

Jacek Hejduk

CONVERGENCE WITH RESPECT TO THE MYCIELSKI σ -IDEAL

In this paper we shall prove that convergence with respect to the Mycielski δ -ideal J_M in the Cantor set C does not yield a topology in the space of measurable functions. The δ -ideals $J_M \cap \mathcal{K}$, $J_M \cap \mathcal{L}$, $J_M \cap \mathcal{K} \cap \mathcal{L}$ have the same property, where \mathcal{K} and \mathcal{L} are respectively the δ -ideals of sets of the first category and measure zero in C .

Let (X, \mathcal{J}) be a measurable space. Let J be a proper δ -ideal in a δ -field \mathcal{J} .

Definition 1.1. We shall say that a property holds J -almost everywhere on a set X (abbr. J -a.e.) if and only if the set of points of X which do not have this property belongs to J .

Definition 1.2. We shall say that a sequence $\{f_n\}_{n \in \mathbb{N}}$ of \mathcal{J} -measurable functions defined on X convergence with respect to J to an \mathcal{J} -measurable function f defined on X if and only if every subsequence $\{f_{n_m}\}_{m \in \mathbb{N}}$ of $\{f_n\}_{n \in \mathbb{N}}$ contains a subsequence $\{f_{p_m}\}_{m \in \mathbb{N}}$ convergent to f J -a.e. on X . We shall use the notation $f_n \xrightarrow{J} f$.

The set of \mathcal{J} -measurable functions defined on X equipped with convergence with respect to J is an \mathcal{L}^* space. We can define the closure of the set A : $f \in \bar{A}$ iff there exists a sequence $\{f_n\}_{n \in \mathbb{N}}$ in A such that $f_n \xrightarrow{J} f$. This operation has the properties:

$$\bar{\emptyset} = \emptyset, \quad A \subset \bar{A}, \quad \overline{A \cup B} = \bar{A} \cup \bar{B} \quad \text{for every } A \text{ and } B.$$

The condition $\bar{A} = \tilde{A}$ is fulfilled if and only if the convergence has the following property:

$$(*) \quad \text{If } f_j \xrightarrow{j \rightarrow \infty} f, \quad \text{and } f_{j,n} \xrightarrow{n \rightarrow \infty} f_j$$

for $j \in N$, then there exist two sequences of natural numbers

$$\{j_p\}_{p \in N}, \{n_p\}_{p \in N} \text{ such that } f_{j_p, n_p} \xrightarrow{p \rightarrow \infty} f.$$

If the space \mathcal{L}^* fulfills $(*)$ then the topology introduced by the closure operation described above is often called a Frechet topology.

Definition 1.3. We shall say that a pair $(\mathfrak{J}, \mathfrak{J})$ fulfills the condition (E) if and only if for every set $B \in \mathfrak{J} - \mathfrak{J}$ and for every double sequence $\{B_{j,n}\}_{j,n \in N}$ of \mathfrak{J} -measurable sets such that

$$1^0 \quad B_{j,n} \subset B_{j,n+1} \quad \text{for any } j, n \in N$$

$$2^0 \quad \bigcup_{n=1}^{\infty} B_{j,n} = B \quad \text{for every } j \in N$$

there exist an increasing sequence $\{j_p\}_{p \in N}$ of natural numbers and a sequence $\{n_p\}_{p \in N}$ of natural numbers such that

$$\bigcap_{p=1}^{\infty} B_{j_p, n_p} \notin \mathfrak{J}.$$

Definition 1.3 is equivalent to the following one (see p.101 in [3]):

Definition 1.4. We shall say that a pair $(\mathfrak{J}, \mathfrak{J})$ fulfills the condition (E') if and only if for every set $B \in \mathfrak{J} - \mathfrak{J}$ and for every double sequence $\{B_{j,n}\}_{j,n \in N}$ of \mathfrak{J} -measurable sets fulfilling the above conditions 1^0 and 2^0 there exists a sequence $\{n_j\}_{j \in N}$ of natural numbers such that

$$\bigcap_{j=1}^{\infty} B_{j, n_j} \notin \mathfrak{J}.$$

Conditions (E) , (E') have been defined for the pair $(\mathfrak{J}, \mathfrak{J})$ but we can define them also for a pair $(\mathfrak{R}, \mathfrak{J})$ where \mathfrak{R} is a

family of sets stable under countable intersections and unions and the δ -ideal J need not be included in \mathcal{R} .

As the consequence of the theorem proved by Wagner (see th. 1 in [2]) we have

Theorem 1.1. If the set of all δ -measurable real functions is equipped with the Fréchet topology generated by the convergence with respect to J then the pair (\mathcal{S}, J) fulfills the condition (E).

2. Preliminaries

It has been proved that convergence with respect to the δ -ideal of sets of the first category in the real line does not yield a topology for the space of Baire functions but convergence with respect to the δ -ideal of sets of measure zero yields a topology for the space of Lebesgue functions. This last assertion is true in a more general case (see [2]).

Now, we consider convergence with respect to the δ -ideal introduced by Mycielski (see [1]).

Let C be a countable product of the cyclic two element group $\langle \{0,1\}, + \rangle$ with the discrete topology. Thus C is homeomorphic to and can be identified with the set of Cantor $\left\{ \sum_{i=0}^{\infty} \frac{2x_i}{3^{i+1}} : x_i \in \{0,1\} \right\}$, and the Haar measure in C is introduced by the Lebesgue measure over the unit interval I and the Cantor mapping of C into I . For $S \subset C$ and a set K of the natural numbers in [1] defined a positional game $\Gamma(S, K)$ with perfect information between two players I and II. The players choose a sequence $(x_0, x_1, x_2, \dots) \in C$ in such a way that the choice x_i is done by Player I if $i \notin K$ and by Player II if $i \in K$. The player choosing x_i knows S, K and x_0, \dots, x_{i-1} . Player I wins if $(x_0, x_1, \dots) \in S$ and Player II wins in the other case.

Definition 2.1. A strategy of Player I is any function $\delta : \chi_{N-K} \rightarrow \{0,1\}$, where χ_{N-K} is the set of sequences whose length is equal to $l \in N-K$ together with empty sequence.

D e f i n i t i o n 2.2. A strategy of Player II is any function $\delta : \chi_K \rightarrow \{0,1\}$, where χ_K is the set of sequences whose length is equal to $1 \in K$.

Thus, if $i \in K$ then $x_i = \delta(x_0, x_1, \dots, x_{i-1})$ and $x_i = \tau(x_0, \dots, x_{i-1})$ if $i \notin K$. Applying the strategies δ and τ the result of this game is an element $x \in C$ and we denote this element by $\langle \tau, \delta \rangle$.

D e f i n i t i o n 2.3. A strategy τ is a winning strategy of the Player I in the game $\Gamma(S, K)$ if and only if for every strategy δ Player II $\langle \tau, \delta \rangle \in S$. A winning strategy of Player II is defined analogously.

Let $V_{II}(K)$ denote the class of sets $S \subset C$ for which Player II has a winning strategy in the game $\Gamma(S, K)$.

Let $\mathcal{M} = \langle K_{s_1, \dots, s_n} : s_i = 0, 1; n = 1, 2, \dots \rangle$ be a system of sets of natural numbers such that $K_{s_1, \dots, s_n, s_{n+1}} \subset K_{s_1, \dots, s_n}$ and $K_{s_1, \dots, s_{n-1}, 0} \cap K_{s_1, \dots, s_{n-1}, 1} = \emptyset$ for every $n \in N$. Let $\mathcal{J}_{\mathcal{M}} = \bigcap_{K_{s_1, \dots, s_n} \in \mathcal{M}} V_{II}(K_{s_1, \dots, s_n})$. Mycielski proved that $\mathcal{J}_{\mathcal{M}}$ is a proper δ -ideal of the subsets C not containing nonempty open sets and $\mathcal{J}_{\mathcal{M}} \neq \emptyset$ if and only if each subset K_{s_1, \dots, s_n} is nonempty.

For an arbitrary δ -field \mathcal{J} and δ -ideal \mathcal{I} the smallest δ -field containing \mathcal{J} and \mathcal{I} will be denoted by $\mathcal{J} \Delta \mathcal{I}$.

3. The main results

L e m m a 3.1. If $K \subset N$ is infinite, then there exists an increasing sequence $\{B_n\}_{n \in N}$ of Borel sets such that

$$C = \bigcup_{n=1}^{\infty} B_n \text{ and } B_n \in V_{II}(K) \text{ for every } n \in N.$$

P r o o f . Let $K = \{k_i\}_{i \in N}$ and let for every $i \in N$, $B_1^* = \prod_{t \in N} X_t$, where $X_t = \{0, 1\}$ for $t \neq k_1$ and $X_t = \{0\}$ for $t = k_1$. Then putting for every $n \in N$, $B_n = (C - \bigcup_{i=1}^{\infty} B_i^*) \cup \bigcup_{i=1}^n B_i^*$,

we have obtained the increasing sequence of Borel sets such that $\bigcup_{n=1}^{\infty} B_n = C$ and $B_n \in V_{II}(K)$ for every $n \in N$. Indeed, it suffices for the Player II to use for every $n \in N$ a strategy δ_n such that $x_{k_1} = x_{k_2} = \dots = x_{k_n} = 1$ and $x_{k_{n+1}} = 0$. Then for an arbitrary strategy τ of the Player I $\langle \tau, \delta_n \rangle \in V_{II}(K)$.

Let $K_{s_1, s_2, \dots, s_n} \neq \emptyset$ for every $n \in N$. Let $\mathcal{B}^* = \mathcal{B} \Delta \mathcal{J}_M$ where \mathcal{B} is the family of Borel sets in C .

Theorem 3.1. Convergence with respect to the δ -ideal \mathcal{J}_M does not yield a topology in the space of all \mathcal{B}^* -measurable real functions.

Proof. We shall prove that condition (E') is not fulfilled. For this purpose we find a set $B \in \mathcal{B}^* - \mathcal{J}_M$ and a sequence $\{B_{j,n}\}_{j,n \in N}$ of \mathcal{B}^* -measurable sets such that conditions 1° and 2° will be satisfied and for each sequence

$\{n_j\}_{j \in N}$ of natural numbers $\bigcap_{j=1}^{\infty} B_{j,n_j} \in \mathcal{J}_M$. Let $M = \{K_j\}_{j \in N}$ for every $j \in N$, K_j is infinite, then by previous lemma there exists a sequence $\{B_{j,n}\}_{n \in N}$ of Borel sets such that

$$1^0 \quad B_{j,n} \subset B_{j,n+1} \quad \text{for any } n \in N,$$

$$2^0 \quad \bigcup_{j=1}^{\infty} B_{j,n} = C \quad \text{for every } j \in N$$

and $B_{j,n} \in V_{II}(K_j)$ for any $j, n \in N$. Hence for each sequence

$\{n_j\}_{j \in N}$ of natural numbers $\bigcap_{j=1}^{\infty} B_{j,n_j} \in \bigcap_{K_j \in M} V_{II}(K_j) = \mathcal{J}_M$.

Let (X, \mathcal{J}) be a measurable space and \mathcal{J} be proper δ -ideal subsets of X . Let $\mathcal{J}^* = \mathcal{J} \Delta \mathcal{J}$ and $\mathcal{R}^* = \{A \in X : A = B \cup C; B \in \mathcal{J}, C \in \mathcal{J}\}$. It is easy to check that \mathcal{R}^* is stable under countable unions and intersections.

Lemma 3.1. The following conditions are equivalent:

- (i) a pair $(\mathcal{J}^*, \mathcal{J})$ fulfills (E')
- (ii) a pair $(\mathcal{R}^*, \mathcal{J})$ fulfills (E')
- (iii) a pair $(\mathcal{J}, \mathcal{J})$ fulfills (E').

Proof. Since $\mathfrak{J} \subset \mathfrak{R}^* \subset \mathfrak{J}^*$, then the implications (i) \Rightarrow (ii) \Rightarrow (iii) are obvious. We shall prove that (iii) implies (ii). Let an arbitrary set $D \in \mathfrak{R}^* - \mathfrak{J}$ and an arbitrary double sequence $\{B_{j,n}\}_{j,n \in \mathbb{N}}$ of \mathfrak{R}^* -measurable sets fulfil 1° and 2° of condition (E'). For any $j, n \in \mathbb{N}$, $B_{j,n} = C_{j,n} \cup E_{j,n}$, where $C_{j,n} \in \mathfrak{J}$, $E_{j,n} \in \mathfrak{J}$. We may require that, for any $j, n \in \mathbb{N}$, $C_{j,n} \subset C_{j,n+1}$. Let $E = \bigcup_{j=1}^{\infty} \bigcup_{n=1}^{\infty} E_{j,n}$. Then $E \in \mathfrak{J}$ and it is easy to check that, for each $j \in \mathbb{N}$, $D = \bigcup_{n=1}^{\infty} C_{j,n} \cup E$. Let $D' = \bigcap_{j=1}^{\infty} \bigcup_{n=1}^{\infty} C_{j,n}$. Then D and the sets $B'_{j,n} = C_{j,n} \cap D'$ fulfil 1° and 2° for the pair $(\mathfrak{J}, \mathfrak{J})$. Since the pair $(\mathfrak{J}, \mathfrak{J})$ fulfills condition (E'), there exists a sequence of natural numbers such that $\bigcap_{j=1}^{\infty} B'_{j,n_j} \notin \mathfrak{J}$. Hence $\bigcap_{j=1}^{\infty} B_{j,n_j} \notin \mathfrak{J}$. This proves that the pair $(\mathfrak{R}^*, \mathfrak{J})$ fulfills condition (E'). Now, we shall prove that (ii) implies (i). Let an arbitrary set $D \in \mathfrak{J}^* - \mathfrak{J}$ and an arbitrary double sequence $\{B_{j,n}\}_{j,n \in \mathbb{N}}$ of \mathfrak{J}^* -measurable sets fulfil conditions 1° and 2° of condition (E'). For any $j, n \in \mathbb{N}$, $B_{j,n} = (A_{j,n} - C_{j,n}) \cup E_{j,n}$, $D = (A_0 - C_0) \cup E_0$, where $A_0, A_{j,n} \in \mathfrak{J}$, $C_{j,n}, E_{j,n}, C_0, E_0 \in \mathfrak{J}$. Let $E = \bigcup_{j=1}^{\infty} \bigcup_{n=1}^{\infty} C_{j,n} \cup C_0$. The set E belongs to \mathfrak{J} . For any $j, n \in \mathbb{N}$ put $B_{j,n} = B_{j,n} \cup E$ and $D' = D \cup E$. Then the sets $B'_{j,n}$ fulfil 1° and 2° for the pair $(\mathfrak{R}^*, \mathfrak{J})$. Since the pair $(\mathfrak{R}^*, \mathfrak{J})$ fulfills condition (E'), there exists a sequence $\{n_j\}_{j \in \mathbb{N}}$ of natural numbers such that $\bigcap_{j=1}^{\infty} B'_{j,n_j} \in \mathfrak{R}^* - \mathfrak{J}$. Hence $\bigcap_{j=1}^{\infty} B_{j,n_j} \notin \mathfrak{J}$. This proves that the pair $(\mathfrak{J}^*, \mathfrak{J})$ fulfills condition (E').

Lemma 3.2. Let \mathfrak{J}_1 and \mathfrak{J}_2 be the proper σ -ideals subsets of X . If there exist \mathfrak{J} -measurable sets $X_1 \in \mathfrak{J}_1$, $X_2 \in \mathfrak{J}_2$, such that $X = X_1 \cup X_2$, then the pair $(\mathfrak{J} \Delta (\mathfrak{J}_1 \cap \mathfrak{J}_2), \mathfrak{J}_1 \cap \mathfrak{J}_2)$

fulfills condition (E') if and only if both pairs $(\mathfrak{J} \Delta \mathfrak{J}_1, \mathfrak{J}_1)$ and $(\mathfrak{J} \Delta \mathfrak{J}_2, \mathfrak{J}_2)$ fulfill condition (E').

P r o o f. Sufficiency. Suppose that the pair $(\mathfrak{J} \Delta \mathfrak{J}_1, \mathfrak{J}_1)$ does not fulfill condition (E'). According to Lemma 3.1 it is equivalent that the pair $(\mathfrak{J}, \mathfrak{J}_1)$ does not fulfill condition (E'). Thus there exist a \mathfrak{J} -measurable set $B \in \mathfrak{J}_1$ and a double sequence $\{B_{j,n}\}_{j,n \in \mathbb{N}}$ of \mathfrak{J} -measurable sets fulfilling 1° and 2° and such that for an arbitrary sequence $\{n_j\}_{j \in \mathbb{N}}$ of natural numbers $\bigcap_{j=1}^{\infty} B_{j,n_j} \in \mathfrak{J}_1$. Since $B = (B \cap X_1) \cup (B \cap X_2)$, then $B \cap X_2 \notin \mathfrak{J}_1$. Putting $A_{j,n} = B_{j,n} \cap X_2$ for any $j, n \in \mathbb{N}$ we claim that for an arbitrary sequence $\{n_j\}_{j \in \mathbb{N}}$ of natural numbers $\bigcap_{j=1}^{\infty} A_{j,n_j} \in \mathfrak{J}_1 \cap \mathfrak{J}_2$, but this contradicts that the pair $(\mathfrak{J} \Delta (\mathfrak{J}_1 \cap \mathfrak{J}_2), \mathfrak{J}_1 \cap \mathfrak{J}_2)$ does not fulfill condition (E').

Necessity. Suppose that the pair $(\mathfrak{J} \Delta (\mathfrak{J}_1 \cap \mathfrak{J}_2), \mathfrak{J}_1 \cap \mathfrak{J}_2)$ does not fulfill condition (E'). Then it is easy to conclude that the pair $(\mathfrak{J} \Delta \mathfrak{J}_1, \mathfrak{J}_1)$ or the pair $(\mathfrak{J} \Delta \mathfrak{J}_2, \mathfrak{J}_2)$ does not have this property.

Let H denote Haar measure in C , \mathfrak{d} - the δ -ideal of all sets of H measure zero in C , \mathfrak{K} - the δ -ideal of all sets of the first category in C and B - the family of all Borel sets in C .

Let $\mathfrak{J}_1 = \mathfrak{J}_M \cap \mathfrak{d}$, $\mathfrak{J}_2 = \mathfrak{J}_M \cap \mathfrak{K}$, $\mathfrak{J}_3 = \mathfrak{J}_M \cap \mathfrak{K} \cap \mathfrak{d}$ and $\mathfrak{B}_i^* = \mathfrak{B} \Delta \mathfrak{J}_i$ for $i = 1, 2, 3$. Mycielski proved (see th. 4 and property 5 in [1]) that there exist Borel sets A and B such that $C = A \cup B$ and $A \in \mathfrak{K} \cap \mathfrak{d}$, $B \in \mathfrak{J}_M$.

By Theorem 1.1, 3.1 and Lemma 3.2, we have the following theorem.

T h e o r e m 3.2. Convergence with respect to the δ -ideal \mathfrak{J}_i does not yield a topology in the space of all \mathfrak{B}_i^* -measurable real functions for $i = 1, 2, 3$.

REFERENCES

[1] J. Mycielski: Some new ideals of sets on the real line, Colloq. Math. 20 (1960) 71-77.

- [2] E. Wagner : Sequences of measurable functions,
Fund. Math. 112 (1981), 89-102.
- [3] E. Wagner, W. Wilczyński : Spaces of
measurable functions, Rendiconti del Circolo Matematico
di Palermo, Serie II (1981), 97-100.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF ŁÓDŹ,
90-238 ŁÓDŹ, POLAND

Received January 8, 1987.