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CONVERGENCE OF DIFFERENCE METHODS FOR BOUNDARY VALUE
PROBLEMS OF ODE’S WITH DISCONTINUITIES

1. Introduction
Let B be a real Banach space. We consider the boundary
value problem on I =[x ,B], a<Ps

(1) 37(t) = £(t,y(¢t)), tel,
with the boundary conditions
(2) y(x) = Yo+ y(B) = Tqr

where f 1is a given function £:IxB —» B, We assume that for
fixed continuous function y:I —» B the mapping t —» £(t,y(t))
is integrable. By a solution of (1)-(2), we mean a function
@311 — B which has an absolutely continuous first derivative
on I, and satisfies the boundary conditions (2) and the equa-
tion (1) almost everywnere on I i,e. except on a set of Lebes-
gue measure gero, '

Our task is to define a numerical solution of {1)-(2), so
due to this faot it will be assumed that the problem (1)-(2)
has the bounded solution ¢. A fundamental class of numerical
methods 1s based on disorete variables, We consider a discrete
set %y = o+ ih for i e Ry where for some natural number N,
h = (P-a} /N and Ry = {0 1,...,!!} Now we should find a set
of corresponding values yh(tho),...,yh(thn) as an approxima-
tion to the exact solution ¢(t) evalnated at t = t,4» 1€Rye
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2 T. Jankowskl

The simply numerical method for (1)-(2) is the following

plt+h) - 23p(¢) + gplt-h) = 02 £(,5.(¢)), teIp,
(3)
3h(a, = Jor 3h(B) = Jq9
where
Ih - {thil 1-1’2.000.N"1}0

| Nonstatlonary linear methods with constant coefficlents

(Vh('“h) - 2y,(t) . yp(t-h) =

3
(4) §- h? 37 b, f(t+2h-ih, y,(t+2h-ih)), eI,
i=1

' _7h(a, = Jor Vh(ﬁ) = J1
or with variable coefficlents

(?h(t*‘h) - 27h(t) + yh(t'h) =

3 ) .
= b2 57 b, (t,h)2(t+2h-1h, y,(t+2h-1h)), te
(5) 5 1=1

yh(a) = Jour 3h(ﬁ) =Jq

are methods of higher order.
To find the numerical solution J, we want to apply the
quasilinear nonstationary method of the form

I (t+h) - 2y, (%) + yp(t-h) = hz?(t,h,yh),
(6)

7h(0) It ?h(ﬁ) = 71)

where

F(t,h,3,) = F(t+h,t,t-h,h,y, (t+h),3,(t),3,(t-h)).
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Convergence of difference methods 3

Indeed, the above mentioned methods are special cases of this
genersl (6).

Linear methods were analysed by several authors under the
agsumption that f was continuous, The case with disconti-
nuities was discussed in [3] for the method (3). Convergence
of onestep and multistep methods, but for initial-value prob-
lems with discontinuities, was considered in [3] [4],[6], [9].

The purpose of this paper is to give sufficient oonditione
for the convergence of the method (6). It will be done under
the essumption that F setisfies a Lipechitz condition with
a function L and if (6) is consistent.

Obtained the corresponding condition 4° of Theorem 2 for
convergencge 1s better than it was so far. For linear method
{5) will be given conditions when both it is consistent and
has convergence of corresponding order,

2, Convergence and consistency

The following definitions are known (see [3], [4], [6], [8], [9)).

Definition 1. We say that the method In is
convergent to the exaot solution ¢ of (1)-(2) if

lim max jle{t, ;) - 3. (4.1 = ©.
Neoo ieRyg hel¥ng) - 3580y )l

The order of convergence is p if

mex f[o(ty,) = 3,(t,4)] = o(nP),
iﬁRN

Definition 2, We say that the numnerical me~-
thod y, is consistent with the boundary-value problem {1)-(2)
on the solution ¢ if there exists a function € xH R+ =
= [0, ©), Iy = [x+h, p=h], H = [0,b5], hy e (0,00) such that
the following two conditions are satisfied

Ne(t + ) - 2¢(t) +¢(t - h) - B2 F(t,h,9)l < e(t,h),

-1
n b7 ST e(t,,,h) = 0.
Neoo 1=1
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4 T. Jankowski

The order of consistency is p 4if
Ne=1i
i=1
Remark 1, The first condition in this definition
may be written in the following way

t+h
|| [ K (t,0 flr,e(t))dr - b2 F (t,h,0)] celt,h),
‘t=-h
where
T +h -t 4if t-h<Tgt,
K1(t,'r) =

t +h -7 if t <1 < t+h,

Indeed, the boundary value problem (1)-(2) may be convert-
ed to the integral equation

B
() =3, + ;’_’2 (9 - 3p) + fK(t.'t) £(r,y(z))ar
o4
where
%ﬂ}(t-a) if agstst,

K{t,7) =
%g(t-a) 1f t< TP

Now it is very easy to get our result. _

Consistency 1s a necessary condition for the discrete
convergence of the method (6), Now we want to get a general
condition for this fact. The main result of this section is
the following consistenoy theorem.

Theoremnm Te If

1° £:IxB —» B, F:I%HxB> —» B, and f is bounded,.
2° there exists the exact solution ¢ of (1)=(2),
3° ¢"is a Riemann integrable function,
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Convergenoces of difference methods 5

then the method (6) is copnsistani with the boundary value
problem (1),(2) on ¢ if

N-1
(7) m b D || £y, 9 (64)) = 3(ty,,0,0) | = 0.
N+ L

Proof. Applying th: Terlor formula

P
ot +u) = > Loltle) 4
i=0
t+u

+ (B{;Ti j (t+u-!)p-1[¢(p)(8) - ¢(p)(t)] ds
t

for p = 2 gives

¢(t + h) - 2¢(t) + ¢(t - h) =
t+h
.=. h2(f"(t) - j (t+h'-3) [‘P"(B) - ‘P"(t)] as +
t

-h
(t-h-8) [¢"(8) = ¢"(t)] ds.

+
b Ly b

Now changing the intervals of integration for our inte-
grals we are able to get

¢{(t + h) = 2¢(t) + ¢(t ~ h) =

. h
= 0%¢"(4) + § (b -0) [¢"(t + 8) + ¢"(t = 8) = 24"(¢)] a0,
4]
Integration by parts gives the same result (see [3]).
We note that

@(t + b) - 2¢(t) + ¢(t = h) ~ b2 F(t,h,¢) =
= b% P (t,h,9) + By(t,h,e),
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where
P1(t,h,<9) = ¢"(t) - F(t,h,¢),

h
[ (h-8) [¢ (v4+0) - o(t)] a0 +
0

Pz(tih"?)

h
+ | (n-8) [¢"(t-8) - ¢"(1)] as.
0

Now
Ne1

m h™' Y 120 tyqstpe) || =
N+ i1

Nel h
- ln S {“ [ (= 8) [o(tpave) = om(t,4)] a0 “+

New 5.4 0
} <

N~-1 N-1
< lim {hz (My - my) +hz (Mg _, -mi_1)},
Nro 1 4 i=1

+

h
H f (1 -g) [#"(tp4=6) = ¢"(t,,)] a®
i)

M; = sup f(t,, + 8, (t, ., +8)), i=0,1,e00,N=1
i ge[o,h] hi ’ hi * ' 14 1 4

my = se%gfh]f“hi + 8,9ty +8)), 1=0,1,000,N=1,
So if ¢"” is a Riemann integrable function then
N=t
a b7 D0 [|By(tyy,.0,9) | = 0,
i=1

N+

(see also [3]). This completes the proof.
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Convergance of difference methods 7

Remar k 2. Theorem 1 remains true if the condi~
tion 3° is replaced by the following: ¢" is of bounded varia-
tion or ¢" satisfies the Holder condition of order y¢ {0,11.
Now the method (6) is consistent of order min{(1,r} or
min(g,r) if ¢“ is of bounded variation or ¢" satisfies the
Holder condition of order y¢ (0,11, respectively, provided
that
N=1

h Y Je(t,, 9ltyy)) = F(tyy,h,e)|| = 0(87)  for every N,
i=1

Indeed, this follows from the proof of Theorem 1 and the fact

that
N1

DI AR R CSE
i=1

where s = 1 if ¢” is of bounded variation, and 8 = 3 if ¢ "
satisfies the Holder condition of order y € (0,11,

Remark 3. For the nonstationary linear method (5)
the condition (7) has the form

1= b1(t,h) + by(t,h) + b3(t,h) for (t,h) eIxH,

if ¢"(t+h) = ¢"(t) + O(h).
Indeed, it 18 easy to ses that

le"(t) = by(t,h)e"(4+h) = by(t,h) e (t) = by(t,h)e"(t-h)] =
= (1 = by(t,h) = by(t,h) = bylt,0)) ¢ () + 0(h).

3. Convergence of the method (6)

In this section we wish to examine the oconvergence behaviour
a8 N —» oo (or h —» 0) of the approximate solution Jp 8iven
by (6). We ocan prove the following main theorem:

Theorem 2, Suppose that

1° the problem (1)-(2) has the exact solution ¢,

2° Fi1%H:B? —> B, and there exist functions LilxH —» R,
and nIxH —> R, such that for (80,51,52,h)e I3xH, zj,ije B,
J =1,2,3, we have
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8 T, Jankowski

HF(aO,s1,52,h Z4135,23) - P88 48,0 ,2,%,,2, )H

3
< L(sy,h) :E: lzy -2y +olsy,h),
i=1
Ne1
14m kD plty,h) =0,
Lag i=1

3% the method (6) is consistent with (1)~(2) oo the exact

solution ¢,
N-1

2
4° 8, = 3h max r,, L(t, ,,h) <1,
h 1=1 2,00-,}‘-1 g iJ hJ

where

1 -8 1r 14y

1-3 1 o1y,

Ty

then the method (6) is convergent to the exact solution ¢ of

(1)-(2)0
Proof, Put

V(%) = o(t) - 3,(¢),

glt,h) = h? F(t,h,3;) ~ @(t+h) + 2¢(t) - ¢(t-h).

Using (6) it follows at once that

vy (t+h) = 2v, (%) + v (%=h) = g(t,h).

It is known that the solution of this difference equation is
given by the formula
N-1
(8) Vltpy) = = > ry48(th40t), LeRp.
J=1
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Cbserve, from the assumptions of our theorem it follows
that
la(s,h) < B2[3(¢,0,3,) - 3(¢,8,¢)] +

+ l¢(t+h) - 2¢(t) +@(t=h) = b F(t,h,0)| <

£ h2{L(t'h) ["vh(t-h)" + "Vh(t)“ + "Vh(t"'h)“] + ‘?(tvh)} +
+ e(t,h).
Now, using this and (8) we obtain
ol = oy 0% gy W00 %0e) | €
N=1

2 .
< 1_1'2??:‘:”“_1 E rij{h [L(thd,h)Bth“oo to-r;(thd,h)] + e(thj,h)}.

Henoe
N-1

p.
Il < 70778, Z [82(tym) + b7 Teltyyn) .

To complete this proof it is sufficient to use assumptions
2°-4° of this theorem. .
Remaxrk 4, Let

L{(t,h) = L>0,
Indeed, now we have
N=1 2
. 2 X
nax r,, = max .5(iN - 1) < &
i=1,2,ono,N-1 E ij i 8 °’

and the condition 4° will be satisfied if

(9) L< ———Ji——E—.
N s 3(f-o)
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10 T, Jankowskl

Moreover for
¥ (t’hy‘f) = f(tg‘P)
the condition (9) has the form

8

L<—8
(Bmc)?
(Soe [3]).
Remarxrk 5e Let
N-1
D Lty ,hlc M, M>0.
iat

Now we obtain the following inegquality
sp< 302 X u = 3 b - o),

and the condition 4° is satisfied if the stepsize h is
suffioclently small such that

1
h<§M“5 -)

It is interesting to note that if yiI ~$~R+ ie a Lebesgue
integrable function swéh that

+h

L(t,h) = v(s)ds,

Ot Gy,

then

M = y(a)ds,

Qh—na;

4. Consistency of order ¢ of the mathod (5)

Take the following

Definition 3 (eee [4],[9])e We say ¢:I —» B
is in class s‘;(I), p>1, if ¢ 1is p-1 times differentiable
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on I and there exists a bounded function we will denote by
p)zI —~» B such that (p=1)th derivative <p( P-1) 4q the Riemann

integral of ¢ P), We say o ¢ sg(I) if cpeS%(I) and ¢(P) 1g of

bounded variation i.e. there exists a constant V such that

for any partition o<¥,< i< oo <t <P We have :

r
P PALUCA IR O Py
J=1
Wo say ¢eSH(I) i qaesﬁ(l) and ¢P) gatisfies the Holder
condition of order pe(0,1].
Let 131,b2,b3 are bounded and

02(t’h) = 1 = b1(t’h) - be(t’h) -.b3(t’h)’

Cy(t,h) = 137 {1 + (1)} - 1(1-1) [b1(t,h) + (-1)1'253(':,11)]}
for 133 4,000

Now the nonstationary linear method (5) has the following
propsrty

Lemma 1. If .

1° there exists the exact solution of the problem {(1)=-(2},

2° c,(t,h) = 0 for teI, heH, J=2,3,000,p~1, :

Cp(t h) # 0,

then the method (5) is consistent of order p=3 if ¢¢ SR(I),
and of order p-2 if ¢cS)(I) and of order p-3+7 if gesi(z),

Proof., Using the Taylor formula for ¢e¢ SR(I) (see
the proof of Th.1) and combining the same terms we have

elt+n) ~ 24(t) + ¢(t-h) -

- h%[b, (%,h) ¢"(t+h) + by(t,h)e () + by(t,n)pr(t-h)] =

p
= 57 nt @t (1) ¢ (t,8) + 2(t,8) = 0(bP) + 2(%,h),
i=2 .
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where
t+h

T(t,h) = Tp—_}ﬁ j (t+h-s)p-1 [q(p)(s) - (p(p)(t)]ds +
t

t=h

,‘,-(ﬁ_)._' ! (t-h-s)p-1 [(P(p,(ﬂ) - (p(p)(t)]dﬂ -

+h

- T5o37T bo04(t,h) (t+8-8) P3[4 {P) (s, - o{P)(1)] a6 -

- Tooa77 Bb5(t,h) (t-h-5)P=3[¢(P)(a) = 4{P)(1)]as.

?
t
}-h
t
Now changing the intervals of integration it is poseible to
get

Nt N1

BV 37 Tltyy,h) = P2 3T w(v,,,h),
i=1 i=1

h
(50 (1 - g)p ? [(p(P’(we)-q»“”(t)]ae -
0

-1)Py,(t,h

h .
S |02 [ - o],

0

Henoe R=1
DM LI R
i=1
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Convergence of difference methods 13

where m = 0 if q»eS%(I), and m = 1 1if q»esﬁ(x), and m = 7
if cpeS};(I).

It says that the method (5) is consistent of corresponding
order,

Remark 6, We consider the nonstationary method
(4) with

b.‘ = 1/12, b2 = 10/12. b3 = 1/12.

It is widely used (see for example [5]). The coefficients Cy
are
cZ = 03 = C4 = CS = 0. CG = -1/240o

We see that p = 6, Now this method is consistent of order 3
or 4 or 3-7 1f ¢eSH(I) or ¢eSE(I) or ¢es5(I), respectively.
Now taking the stationary method (3) we see

02 = C3 = 0, C4 = 1/12'

and p= 4.
For the nomstationary method (5) with variable coefficients

by(t,h) = by(t,h) = (Vi+l - VE)/12,
by(t,h) = 1 = (VE+h - V%)/6,
we have the similar result, namely
Cp=Cy3=0, Cp=(1-~ Vi+h + V¥)/12,

and hence p = 4.

Now the last two methods are consistent of order 1 or 2
or 1-7 if ¢e SE(I,) or cpesﬁ(l) or cpeSIz(I), respeotively.

Now we are in a position to establish the convergence
theorem for the nonstationary linear method (5). It follows
directly from Theorem 2 and Lemma 1.

Theorem 3, Assume that

1° the assumptions of Lemma 1 are satisfied,

2° the assumptions 1°, 2%, 4° of Theorem 2 are satisfied
with the condition

- 63 =



14 7T, Jankowski

N=1

b 2 plty,h) = 0(n%),
i=1

‘then the method (5) has convergence of order min(g,p-3) if
SR(I), and of order min(p,p-2) if wes (I), and of order

min(g prp-3) 1t 9eSi(I).
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