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SOME FIX-POINT THEOREMS
FOR THE COMMUTATIVE ITERATION SEMIGROUPS

Many results conocerning fixed point theorems of some fa-
milies of saelf maps of a set X, are known., (Compare: [1],
p»139) for a semi~flow on a polyhadron; (1], p.98-101) for
some semigroups of continuous affine maps; see also [1],
pe109).

A various topological (or analytic) assumptions play an
important role in the mentioned results. In partioular, tne
continuity is important,

The purpose of this paper 1s to prove some fixed point
theorems for some commutative iteration semigroups without
any assumptions refering to continuity. The commutative fami-
lies will be treated, too. We shall also give some sxamples,

1. Preliminaries

For an arbitrary set X # ¢, let X be the cardinal number
of X and let xx denote the set {f: f is a map with domair X,
whose range lies in x}. The set of all bijections of X will
be denoted by Per X,

Let FcXxX and ¥ # 4. The family ¥ is called commutative
if foh = hof for all f,h ¢ ¥, A set AcX is said to be
F-invariant (strongly F-invariant) if £(4) cA (f(4a) = 4) for
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all fe¢¥ . A point x,€X 15 called a fixed point of ¥ if
f(xo) = x, for every fe? 1),

Throughout this paper R, @,Z , N will denote the set of
reals, rationals, integers, positive integers numbers, res-

pectively.
The usual algebralc notation

ud = {uas aed}, A+B={a+b1aca, beB},

will be used (for ueR, AcR, BcR).

If m,n €N, then min denotes that a is diviiible by m.
Let (P, +) be the commutative semigroup and let ne N, It is
Baid to be n-divisible if for every pe P there oxists te¢P
such that net = p, where nep =t + .0s + ¢t . Por any fcx'x

n times
‘we define the iterates f° by

£ w1, £ 22028 (neNu{o0}),

where I 18 the identity map on X, A family {Ut' t cP} of self=
-mappings of a set X is called an iteration asemigroup, if
Ut ° Us = Ut+s for all $,8¢ P,

If 4 cX;, then r“ denotes the regtriction of the function
£exX to the set a.

2. Auxilliary results

The following lemms is obvious,

Lemma 1. If fe xx. AcX and A 1s f-invariant, then

(1) & 15 f¥-invariant for all ke N v {0} and
rk(a) ie fi-invariant for every k,j e Nu {0},

(2) £, = (£],)F for a11 keNu{o}.
Lemma 2, Iff-n<oo,fexxthon
(3) there exists k = min{k ¢ N o {o}: £%(x) = £5* (1)},

k, ¢ n~1 and the set A = £ %(X) is strongly f~invariant,

1) 1f 3« {t} then the curly brackets will be omitted.
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(4) ff, is a bijection,
(5) there exists an 1,0 1,In1 such that

1 1
0 0
o= () T =1,

Proof. Part (3) is an immediate consequence of the

finitness of X,
The definition of A implies (4), Thus f|, is a bijection.

Whenos B = {(f“)k}: is a ¢yclic subgroup of Per A and by
O3 .
Lagrange Theorem we obtain

=l i.o. ili!a
Let us define 1 = B, Then 1_ Iulxt and so 1 |nl. Moreover,

1
(£),) © I|,» The Test is a consequence of Lemma 1, (2).

Making use of Lemma 2 we obtain the_following lemma.
Louna 3, ItI=n<ew, fe and n, = nl then the

ng

set B = £ °(x) is strongly f-invariant and f °|p = Ijye

Lemma 4. Lot reN, r>2 and let the fanily
{g,.....gr} 1X be commutative. Then

(i) (8 °82° eoe °&r)(x)cm gd(x).
=1
Proof. Let i,je{1,,..,r}, and define the mape G,
513 and G, by
G = 81° PR asr,

g -830 I ¥,
Yol s

‘and
- Gy = Byq0Byp0 coe o gy
respsctively. Since G = g, © 51, then we have G(X) = 51(‘1(1))c
(X) fow i¢ {1,...,r}. These inclwsions yield G{X)c m &)
vhioh implies inclusion (1),
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Lenomna Se If ¥ =n <, ¥c AA, F#0 and ¥ is
commutstive, then there exists a fixed point of the family
(e

fe¥* :
Froof., If £fe3¥, then by Leama 3 the set Bp = £R(x%)

is strongly f-invarient and £°'y; = I;; . It is sufficlent to
e f ,‘.'Jf.

show that (~) B. # Po But x* = 0% < , then 5 = r <o and by
ey &
Leama 4 (i) we get
r T

ﬂ Bf = m Bf = m f?l(X) = f;l!o... Of:?! (X) % ¢9
fe¥ ,J= j j=1

whence ff} By # ¢, The assertion is proven.
fe

3. Come fixed point theorems
e Dbegin with the following statement,
Theorem 1, Let X be & non-smpty set. 4Lssume:

(6) FcxX, F449,
(7) BgE':F Vf€’;:gof=fog’

(8) there exists a unique fixed point X, of g.
Then the point X, is a fixed point of JF.
Proof. Shwe(gofo°)=(fongo)fmraM.fe?,
then g(f(xo)) = f(g(xo)) = f(xo) and the assertion follows
by the definition of Xgo
Theorem 2, Let X be a non-empty set, ne N,
Agsume:
(9) $#% cxXand % is commutative,
(10) there is ge ¥ which has exactly n fixed points
XypeeesXpe
Then
(11) there exists a fixed point x
and x € {x1,...,xn}.

, of the famly {£%'}, .

Proof. LetS = {x1,...,xn} and x € S, By the assump~
tions g(f(x)) = f{ag(x)) = f(x) for all fe¢ ¥ ., So, consequently,
f(x)e S and T, e SS, (feF). Using Lemma 5 to the family
{fls}feg; we have the assertion.
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Theoren 3. Let (P, +) be =z commutative senmigroup

and let {Ut} be a iteration semigroup of self-mappings of
teP
a non-empty set X. Let ne N, assume, that

(12) 3t e P : Uy has ezsctly n fixed points x;,...,%,

)
{13) P is n!-divisible.
Then

(14) there exists az fixed point X, of the family {Ut} _

1 teP
and x ¢ {x1,....xnf.
Proof., By Theorem 2, there exists an X, € {x1,...,xn}
which is a fixed point of Unlt for every teF. Fix a pePF.
By (13) there exists s t € P, such that p = n!t. Therefore
Up(xo) = Un!t(xo’ = X which proves the assertioa.
Corollary 1. 1If we replace the assumption (12)
of Theorem 3 by

{127} BtOGPHCCX: C=necow

C#Y
and’ C is U, -invariant, then the sssertion (14) is valid.
0
Proof. The map Ug I satisefies the assumptions of
o!C

Lemma 4, with X = C. Hence U = I|g, with B = U (G;-
nlt |B

|5 alt,
B

Consequently, Un't has exactly fixed points. The corollary
o

follows from Theorem 3.

The following corollary can now be proven in the same way
as the above onse.

Corollary 2. If we replace the assumption (10)
of Theorem 2 by

(10) 3Jge% 3ICcX : C = n<oo
C#Y

and C is g-invariant, then the assertion (11) is valid.

4., Remarks and examplss

Example 1. Let B be a Hamel basls of the reals
containing the number 1, and u: R = Q@ the group homomorphism
that maps each real x onto the coefficient of 1 in its Hamel

- 163 -



6

So Siudut

bagis expansion., In [2] Jurgen Weitkémsmr gave the following
x

iteration semigroup on R: Uy(x) = o

u(t , (te R, xe R). He

has proved that
(15) for x # 0 the set {t>0: Uy(x) = x} is different from R*

and dense in R; (see [2]).
Let us consider for every tc¢ R the following set

Alt) = {x : Ug(x) = x}.

By (15), Theorem 3 and Corollary 1 we infer that:

and

12 a(t) # ¢ then A(t) is infinite?’,

if C 1s non-empty and Ut-invariant, then C is infinite.
We shall give an example of the iteration semigroup

{Ut}t>0 for which

II

t) = R for all >0 and [ ) A(%) = &.
£>0

>
—

Example 2. Define the met X and semigroup

{Ut}po by

Xe{ued+v: a,v>0},

Ug(x) = x +t for xeX, t>0,

It is easy to verify, tshat

Ug(x) = x 1ff x-.-:-:-5+v for some keN, v>0,

Hence

A(t):{l—t~1+vzkeN,v>0}, 80 A(t

on

2) 1t 1g easy to cheok, that for sach $¢ R either A(t)= 4,

or ‘(t) = Ro
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Moreover,

(\ A(t) = ¢, because A(1) ~ A(V2) = ¢,
>0
BExamplas 3, Let utR — Q be the group homecmor-
phism given in Example 1 and let neN, n> 2, Define

{(x,y,z) € R33 12*‘321‘22 = 1} U({?,...,n}x{()}x{()}),

Rx{o} x {0},

Let T be the roration of S around the axis 1 by the
angle W, Then, by Theorem 3, sach semigroup {Ut}t> with
u; = T bas a fixed point x_ and x € {-1,1,2,0..,0} x {0} x {0},
For example, lot U, be the rotation of S around the axis 1
by the angle Ten(t), {t>0),

We observe that U, = T and the seis

1t

S

Y
&

{t>0 : 0, =1}, {t>0: U, # 1}

are dense in R*.

Let S5C # ¢, Ve S5 and let C be finite and V~-invariant,
Under the above notations, by Theorem 2 and Corollary 2 we
have

Example 4. Bach commutative family % < §
wiich Te ¥ or Ve ¥ has a fixed point.

Remark. The assumption that ¥ is commutative
cannot be omitied, i.e. Theorem 2 without it does not hold.
Similer remarks are valid for Corollaries and Theorem 3. For
example, the group of all isometries of the plane hasn’t any
fixed points, '

Example 5e Let X be a non-ampty and finite set.
If fe xx and fof = f then the comnstant semigroup {f}tzo has
as much of fixed coints as f,

5 for
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