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A SIMPLE DERIVATION OF SUFFICIENT CONDITIONS
FOR A LOCAL MINIMUM OF A LIPSCHITZIAN FUNCTION

1. Introduction

The aim of this note is to present a simple derivation
of sufficient conditions for a strict local minimum of a lo~-
cally Lipschitzian function defined on a normed space. The
conditions obtained include the classical higher order suffi-
cient conditions for Frechet differentiable functions. We shall
formulate our result in two forms. The first of them (Theo-
rem 1) has a straightforward proof (in which only the mean
value theorem of Lebourg is used) and enables a comparison
with the classical conditions when the function considered
is differentiable. The seocond form (Theorem 2) follows easily
from the first one and is similar to the conditiomns occurring
in the recent results of Chaney [2], [3]. The second order
sufficlent conditions of Chaney concern a more general situa-
tion than that considered in this paper. However, our theorems
include also conditions of order greater than two., Let us also
note that a quite different approach to first and second order
conditions for a minimum of a locally Lipschitzian function
is presented in ([1]), Section 2),

Throughout the paper, X will be a normed space with norm
ke, W - an open non-empty subset of X, and £ : W+ R - a lo-
cally Lipschitzian function (i.e., a funotion satisfying the
Lipschitz condition in a neighbourhood of any point x ¢ W),

x* will denote the topological dual space of X, We recall
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that the gensralized directional derivative of f at =x
in the direction ve X is defined by

£9%x;v) = lihm sup A"V (2(x + b +2v) - £(x + h)).,
-0

A+ 0
The function £°(x;+) : X + R 1s convex and positively homo-
geneous. The generalized gradlent of f at x 1is the set

(1) af(x) = {x*e x*|vve X, £9(x;v) 2 <x*,v>}

(see [4] for more information about these notions),

2. Sufficient optimality conditions
We shall consider the problem of minimization of £ over
x ¢ We The following two theorems give conditions sufficient
for a point X to be a local solution to this problem,
Theorem 1, Let X e W. Suppose that there exist
a neighbourhood U of X (UcW) and a function y 1 U\ {X}-»] 0,+]
such that

(2) lim sup q;(x)fo(x;i - x) <0,

XX

X£X
Then f eattains a strict local minimum at X (i.e. there
exists a neighbourhood V of X such that f£(x)> £(X) for all
xeV, x # %)

This theorem is a particular case of {[8], Theorem 5.1).
However, the proof given below 1s simpler since it does not
require the knowledge of the theory presented in [8].

Proof. It follows from (2) that there existe a con-
vex neighbourhood V of X such that

(3) sup_ w(x)2%(x;X - x) <0,
xeV\{X}

Suppose that the desired conclusion is false; then there
exigste y ¢V such that y # X and f(y) <£(X). By Lebourg s mean
valus theorem [5,6], we have
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Derivation of sufficient conditions 3

£(x) - £(y) =<x*,x -~ y> where x*e 3f(z),

z =% +0(y - %) for some 6¢ ] 0,1, Hence from (1) we obtain
0sf(x) - £(y) <£%(2;% - 3). Since X - 2 = @(X - y) and
f°(z;~) is positively homogensous, we have

p(z)2%(2;% - 2) = ay(z)t%(zs% - 3)>0,

whioch contradicts (3) because ze¢V and 2z ¥ X,

Theoremnm 2, Let X e W, Supposs that there aexist
a neighbourhood U of X (UcW) and a function wiU\{X} »]0,+ [,
such that

linm‘iup wix,) <x’;,xn - X>>0

whenever {xn} and {x;} are sequences in U and I*, respecti~
vely, such that {x } converges to X, x, # X for every n,
and x;c af(xn) for every n. Then £ attalns a strict local
ninioum at X.

Proof. It suffices to show thft the assumptions
of Theorem 2 imply condition (2). Suppose that (2) is false;
then there exists a sequence {xn} in U such that {xn} conver-
ges to X, x, # X for every n, and

lim w(x )£%(x ;% - x. )20
neoo n nt n

(where the limit may be finite or equal to +w ).
By [4, Proposition 1], we have, for every n,

fo(xn;i - xn) = max {(x*,i-xn> | x%e¢ af(xn)}.
Thersfore, we can choose a sequence {x;} in X* such that

Xy € af(x,) for every n, and

- lim w(x,.) <x¥,x_ - %> =1lim w(x*)<x ,x -x.>20
Reco n n**n feoo n n’ n !

which contradicts our assumptions.
Remark., In particular, we can assume that the
function y occurring in Theorems 1 and 2 is defined by w(x) =
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=llx - iu'k where k 1s any positive integer. In this way,
we obtain a sequence of sufficient conditions which, as is
shown below, generaligze the classical k-th order conditions
for Fréchet differentiable functions. In order to compare

our results with those of Chaney [2], let us obasrve that the
assumptions of Theorem 2 for y(x) = ﬂx - i"'z are somewhat
stronger than those of ([2], Theorem 3.1). On the other hand,
Theorem 2 has a simpler proof and includes also higher order
conditions,

3. Comparison with the classical higher order suffiocient
conditions

Let us now assume that f 1is k times (k> 1) Prechet
differentiasble in W. The derivatives f(m)(x), B = 1,25e00,k,
for xe W, will be interpreted as m-linear forms on ™. We
shall show that if f satisfies the olassiocal k-th order
sufficlent conditions for a local minimum (in such a form as
in ([7]), Theorem 24), then it satisfies the assumptions of
Theorem 1, as well,

Theorem 3. Let X ¢ W. Suppose that the deriva-
tives of f at X, of order 1,2,...,k-1, are equal to zero,
and that there exists § > 0 such that f k (i)-hkzs for all
unit vectors h in X (where nk¥ - (hyessoh) exk). Then k
is the first positive integer for which the inequality

(4) 1im sup <£'(x),% - x>/llx - %% <0
X+X
XEX

is true.

Remar k., Condition (4) implies that the assumptions
of Theorem 1 are satisfied for w(x) = llx -~ zI°k since, for
a continuously differentiable £, we have £9(x;v) = <£'(x),v>
(by [ 4], Proposition 4),

Proof. Applying Taylor s formula ([7], Theorem 21)
to the function £’ : W —» X", we obtain that, for each x
in some neighbourhood of X,
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t'(x) = (2) 81 (F) e (2F) E"1/(k=1) 1 + 112205 & (x)

where lim o(x) = 0 (with respect to the standard norm in X),
XX
Hence

(2’ (x),% = /ix - 71*

—\k —
< ey 0 - () e - Gty FED <

I x=X | It x=X ||

X -x
I X=x 1l

< "Tk—:%ﬁ + {x(x), >s=-'(k—_51ﬁ+llo<(x)ll.
which implies (4).

Since £'(X) = 0 and £’ is continuous, it is obvious that
(4) doss not hold for k = 1. Now, let m e{2,...,k—1}. Proceed=-
ing similarly as before and using the fact that £'(X),e..
...,f(m)(i) are equal to zero, we obsaln

CE(x),X - xD/ix - ZN® = (x(x),% - xD/Ix - i

where lim «(x) = 0, and so, condition (4).doee not hold with
X—+X
k replaced by m.

Bxamples, We shall show that, even for differen-
tiable funotions, our sufficient conditions (that is, condi-
tion (4) for k = 2,3,...) can give more information than the
classlical ones.

1) Let £ + R+>R be given by f(x) = IxI> and let X = 0,
Then f satisfles (4) for k = 3, It is twice differentiable,
but £“(0) does not exist, and so, the classical conditions
cannot be used.

2) Let £ tRZ+R be given by f(x1.12) = x% + xg. Then
(4) holds for X = (0,0) and k = 4, However, the assumptions
of Theorem 3 are not satisfied for amy k eince £°(0,0) is
neither positive nor identically zero.
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