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ON NON-CONDITIONAL STABILITY 
OF OPEN DIFFERENCE PATTERNS 

FOR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS 

1, Introduction 
Even in the simplest oases the ohoioe of the numerically 

optimal difference pattern for a parabolic equation of seoond 
order is not a simple problem. An open pattern i s conditio-
nally stable and the number of the operations needed for solv-
ing may be large, a not yet open pattern is non-conditionally 
stable, but i t requires inversion of matrices. The Saullev 
pattern [3] i s applied only in the case of a finite limit 
problem. 

The aim of this paper is to determine the olass of patterns 
which allows the approximation of problems related to parabo-
l i c equations of second order in the space Lg, these patterns 
being open and non-conditionally stable. 

We i l lustrate such patterns for the Cauohy problem 

( 1 . 1 ) 

2 
for (x , t ) c H x (0 ,T) , 

9x 

u(x,0) = Uyfx), for x e B , UgeCfR), 

on the reatangular net 

(*) R ^ { ( x , t ) s m,neZ, x = mh, t » nt, tN - T}, 

Z - being the set of integers. 
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Vu V«a 

The d i f f é r a ne« pat t a r a f o r (1*1) has tm fbrm 

(1.2) 

2 
T. 

O+K „ 
u 2 - un 

2K î 2uw-1 

U2m - USm 

„n+1 _ D n + i 
2m 2m 

jjC+1 „ u n + 2 
2m+1 2m+1 

L U a 

«+7j 
Lh°2m ' 

n+ i 
• v w 

- LuU 
,n;-1 

'hu2oH-1 » 

U° = U(hffl), m e Z , O i n i K - 1 , I« 

whsra L h u £ i - -V- I U® , - 2U£ + J , u (mh t n t ) . ii as [_ on-1 m m-1 ' m " 

The pa t te rn ( 1 . 2 ) » as e a s i l y aeon, approximates the prob-A 
leo (1 .1 ) w i t h the e r r o r 0 ( t ) + 0 (h } . Let us observe, more-
o v e r that the pat te rn ( 1 . 2 ) i s open. 

I n order t o examine the s t a b i l i t y of t h i s pa t to rn i n the 
norm we in t roduos the f o l l o w i n g f ancti r>ns 

M 
v k ( h n . « _ 5 - - V u k _ - i (2m+l } h f , 

meZ 

î - U 2 m 0 " i 2 C , h ^ 2k e Z , 0 * 2k< Ï , VÇeR. 
^ meZ 

M u l t i p l y i n g the f i r s t and the f o u r t h equation ( 1 . 2 ) by 
_ £ _ e - i ( 2 m + 1 ) h ^ t h e s e c o n d a n d t h Q t h i r ( J b y _ h - i2h*ai f a n d 

V2n V2Jr 
summing w i t h respect to m wo get 
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Non-conditional stability 3 

11+5 
Vh

 2(hi;) - v j u o 

( e ^ + e ^ j w j d i ? ) - 2V*(hk) j. 

I - »£<M> | -
n+ 

(1 .3) 
n x 1 n+7: 

f jw£+1(hO ~ Wh
 2(n-,) 

; I e V;'- i. 
... ,1 

2\ ^(hi) 

f [ c 1 * ^ -

'(e^+e" 1^) wj+1(h*) - 2Vg+1(h{)]. 

Hence, setting <p := hf, , we obtain the system of two 
h 

differential equations of order 1 

7h 
(1.4) 

Vh n + 1(<p) 

+ 2 1~ 6
 9 62cos2cp, cos cp (1 + 62oos2«p) 1 + 6 (1+6) ti T» 

2 d W 0 0 8 

(1+6)' 

•fei + 2 liar c o b 2 * 

It is easy to see that the eigenvalues (A-p/lg) of the 
transition matrix of this difference equation are given by 
tne formula 
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4 Vu Van Hung 

9(9) = ¡6 cos <p s in 2 J 2 , 
(1+6) 

whence we obtain 

p(<p) « a x [ | A 1 ( * p ) | 

(1+5)2 
(5 ¡cob «f. | + V l - 6 2 sin2<p)2, i f | 5 s in <p j ( 1, 

(52 cos2<p - 52 s in 2 9 + 1). i f |8sintp|>1. 
(1+6) 

Henoe « a x ^ < f ) « 1 for which proves» by von Neumann's 
conditions (see [1]), the v - e t ab i l i t y of the pattern (1.2)} 
therefore, the s t ab i l i t y i s non-oonditional. 

Furthermore, we w i l l show in th i s paper that the same r e -
sult can be extended to the case of a parabolic equation of 
second order in the normal form in one spa t i a l var iab le . 

2. On the non-oondltlonal s t ab i l i t y of the c lass of open 
difference patterns which approximate the i n i t i a l problem for 
a parebollo equation of order 2 in one spa t i a l variable 

Consider the difference patterns for the following problem 

¿ 1 

( x , t ) e H*(0,T), (2.1) 

f f - - a ( x , t ) 2-S. + b ( X f t ) |j i +. c ( x , t ) u + f ( x , t ) , 

u(x,0) = a 0 ( x ) , u 0 eC(R) , x e R. 

Assume that the funotions a, b, 0, f belong to the space 
C(R*(0,T)) and a ( x , t ) ^ a > 0 . 

On the numerical sequences { y j 
meZ w e d e : f i n e opera-

tions { i j B}BeZ , £ « C ( I J as follows 
2neZ 
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Non-oondltional stability 5 

^h.m^k Lh t^k x m ^ 7 2 {*k-1 - ̂ k + Jfc+11 + 

+ bS 25 (*k+1 " } + ^ k » 

V(k,m,n), 2neZ, m,kcZ. 

On the reotangular net (*) the difference pattern for 
(2.1) has the form 

2 inD+2 r.n 1 Tn TIn . -n * L 2m+1 " 2m+1J " Lh,2m+1 U2m+1 + f2m+1• 
1 1 1 1 2 r n+2 n "] n+g n+g n+g 

* LU2b " U2oJ = Lh,2m U2m + f2m ' 

2 r0D+i un4i . L
n4 v°*i . f°4 

r [u2m 2m J ^h^m u2m + r2m • 

l[u 

for m e Z; 0 $ n $ N-1, U° • a0(mh) for meZ. 
Assume that the functions a, b, c defining the differen-

tial operator are constant on the domain R*[o,T]j then the 
operator LjtB has the form LjfBJk «- V k a T V ^ r ^ k + l ] * 

(2.2) 

jn+1 _ un+2 1 2m+1 2m+1J 
• n+1 ,n+1 .n+1 4. h,2m+1 2m+1 + I2m+1 

+ b 2h [7k+1^k-l] + °*k f o r k c Z • 
In order to perform the Fourier analysis of the pattern 

(2.2) we shall assume for both complex functions and 
the same definition (see (**)), Proceeding as for the system 
(1.2) we obtain the following relations 
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6 Vu V a n H u n g 

( 2 . 3 ) 

- P ( * , * . 6 ) , 1 + 6 - f x 

1 - 5 + 1 x , p { < p , r , 5 ) 

W*+ 1(<P) 
n 

( 2 . 4 ) 

1 + 6 - | t , - p ( < p , t , 6 ) 

V j ( cp ) 
rr 

w ^ M 
+ 2 n + J 

w ^ M 
k 2 < 

V n + 1 ( q > ) 
a 

W n + 1 ( < p ) 

p i v . t . S ) » 1 - 6 + § « 

n+; 1 

n + i 
W 2(<p) 

h 

- I 

„ 1 n + j j 

P n + 1 ( < p ) 
L h 

w h e r e 

p k ( h n - h V f
k

 a - i ( 2 m + 1 ) h ? 

• J « * ' ' - ^ r S 
^ meZ 

f o r k e Z , 0 i 2 k $ N , 

( 2 . 5 ) 5 f a t 
» 

( 2 . 6 ) p ( < p v x , 5 ) 8 c o s <p + i s i n t p , 
y 2 a 

D e n o t i n g 

( 2 . 7 ) 

+oo , i f C $ 0 

T o " < 
, i f o > 0 
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Non-conditional stability 7 

we see that the system of difference equations is solvable 
for Te(0,ro). 

Prom (2.3)« (2.4) we shall deduce that 

C(<r,r,S) 

+ | B(cp,T,6) 
F*(«p) 
h 

G h
 2(«) 

+ | A{«f,T,5) 

r- n+* 

Ll^+1(<?)J h 

where the matrices A, B, G are &iven by the formulas 

_1 
1 + 0 

0 , 1 
B = 

i V 2 * 2 ' 

(2.8) 

with 

(2.9) 

+ 2(1 rf-o^' + 

2(1-?)V , > 2 ( l + p J V
2 

p (r ,5) = p j- 5 - |t , 

6). 

The matrix C, defined by formula (2.8), is called the tran-
sition matrix of the pattern (2.2) (see [l]) and plays a fun-
damental role in the study of the I^-stability of this pattern. 

In order to apply von Neumann s theorems on stability, we 
have to examine the eigenvalues of the matrix C. In the con-
sidered case the eigenvalues of the matrix C are 
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(2.10) 

Henoe,we obtain the following lemmas [4J 
L e m m a 2.1. Let xe(o,T.j), where 

00 , i f 0 ^ 0, 

(2.11) 
2 i f 0 > 0. 

I f A i s the double eigenvalue of the matrix given by formula 
(2.10), then 

U<<f , r ,6) | < 1, for tetO.t. , ) , 6c(0 ,oo) , M < § * 

L e m m a 2.2. Let aQ> a1 be arbitrary real numbers, 
non-negative, and let Si denote the el l ipse defined in the 00m-
plex plane C as follows 

!) i=[ j £ C t z « s 1 oos ip + i aQ sin 9 , |tp| $ jc }•. 

Then we have, for any real number x, 

R e m a r k 2.1. The assertion of the Lemma 2.2 can 
be written in the s t i l l simpler form 

2 2 i f 

(2.12) sup | z+Yx+z2j = max 
z eft 

where the operation [ ] i s defined on R as follows: 

[>]+ = max[0,$], V f e R . 
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Hoa-oonditional stability 

T h e o r e m 2.1. I f re (Oft ) (t biing y 
formula (2.7)), then 

(2.13) sup | % (<p,6,r) I -

•v 

speotr C (1 + 5 - | t. ) V£s" 
l<pl«?JT 

max (ibl Vbt +|/[2a62*6t(b2-2ac)~2a(i - t
8), j 

(fiV2a + \ / 2 b [ o 8 X + 1 - ^ x 2 ] H , 

' i 

P r o o f . From formulae (2.6) i?,'?? we 

6 ft <f(<P,6,t) » ^ ooa ip + i f fpVia 8 l ! i ^ 1 n 

Hence, setting 

" " " T A l ip Q !• i i i » • rrr oos <f> + i >*ia cp |f 

we find that 
1 ° (z » * > v(<p»5,t), l<pl$n} a Q| 
2° i f t e ( 0 , t o ) , then (see (2.7), (2.9)) 

1 + ^ « 1 + 5 - | r > 5 > 0 , that is s 1 « 0, 
„ . Ibl y f 8 t y t u 

3° i f zeQ, then -zefl. 
Since the eigenvalues of the matrix C (formula ( 2 . 8 ) } are 
given by (2.10), applying Lemma 2.2 and Remark 2.1 wo have 

" max 

Icph 

sup L + v f e s + / I 2 » 
V £q i r1+p I * 
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sat 
ipei max Ibl J 5 t 

1+p V2a 

b St __ 1»o 
.2a ( l+?) 2 1 +P 

. + 1=£ 

Subst i ta t log p from formula (2 .9 ) and performing the necessary 
algebraic transformations we obtain the a s ser t ion of Theo-
rem 2 .1 . 

We now return to the proof of the s t a b i l i t y . Let us f i r s t 
prove the fol lowing lemma. 

L e m m a 2 . 3 . Let a , (5 be rea l numbers saoh that 
P i | and l e t f 1 , g^, f 2 be funct ions defined on H 

as fo l lows 

f . , (x) /3x( 1-cxx), 

f 2 ( x ) »» (1 -ax) 2 + 2x - 1, 

g ^ x ) t« f . , (x) - 2x + 1 t 

Let 

Q1 I« j j a e ! 5 2 , f^ (x) ^ 0 1 g^ (x) £ 0 j , 

S?2 := {x : 0 < x < l } . 

Then 

max jsup y ' f 1 ( x ) y g 1 ( x ) 2 , s u p [ l - c x + V ^ ü j imax[l+2(5, J (2-a)j 

P r o o f . Let 

F.,(x) J« yf-jU)' + y g l ( x i , for x e Q v 

F 2(x) 1 - ax + y f 2 ( x r , f or x e Qg. 
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M o n - c o n d i t i o n a l s t a b i l i t y 1 1 _ 

2 
We s h a l l f i r s t f i n d a n e s t i m a t e f o r F ^ . U n d e r t h e a s s u m p t i o n s 

m a d e o n cx a n d (3 w e h a v e f o r a n y x e R t h e i n e q u a l i t y 

. 2 aP \ B2 

0 + T^lii) + —5" ^ 

S e t t i n g d :«= 2 ( 1 - | 3 ) w e o a n w r i t e t h i s I n e q u a l i t y i n t h e f o r m 

x 2 [ l + « 0 ( l + 2 d ) ] + x [ 2 d - | J ( l + 2 d ) ] + d 2 2 0 . 

H e n c e , b y t h e d e f i n i t i o n o f f 1 , w e o b t a i n 

f j ( x ) ( 1 + 2 d ) - - o c | J ( l + 2 d ) x 2 + ( i ( l + 2 < T ) x $ 

< x 2 + 2 d x + d 2 - ( x + d ) 2 , 

a n d , f u r t h e r m o r e , 

f ^ x j g ^ x ) - f . , ( x ) [ f ^ x ) - 2 x + l ] -

- f ^ x j j f ^ x ) + ( 1 + 2 d ) - 2 ( x + d ) ] < 

$ f 2 ( x ) + ( x + d ) 2 - 2 f 1 ( x ) ( x + d ) - [ x + d - f ^ x ) ] 2 , 

t h a t i s , 

( i ) f ^ x j g ^ x ) < [x + d - f ^ * ) ] 2 , V x c R . 

F o r z e f i ^ w e h a v e 

d + x - f 1 ( x ) > d - f ^ U j ^ 

s i n c e s u p f . . ( x ) » t ~ > 
Q1

 1 ** 
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Tekiag the square root of inequality (i) we get 

yf1 « ̂  + d - f^x) for x c Q r 

This inequality yields the estimate 

P2(x) = Ztff^x) yg1 (xT + 2f,(x) + 1 2x + 2d. 

Hence, making use of tfr* assumption made on 0 and of tho de-
finition of d, we h«ve 

(ii) sup P2(x) .< 1 + p * 1 + 2/3. 
X € Q, 

Let us now find an estimate for Fgix) on fig» ̂ o n the evident 
inequality 

ot2(2x - 1 ) ^ 1 - 2c*( 1 - ax), Vx € H, 

we have 

A2f2(x) « CX2[(1-OX)2 + 2x - l]* [t-a(l-ocx)]2 - J * 

that is 

(iii) o,2f2(x)*l [f^(x)]2 for xeR. 

If X € Qg, then f2(x)> 0 and 

^ fg(x) = 1 - cx( 1 -on) >1 - o > j , 

From inequality (iii) we get 

t'ix) « < — g , 
2]/t2U) 

whenoe 
F~ (x) » - a +—/-. ., for x e Qot 2 2 
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Non-cond i t i ona l s t a b i l i t y 13 

t h a t i s F 2 i s a non-dec reas ing f u n c t i o n on Q 2 . The re fo re 

s u p F 2 ( x ) « F 2 ( l ) = y s , 

2 

s ince Fg> 0 on Q 2 , a n d w e f i n a l l y have 

sup f | ( x ) $ 1 ( 2 - « ) . 

This e s t i m a t e , t o g e t h e r w i th the e s t i m a t e ( i i ) , g i v e s the a s s e r -
t i o n of Lemma 2,3» 

T h e o r e m 2 .2 (on the n o n - c o n d i t i o n a l s t a b i l i t y ) . 
I f we apply the d i f f e r e n o o p a t t e r n (2 .2 ) t o the i n i t i a l prob-
lem (2 .1 ) wi th cons tan t c o e f f i c i e n t s a , b , c ( a > 0 ) , t hen t h i s 
p a t t e r n i s n o n - c o n d i t i o n a l l y L 2 - s t a b l f j f o r x e ( w h e r e 

r^ sup | t j ex < 1, b^T < a , 0 < % <1^ j , 

+00 

t 
f o r c < 0 , 

f o r c > 0 . 
c (a+b 2 ) 

P r o o f . The proof of the theorem w i l l be based on 
von Neumann's theorem on the s u f f i c i e n t c o n d i t i o n f o r the 
^ - s t a b i l i t y of a d i f f e r e n c e p a t t e r n . 

Assuming t h a t Theorem 2 .2 h o l d s , we s t a t e , b y Theorem 2 . 1 , 
t h a t 

(2 .14) sup A.(<p,5,r) - max. 
/ leepect r C 

Ibl 

} + S " ¥ 
CT V?S + 

b * 6 t 

L2a(l + if - f ) ' 

1 - 6 + 

1 + 6 - | r 
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14 Y u V a n H u n g 

1 + 5 - o t 
[ ( 1 + 6 -

1 - S + \x 

1 + 5 
c x • f o r 5 e ( 0 , oo ) . 

L e t a s now s e t cx : = 1 - | x , ( J i = . I f r e ( 0 , r * ) , t n e n 

« < ^ , . T h e n o n - s i n g u l a r c h a n g e o f v a r i a b l e s ( 6 — x ) , 

g i v e n b y x = — 
T + 5 -

OT 
m a p s ( 0 , o o ) o n t o t h e i n t e r v a l ( 0 , — ) . 

T h e n w e h a v e 

b 2 5 t 

2 a ( l + o 2 - § t ) 

y = ( 3 x ( 1 - a x ) = : f 1 ( x ) , 

1 - 5 + f * 

1 + 5 - % x 
= 2 x - 1 , 

2 - = ( 1 - c x x ) f 9 ( x ) + 1 - 2 x . 

( i • . - § « ) • 

S e t t i n g a d d i t i o n a l l y g ^ x ) : = f . , ( x ) - 2 x + 1 , 

Q 
2 - ( ® . i ) . 

Q1 : = { x : x e Q2, f ^ x ) £ 0 , g ^ x ) ? o } , 

w e o b t a i n f r o m f o r m u l a ( 2 . 1 4 ) 

s u p s u p U ( t p , 6 f r ) | 
6 e ( 0 ,oo) Ae s p e o t r C 

= s u p m a x 
x e O ^ 

{ y / f ^ U f + y [ g 1 ( x ) ] + ) , ( 1 - a x + - ^ U 7 ] , + ' 

= m a x j s u p ( y ^ ( x ) ' + y ' g 1 ( x ) ' ) 2 , s u p ( l - a x + • y j t 2 ( x ) ^ f | . 
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Non-condi t ional s t a b i l i t y 15 

Prom Lemma 2 . 3 i t follows that f o r t e (0,T*) and f o r any e i g e n -
value X of the t r a n s i t i o n matr ix C given by formula (2 .6) 
the re ho lds the i n e q u a l i t y 

max 

|A| « max[l+2|J, 1 (2-cx)] » 

fh2 \ $ 1 + x max , 2o) , 1 
b* 1 + f t 

1 - £ t 

s inoe the condi t ion ot <1 impl ies t ha t 

1 + %x ox 
- 1 + 7 - T - * 1 + 2 0 T » 

1 - f t ' 1 " P 

t h a t i s 

(2.15) |A| * 1 + Mt, Id = max » 2 o ) . 

Moreover, i t fo l lows from Lemma 2.1 t h a t under the assumptions 
of Theorem 2 .2 the modules of the double e igenvalues of the 
matr ix C are l e s s than 1. 

Thus, by von Neumann's theorem on the s u f f i c i e n t condi -
t i o n f o r L 2 - s t a b i l i t y , the proof of Theorem 2 .2 i s completed. 

The r e s u l t s r e l a t e d to the case of v a r i a b l e c o e f f i c i e n t s 
w i l l be presented in a paper prepared f o r p u b l i c a t i o n , where 
the case of seve ra l s p a t i a l v a r i a b l e s w i l l a l so be i n v e s t i -
ga ted . 
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