,x) = 3.

However h(x,y,z) is not a composition of v and A, In fact in
every non~degenerated lattice we have only nine esgentially
ternary polynomials (see [1]), and none of them satisfies (7).

Theorem 2, The idempotent reduct, of every ring
P = {(P,4+,~,+) is polynomially equivalent to an algebra (P,p)
of type (4).

Recall that two algebras (4,F,) (i=1,2) are called poly=-
nomially equivalant if the sets A(F1) and A(Fz) of their
polynomisle are equal.

Proof. Put p(x1,x2,x3,x4) = Xy + Xy = X3 + XX, -
- XpXqe Since p 1is idempotent so by Theorem 2 it is a com-
position of fo and f1.

Hence it suffices to show that each fo and f1 is a compo~
sition of p. In fact, we have

p(x1,x2,x3,x3) = f1(x1,x2,x3)
p(x1,x2,13.f1(x1,x3,12)) = x1+x2-x3+x1x2-xg = q1(x1,x2,x3).
Fux:ther
94 (% s%p0%1) = Xy + XyXy = X5 = Gp(xy,%;)

and

f1(x1,q2(x3,x2),q2(x2,x3)) = x1+x2-x3-x§+x§ = q3(x1,x2,x3)
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Idempotent polynomials over rings 9

whiech consequently gives

21(x1599(X30%50%1),05(X50%5,%¢)) = x1*"2"3"‘$ = To(xq035,x5)0

This completes the proof of the theorsm,

(1]

[8]
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