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GEOMETRIC CORRELATION LATTICES

In projeotive geometry the dualities play an essential
role., They can often be described by semibilinear forms of
vector spaces coordinatizing geometries. These olaseical re-
sults come into a new context being connected to lattice theo-
ry. Mengsr and Birkhoff introduced the concept of geomstric
lattioces which generalizes projective geometries and ineludes
Boolean lattices,

Of course the duslities themselves have also g lattios
theoretic counterpart. Some speoial cases like ths orthocom=
plementation of distributive lattices are well known undex
the name of Boolean algebras, Also other dualities wers in-
troducsd %o distribuftive lattices and studied under their
geometric name like polarities and correlations [b], [7].

In this paper the main topic are geometrioc lattices of
finits height which admit a correlation as an additional ope=-
ration. It 1s an important observation that a geometric lattioce
of finite heights becomes modular by a duality. An analogus of
Birkhoff ‘s theorem on the decomposition of modular geometric
lattioes as a produoct of projeotive geometries can be shown
for geometrio correlation lattices of finite height, The de~
olsive instrument of the decomposition are 6-centrsl elements
which are connegoted to the correlation 8. The desoription of
the finite simple gecmetric correlation lattice can further
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be simplified by the knowledge of the canter of these lattioces.
We present three types of simple correlation lattloes using
the results in [6].

Furthermore we have included several examples of correla-
tion lattices some of which illustrate the theory and othsers
which demonsirate some of the many open problems.

we like to thank very much M, Szymafdska for her helpful
suggestions,

1. Some facts of correlation lattices

Definition 1.1. Let L = (Lja,v) be a lattice.
An antiordermorphism 7 of L is & bijective map 7: L —» L
which reverses the order, i.s, agb iff it follows 7(b) < 7(a).
4 correlation 6 of L is a bijective map 6 : L —» L such that
6({xvy) =6(x) A6(y) and 6(xay) = 6(x)vdé(y) hold. 4 correla-
tion 6 of L is called a polarity if 62(xi = X.

Proposition 1.2 Bvery antiordermorphism
of a lattice L is a correlation.

Proof. If6 is an antiordermorphisam of L then from
X,y <xvy it follows B{xvy) s 68(x})A 6(y) and similarly
8(x) v 6(y) <6(xay). We have 8~ (6(xvy))2 6™ (6(x}A6(y))2
> 6~ 16(x) v 6~16(y) and hence 6~ 1(6(x)A6(y)) = Xvy or
6(x)AB(y) =6(xvy).

Be Sands gave the first example of a poset which admits
an antiordermorphism 6 with the propsrty that 62 # id. In the
following we give two families of lattices which admit corre-
lations but no polarities,

fiheorem 1.3. For every neN with n+1 = 2%, 831,
there exists a lattice L of height h(L) <5 such that there is
a correlation 6 with 52(n+1) = 44 but ro correlation of lower

order,
Proof. W¥e consider the following latiice L where
the element O, 1 are not drawn in the figure 1,
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Fig,1

We define 6 : L —» L in the following way:
6(31) di , 6(Ci) =85 G(bi) = hi . S(ki) =8y
i=1’..o,n

6(d;) = a;,4» Bley) = c5,q, Slhy) =by,4, 6lgy) = ky y,
i=1,o-o,n-1
6(dn) = 31 ] 6(en) = 01 9 6(hn) = b1 ’ 6(8n) = k1 ’

6 reverses the order, and is bijective with 62n+2(x) = X. By
the above Proposition 1.2 it follows that 6 is a correlation,

Now let T : L —» L be another correlation of 1L, We have
t(a1) = d; for some i = 1,.,..,n., From a;<c,<by<d; and
a1<:k1< b1<d1 it follows di = t(a1)> T(c1)> T(b1)> 1(d1) and
T(a1)> t(k1)> t(b1)> t(d1). Hence it follows 1(01) = 1y,
T(b1) = hy, t(k1) = oy, t(d1) = 8,4
t(ae) = di+1 as d, > h1> ay. Hence we have 7{x) = 6§
for some i = 1,ee0e40

In the case n+1 = 28, 8> 1 we have from

that 14 = 720 = g(2i=1)20 _ 2% G ) de that 25*1 qi-
vides (21-1)+2m, The order of 7 is at least as large as the or-
der of 6,

Problem, Is there a finite modular lattice I which admits
a correlation but no polarity?

In most ceses there are a lot of polarities and correla-
tions on 8 modular lattice. For instance a projective line,

« This again foroes
21-1(!),

B8+1
62(n+1) - 62 = id
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i.e., the lattice Mn consisting of n atoms, and the element 0
and 1 has p{n) correlations where p(n) is the number of unre-
stricted partitions on n.

~Lemmas 1.4. Let L be a geometric lattice of finite
neight, If L admits a correlation 6 then L is modular,

Proof, By definition [4] p.162 a geometric lattioce

is semimodulsr and fulfilis the upper covering condition:
a < b ipmplies ave << Lvye 2 ave = bve for every ce L, For
the lowsr covering condition we consider d < e, m = 6(m1),
and 6(d1) = d, 6(31) = . We have e, < d, applying 6~1 and by
the upper covering condition we have o,V oy — d1 vV m, or

eqvm, = d,;vm,. Hence we have 6'1(3) v 6V (m) <67V (a)v 6~ (m)
and by applying 6 we get dAm <eArmor dam = e ~Am, Henoe L
fulfills the lower covering condition and by [4] Corollary 3
pe174, L is modular.

Definition 1.5. A correlation lattice
L= (L;A,v,6,6'1,0,1) is g bounded lattice endowed with two
unary operations such that

1) 67H6(x)) =68(671(x)) = x

2) B(xay) = 6(x)Vv6(y)

3) 6(xvy) = 6(x)A 6(y)

4) 6{0) = 1, 6(1) =
For a fixed natural numbsr m a m-correlation lattice

= (L;A,v,6,0,1) 18 8 bounded lattice with a unary opera-
tion 6 such that

1) 6°8(x) =

2} 6(xay) = 6(x)v6(y)

3) 6(zxvy) = 6(x)A6(3)

4) 6(0) = 1, 6(1) = 00

Notation 1.6 [4] pe139. The element zel,
L a lattice, is called neutral if (zAx) v(xay)vi{yag) a
= (zvx) a(xvy) Al(yvz) for every x,y ¢ L. The csnter C(L)
of a bounded lattice consists of the neutral elements. [4]
pe. 156,
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Ds finition 1eTe Let L be a correlation lat-
tice or a m~correlation lattice, respectively. ze L is called
a b-central element if

1} z is neutral :

2) x = (arz)v(xab(z}) for every xel

3) 62(z) =

2 (L) = {zlz is 6-central} is celled the G-center of L,
From 2) we have zv6(z) = 1, and alsc zAG6(z) = 0 by 3},

Proposition 1,8. The B~center of a corrsla-
tion lattice L or a m-correlation lattice L respectively is
a Boolean algebra,

Proof. a) We show that from ze 2 (L) it follows
6(z) e 2(L).

1) 6(2) is neutral because the equation in 1,6 holds,
applying 6 to it.

2) We have (xAab6(z;j v xz~62(z)) = (x/\6(z))V(x/\6(z)) = X
by 2} and 3) of 147

3) 62(6(z)) = 6(z).

b) We show for z,,8,¢€ 2. (L) we have 3,V 2,¢€ 2. (L),

1) z1'VS° is neutral bacause of [4] theorem 9 (1i1) p.143.

2) [x/\(z‘1vz2)]v [xA 6{ z1v22)] =
xa[(zyve,)vel(z,ve,)] = by [4] theorem 5(1) p.142
xA[(ggvey) v (6(2y)A6(z,))] =
xAl(zyve,v6(zy)) alzyve,vE(z,)] = by [4]

theorsm 5(1ii) p.142

XAl = x,

3) 62(z v 22) = 62(z v 62(32) =z,V2,.

o) It is clear that by a) and b) it follows from 31,52c2(L)
that 2, Ag,e 2(L),

2. Decomposition of correlation lattices

Theorem 2,1, Let L be a correlation lattice and.
2(L) the B-center of L. If 2)(L) contains more then two ele-
ments O and 1 then L 1s isomorphioc to a direct product of
eorrelation lattices,
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Proof. a) Letze Z!(y-\{on} and define L, =
= {aellacz} and 1, = {b eL|b <6(z)}. L, and L, ere lattices
as for 8498, eL1 we have a;Va,<z and 8y Aay< 2o We define

61(a) = 6(a) Az for every ael, and 6'1'1(3) = 6'1(3)/\ z. This

is a2 correlation as 6;1(61(3)) = 6;1(6(a),mz) = 6'1(6(a)Az)Az =
= (av6'1(z))/~.z = (anz)v (6~ (z)rz) = a because from

6(z)vz = 1 it follows 6" '(z)arz = 0. Hence L, and similarly
L2 is a correlation lattice.

b) Now consider the mapo: L - L,xL, defined by al(x) =
(xAnz, xA6(2)) o« is injective as for {daz, dAb(z)) =
(haz, haB(z)) we have d = (dAaz)v (dab(z)) =
(haz) v(haB(z)) = h by the definition of the 6 -center,

« is surjective as for (w1 ,w2) € L1xL2 ons considers w = WqVW,
and hes of{w) = ((w1vw2)/\z, (w1\/w2)/\6(z)) = (w1/\z),w2/\6(z))=
= (w1,w2) because Wy Az <8(z)rz = 0,

i

¢) o is a correlation lattice homomorphism,
x(6(x)) = (6(x) ~2,6{x)~r8(z2)) =6(xAz,xAB(2)} =6{x(x)) by
the definition of the correlation on L1XL2.
x{xvy) = ({(xvy)az,(xvy)and(z)) = (xrnz,xaB(2))V
v{yaz,yrb(z;) = ax(x)va({y) because z and 6(z) are B-central,

Theoren 2424 Let L be a m-correlation lattice
and 2 (L) the 6-center of L. If 2(L) contains more then two
elements (¢, 1 then L is a isomorphic to a direct product of
m-correlation lattices.

Proof., The proof is the same as above besides the
part a), There we define 61(a) = 6{a) A2 and have 6$m(a) =

= 622 (8(a) nz) = 62%2(6(s(a)nz) A z) = 62072[(6%(a)v6(2) Jnz)

= sfm'z(éz(a)A.z) = vee = 68°Ma)Az = anz = a.

Theorenm 243, Let L be a geometric m-correlation
lattice of finite height. Then L is isomorphic to a direct
product of simple geometric m~correlation lattices..

Proof. Let © be a non trivial congruence of the
correlation lettice L and consider z = sup{xl(x,o)e 8}. Then ©
is also a lattice congruence of the form ez where 2z is neu-
tral according Corollary 11 [4] p.149. Consider 6(z) =
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= inf{6(x)|(6(x),1) e0} = 1int{y|(y,1)e0}. We have 62(z) = =.
Now consider (x,x)ee, (0,8) €0 and hence (0,xAz)€0, Further-
more consider (x,x)ee6, (1,6(2))ece and hence {x,xA8(gz))eco.
Together we have (x,{xAs) v(xAG(z)))ee or as z is neutral
(x,xA{2zv6(z)))eo. Now let d be a complement of z v6(z)
in L, Then we have (d,d A(sv06(2)))e® and hence (d,0)e8,
Therefore d < s and therefors 1 = dv(zvb(s))ssv(svE(s)) =
= 2vé{g)., It follows O = zA6(z) by 62(z) = %, Therefore for
every non trivial congruence 8 of the corrslation lattice we
have a non trivial 6-central element z and vice versa. The
theorem follows from Theorem 2,2.

Remark., Simple correlation lattices which stand
apart from the class of simple m-gorrelation lattice are not
desoribed in the literature till now. Hence we will confine us
to m-correlation lattices in the following. The above theorems
generalize some results of MacLaren [7] on orthomodular latti-
ces and ortholattices,

3. On simple, geometric m-correlation lattioces

Remark, Let L be a simple geometric m-corrslation
lattice of finite height. Then L has a trivial 6-center 2 (L)
but need to have trivisl center c(;u.) concerning the lattice.
But C(L) is a Boolean m-correlation lattice as for ze C(L)
we have 6(z) e C(L).

Lemuma 3.1, L is a simple geometric m~gorrelation
lattice if and only if the center C(L) of L is a simple m-cor-
relation lattice,

Proof. a) Let C(L) be a simple m-correlation
lattice. Assume that Z(g) is not trivial and let
zZe Z(L) \{0,1}. Then we put (u,v)e® if and only if naz =
= vaz for u,veC(L)s 8 is a lattice congruence. rurthermore
for (u,v) ¢® we have 6{uaz) = 6(vaz) and hence 6(u) v6(z) =
= 6(v) v6(z) and also (6(ujvé(z))nrnz = (6(v)vE(z}}Aaz.
Therefore (6(ulaz)v(6(z)rz) = (8(v)Aaz)v(6(z)Az) and hence
Biu)rz =6(v)rz, 48 (6(u),6(v)ed it follows that © is a non
trivial congruence of the m-correlation lattice C{L). Contra=-
dietion.
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b) Let 2.{L; be trivial consisting only of 0O and 1.
dssume thst there is & non trivial congruence 8 on C(g) and
put z = sup{ui(ogu)€ G}o We have (U.z)e8 and hencs
(0,52(2}}£ 8 and hencs 52(2) $%. A8 L is f fipits length and
f is bijective we have Sz(z) = 2. A8 C(é) iz Boolsan we have
from (0.,z)e® that (1,2’)c® and as & (z2) = inf{yi(y,i)e@}
we have 6{z) s 2’', Hence we have 6(z). 223" A~ 2 = 0 and also
6(z)vz = 1. Now property 2) of Definition 1.7 1s implied by
6(z} 2 = 0 and 6(z) vz = 1, Hence z= 2, (L} \{0,1}, & contra-
diction,

The simple Boolean m-correlation lattices are classified
in [6]. From thie 1t follows that %thers are three types of
simple geometric corrslation leitices of finite height,

1} ¢{L) = {0,1} =, {a ¢rojective geometry with corrsla-

) tion),

2) c(L)e{a,}, ne2wst, n>1,

3) c(L)e {B,}, neoN.

The last two types will be described in the following theo-
rems. The first members onf the series {én}’ ne2N+1t, n>1 are
in figure 2.

1= 6{0)
0 =6(1)
A

The first members of the series {An} ne2N »1

Fig.2
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Ir C(L) {én}’ ne 28+1, then C{L} is a Beolean lattice
with an odd number of atoms and & correlation & without any
fixed point,. 62 permutes the atoms such that C{L) is simple.
For datails consider i6].

Theorem 3.2 Let L be s finite, simple, geome-
tric correlation lattice with C(g)x,{An}g n¢ 2N+1, n> 1.

Then L is as a lattice isomorphic %o a direct product of self-
dual projective geometries which ars i=omorphic to each other,
Preof. let C(Q)ﬂfAn, n>1, 2 odd and let z b8 an
atom of C(L). Then we have &-ﬂfo,z}x[u,ﬁz(z)]x.».x[o,ézn'g(zﬂ

1f we consider L zs 2 laitice. The factors ‘0 121(2)] and

ro, 623(z)], 1,3 = 1y500,yn=1, arse :scmorphlc as lattices bacause
623"‘L = b“a 1) iz a lattice isomorphism for j: i. The fac=-
tore are simple and hence projective gecmetries. It is easj

to define a correlation 6 on the direct product

[U,z]x...u[og;znmz(z)] by 6 ((aysece,8y)) =

= ((6(d)n2),eue,(0(d)n 8272(2))) for d = a,ve..vay

This correlation has the required property that the direct
product becomes a correlation lattice isomorphic to the corre-
lation lattice L. Now we consider f, :{0,2] =& [0, 52(2)] de~-
fined by f, (x} =6(x)A 62(2) which 1s a dual homomorphism,

Consider f, {o, 62(z)j — [0, 64(z)] defined by £, {x) =

= 6(x}ﬁ~64(z) and so on. Iterating we have f2 ° ...o f4o f2(x)=
= x and we concluds that [0 z] is dual isomorpnic to

[0962(2)]

The first members of the series {B } ne 2N gre in fi-
gure 3, If C(L)e {B }, ne 2N, then C(g) is a Boolean lattice
with an even number of atoms and a correlation 6 with 2 fixed
points. There are two different orbits of atoms under 62 which
are glued together by 6. Hence C{L) is simple by the correla-
tion 6, Furthermore we have 67(x) = x. For further details
consider [6].
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6(a)=a b=8(b)
6%a) =a

The tirst members of the saries (8,1 . y
Pig.3

Theoren 3. 3. Let L be a finite, simple, geometric
corrslation lattice with C(L)e {Bp}» ne2N, Then L is as a
lattice isomorphic to a direct product of g projective geome-

tries G1'“"Gn and g projective geometries H1,..Q,Hn such

2
that Gy, Ggy 1,3 = 1,eun, 3 are isomorphic, H,, Hy, k3 =

= 1,...;% are isomorphic¢ and Gk and Hl are duel isomorphioe,
k, li = 1,.0-,% 3

Proof . IfJLhas the center G(L)~B , ne2N, then
L= [0,2]x[0,6%(2) xeeex[0,6%(8)] x[0,3]xe0 e x[0,6%(5)], where s
is atom of C(L) and 2 is an atom of C(L) with the properties

Te {2,52(z),..,,6n(z)} and 6(2) A% = O, We put G1-[0,l],...,Gn-

2
= [0,6%(2)] end Hy = [0,8],...,H, = [0,67%(%)]. 6, is isomor-

3 .
phioc to G:j by f(x) = 623'21(x) for j>1., Furthermore we con~
sider g: (}1 - H, defined by g(x) =6(x)A% and h : H1 —>G1
defined by h{x) = 6“'1(1)Az which both are dual homomorphisms,
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Geometric correlation lattices 11

Now we have (hog)(x) = 6n'1(6(x)A Z)az = (68(xv62"1(F))rs =
= (xAzZ) V(6n'1(i) A 2) = x because 6"'1(2)/\2 = 0., For this
assume z < 677 1(z). It follows Z <8(2) which is a contradiction
to 2A6(2z) = 0, Hence H1 and G, are dual isomorphic,
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