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ON NON-CONDITIONAL STABILITY
OF OPEN DIFFERENCE PATTERNS
FOR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

1. Introduction

Even in the simplest ocases the choice of the numeriocally
optimel difference pattern for a parabolioc equation of second
order is not a simple problem, An open pattern is conditio-
nally stable and the number of the operations nseded for solv-
ing may be large, a not yet open pattern is non-conditionally
stable, but it requires inversion of matrices., The Saulliev
pattern [3] is applied only in the case of a finite 1limit
problen,

The aim of this paper is to determine the ¢lase of patterns
which allows the approximation of problems related to parabo-
lic equations of second order in the space L2, these patterns
being open and non-conditionally stable,

We illustrate such patterns for the Cauchy problem
g—tus E—’z—g, for (x,t)eRx(0,T),

(1.1) ox
Mxm)=udxh for xe¢R, %ecmh

on the recotangular net

(=) R 1= {(x,t) t: m,neZ, x = mh, t = nt, TN = T},

ht
Z - being the set of integers.
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The difference patter: for {1.1) Las the form

3 1
D4+ A
2 2 [} n
i Uppoy - 82m+1J = IpUsiias
2 F n+% n ] ,“+%
' T _UZm “ Uzm| = IyVon >
(1.2) 3 - ;
2 | o+l n+s D4z
3 _U2m - Uop } = LUy »
i 1 ]
2 | yret Byl Lo
T »Uzm+1 U2m+1j = LpUopeqs
v° = U(hm), meZ, O<ngN-1,

£33

B 1 |yn
whors LhUm 3= {U

mey - 20+ 03_1], Up t= u(mh,ns),

%o
The pattern {1.2), as esasily seen, approximates the prob-
lem (1.1) with the error 0(z) + 0(h®;. Let us observe, more-
over, that the. pattern (1.2) is open.
In order to examine the stablility of this patiorn in the

nera L. we introduce the follewing functisus

[k n s .k -1(2m+1)4
| vE(nE) =2, Uzy.qe ( it

h [om"
.Van
(**){ meZ
Waieg) te 2230 050720, 2kez, 0c2ke N, VEeR.
» vew o
Multiplying the first and the fourth equatiorn (1.2) by
h _~i{2m+1)ht h _~i2h{m
——g the second and the third by ——oe and
Van ’ V2n ’

suaning with respsct to wm we get
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_Non~conditional stability

1
D45
£ v 2(nt) - Vint) | =

i
i e
4

=L [(emem'ihE)WQ(h'{} - 73";:(}15:;."

h2
i i |
2 |t n ?
7 | ¥ (ng) = W, (ki) P
. sy DS nes o
2 [ rethb iy v e s 2]
( | h'rf | h | a R
1-3 9
i34 n+% 1
v W, (bf) - w T(a)] -
i ol
‘ - nef o s
2y ettty T2y oo 2|,
A 4
" Pk
2 v hne - vy ‘-(hs)] -

= # j(sihﬂe'ihﬁé wﬁ”(nf). - 2vfj‘”(ht)].

Hence, setting ¢ := hg, 6:-;?—2- s We obtain the system of two

differential equations of order 1

VE”(?)
(1.4) i}
‘L WE” {¢)
}—:% + 2 T:—:—g? 62cos2q>, (_;+2T)2 coecp(1+62c052(p) VE((p)
- - 2
26 %005 E ) %—g + 2 -.-I—E—s— cosch Wg(cp)

It is easy to see that the eigenvalues (21,7\2) of the
transition matrix of this difference squation are given by
the formula
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Ay ole) = ——1-—5- [6 co8 ¢ + V1-62 ainch]z,
’ (1+6)

whence we obtaln

ple) 3= max[lﬂ.1(¢p)[,!9.2(<p)|] =

(1—?0_? (6lcos ]| + Vi-582 ein2¢)?, if |6sine| < 1,
+

(_1—:5)2 (62 cosch-éz sin2¢+‘1i., if |8 sin ¢l>1.
+

Hence max ¢{g)= 1 for jv| s%, whioh proves, by von Neumann’s
conditions (see [1]), the . -etability of the pattern (1.2);
therefore, the stability is ‘non-conditionel,

Furthermore, we will show in this paper that the same re-
sult can be extsndaed to the case of a parabelic equation of
second order in the normal form in ons spatial variable,

2. On the non-conditional stadility of the class of oper
difference patterns whioh aprroximate the iritial problem for
a parabolioc squation of order 2 in one spatial variable

Consider the difference patterns for the following problem

2
-g-% = a(x,t) -gx—g* + b{x,t) g—: +e(x,t)u + £(x,t),
{2.1) (x,t) ¢ Rx(0,T),

u(x,0) = uo(x), g€ c(R), =x¢R.

Assume that the functions a, b, 0, f belong to the space
C(Rx{0,T)) and a(x,t)> a>0.

On the numerical sequences {y 7 We define the opera-

m}me
tions {I‘g,m}mez ’ I‘:,m e L(Lo) as follows
2neZ
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Non-oconditional stability 5

;
(In, o )i 1= Ly oyt a:? (Fimq = 2 + Tpeyq) +

n 1
+bp 25 (T = Tpeq) + oo
vi{k,m,n), 2nez2, m,ke2,

On the rectangular net (») the difference pattern for
(2.1) has the form

[ 2 “*%
n n n n
7 |Uomsr - U2m+1] = Iy, omet Usast1 * fomets
. 1 1 1 1

T [Y2n "~ Ym| " n,2m Y2n * fon »

(2.2’ < ] 1 l
1

2 [qn+1 n+3 Otz M3 ot3

Tt |Yon - Y2n ] = In,on Y20 * fon »

2 [,a+1 '”'% n+1 n+1 n+1

£ U2met - U2m+1] = Iy, onet U2mer + T2meq

for me2; O<nsN-1, UJ = u (mh) for me3.
Assume that the functions a, b, ¢ defining the differen-
tial operator are constant on the domain Rx{0,T]; then the

opsrator I‘E,m hae the form Lg.myk = Ly, = a ﬁi[ylm'bk"’kﬂ]*

+b -515 [7k+1"7k-1] + 0¥y for ke 2,

In order to perform the Fourier analysis of the pattern
(2.2) we shall assume for both complex functions th and Wﬁ
the same definition (see (%%)), Proceeding as for the system

(1.2) we obtain the following relations
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r n+%

N 0 Vh (‘P)
{2.3) ’ =
~p(@,7,8), 1+6- §7| | Wi+ (e)

15+8 v, ole,t, 81| | VElal| [ BBle)
= hd +

1
n+5
n 2
0, 1 W (e G, “(o)

]

1+5-%’€, -ple,7,6) V;“(q))

(2.4) d =
o, U L €7

I 1 1

nN+5 n+s
1, 0 Vy (@) 6y 2(9)

! H n+1
5 1-6+ S2| [W “{o) P e)
hp(‘P’T: )9 2 J h L4 h P

where

k h k -i{2m#1)h
Fplbt) = =D | fopeqe (emslng,

Vo me2
k h k _~i2mh¢
Gi(hg) 1= =D £ e’
h Yo 2m
en meZ
for ke2, O<2kg N,
(205) ] 3"?% [}
(2.6) p(¢,7,6) t= §cos ¢ + 1 v%;—v&t sin ¢, ¢ 3= hf.
Denoting
+00 , if ¢xgO
(2.7) T =



Non-conditional staeblility 7T

we see that the system of differsnce equations is solvable
for Te (O.to).
Prom (2.3), (2.4) we shall deduce that

VAt (o) ] Vil
s Cle,7,6) +
Wt (e) [wg( %)
1
. F;(tv) G;+§(’P)
+ 3 Ble,t,5) 1 + 5 ale,,5) .
b2 041
Gh (@) i-h (o)

where the matrices A4, B, C are given by the formulas

1 [ 1 2 1=p
g r ¥ Trp * 20 5oV
é - B = ! ’
o, 1 l 2w 4 %f—%
1= 2 2 Jp-
115 *+ 201007, Tipw * 2(1ephw
(2.8) ) C =
2(1=0)w v R e 201
with

p(T,6) = pm &= 351,
(2.9)
Y = \P(“P,T,S) = ﬁé_}_{:s—) P('h't,ff).

The matrix C, defined by formzula (2.8), is called the tran-
sition matrix of the pattern (2.2) (see [1]) end plays a fun-
damental role in the study of the Lz-stability of thie pattern.
In order to apply von Neumann s theorems on stability, we
have to examine the eigenvalues of the matrix C. In the con=-
sidered case the eigenvalues of the matrix C are :
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2
1-p 2]
(2.10) 11’2 = [\vi ety

Hence,we obtain the following lemmas [4].
Lemma 2,1, Let 'ze(o,r1), wheTe

o, if o050,
(2.11) T, 1=

2 ;L“,—"+b—2], if o>0.

If A is the double eigenvalue of the matrix given by formula
(2.10), then

|2 {¢st,8)l <1, for ze(0,7y), Se(0,0), o] 55—2‘,

Lemma 2.2, Lot 8,1 84 be arbitrary real numbers,
non-pnegative, and let Q denote the ellipse defined in the com=-
plex plane C as follows

Q:={zsC: z2=8,008¢ +1a sing, Icpls.‘l't}.

Then we have, for any real number x,

‘/ 2 2
, a ¥Ja,~x, 1if X <=-ay,

V 21, { Ve2x. ‘/2 ] a2 2
::_18 lz+ X+2Z max |a +\a,-X, a,+faj+x], if a,;$x<a,

a4+ a$+x, if aisx.

Remark 2,1. The assertion of the Lemma 2,2 oan
be written in the still simpler form

1 2 2 =/ 2
(2.12) :23 |z+Vx+z | = max{ao + V ao-x]+, a, +V[a1+x]+} ’
where the operation | ]+ is defined on R as follows:

[¢], = mex[ost], vEem.
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Nopr~-conditional stabiliiy

Theoren 2.1, If ve(0,7,) {v, Boing gives %y
formula (2.7)), then

(2.13) sup 12 (gr8,57) ] = o
despaotr C 200 (145 = g'zc) Vi
lels: '
. 5 o T
* max (Ibl Vet + [236 +6r(d e2mem2a (i~ G 7))

LY
A

/ l- wéu ?7 i
(sv2a +Y2alobt+ 1 - G 1

Proof. From formulae (2.6) ar ‘2.7 #s wst

wlpye8y7) = % o8 ¢ + 1 1—29\/2—;— sl o, Tar Jelg i

Hence, setting

5 LTRYITRNA.
Q1= {s 1 8= T+ 008 ¢ + 1 1+9\22 i g p

we find that
1° {2 1 2 = ylgs5,7), Iglgm} = 03

20 af Te(0,7,), then (ses (2.7), (2.9))
1+p=14+38 -%T> §>0, that is g4 = 2>,

1+0
1bi4/8T
o= T+g V2a >0

3° if z¢Q, then -zeQ,

-

Since the eigenvalues of the matrix C {foraula (2.8)) are
given by (2.10), applying Lemms 2.2 snd Remark 2,1 we have

max | sup [A,(9,5
[Ivlspn Aqledozl], I:pellsu;t ,22(%6'{”] -
= max [sup l.H]/k_e + 2‘,2
wes Tep T ¥ | »
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1= 2|2 - 2|2 bl /Bt
aap [v-Viag o 7] - amp Lo o e 220 VRS
v45 1 ) 8 52 1 ‘ 2}
_bé6r _ _ 1=p 8 1=0 .
* La(He)z 1+9]+> ’ (”9 v {(1+9)§ * 1+9]+>

Substituting ¢ from formula (2.9) and performing the necessary
algebraic transformations we obtain the assertion of Theo-
rem 2.1,

We now return to the proof of the stability. Let us first
prove the following lemma,

Lemnas 243, Let o, 5 be real numbers such that
l<o, 05 P<3 and let £, 8., £, be functions defined on R
as follows

f1(x) 1= Bx{1-ax),
fz(x) t= (_‘l--ozx)2 +2x - 1,

31(x) 1= f1(x) -2x + 1,
Let

Q4 z-{x:erz, f1(x);0, 31(1)3 0} .
92 := {x H 0<x<;—}.

Then
max{sg:)[‘/fﬂ_x)‘Wh(x)]a,agg [1—m:+1/1?(x—)]2}sma'x [1+2l3. ;; (2—0)] .

Proof. Let

Fi(x) := ‘/f1(x)' +Vg1(x)', for xeQq,

Fz(x) t= 1 - X +]/f2(x), for xe Q5.
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Non-conditional stablility 11

We shall first find an estimate for FE. Under the assumptions

made on & and 3 we have for any x ¢ R the inequality

2
2 of3 B
= (1 8) e

Setting d := ET;%ET'WG can write this inequality in the form

x2[1+op(1+2d)] + x[2d-p(1+2d)] + 4% > oO.
Hence, by the definition of f1, we obtaln
£,(x)(142d) = -ap(14+24)x° + p(1+2d)x <
<x° + 2dx + d° = (x+d)2,

and, furthermore,
f1(X)g1(X) = f1(x) [f1(:) - 2!1‘1] =

= £,(x) [£,(x) + (1420) - 2(x+d)] ¢

<

~

£3(x) + (x+a)2 = 2, (x)(x+d) = [xed-1,(x)]2,
that 1is,
(1) "1’1(::)31(:) £ [x +d - r1(x)] 2, vxe¢R.

For x¢ 91 we have

) B
d +x - f(x)>d - 2(x)> 5320 - %0 =

- -4—&(-16_—!5)- [2a = (1=p)] 2 Ta—ﬁ@:é-)' (2a-1) > O,

£)
since sup £, (x) = =,
Q4 1 4
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Takipg the sguare root of inequality (1) we get

]/f1(x) *‘/E;G.)‘Sx +4d - f1(x) for x e Q.

This inequality yields the estimate

F?(x) = 2]/f1(x) ‘/g.l(x)" + 2f1(x) + 1 - 2x <1 + 24,

Hence, making use of ih: ansumpiicn icade on B and of ths de~-
finition of d, we havs

(11) sup Ff

n
(x) €1+ 355 <1 + 28,
x€Q,

Let us now find an ewtimsts for Fz(x) or Q,. From the evident
inequality

a?(2x ~ 1) ¢1 - 2a(1 ~ax), vxeR,

we have

azf?_(x) =a2[(1-ax)2 + 2x - 1]6 [1_-0:(1-0::)]2 = % [fé(x)]2
that is
(11) otylx) ¢ [£5(x)]?  for xeR.

If xeQy, then f2(x)> 0 and
1e(x) =1 -o{1-ax)31 - o> 3
2 2 = 2
Prom inequality (1ii1) we get
fé(x)
o —E—,
2yt,(x)

, £,(x)
Fz(x) = ~o+ —E=—=30 for xeQ,,

2‘/1’2( x)

- 96 =
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Non-ccauditional stability 13

that 1s F2 is a non~decreasing function on Qa. Therefore

sup Pp(x) = Py (3) = V252,
Q
2
since F2>0 on 92, and we finally have
2 1
sap Fz(x) $ & (2 - o).

2

This estimate,together with ths estimate (ii), gives the asser-
tion of Lemma 2.3. .
Theorsm 2,2 (on the non-conditional stability).
If we apply the difference pattern {2.2) to the initial probd-
lem (2,1) with constant coefficients a, b, ¢ (a> 0), then this
pattern is non-conditionally L,-stable for e (0,7,), where

T, t= Bup {'z t €T<1, bz'zsa, 0<'z<ft1},

+® for c<0,

2 ——-9—2 for ¢> 0,
c({a+b”)

Proof ., The proof of the theorsm will be based on
von Neumann‘s theorem on the suffioient zondition for the
L2-etab111ty of a difference pattern,

Assuming that Theorem 2.2 holds, we state, by Theorem 2,1,
that

(2.14) sup Ale,8,7) = max 1bl /8% +
Aespectr C e 1+5-%‘ 2a
o "\ 2
. b26 7 ?_1-6+—2—'c] ’
et 1+6-%¢
2a(1+ 6§ - %) 2%,
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2 1 -8+ %7
5 + § 5+ 2%

5% forSe(O,oo).
1+85-% Vloss-og)y 1+85-FF

+

Let us now set o := 1 s = Ez—T It
=1 =57, Bi=357 . Te (0,7,), tnen

o<<% ’ Osfis% « Tha non-sipgular change of variables (6§ - x),

given by x = -‘l'—ﬁ maps (0,oc) onto the interval (O, ];).
-7
Then we have
b5

5 = Px{1 ~ax) =: £,(x),

~<

=2!—1,

-
+
Nn| on
1

+
oo
«Q

— = (1 - x)? =2 fo(x)+ 1 -2x,
9_ &
(1 +65 - 21)

Setting additionally 31(x) 1= f.l(x) -2x + 1,

. / l
Qz t= KO’ 0() »

Q :={x:er

1 o1 f1(x)? o, 81(3)? 0}’

we obtain from formula (2.14)

up sup |A(e,6,7)| =
Se(o,oo) Ae spectr C ¢8|

= sup max {(\[f (x) +V[g1(X)] ( -oX + [fz(x)]+)2} =

er
r y 2
= max {sg:\ (*\/f1(x) +Vg1(x)) , sg: (1 - ax +‘/f2(x)) }.
-~ 98 =
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From Lemma 2,3 it follows that for 7e¢ {0, 74} and for any sigen-
value A of the transition matrix C given by formula (2.3)
there holds the inequality

[A] < max[1+2p, & (2-0)] =
2 1+ %7 2 \
b 2 b
=max|:1 +—€-t,q:t]s1 + T max (—;, 20,

sinoe the condition 07 <1 implies that

g
1+3° 1 €T <1 + 201
=1 + <
1 - S, 1 T
2
that 1is
b2
(2.15) Al <1+ M7, M= pax (2, 20).

Moreover, it follows from Lemma 2,1 that under the assumptions
of Theorem 2.2 the modules of the double eigenvalues of the
matrix C are less than 1,

Thus, by von Neumann’'s theorem on the sufficient condi-
tion for Lz-stability, the proof of Theorem 2.2 is completed.

The results related to the case of variable coefficisnts
will be prasented in a paper prepared for publication, where
the case of several spatlal variables will also be investi-
gated,
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