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1. I n t r o d uc t ion 
The aim of t h i s note i s t o presen t a simple d e r i v a t i o n 

of s u f f i c i e n t c o n d i t i o n s f o r a s t r i c t l o c a l minimum of a l o -
c a l l y L i p s c h i t z i a n f u n c t i o n de f ined on a normad space . The 
c o n d i t i o n s obtained inc lude the c l a s s i c a l h i g h e r o rde r s u f f i -
c i e n t c o n d i t i o n s f o r F reche t d i f f e r e n t i a b l e f u n c t i o n s . We s h a l l 
f o r m u l a t e our r e s u l t i n two fo rms . The f i r s t of them (Theo-
rem 1) has a s t r a i g h t f o r w a r d proof ( i n which only the mean 
va lue theorem of Lebourg i s used) and enab l e s a comparison 
wi th the c l a s s i c a l c o n d i t i o n s when the f u n c t i o n cons idered 
i s d i f f e r e n t i a b l e . The second form (Theorem 2) f o l l o w s e a s i l y 
from the f i r s t one and i s s i m i l a r t o the c o n d i t i o n s occu r r ing 
i n the r e o e n t r e s u l t s of Chaney [ 2 ] , [ 3 ] . The seoond o rde r 
s u f f i c i e n t c o n d i t i o n s of Chaney concern a more g e n e r a l s i t u a -
t i o n t h a n t h a t cons idered i n t h i s paper . However, our theorems 
i nc lude a l s o c o n d i t i o n s of o rder g r e a t e r than two. Let us a l s o 
note t h a t a q u i t e d i f f e r e n t approach t o f i r s t and second order 
c o n d i t i o n s f o r a minimum of a l o c a l l y L i p s o h i t z i a n f u n c t i o n 
i s p resen ted i n ( [1] ' , S e c t i o n 2 ) . 

Throughout the paper , X w i l l be a normad space w i t h norm 
II* II, W - an open non-empty subse t of X, and f s W R - a l o -
c a l l y L i p s c h i t z i a n f u n c t i o n ( i . e . a f u n c t i o n s a t i s f y i n g the 
L i p s c h i t z c o n d i t i o n i n a neighbourhood of any poin t x c V). 
X* w i l l denote the t o p o l o g i c a l dua l spaoe of X. We r e c a l l 
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2 M. S t u d n i a r s k i 

t h a t the genera l ized d i r e c t i o n a l d e r i v a t i v e of f at z 
i n the d i r e c t i o n v e X i s def ined by 

f ° ( x ; v ) = l im eup A~ 1 ( f (x + h + *v) - f ( z + h ) ) . 
h - 0 
A * 0 

The f u n c t i o n f ° ( x j * ) i X - » R i s convex and p o s i t i v e l y homo-
geneous. The genera l ized g rad ien t of f a t x i s the s e t 

(1) 3 f ( x ) = { x * e X * | W e X , f ° ( x } v ) :> <x*,v>} 

(see [4] f o r more i n fo rma t ion about these n o t i o n s ) . 

2. S u f f i c i e n t op t ima l i ty cond i t i ons 
Ve s h a l l oonsider the problem of minimizat ion of f over 

x e W. The fo l lowing tno theorems give cond i t i ons s u f f i c i e n t 
f o r a point x to be a l o c a l s o l u t i o n t o t h i s problem. 

T h e o r e m 1. Let xeW. Suppose t h a t t h e r e e x i s t 
a neighbourhood U of x ( D e l ) and a f u n c t i o n y t U\{x}-»-] 0,+<*>[ 
suoh t h a t 

(2) l im sup y ( x ) f 0 ( x j x - x ) < 0 . 
X *x 
XJ* X 

Then f a t t a i n s a s t r i c t l o c a l minimum at x ( i . e . t he re 
e x i s t s a neighbourhood V of x such t h a t f ( x ) > f ( x ) f o r a l l 
x e V, x t x ) . 

This theorem i s a p a r t i c u l a r case of ( [ 8 ] , Theorem 5 . 1 ) . 
However, the proof given below i s s impler s ince i t does not 
r e q u i r e the knowledge of the theory presented i n [8J . 

P r o o f . I t fo l lows from (2) t h a t t he re e x i s t s a con-
vex neighbourhood V of x such t h a t 

(3) sup i p ( x ) f ° ( x j x - z) < 0 . 
xeV\{x} 

Suppose t h a t the des i red conclus ion i s f a l s e j then t h e r e 
e x i s t s y eV such t h a t y jf x and f ( y ) ^ f ( x ) . By Lebourg 's mean 
value theorem [ 5 , 6 ] , we have 
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Derivat ion of s u f f i c i e n t cond i t ions 3 

f ( x ) - f ( y ) = <x*,x - y > whera x * e 3 f ( z ) , 

z = x + 0(y - x) f o r soma Be ] 0 ,1 [. Hence frnm (1) we ob ta in 
0 $ f ( x ) - f{y) s f ° ( z j x - y ) . Sinoe x - z = 0(x - y) and 
f ° ( z | * ) i s p o s i t i v e l y homogeneous, we have 

4>(z)f°(z |x - z) - 3tf>(z)f°(zix - y ) ? 0 , 

which c o n t r a d i c t s (3) because z c V and z t x . 
T h e o r e m 2. Let x e W* Suppose t h a t the re e x i s t 

a neighbourhood U of x (UcW) and a f u n c t i o n iyiU\{x} ] 0,+oo [, 
such t h a t 

l im sup v U n ) < x n , x n " i > > 0 

11*00 

whenever { x n j and | x * J. are sequences i n U and I * , r e s p e c t i -
ve ly , such t h a t {xQ} converges t o x, xQ t x f o r every n, 
and x * e 3 f ( x n ) f o r every n. Then f a t t a i n s a s t r i c t l o c a l 
minimum at x . 

P r o o f . I t s u f f i c e s to show thâ t the assumptions 
of Theorem 2 imply condi t ion ( 2 ) . Suppose t h a t (2) i s f a l s e ; 
then t he re e x i s t s a sequence { x n } in U such t h a t {xn j . conver-
ges to x , x n i x f o r every r , and 

l im <p(x ) f ° { j n | x - x )» 0 
n-»oo 

(where the l i m i t may be f i n i t e or equal to +00}. 
By [4, P ropos i t ion 1] , we have, f o r every n, 

f ° ( x n ; x - x n ) » max {<x* ,x-x n > | x * c 3 f ( x n ) } . 

There fo re , we can choose a sequence | x * } i n X* such t h a t 
x* e 3 f (x n ) f o r every n, and 

- l im v ( x n ) <x*,x f l - x> = l im f ( x * ) < x n , x - x f i > * 0 , 
n-00 n-00 

which c o n t r a d i c t s our assumptions. 
R e m a r k . In p a r t i c u l a r , we can assume tha t the 

f u n c t i o n h> occurr ing i n Theorems 1 and 2 i s def ined by <f(x) « 
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_ u 
• II x - x II" where k is any positive integer* In this way, 
we obtain a sequenoe of sufficient conditions whioh, as is 
shown below, generalise the classical k-th order conditions 
for Freohet differentiable functions. In order to compare 
our results with those of Chane; [2], let us observe that the 
assumptions of Theorem 2 for <f(x) - ]|x - x j | " 2 are somewhat 
stronger than those of ( [2 ] , Theorem 3*1)* On the other hand, 
Theorem 2 has a simpler proof and includes also higher order 
conditions. 

3. Comparison with the classical higher order sufficient 
conditions 

Let us now assume that f is k times (k>1) Freohet 
differentiable in W. The derivatives f^m ' (x ) , m • 1,2 t . . . ,k, 
for x e W, will be interpreted as m-linear forms on x"1. We 
shall show that if f satisfies the classioal k-th order 
sufficient conditions for a local minimum (in such a form as 
in ( [7 ] , Theorem 24), then it satisfies .the assumptions of 
Theorem 1, as well. 

T h e o r e m 3. Let x e V. Suppose that the deriva-
tives of f at x, of order 1,2,...,k-1, are equal to zero, 
and that there exists 6>0 such that f ( k , ( S ) . h k ^ 5 for a l l 

k If unit vectors h in X (where h = (h , . . . ,h ) e l ) . Then k 
is the f irst positive integer for which the inequality 

(4) lim sup <f ' (x ) ,x - x>/llx - xllk < 0 
x»x 
x^x 

is true. 
R e m a r k . Condition (4) implies that the assumptions 

of Theorem 1 are satisfied for v»»(x) - IIx - xll~k since, for 
a continuously differentiable f , we have f ° ( x jv ) - <f'(x),v> 
(by [4], Proposition 4). 

P r o o f . Applying Taylor's formula ( [7 ] , Theorem 21) 
to the function f ' : W X*, we obtain that, for each x 
in some neighbourhood of i , 
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Dérivation of suf f ic ient conditions 5 

f ' ( x ) - ( f , ) ( k - 1 , ( x ) . { x - x ) k - 1 / ( k - l ) l + l l x - x l l k - 1 a ( x ) 

where lim^ <*(x) » 0 (with respeot to the standard norm in X ' ) X • » ! 
Hence 

< f ' ( x ) , x - x>/llx - xnk -

\ II x—x || llx-xil 

which implies (4)* 
Sinoe f ' ( x ) > 0 and f ' i s continuous, i t is obvious that 

(4) does not hold for k « 1. Now, let a e { 2 , , . M k - l } . Proceed-
ing similarly as before and using the fact that f ' ( x ) , . . . 
. . . , f ( m , ( x ) are equal to zero, we obtain 

< f ' ( x ) , x - x>/llx - xllm =<o<(x),x - x>/llx - xll 

where lim_ a (x ) - 0, and so, condition (4) does not hold with 
x - »x 

k replaoed by m. 
B x a m p l e s . Ve shal l show that, even for d i f f e r en -

t iable functions, our suf f ic ient conditions (that i s , condi-
tion (4) for k - 2 , 3 , . . . ) can give more information than the 
c lass ica l ones. 

1) Let f i R + R ba given by f ( x ) = I * l 3 and let x - 0. 
Then f s a t i s f i e s (4) fo r k - 3. I t is twice d i f f e rent iâb le , 
but f" ' (0 ) does not exist , and so, the c lass ica l conditions 
cannot be used. 

2) Let f I R 2 + R be given by f ( x 1 t x 2 ) - XF + Then 
(4) holds fo r x = (0,0) and k » 4. However, the assunptlons 
of Theorem 3 are not sat is f ied for an; k since f " ( 0 , 0 ) i s 
neither positive nor identical ly zero. 
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