

Halina Felińska

ON SOME PROPERTIES OF THE SPHERICAL BUNDLE $T_1 L_2$

The 2-dimensional Poincaré model of the hyperbolic space is well known. Our considerations are based on the 2-dimensional Riemannian manifold L_2 with a support $L_2 = \{(x^1, x^2) \in \mathbb{R}^2 : x^2 > 0\}$. The differential structure is induced from \mathbb{R}^2 . The fundamental metric form is given by the formula

$$ds^2 = \left(\frac{k}{x^2}\right)^2 [(dx^1)^2 + (dx^2)^2],$$

where k is an arbitrary positive constant.

In the paper [3] the geometry of the tangent bundle to L_2 with the g^0 -pseudoriemannian metric which is a complete lift of the metric given on L_2 to TL_2 is considered.

It is interesting to give fundamental properties of the spherical bundle $T_1 L_2$. This paper is concerned in this problem.

We denote by $T_1 L_2$ the set of all tangent vectors to L_2 of the length 1. The structure on $T_1 L_2$ is induced from TL_2 . If we reduce the structural group of the bundle TL_2 to $O(2)$, we obtain the spherical bundle $T_1 L_2$.

In the papers [4], [5], [7] the authors investigate the properties of spherical bundle $T_1 M^2$ with the metric

$$ds^2 = g_{ik} dx^i dx^k + g_{1k} \delta y^i \delta y^k,$$

where g_{ik} are local coordinates of the metric tensor on the 2-dimensional Riemannian manifold (M^2, g) , x^i are local coordinates on a base, y^i are coordinates in a fibre and

$$\delta y^i = dy^i + \Gamma_{jk}^i y^j dx^k.$$

This Riemannian metric was defined by S. Sasaki [9]. S. Sasaki's paper [10] is concerned with the geometry of $(2n-1)$ -dimensional Riemannian manifold $T_1 M^n$. The aim of this paper is a consideration of the manifold $T_1 L_2$ with the metric different from Sasaki's metric, namely with the metric induced by the immersion in $T L_2$.

We introduce on $T_1 L_2$ a local coordinate system (x^1, x^2, x^3) , where (x^1, x^2) are coordinates of points on L_2 and x^3 is an angle formed by a tangent vector at this point and a vector $\frac{\partial}{\partial x^1}$ of the natural base. We denote by f the immersion of $T_1 L_2$ into $T L_2$. We have

$$f : T_1 L_2 \rightarrow T L_2$$

$$(x^1, x^2, x^3) \mapsto (x^1, x^2, \frac{1}{k} x^2 \cos x^3, \frac{1}{k} x^2 \sin x^3).$$

The coordinates $a_{\alpha\beta}$, $\alpha, \beta = 1, 2, 3$, of the metric tensor a on $T_1 L_2$ induced by f have the following form

$$a_{\alpha\beta} = \frac{\partial f^A}{\partial x^\alpha} \frac{\partial f^B}{\partial x^\beta} g_{AB}^C, \quad A, B = 1, \dots, 4.$$

Thus we obtain

$$[a_{\alpha\beta}] = \begin{bmatrix} -\frac{2k \sin x^3}{(x^2)^2} & \frac{k \cos x^3}{(x^2)^2} & -\frac{k \sin x^3}{x^2} \\ \frac{k \cos x^3}{(x^2)^2} & 0 & \frac{k \cos x^3}{x^2} \\ -\frac{k \sin x^3}{x^2} & \frac{k \cos x^3}{x^2} & 0 \end{bmatrix}.$$

The tensor field a defined by this way on T_1L_2 is symmetric of the rank 2 and the signature $(-, +, 0)$. The structure given by a on T_1L_2 we will call a degenerated Riemannian structure ([2], [8]). Any such structure is called semi-Riemannian manifold ([1]). First we consider the existence of a torsion-less connection associated to this degenerated metric. It is well known there exists such unique connection on a Riemannian manifolds ([6], Th. 2.2, p. 158).

There exist manifolds with degenerated metrics for which connections without torsion do not exist. If such connection exists, then respectively to Weyl-Cartan theorem it is not uniquely determined.

Let us define a mapping $b : TT_1L_2 \rightarrow (TT_1L_2)^*$ by the formula $b(X) = a(X, -)$. The kernel of this mapping is a 1-dimensional distribution V . This distribution is spanned by the vector field $E_1 = [-x^2 \cos x^3, -x^2 \sin x^3, \cos x^3]$. Of course, V is an integrable distribution. The complementary distribution H is a 2-dimensional one. The fields $E_2 = [0, x^2 \cos x^3, \sin x^3]$ and $E_3 = [1, 0, 0]$ form a base of H . It is easy to see that H is an integrable distribution, too.

Theorem 1. There exists no degenerated connection without torsion on the manifold (T_1L_2, a) .

Proof. It is sufficient to show (with respect to Th. 3.2 [8]) that the field E_1 does not satisfy the system of Killing differential equations $L_Y a = 0$, e.a.

$$-2Y_{11}^1 \sin x^3 + Y_{11}^2 \cos x^3 - x^2 Y_{11}^3 \sin x^3 + \frac{2}{x^2} Y_{12}^2 \sin x^3 - \\ - Y_{12}^3 \cos x^3 = 0,$$

$$Y_{11}^1 \cos x^3 + x^2 Y_{11}^3 \cos x^3 - 2Y_{12}^1 \sin x^3 + Y_{12}^2 \cos x^3 - \\ - x^3 Y_{12}^3 \sin x^3 - \frac{2}{x^2} Y_{12}^2 \cos x^3 - Y_{12}^3 \sin x^3 = 0,$$

$$Y_{11}^2 x^2 \cos x^3 - Y_{11}^1 x^2 \sin x^3 - 2 \sin x^3 Y_{13}^1 + Y_{13}^2 \cos x^3 - \\ - Y_{13}^3 x^2 \sin x^3 + Y_{12}^2 \sin x^3 - Y_{12}^3 x^2 \cos x^3 = 0,$$

$$Y_{12}^1 + x^2 Y_{12}^3 = 0,$$

$$Y_{12}^2 x^2 \cos x^3 - Y_{12}^1 x^2 \sin x^3 + Y_{13}^1 \cos x^3 + Y_{13}^3 x^2 \cos x^3 -$$

$$- Y^2 \cos x^3 - Y^3 x^2 \sin x^3 = 0,$$

$$Y_{13}^1 \sin x^3 - Y_{13}^2 \cos x^3 = 0.$$

It is easy to verify that $L_{E_1} a \neq 0$.

Remark. Let v and h denote the projections of the space $T(T_1 L_2)$ onto the distributions V and H , respectively. By Q we denote an arbitrary tensor field of the type (1.2) and by \tilde{V} a degenerated Riemannian connection. The family of degenerated Riemannian connections \tilde{V} such that $\tilde{V}_X Y = V_X Y + P(X, Y)$ for $X, Y \in T(T_1 L_2)$ and $P(X, Y) = \frac{1}{2} (\delta_\beta^\alpha \delta_\xi^\gamma + \delta_\beta^\alpha v_\xi^\gamma - a_\beta^\xi a^\alpha_\gamma - v_\beta^\alpha h_\xi^\gamma) Q_{\alpha\beta}^{\delta\gamma} X^\alpha Y^\beta$, where $\alpha, \beta, \gamma, \delta, \alpha, \xi = 1, 2, 3$ and X^α, Y^β denote coordinates of vector fields X, Y respectively, does not depend of a choice of the distribution H . The torsion tensor field T does not vanish and its coordinates are given by $T_{\beta\gamma}^\alpha = P_{\beta\gamma}^\alpha - P_{\gamma\beta}^\alpha$.

Let S^1 denote the 1-dimensional sphere. Then we have the following theorem.

Theorem 2. The spaces $H_{(x^1, x^2, x^3)}, V_{(x^1, x^2, x^3)}$ are diffeomorphic to $T_{(x^1, x^2)} L_2$ and $T_{x^3} S^1$, respectively.

Proof. It is known that $T_1 L_2$ is diffeomorphic to $L_2 \times S^1$ ([11], p.242). Thus we have $T_{(x^1, x^2, x^3)} T_1 L_2 = T_{(x^1, x^2)} L_2 \oplus T_{x^3} S^1$. On the other hand we have

$T_{(x^1, x^2, x^3)} T_1 L_2 = H_{(x^1, x^2, x^3)} \oplus V_{(x^1, x^2, x^3)}$. The mapping $\Phi : T_{(x^1, x^2)} L_2 \oplus T_{x^3} S^1 \rightarrow H_{(x^1, x^2, x^3)} \oplus V_{(x^1, x^2, x^3)}$ defined by $\Phi \left(\frac{\partial}{\partial x^1} \right) = E_3, \Phi \left(\frac{\partial}{\partial x^2} \right) = E_2, \Phi \left(\frac{\partial}{\partial x^3} \right) = E_1$ is desired diffeomorphism.

We will show that

Theorem 3. The isometry group of the manifold (T_1L_2, a) is 3-dimensional.

Proof. To find the isometry group of the manifold T_1L_2 we have to determine $I = \{i \in K : i(f(T_1L_2)) \subset f(T_1L_2)\}$, where K denotes the isometry group of the manifold T_1L_2 ([3]). Some calculations show that I is a subgroup of K generated by 1-parameter transformation groups determined by complete lifts to T_1L_2 ([3]) of Killing vector fields of the manifold L_2 . The immersion f is isometric thus an arbitrary isometry of T_1L_2 can be locally represented by composition of isometries of the form $f^{-1} \circ i \circ f$, where $i \in I$.

REFERENCES

- [1] М.А. Акимис, Б.П. Чебышева: Об инвариантном оснащении полуриманова многообразия, Sibirsk. Mat. Ž., 22, № 6 (1981), 7-14.
- [2] И.В. Белько: О вырожденных римановых метриках. Mat. Zametki 18, № 5 (1975), 767-774.
- [3] Н. Фелиńska: Geometry of the tangent bundle over 2-dimensional hyperbolic space, submitted to Serdica,
- [4] А.Л. Ямпольский: К геометрии сферических касательных расслоений римановых многообразий, Ukrain. Geometr. Sb., 24 (1981), 129-132.
- [5] W. Klingenberg, S. Sasaki: On the tangent bundle of 2-sphere, Tôhoku Math. Journ. 27 (1975), 49-56.
- [6] S. Kobayashi, K. Nomizu: Foundations of differential geometry, Interscience publishers, New York-London, 1963.
- [7] P.T. Nagy: On the tangent sphere bundle of a Riemannian 2-manifold, Tôhoku Math. Journ. 29 (1977), 203-208.

- [8] V. O p r o i u : Degenerate Riemannian and degenerate conformal connexions, *Analele Ștăntifice ale Universității "Al. I. Cuza", Dui Iași, sect. I*, 16 (1970), 357-376.
- [9] S. S a s a k i : On the differential geometry of tangent bundles of Riemannian manifolds, *Tôhoku Math. Jour.* 10 (1958), 338-354.
- [10] S. S a s a k i : On the differential geometry of tangent bundles of Riemannian manifolds II, *Tôhoku Math. Jour.* 14 (1962), 146-155.
- [11] И. Т а м у р а : Топология слоений. Москва 1979.

INSTITUTE OF MATHEMATICS M. CURIE-SKŁODOWSKA UNIVERSITY,
20-031 LUBLIN, POLAND
Received March 2, 1987.