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VARIATION OF DARBOUX FUNCTIONS

Introduction

In 1875 in paper [3], the first example of a disconti-
nuous Darboux function was given. Since that time, there have
appeared many papers devoted to the study of the properties of
those functions, It has turned out that the family of Darboux
funotions contains many other important classes of functions
such as, for instance, derivatives ([3]), functions being
approximate derivatives ([5]), and even certain subfamilies
of the classes of derivatives and approximate derivatives that
oan take infinite values ([7], [19]).

The proving of a number of interesting properties for real
Darboux functions of a real variable accounted for seeking
a generalization of the noetion of a Darboux function to the
case of transformations defined and taking their values in
more abstract spaces, It should be stressed here that, both
in the case of real functions of a real variable and in morse
general cases, there wers also investigated functions whose
definitions were "close to the definition of a Darboux funo-
tion", Various generalizations of the notion of a Darboux func-
tion to the case of transformations defined and taking their
values in more abstract spaces can be found, among others,
in papers [2], [4], [9], [11], [13] and [14]. A 1list and an
analysis of many such generalizations can be found in [6].

An essential difficulty in finding a generalization pre-
serving the properties of real Darboux functions of a real
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variable as accurately as possible is the fact that those
functions possess a number of intereeting properties of the
topological nature as wall as many interasting properties
counected with measure theory (sf. s.g» |20 and [1]). Ana-
lysing one cf the bhetter kncwn definitions of the Darboux pro-
perty, saying thzt a funotion £ : R -+ R i2 a Darboux function
if the image of any closed segment is coanected, it can be
noticed without difficulty *hat, while generaliaing this no=-
tion, one should use the kind of sets whose topological na~-
ture as well as propertlss connected with measure theory are
close to the properties nof a closed segmert on the lipe. Ares
seem to constitute such a family. In this context, throughout
the paper, we shall adopt the following definition

Definition ([15], [16])s We say that £:X +» Y
where X, Y are any topological spaces is a Darboux transforma-
tion (or possessgs the Darboux property) if the imege of any
arc L cX is a connected set.

The main aim of papers [15] and [16]'was to show that the
adoption of such a definition of a Darboux function allows one
to obtain, for iransformations defined and taking their values
in more general :paces, rasults analpgous to those for a Dar-
boux function defined on the line., Whereas the present paper
wearc a somewhat different complexion, Its aim was to demon=-
strate that the adoption of th:¢ above definition creates new
possibilities and problems which, many a time, have no analo=-
gue in the case of real functions of a real variable.

Throughout ths vaper, we apply the classical symbols and
notations. However, in order to avoid any ambiguities, we
shall now prssent those symbols used in the paper whose mean-
ings are not explained in the main text, By the leftter R we
denote set of all real numbers with the nstural topology,
whereas R2 stands for the plane (also with the natural topo-
logy). The symbol R stands for the extended set of real num-
bers i,e. R = Ru{-w} u{+=}, The letter K denotes the set
of positive integers, The sgymbals (a,b), {a,b] etc. ... denote
open intervels. those open at the endpoint a, etc. o.. in
the spaces R ani R2.
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Let f be & real function. We sdopt E,(f) = £ [{ox,+ce))
snd ) = £71((~0 o) ).

The symbols Fr A, & and Int &4 stand for the boundary, ths
elosure and the interior cf & set A4, reapectlvely. The two~dl-
monsional Lebesgue msasure of the set & la dJdennted by mg{é).

By an arc I we mean a subset of the topological spase X
which is homeomorpiio (as & subspace) with {0,1}: R, If

[0,1] 22%Q 1 15 a homeomorphism, then 1iG} =nd h(1) are
called srndpoints of the arc L. The notetion L/u,b) is under=-
stand as: an arc with endpointe a anéd ©., et Lo X be an arbi.
trary arc, and let o,d ¢ &, Then there e=iste axactly one
aro L' c b such that £’ = L{c¢,d}. There wro & will La dvnoted
by LL(c,d).

If (X,p) is & metric space and A ¢X, then by fils A we
denote the dismeter of the set &, andéd by K(x,r) = ths opsn
ball with the centre at x and the radius r,

It ie well known that if f is e continucus function on
the intervel [a,%] and N; denotes the Banach indicatrix of the
function £, then Nf is a measurable function, and the varis-

tion \v/(f) of the function f on the interval [a,b] is egual
oo a
to | Noly} ay {{10 , Theorem 3, p.254]). T. Salat proved
- 00
({17, Theorem 4}) that this fact also takes place in the case
of Darboux functions.

In this paper we shall dissuss, emong other things, the
prodlems of the measurability of the Banach indicatrix and the
variation of Darboux functlons mapping Rr? into R2.

Definition 1. By the Banach indicatrix of
a function f : BE —» Y with respect to a set DcE we mean 2
function W2 : Y -» R defined in the following manner: N2 (p)
is equal to the number of points of a set f-1(p)r\D when this
set is finite, or to +e when the set is infinite (cf. e.g.
[18, Definition 1, p.217] - in that definition, nowever, it
was additionally assumed that f is a continuous function,
which is a dispensable assumption in our considerations).
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If D= B, then, inatead of the notation Ng, we shall
write Nf.

In paper [17, Theoraw 2] it was proved that if X is a lo-
cally connected, seocond countakls Heusdorff space and
£ 1+ X+ R is a connectsd funstiocy (i,9. T maps ocovnnescted
sets onto connscted se%tsl, then By 18 of the second class of
Baire. In view of this rasnlé as well as those dilscussad
above, the following quesiion sesws to be interesting: is the
Banach indicatrix of a function £ R2~—> R? with espact,
for instance, %0 a closed gegment always measurable:. The
answer to this question is negative {the constructing ¢f such
an example is vsry simple when f ls a functiorn whose Banach
indicatrix takes the vaiue O and +e onlys the example balow
will show that there exist Banach indicatricss of Darboux
functions whose measurability "epolls™ gt finitenesz),

Example 2, LetI={(0,0), {1,0)] and let C de-
pote some uncountable, clossd and nowhere dense (in the topo-
logy of the segment I) subsaet of I. Let. S bs a Sierpifskl set
or the plana {i.s. S in non~disjoint from ey 2losed set of
pogitive measure and any three polinte of S do not lie on a
common iine - ¢f. [12, Theorem 14.4, p.97)).

Let x,¢ & and let, for eny xes\{xo}, I, = [xo,x]. Kote
that if %, £ X5, then I and I, are contained in different
lines. Denote 1 2

s =<( U Ix>\8)u{x°}.

xeS\{xo}

Then card S =<.
et g : I —+ R? be any function such that 8¢ is a one-to~-
-one function mspping C ontoAS\ {xo} and each interval dis~-
Joint from C is mapped onto S. Then, of course, g is a Darboux
function. So, let us define the function £ : R° —» R® in the
following way:
g((0,0)) when x<0 and eoo<J <400,
£((x,y)) =1 a{{x,0)) when 0O<x<1 and =~w <y <+,
g({1,0)) when x31 and ~e <y<+w.,
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Note that £ = goh, where h 1is some continuous function,
which means that f 18 a Darboux function., It 1s not diffi-
cult to cheok that then the Banaoh indicatrix of this function
with respeot to I has the form:

1 when peS\{xo},
R
Np(p) {0 when p¢Sus,

+c when pe§.

‘Then, however, N% is not a msagurable finction bsoause
)" (1) = s\ {x ]

In the further part of the paper wa shall give an additio-
nal condition under which $he Banach indiocatrix of & Darboux
funation with reepect to a closed and looally connected set
is a measurable function., So, let L dvnote the G-ideal of all
sets of the Lebesgus measure zero., Let us adopt the following
«définitions

Dafinition 3. We say that a function
£ : R —» R? 1s L-regular with respect to a set Ac RZ 1if,
for any set W open in 4 (as a subspace of Rz) and any compo~
nent X of the set f£{W), Fr Ke L,

For a fixed function f and a set D and for a fixed num=-
ber me Nu{0}, let Sg(f) ={o ¢ R?: card(£™(x) n D) = m} end

S(f) = {ocB? 3 card(£™(a) n D) > %,

Theorem 4. Let f : R2 —»R? be a Darboux fune-
tion L-regular with respect to a closed and looally connected
set D. Then the Banach indicatrix Ny of the funotion f is
a measurable function.

Prooft., To prove the theorem, it suffices to demon-
strate that, for any «eR, EG(N?) is a measurable set, i,sa.
that

(1) U SD(f)uSD(f) is a measurable set for n=0,1,2,ee¢ o
m=n
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Let n, be a fixed positiva integer, Lat further {Vk};:1
stand for an opan base (in D) composed of connected sets of
the subaspace D {such a base exists ~ cf. e.g. |8, Remark on
p.237]).

Ws shall show that

(2} £(V,) 1s a connectid snt Fur Ks1,2,.4.

Let k be a fixed positive intspur, Thebn Vk, & ab open
subset of the looslly connectad spacs 1, is a loe:lly connect-
ted get and D is a compleie subspacs, Ln 7ivtue of “iu Mazur-
kiewlen-Moor twaaram Vk ia an erowise ¢oanccted es¢ in D,
thug nloo in Re whinh provas (2},

et N1 danotes the =9t of all we N such that £ 1is L-dege-
nscats on ¥ {i.9. f(vmjc i) and let N, = N\N,. Lat further

L,' . ;o4 . kj S e v e g s

owe(f (\ ); and 5 = £V 1, Prom thy assumciions
X o I ¥
nel., e
£
wie favs made 16 followe, Ael wodt Be L,

W howr now adant Su.i]‘ Ui g 'fj) YA uBj.

Fixofe P, . If o $TIF5, hon laé aw adopt us Vyx an

ing o, So, further, we shall
while constructing V,%. Then

Lewt puiats KgsZopannyXp of the

arbiseary open get co
always asaume that o
there exist pelirwiga s

‘ ()
sat D, asuch that flx,/ - 5 €e 1, ,0a0 0,0, and there exist
3584 i n% e 1y “eoe C N s
positiva intagers gy By, ,mnoe ¥y wush that x emG
(km1,2,...,u°) and the sats Vm1,...,Vm are pairwise disjoint,
a,
Since o™¢ 4, iherefors «w¥e Tas f(Vn ; (k:?,z,...,nu). Let
| 4
n,
o % . -
(('\ BV dia Too ToL a8 u oneighbourhood of «¥, We
' e e
shinll show that
{3} &(ﬁr © Sm‘” OB T,
PES¥ 41



Variation of Darboux functions 7

Thus, let us suppose that PeV x. Then f'1(ﬁ):1vmk F ¥

for k = Tyeserny, which, in view of the disjointness of the
sets V ,...,V, , proves (3).
1 n
0
Lat us aow pbasrve that

«o

(4) U SatervsPie) = () vave,
m=n, (e Py

0

where C is scme subset of the set 4 ui.
On the ground of (4}, sasing that Cc A uBel, we may infer

that the set kJ SD(f)lJS (f) is Lebesgus-measurable, which,
A=n
o
in view of %as free choica of ng, proves (1)
It ig nos A1fficudd 40 notice tnat, under some mcdifisd

tranaforpations and the sets under

atdang congenrning

aonsi 5in successivs versions of the above

theorsi, also, the feliswinw evident prapositiou holds.

dovatinng one osn Lot

Proposliition 45, et T RE —» d be a Darboux
fenation swah thet m?iﬁ(ﬂﬁ}J = (. “han, for any set Dc:Rz, Ng

is a2 weasveabie functicn.

Knowing that, for certsin Dorbous functinsus, their Banach
indicatrices with asgpect tn snre s33ts =2re measurable funco-
tions, one can define {is =4 similar way as, for ipstance, in
(18, Definition 2, p.217.} the variation of the function and,
thereby, answer the quuasbica what it means that such a func-
tion possesses a bounded varlation,

Definition 6. TLetf :E-»R° (Eck") be
a Darboux function whose Banach indicatrix N? (LcH) is a
measurable function. We then say that the function [ has
a bounded variation in the sense of Banaoh on the sat ¢ B
if j ND(p) dp <4900, Tha value of the integral f hf\r) dp

ﬁ b.‘"
\w%}l be called a variation of the fuanctlon 1 and denoted by
\of.
D
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Remeark, If we do not gtate on what set the func-
tion possesses a bounded variation, then we understand that
this fact takes place on the whole domain of the transforma-
tion considered.

It ie gvident that, in the case of real —unoctions defined
on {a,b], if f is a discontlnuous {even if only at one point)

parboux function, then \v/(f = +os (cf. [17]). However, it

is not difficult to obse§Ve that, in the case of funetions
defined and teking their valuss in certain subsets of the
plane, such a situation need not take place. For it is easily
noticed that if f satisfies the assumptions of Proposition 5,
then, for any set D(:Rz,\;/ {(f) = 0., And consequently, one may

put the question: How often do discontinuous functions occur
in tne class of Darboux functions with bounded variation? The
angwer to this gquestion is included in the following theorem:

Theorem T In the space of bounded Darboux func-
tions £ : K —» R® (where K = [0,1]x[0,1]) with bounded varia-
tion, with the metric of uniform convergence, discontinuous
functions constitute a dense set of oérdinality 2V,

Proof. We shall first prove the density of this
set. Let g : K —#-Rz be a.continuous funotion with bounded
variation and let € > O,

Consider the following cases:

° g(K) = {yo}. Let K, be a closed cube with centre at

soms point x°, such that K c K(y s €}e Let further, for any

¢[o, ], = {r}x[r,1r]u[r,1-r]x{1v} v {1-r}x[r,1-r]
v [r,1-r]x{r}. Let K* denote the closed oube which is de-
1
termined by K3. Let h be a continuous function mapping
[0! %) into [0,1], such that, for any xg € (o, %), h((xé, %)) =

= [0,1]. Let further h, : [0,1] 22 Pr K be & continuous
function such that b, (0) = h,(1). Flnally, let h* : K*ﬂ"_gx
be a homeomorphism such that h*(Fr K*) = Fr K,. Let us then
adopts
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Variation of Darboux functions 9

)

j—

h,(h(r)) when p ek, where re[o,

£(p) =
h*(p) when pek*,

Note that f : K-—&Ko is a Darboux functicn, Indeed,
let &L be any arc contsined in K, if LcK*, then f(&) = h¥(%)
is a connected set. In the case when & n(K\K*) # ¢, it can
easily be seen that £{%L ~n(¥\XK¥)) is a connected set; if we
assume additionally that L nFr K* # g, then f{En(K\K¥)) =

= Fr K

Consequently, assume that Enlnt KX £ § £ £ n(K\K¥) ang
supposs that f(&) is not a connected met; i.e. f(%) = AuB
where 4 and B are separated sets. Denote A, = Lr\£—1(A),
By = Ent~Y(B). Then AynBy = # but these sets are not sepa-
rated, Without loss of generality let us assums that A ~B, # Kb
Let X, € A1rmB1. Then there exists & sequence {x } A1 such

that xo = lim Xpe
n-oo

At present, we shall show that

(1) there exists a ssqnuence {yn} cA1rrFr K* such that

= lim
n +»oo yn
Let ¢t [0,1] -°2*S 1 be a homsomorpghism. Let z, =
) 1(x ) (n=0,1,2,.0..). Then 1lim z2, = 2, {of course, z:i#zo).

With no loss of generality we égsazssume that all elements of
the Bequenoce {zn} lie on the same side of the point Z,; more-
over, assume that z, <z,  (n=1,2,...).

So, lat n stand for a fixed positive integer, If
x, ¢ Fr K*, then let us put Ip = Xpe In the contrary case we

notice that

n

{te (350 25) 3 @(t)ePr K*} D

Let us then adopt

n® inf{te [zn,zo) : p(t)e Pr K*} and y, = ¢(sn).
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It can be demonstrated that y,e¢ Fr K® angd I, € Aye Besides,
note that %, <8, ,<2Z .

From the reasoning we havy carrisd osut it follows that
relationship (1) does tnke placs.

In virtue of {1), we may infer that x, € Fr K*,

Sinoe flK* = h” is 8 continuous function, therefore, in
view of (1), we may deduce that lim f(yn) = f(xo)‘é B and,
n+o0

as {f(yn)} c A, wae obtain & contradiction with the supposition
that 4 and B are separated sets. The contradiotion obtained
proves that f 1is really a Darboux function.

It is not diffioult 4o nniice that f is & discontinuous
function.

Obviously,\x/ (£} = mQ(Ko) <+x, and so, f 1is a function

with bounded variation.

Moreover, it is sasy to verify that po(f,gke where o/
denotes the metric of uniform convergence.

2% 4ssume now that g 1is a non~constant continuous func-
tion with bounded variation, Let y ¢ g(K) and K = K(yo, %).
Let n_ be a poeitive 1nteger such that £ &

o 2 n,
g(K) N K(y,, f;—) # 8. Then, denote K° = K(yo, :T’- Let T be
0 )

and

a segment Joining Fr Ko and Fr K° such that either of the

intersections T n Fr Ko and T nFr K® is a one-element set,
£ €

Further, for any re (E; ,§_>, let K, = Fr K(yo,r). Let

h : (ni , %) - [0,1] be & continuous function such that,

for an; X € (;f;, %), h((%—o, xo)) = [0,1] = h((xo, %)). Let

further h, [0,1] ml“r Kou}?r K°UT be & continuous

function. Define e function f, : R —»&° in the following
manner:
n,(h{r)) wh K h £ £
h,(hir when peK,, where rel—,35),
£i(p) = °

P _when pe(Re\Ko) v K%,
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Similarly as in 1° we oan show that i‘1 is a Darboux function.
So, let £ = f1c g. Then, vi course, f 1s a discontinuovs
Darboux function.
Note now that

Ng( p) when p:

P L Pr ¥ U o
NK(p) | + 00 whe vy P uo:Fx. K'uT,
f 0 when pcK_ . {K°uT),
'L Ng(p} when neK".
Then \//( £) \j Ngipi dp < +~ and, moreover, f(p) = g(p)

for peg 1(92 c) and f(p)« k.o fur ;.eg'1(Ko), thus po(f,g)s
< dia K = Eq '
The first part of this theorem has been proved. We shall
now prove the veraciiy of the second part of the theorem.
Let us adopt the follcwing notations: K1 = [%, 1]X[0,1],

L, = {Jé}x[on], Ly = [, 1]x{o}. et k ¢ K, -» L UL, be

a function defined as follows: let us assign %o each point

b &3 K1 a point x’ being the point of intersection of a line Lx
passing through the point x and parallel toc the vector with
coordinates [% .1], and the set L1tJL2. Then k is a conti~-
nuous function.

Let C be a nowhere dense perfect set contained in
(%, 1)x{0}. Now, we shall assign to each set C,<C, in a
one-to-one way, some discontinuous Darboux function hc with
bounded variation. !

So, let C1CC and let a and bd dengte ary two distinct
elements belonging to Int K Let further & = L((1 ,0), ¢) stand
for an arc sucn that a,be F \{(1 0), c} and m, (L) = 0. Let
¢ [~1,1] = Eu[(1,0), (1,1)] be a homeomorphlsm such that

9(0) = (1,0), (1) = ¢, and o{}) = a and ¢(5) = » or«p(—;-) = b

and ¢(%) = a, but then one may interchange the denotations of
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12 ) R.J. Pawlak

the points a and b in order to avold the consideration

of two ocases); moreover, ¢{x) = {1,-x) for xe [-1,0]. Besides,
for any interval ((p,0), (q,0)) cL,, denote by the symbol h%
a continuous function mapping thie interval onto [0,1], such
that, for amy (x,0) e ((p,0), (4,0)), hI(((x,0), (3,0)}) =

=« [0,1] = hg(((p,o), (x,0)))s Define a transformation

“’01 t LyuL, on%0 1.1,1] in the following manners

K when ({x,3) = (-12-,0)o

when (x,y) = (1,0),

-

when (x,y) ¢ Cy»

+ when (x,y)eC\Cy,

W W=

wc1((x,y)) -

hg((x.y)ﬁ when (x,y)e ((p,0), (q,0)) whers
({p,0)}, (9,0)}) is & component of
the set L,\{Cu{(3,0), (1,0}),

| -y when (x,y)eL1.

Let us then Jdefine the function hc $ K K by the for~
1
oula

(2x,y) when (x,y)e¢ -f(“iz,
hc1((x.y)) =

<p(q)c1(k(x,y))) when (x,y)e K.
It is not hard to check that hc is 8 Darboux function and,
‘ 1
moreover, \/ (hC ) = 1. 0Of course, h, is not a continuous
K 1 1

function. To finish with, let us notice that if C, $ C,, then
h '3 hy , which finally completes the proof of the theorem.
1 2
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