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G E O M E T R I C C O R R E L A T I O N L A T T I C E S 

ID projective geometry the d u a l i t i e s play an e s s e n t i a l 

r o l e . The; oan often be desoribed by semibilinear forms of 

vector spaces coordinatizing geometries. These c l a s s i c a l r e -

sults come into a new context being oonneoted to l a t t i c e theo-

r y . Monger and Birkhoff introduced the concept of geometria 

l a t t i o e s which generalizes projective geometries and includes 

Boolean l a t t i c e s . 

Of course the dual i t ies themselves have also a l a t t i c e 

theoretic counterpart. Some special oases l ike the orthocom-

plementation of distributive l a t t i c e s are well known under 

the name of Boolean algebras. Also other d u a l i t i e s were i n -

troduced to distributive l a t t i c e s and studied under their 

geometric came l ike p o l a r i t i e s and correlations [6], [7]. 

In this paper the main topic are geometria l a t t i c e s of 

f i n i t e height which admit a correlation as an additional ope-

ration. I t i s an important observation that a geometric l a t t i o e 

of f i n i t e heights becomes modular by a dual i ty . An analogue of 

B i r k h o f f ' s theorem on the decomposition of modular geometric 

l a t t i c e s as a product of projective geometries oan be shown 

for geometric correlation l a t t i o e s of f i n i t e height. The de-

cis ive instrument of the decomposition are 6-central elements 

which are conneoted to the correlation 6 . The description of 

the f i n i t e simple geometric correlation l a t t i c e can further 
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be s impl i f ied by the knowledge of the cfcnter of these l a t t i o e s . 
We present three types of simple c o r r e l a t i o n l a t t i o s s using 
the r e s u l t s in [6] , 

Furthermore we have included severa l examples of c o r r e l a -
t ion l a t t i c e s some of which i l l u s t r a t e the theory and others 
which demonstrate some of the many open problems. 

We l ike to thank very much M. Szymaiska f o r her h e l p f u l 
suggestions* 

1. Some f a c t s of c o r r e l a t i o n l a t t i c e s 
D e f i n i t i o n 1 . 1 . Let L = (L|A,V) be a l a t t i c e . 

An antiordermorphism r of L i s a b i j e c t i v e map r s L L 
which reverses the order, i . e . a ^ b i f f i t follows *r("b) ^ r ( a ) . 
A c o r r e l a t i o n 6 of L i s a b i j e c t i v e map 6 s L -*• L such that 
6(xvy) = 6 ( x ) A 6 ( J ) and 6 ( X A Y ) = 6 ( x ) V 6 ( y ) hold. A c o r r e l a -
t ion d of L i s ca l led a polar i ty i f 6 (x) = x . 

P r o p o s i t i o n 1 . 2 . Svery antiordermorphism 
of a l a t t i c e L i s a corre la t ion« 

P r o o f . I f 6 i s an antiordermorphism of L then from 
x , y $ x v y i t follows 6(x v y ) $ 6(x) A 6 (y) and s imi lar ly 
6(x) v g(y) ^ 6(XA y ) . We have 6 ~ 1 ( 6 ( x v y ) J . ^ S~1 (6 (x) A 5 (y ) ) * 
> 6 " 1 6 ( x ) v 6 " 1 6 ( y ) and henoe 6 " 1 ( 6 ( x ) A 6 ( y ) ) » x v y or 
6 (x) A 6 (y) = f J ( x v y ) . 

B, Sands gave the f i r s t example of a poset which admits o 
an antiordermorphism 6 with the property that £ i d . In the 
following we give two f a m i l i e s of l a t t i c e s which admit c o r r e -
l a t i o n s but no p o l a r i t i e s . 

•x h e o r e m 1 . 3 . For every neN with n+1 = 2 s , s ^ 1, 
there e x i s t s a l a t t i c e L of height h(L) such that there i s 
a c o r r e l a t i o n 6 with g2(n+1) _ b u t R 0 c 0 r r e i a t i 0 n of lower 
order. 

P r o o f . We consider the following, l a t t i c e L where 
the element 0 , 1 are not drawn in the f igure 1. 



Geometric c o r r e l a t i o n l a t t i c e s 3 

F i g . 1 

We d e f i n e 6 : L -*• L i n the f o l l o w i n g way : 

6 ( a . ) = d . , 6 ( C l ) = 0 i , 6 ( b ± ) = h± , 6 ( k A ) - g ± , 
i = 1 , . . . , n 

6 ( d i ) = a i + 1 ' 6 ( o ± ) = c i + 1 ' ¿ ( h . ) = b i+1* 6 ( 6 i ) = k i + 1 , 

i = 1 , . . . , n - 1 

6 ( d n ) = a 1 , <S(«n) = C 1 , 6 ( h n ) = b 1 • 6 ( g n ) = k 1 , 

6 r e v e r a e s the o r d e r , and i s b i j e c t i v e w i t h 6 2 n + 2 ( x ) = x . By 
the above P r o p o s i t i o n 1*2 i t f o l l o w s t h a t 6 i s a c o r r e l a t i o n . 

Now l e t z ; L —• L be a n o t h e r c o r r e l a t i o n of L. We h a v t 
t (a^ ) = d,̂  f o r some i = 1 , „ . . , n , Prom a 1 < c 1 < b^ < d 1 and 
a 1 < k 1 < b 1 < d 1 i t f o l l o w s d± x ( a 1 )> t ( c 1 ) > t ( b 1 ) > t ( d 1 ) and 
t ( a 1 } > t ( k . , ) > T ( b 1 ) > z ( d 1 ) . Hence i t f o l l o w s t i c . , ) = l i f 

t f b ^ = h i t t ( k 1 ) = e i t r i d . , ) = a i + I ) . T h i s a g a i n f o r o e s 
t(a2) = d i + 1 a s d 1 > h 1 > a 2 . Hence we have x{x) - 6 2 i ~ 1 ( x ) , 
f o r some i = 1 , . . . , n . B + 1 

In the c a s e n+1 = 2 s , s > 1 we have f rom & ' 2 ( n + 1 ) B 6 2 , id 

t h a t id « t 2 m = g ( 2 i - 1 )2m = g 2 s + \ W e c o n c l u d 0 t h a t 2s+1 d i _ 
v i d e s ( 2 i - 1 ) * 2 m . The o r d e r of i i s a t l e a s t a s l a r g e a s the o r -
d e r of 6 . 

Prob lem. I s t h e r e a f i n i t e modular l a t t i c e L which a d m i t s 
a c o r r e l a t i o n but no p o l a r i t y ? 

In most c a s e s t h e r e a r e a l o t of p o l a r i t i e s and c o r r e l a -
t i o n s on a modular l a t t i c e . For i n s t a n c e a p r o j e c t i v e l i n e , 
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i . e . the l a t t i c e MQ c o n s i s t i n g of n atoms, and the element 0 
and 1 has pin) c o r r e l a t i o n s where p(n) i s the number of unre-
s t r i c t e d p a r t i t i o n s on n. 

l e m m a 1 . 4 . Let L be a geometr ic l a t t i c e of f i n i t e 
h e i g h t . I f L admits a c o r r e l a t i o n 6 then I i s modular. 

P r o o f . By d e f i n i t i o n [4] p. 162 a geometr ic l a t t i c e 
i s semimodular and f u l f i l l s the upper cover ing c o n d i t i o n s 
a -< b i m p l i e s a v c -< U • e or a v c = b v c f o r every c e L . For 
the lower cover ing c o n d i t i o n we cons ider d -< e , m = 6(m-|), 
and 6 (c!^ ) = d , 6 ( 0 ^ ) = e . We have e 1 -< d 1 app ly ing 6~1 and by 
the upper cover ing c o n d i t i o n we have e^ v m̂  -< d^ v m̂  or 

8 ^ v m 1 = d1 v m^. Hence we have 6 " (e ) v 6" (m) —< 6" (d) v 6 " (m) 
and by apply ing 6 we ge t d A m - < e A m or dAm = eAm. Henoe L 
f u l f i l l s the lower oover ing c o n d i t i o n and by [4] C o r o l l a r y 3 
p . 1 7 4 , L i s modular. 

D e f i n i t i o n 1 . 5 . A c o r r e l a t i o n l a t t i c e 
L = ( L ; a , v , 6 , 6 " ^ , 0 , 1 ) i s a bounded l a t t i o e endowed with two 
unary o p e r a t i o n s such t h a t 

1) 6 ~ 1 ( 6 ( x ) ; = 6 ( 6 ( x ) ) =* x 
2) ë ( x A y ) = 6 ( x ) v 6 ( y ) 
3) 6 ( x v y ) = 6 ( x ) A 6 (y ) 
4) 6 ( 0 ) = 1, 6 ( 1 ) - 0 . 

For a f i x e d n a t u r a l number m a m - c o r r e l a t i o n l a t t i c e 
L = ( L ; A , V , 6 , 0 , 1 ) i s a bounded l a t t i o e with a unary o p e r a -
t i o n 6 such that 

1) 6 2 m ( x ) = s 
25 6 (x a y ) » 6 ( x ) v 6 (y ) 
3) 6 (x v y ) = 6[x) a 6 ( y ) 
4) 6 ( 0 ) = 1, 6 ( 1 ) = 0 . 
N o t a t i o n 1 .6 [4] p. 139. The element z e L , 

I a l a t t i c e , i s c a l l e d n e u t r a l i f ( z a x ) v ( x a y ) v ( y a %) » 
= ( z v x ) A ( x v y ) A ( y v z ) f o r every x , y e L . The c e n t e r C(L) 
of a bounded l a t t i c e c o n s i s t s of the n e u t r a l e l ement s . [4] 
p . 1 5 6 . 
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D e f i n i t i o n 1 . 7 . Let L be a c o r r e l a t i o n l a t -
t i c e or a m-correlat ion l a t t i c e , r e s p e c t i v e l y , z e L i s ca l led 
a 6 - c e n t r a l element i f 

1) z i s neutral 
2 } x = FX A Z ) V ( X A 6 ( Z ) ) f o r e v e r y x e L 

3 ) 6 2 ( Z J = z 

£ ( L ) = {z|z i s ¿ - c e n t r a l } i s oalled the 6 - c e n t e r of L. 
From 2) we have z v f i ( z ) = 1, and also z a 6 ( z ) = 0 by 3 ) . 

P r o p o s i t i o n 1 . 8 . The 6 - c e n t e r of a c o r r e l a -
t i o n l a t t i c e L or a m-corre lat ion l a t t i c e L respec t ive ly i s 
a Boolean a lgebra . 

P r o o f . a) We show that from z c Z ( L | i t follows 
6(z) e £ ( L ) . 

1) 6 ( z ) i s neutral because the equation in 1 .6 holds , 
applying 6 to i t . 

P 

2) Wo have ( X A 6 ( B ) ) V ( X A 6 ( Z ) ) = ( X A 6 ( Z ) ) V ( X A 6 ( Z ) ) = x 
by 2} and 3 ) of 1 . 7 . 

3 ) 6 2 ( 6 ( Z ) ) - 6 ( z ) . 

b) We show for z ^ , s 2 e Z! (L) we have z^ v z 2 e 2 ( L ) . 
1) z v * 2 i s n a t t , , ; r a l because of [4 ] theorem 9 ( i i i ) p.143. 
2) [x A (z 1 v z 2 ) ] v [ X A 6 (z 1 v z 2 ) ] » 

x A [ ( F C 1 V Z 2 ) V 6 ( * 1 V Z 2 ) ] « b y [ 4 ] theorem 5 ( I ) p . 1 4 2 

* a [ { « 1 v a 2 ) V ( 6 ( * 1 ) A 6 ( * 2 ) ) ] = 
X A [ ( » 1 V I G V I L « ^ ) A ( Z 1 V I J V E F I ^ ] « B Y [ 4 ] 

theorem 5(11) p.142 
X A 1 • I , 

3 ) 6 2 ( Z 1 V Z 2 ) » 6 2 ( Z 1 ) V 6 2 ( Z 2 ) - V Z 2 . 

0 ) I t i s c lear that by a) and b) i t follows from I ^ I ^ C I K L ) 

that z1 a z 2 e Zl (L) . 

2 . Decomposition of oorrelat lon l a t t i o e a 
T h e o r e m 2 . 1 . Let L be a corre la t ion l a t t i e e and RW 

the 6-oenter of L. I f 2 ( L ) contains more then two e l « -N M FW 
ments 0 and 1 then L i s isouorphio to a di rec t product of 
c o r r e l a t i o n l a t t i c e s . 
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6 M. Kamara, D, Schweigert 

P r o o f . a) Let z e £(L) \ {l>,1} and define L., = 
= {aeL|a^z}and L 2 = {b e L | b $ 6( z)}. L1 and L 2 are lattices 
as for a.jta2

 £ vve ^ a v e â  v ag < z and â  A a 2$ z. We define 
6.,(a) = 6(a) a z for every a e L1 and6^

1(a) = 6~^(a)AZ. This 
—1 —1 —1 

is a correlation as 67 ((5., (a)) = 6 7'(6 ( a ) A z ) = 6" (6(a)Az)Az = 
—1 1 = (av6 ( Z ) ) A Z = (aAz)v(6"'(z)Az) = a because from 

6(z)vz = 1 it follows 6 " 1 ( Z ) A . z = 0. Hence L^ and similarly 
L 2 is a correlation lattice. 

b) Now consider the map« : L L^Lg defined by ot(x) = 
= ( X A Z , X A 6 ( Z ) ) A is infective as for ( d A z , D A 6 ( Z ) ) = 

= ( h A z , h A 6 ( z ) ) we have d = ( d A z ) v ( d A 6 ( z ) ) = 
= (haz) v(ha 6(z)) = h by the definition of the 6-center, 
cx is surjective as for (w^wg) e L^Lg one considers w = w^vwg 
and has O:(w) = ( ( w ^ v w g ) A Z , (w^ V w2) A 6 ( Z ) ) = (w1 A Z) , W 2 A 6 ( Z ) ) = 

= (w^ ,w2) because W 2 a z « 6 ( z ) a z = 0. 

c) cx is a correlation lattice homomorphism. 
oc(6 (x)) = (6(x) A z , 6(x)A 6(z)) = 6 (x A Z,X A 6(z)) = 6(«(x)) by 
the definition of the correlation on L^Lg. 
cx(x v y ) = ((x v y ) A z, (x v y ) A 6(z ) ) = (x A z , x A 6 {z )) v 
v (y A z»y A ̂  (z> ) =cx(x)vcx{y) because z and 6(z) are 6-central. 

T h e o r e m 2.2. Let L be a m-correlation lattice 
and S(L) the 6-center of L. If S(L) contains more then two 
elements (.'„ 1 then L is a isomorphic to a direct product of 
m-correlation lattices. 

P r o o f . The proof is the same as above besides the 
9m 

part a), There we define 6.j(a) = 6(a) A z and have 6^ (a) = 

= 62m"1(6(a)A z) = 62m"2(6(6(a)A z) A z) = 6 2 m" 2 [(62( a)v6( 2) )AZ] 

= 6 2 m ~ 2 ( 6 2 ( a ) A Z ) = ... = 6 2 m ( a ) A Z = S A Z = a. 

T h e o r e m 2.3. Let L be a geometric m-correlation 
lattice of finite height. Then L is isomorphic to a direct 
produot of simple geometric m-correlation lattices. 

P r o o f . Let 9 be a non t r i v i a l congruenoe of the 
correlation lattice L and consider z = sup{x|(x,0)e e} . Then 8 
is also a lattice congruence of the form 8„ where z is neu-z tral according Corollary 11 [4] p.149. Consider 6(z) = 
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= inf{<5 (x) | (6 (x) 11) c e } « i n f { y | ( y , 1 ) e s } . We have 6 2 ( z ) - r . 
Now consider ( x , x ) e 8 , ( 0 , i ) eg and henoe ( 0 , x a z ) £ 8 . fur ther -
more consider ( x , x ) e 8 , ( l , 6 ( i j ) c B and henoe ( i , X A ( i [ i ) ) c G . 
T o g e t h e r ve have [ i , ( i a i | v ( x a I S ( j ) ) ) c 9 or a s z i s n e u t r a l 
( i , i a ( i v 6 ( z ) ) J c 8 . How l e t d be a complement of z v 6 (z) 
in L. Then we have (d,d a ( i v ( S ( i j ) j e 8 and henoe (d,0) e 8 , 
Therefore d ^ i and therefore 1 « d v ( { v c ( i ) j $ 2 v ( i v ( ( i ) j • 
• z v S ( z ) . I t follows 0 - z a 6 (z) by 6 2 ( z ) « z . Therefore for 
every non t r i v i a l congruence 8 of the corre lat ion l a t t i o e we 
have a non t r i v i a l 6 - c e n t r a l element z and vice versa. The 
theorem follows from Theorem 2 . 2 . 

R e m a r k . Simple corre lat ion l a t t i c e s whioh stand 
apart from the c lass of simple m-correlation l a t t i c e are not 
desoribed in the l i t e r a t u r e t i l l now. Hence we wi l l confine us 
to m-correlation l a t t i o e s in the following. The above theorems 
generalize some r e s u l t s of MacLaren [7] on orthomodular l a t t i -
oes and or tho la t t ioes . 

3. On simple, geometric m-correlation l a t t i o e s 
R e m a r k . Let L be a simple geometric m-oorrelation 

l a t t i c e of f i n i t e height . Then L has a t r i v i a l 6 - center S ( L ) 
but need to have t r i v i a l center C(L) concerning the l a t t i o e . 
But C(L) i s a Boolean m-correlation l a t t i c e as for z e C ( L ) 

M 

we have 6 (z ) e C(L). 
L e m m a 3.1» L i s a simple geometric m-oorrelation 

l a t t i c e i f and only i f the center C(LJ of L i s a simple m-cor-
re la t ion l a t t i c e . 

P r o o f . a) Let C(L) be a simple m-correlation 
l a t t i c e . Assume that S ( L ) i s not t r i v i a l and let 
z e Z!(L) \ { 0 , 1 } . Then we put (u,v J e 9 i f and only i f u a z * 
= v a z for u f v e C ( L ) . 6 i s a l a t t i c e congruence. Furthermore 
f o r ( u , v ) e 9 we have 6 ( u a z ) = 6 ( v a z ) and hence 6 ( u ) v 6 ( z ) = 
= <5 ( v ) v 6 ( z ) and a l s o (6 ( u) v 6 ( z ) ) a z = ( 6 ( v ) v 6 ( z J ) a z . 

Therefore (6 ( u) a z) v (6(z) a 2) = (6 (v) a z) v (6 (z) a z) and henoe 
6 ( u ) a z = 6(v ) a z . As (6 ( u ) , 6 (v )e 8 i t follows that 0 i s a non 
t r i v i a l congruenoe of the m-correlation l a t t i c e C(L). Contra-
dic t ion. 
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b) Let be trivial consisting only of 0 and 1, 
Assume that there is a non trivial congruence 9 on C(L) and 
put z - sup{u|(0,u) e Gjo We hava (0,z)e8 and hence 
(0,62(z})s8 and hence 62(z) z* Aa L is c;f finite length and 
6 is bijective we have f> (z) = a, As C(L) is Boolean we have 
from (0 ;I z) e 8 that (l,z')e8 and as 6 (z) =•-• inf{yj(y,1)e e} 
we have 6 (z) »* z'. Henoe we have 6 ( z ) , z • z'a z = 0 and also 
(S(z)vz = 1, Now property 2) of Definition 1.7 is implied by 
6 (z) 2 = 0 and 6 (z) v z = 1. Hence z j E ( l } \ { 0 , 1 } , e contra-
diction. 

The simple Boolean m-oorrelation lattices are classified 
in [6], From this it follows that there are three types of 
simple geometric correlation lattices of finite height» 

1) C(L) = {0»1} = Â  (a projective geometry with correla-
tion), 

2) C(L) e fAn}, n £ 2K+1, n> 1, 
3) C(L) £ (B j , n € 2N. 

The last two types will be described in the following theo-
rems. The first members of the series {An} , n € 2N+1, n?1 are 
in figure 2-

1 

1 = 6 ( 0 ) 

0 = 6 ( 1 : 

6b(Q ) = Q 

6 (a) 

6(a) 

3 
The f i r s t members of the ser ies { a n £ 

Fig. 2 
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If C(i) e / A_\. n e 2N+1, than C(L) is a Boolean lattice 
with, an odd number of atoms and a correlation o wiihout any o 
fixed point. 6 permutes the atoms such that C(L) is simple. 
For details consider ¡6]«, 

T h e o r e m 3.2. Let L bs a finite, simple, geome-
tric correlation lattice with C(L) .-{Anj, nf 2N+1, n>1. 
Then L is as a lattice isomox'phic to a direct product of self-
dual projective geometries which are isomorphic to each other. 

P r o o f . Let C(L) - AQ, n > 1 v a odd and let z ha an 
atom of C(L). Then we have I » [0,z.]' ̂ f.09 c.2( z)] x ... ̂  [ 0,62n~2( z)] 
if we consider L as lattice. The factors :.0t i^(z)] and 
[ 0s (z)] , « 1,,...,n~1, are isomorphic ao lattices because 
g2j-<ii = L;2(j-i) i&; a l a t t i c a isomorphism for j > i. The fac-
tors are simple and hence projective geometries. It is easy 
to define a correlation 6 on the direct product 

[0,z]x...*[05 2n"2(z)] by 6 ((a v...,a Q)) « 

= ((6(d) a z) (6(d) a tf2n~2(z))) for d = a ^ . . . ^ . 

This correlation has the required property that the direct 
product becomes a correlation lattic 

6 isoco.opph.ic "Co the corre-
lation lattice L. Now we consider fot[09z] — ^ [ot62(z)j de-
fined by f2(x) = 6(x) a 6 (z) which is a dual homomorphism. 
Consider f 4: [0,62(z)] —s> [o,64(z)] defined by f4(x) = 
= 6(x)a 6^(z) 

and so on. Iterating we have i*2n0 ••• 0 0 ^ ^ = 

= x and we conclude that [o,z] is dual isomorpnic to 
[0,62(z)]. 

The first members of the series {Bn), n e 2N are in fi-
gure 3. If C(L) 6 {Bn}, ne 2N, then C(L) is a Boolean lattice 
with an even number of atoms and a correlation 6 with 2 fixed o 
points. There are two different orbits of atoms under 6 which 
are glued together by 6. Hence C(L) is simple by the correla-
tion 6. Furthermore wa have 6n(x) = x. For further details 
consider 

[6] . 
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6(a)=a b *6(b) 

< 3 ( o ) 

5*(a) *a 

TIm fir* mtmb*r* of Mriti |D2n}n<M 

? i g . 3 

T h e o r e m 3 . 3 . Let L be a f i n i t e , s imp le , geometr io 
c o r r e l a t i o n l a t t i c e w i th C(L)e {B q } , n e 2H. Then L i s as a 
l a t t i c e isomorphic t o a d i r e c t product of j p r o j e c t i v e geome-
t r i e s G . j , . . . ,Gq and | p r o j e c t i v e geomet r i e s H 1 , . . « , H n suoh 

2 5 
t h a t G l t G j , i , j » 1 t . . . , § are i somorph ic , H^, k , j -

= a re isomorphic and G^ and H^ a re dua l i somorph ic , 

k , " 1 , • • • t 2 • 

P r o o f . I f L ha s the c e n t e r C(L) <* B„, n € 2M, t h e n 
L - [ D , z ] x [ o , 6 2 ( i ! ) ] x . . . x [ o , 6 n { « ) ] x [ o , z ] x . . . x [ o , 6 n ( i ) ] , «here % 
i s atom of C(L) and z i s an atom of C(L) w i t h the p r o p e r t i e s 
i c | z , 6 2 ( z ) , , , 6 n ( z ) } and < 5 ( z ) / z - 0 . We put G.,« [0 , z ] , . . . ,GQ -

J 
- [ 0 , 6 ( z ) ] and H1 * [ o , z ] , . . . , H n * [ o , 6 n ( z ) ] . i s i somor -

2 • 
phio t o Gj by f ( x ) « 62«*~2 i(x) f o r j ? i . Furthermore we con-
s i d e r g : G1 H1 de f ined by g(x) * 6{x) A I and h : H1 —+ G1 

def ined by h (x) - 6 d ' 1 ( x ) a z which both a re dua l homomorphisms* 
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Now we have ( h o g ) ( x ) = 6n~1 (6(x) a Z) a z * ( 6 n ( x ) v 6 n _ 1 (2) )ai . 
« (x A z ) V ( 6 n " 1 ( z ) A z) - x because 6 n _ 1 ( z ) A Z = Ü . For t h i s 
assume z $ z ) . I t fo l lows z i ö ( z ) which i s a c o n t r a d i c t i o n 
t o z a 6 ( z ) = 0. Hence Ĥ  and Ĝ  are dual isomorphic. 

REFERENCES 

[ 1] E. A r t i n « Geometric a lgebra , New York 1957. 
[ 2 ] R. B a e r t Linear a lgebra and p r o j e c t i v e geometry, 

Academio P r e s s , New York 1952. 
[ 3 ] J .V . d e C a r v a l h o s The subvar ie ty K2 of 

Ockham a l g e b r a s , Bu l l . Soc. Roy Science Liege 53, 6 (1984) 
393-400. 

[ 4 ] G . G r ä t z e r i General l a t t i c e t heo ry , Birkhäuser 
Ver lag , Basel 1978. 

[ 5 ] M. K a m a r a t Kioht d i s t r i b u t i v e , modulare P o l a r i -
t a t sve rbande , Aroh. Math. 39 (1982) 126-133. 

K a l m b a a h i Orthomodular L a t t i c e s , Academio 
P r e s s , London 1983. 

[ 7 ] M.D. M a o L a r e n t Atomic orthooomplemented l a t t i -
ce s , P a o i f i o J . Math. 14 (1964) 597-612. 

[ s ] D. S o h w e i g e r t , M. S z y m a d s k a i 
On d i s t r i b u t i v e c o r r e l a t i o n l a t t i c e s , Col loq . Math. Soc. 
Janos Bolyai 33 (1980) 697-721. 

[ 9 ] I). S o h w e i g e r t : Vo l l s t änd ige , geometrische 
Verbände n i t P o l a r i t ä t , Aroh. Math. 23 (1977) 233-237. 

DBPt. MATH. UNIVBRSITi, ABIDJAN, COTB d'iVOIRBj 
PB MATHBMATIK, U1IVBRSITAT,6750 KAISERSLAUTBRH, J .R.G. 
Reoeived Apr i l 7, 1967. 

- 177 -




