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ON A GENERALIZATION OF THE HILBERT SPACE

Introduction

In this paper we have shown a certain generalization of
the Hilbert space using for this purpose the properties of
the Mikusifskl space and the space normed by elements belong-
ing to the cone of the Mikusifski space. We have given some
examplss of generalized unitary spaces and Hilbert spaces and
applications of these spaces in the Bittner operational ocalcu-
lus,

1. The Hilbert space of the type (X,Y,K)

Let X be a linear space over the field I of real or com-
plex numbers, Let Y be a Mikusifski space (see [3]) with a
distinguished oone KcY. Assume that in the latter space also
a commutative multipliocation

(Y.1) ¥4I, = Iy €7, Fqs¥p €Y

is defined.
Assume also that the multiplication is distributive with
respeot to addition, i.e. that

(v.2) V(32493) = 3495 + I4¥30 403075 €Y
and

(Ke1) (31’72 cK) = (3172 € K),
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2 H, Wysooki

(Y.3) (ye¥) =2 (32 1= 33 €K,

(Y.4) [(7e¥)r(3® = 0)]= [3 = 0],

(K.2) [(3407 ¢ K) A (35 - 35 e K)] = [3,-7, ¢ K],
(K.3) [(35095 €K A (35 = 32)] = [3, = 3,0,
(K. 4) y1/G\K yz\e/K ¥, = yg.

It is obvious that
(K.5) _ [(71!32 e K) A (31 *Jp = 0)] = [31 =32=0].

Let Z be a linear oomplex space Y+iY (see [1]) with the
aultiplication dsfined by tha formula

2425 i= (3173 - 7234) + 1(3174 + 3233)9

where Z, =34 + 132, Z, = J3 + 134 € Z, Than

(z.1) 3425 = B8, €2,  Lo,5,¢3,
(z.2) 21(z2+23) = 3425 + 2,25, Z4,%55%3¢ 0

by (Y.1) and (Y.2).
Put
Z 1= ¥q 132:

where 2z = 3,0 iyze.z. It can easily be seen that

(2.3) T ¥y = B, + By, Bq43,€ Lo

Let [z] be such an elesment of the cone K that

{1) 1212 = 23 = y? + yg,
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where 2z = y1+132 ¢Z, Assume also that for any z €Y the sle=
ment |z| is the medule defined in K. KMoreover, let

(z.4) |z24] + |85] = |24+2,]| €K, 84,8, ¢Z,

Definition 1. Wa shall say that in the
gpace » = aoalar product

<x1|xz>e Z, X45Xp €eX

is defined, i.8. a svslar product with values taken from 2,
1f the following conditions hold ™

(1.1) CEPXp (X490 = KXy (X35 + (X XD,

(1.2) <Fxylxy> = g<xylx,0,

(1.3) <xy1x5> = <xp1X40,

(1.4) (x[x>eK, (<x|x> = 0)=>(x = 0),
(1.5) (<xq |25k X008 = (TTE<x, 12002 e K

(the Cauchy-Buniakowski~-Schwars condition), XyXqy%p,%5 € X,
Fele

De finitien 2, 'The couple (X,{s]¢>) is called
unitary spece of the typs (X,Y,K}.

Defirition 3 (of. [3]). We say that in the
space X a nora

Ixi ek, xeX

1s defined, i1.s. & norm with values taken from X, if the
following couilti-u& holds

{n.1) {1xi = 0) =>(x = 0},
(B.2) [xq] + |xp) - |xy+x,] €K,
(n.3) gzl = |7|lx]y xyxyex,¢X, gel,

) 4=Y+1Y if X 38 a complex space ahd Z =Y if X is resal.
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Definition 4., The couple (X,!l°l) will be
referred to as the normed espace of the type (X,Y,K).

For a given cone K a partial order in the Mikusidski
space Y is defined by the relation

def
(31$I2)<_———$(32"31 € K), 31032€Y0

We shall also use the symbol 22734
Let Ix] be an slement of K such that

(2) 1x12 = (x]x>, x¢€X.
Then
(2/) 112 = |<x|x>], xeX

It is obvious that Ix1>0 for xe X, If Ix| = O then le2 =
= (x|x> = 0O, Herefrom and from (i.4) we obtain x = 0, Using
(i.2) and (1.3) we can easily verify that

<Xq1TXp> = T<Xy[X>y  XypXpe X, Fel o
Henos

17x12 = (Fxigx> = gF<x|xd> = (1711x1)%, xeX, ger.
Herefrom and from (K.3) we obtain

l#x| = 711X}, xeX, ger.

Prom oconditions (i.5) and (K.2) as well as from (1) and (2)
we obtain the Cauchy-~Buniakowski-Schwars inequality

(3) I<xqix> < 12411X51,  Xqp%p € Xe

By (i.1), (1.3) and (2.3) we can easily verify that
(4) <X | Xp#X3> = <&y |Xp) + <Xq1X3), X19Xp,X3 € Xo
As

|x1+12|2 = |<x1+x2|x1+12>|, XX, €X,
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what cen be obtained from (2'), therefore from (i.,1) and (4)
we get

|x1+x2|2 = |<x1;x1>+<x2}x1>+<x1|x2>+<x2;x2>. Xq9%p € Ko
Furthermore, by (4.4) and insquality (3) we have
“ . W 18 2
|x1+x2|2 q<x1ix1>+;l<x1i12>|+ax2!xz> JEY +2|x1||12|+|x2| =
= (ix1|+]x25}2, XysXs € Ko

This last equality follows from conditions (¥,1) and (Y.2).
Herefrom eand from (X.2) we obtain

fx ool e |2y + [xpe Zgaxp e X

Corollsgzozy 1. The unitary space (X,<{*|*>) of
the typs (X,Y,K} i¢ 2 normed epeece {X,1+1}! of the type (X,Y,K)
where the norm setiafies (2).

The opronf of the following theorem can be sagily obtained
(ef. Th.2.%, 2.2, X 111},

Theowaa 1, The norm I+l in the unitary space
{X,<*}*>) of the type {X,Y,K) satisfies the followlng identity
of persllelegram

(5) |z1+x2§2 * |x1-12|2 = 2(|x1|2 + |x2|2), Xi9Xy€ Xo
Moreover
(6) e FRE PORE % (]x1+x2|2 - |x1—x2|2), Xy9X € X

if X is s resl npeca and

(7) <xylxy> = % (|x1+12|2-|x1-12|2) - % i(|ix1+x2|2-|ix1-x2|%,
Xq9Xs eX
if X is complex.
In a8 normed space (X, !*l) of the type (X,Y,K) a convergence
is defined by the convergence with the regulator f ¢ K (regular
convergsnce) in the Mikusidski space Y (see [2,3]).

Lati {xQ}geN and {39}9€N be sequences of elements from
spaces X and Y respectively.
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Definition 5 (sea [2,3]

(323)- 9 S5 (V AV A ls, -9l <o),

feK 0 ¥ v> i

def
(lim x\,-x)é.—e:>(}il;no|x9 - x| = 0) R

s

Therefore

(Im %, = x) <= ”v AN A 1%, - xlset) .

feK E>0 b v2N

D finition 6 (see [3]). Ve say that a sequen~
ce {x\,}‘,eh 3atisfies ithe Cauchy condition if

VANRVARWAN EMEESIRECS

feK e30 M p,vu

Definition 7. If any arbitrary sequence
{xw}veN of elemante of X satisfying the Cauchy condition con-
varges to soms <lowent of X, then the normed space (X,l*1) of
the type {X,Y,X} will 96 called a space of the typs XY K (in
3] Xy x s referred to us the space of the type Xy), whereas
shs un1tary spaca (X,<+i«>} of the type (X,Y,K) will be callad
u Hilbert space of the type (X,Y,Kl,

v

24 .n{x 3.51
Ao Lu: = ¥ 2= C(N) be a real linesr space of roal se-
guancer ¥ ¢ | ]', N with the common additinn ¢f sequences and

¥
saltiplicasxion of a sequence by & vaal nuubar.
It

K = C(N) := {xe cin) = /N x> o}
JeN
and

[x] 2= {val}oeﬁ’ x e CIN)
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then C(N) is a Mikusiriski space. The space defined in this way
is a normed space of the type (C(N), C(N), C_(N)) if to any
sequence x correspond a sequence of real quasi-noras
{"x"j}JeN and the norm

Ix] 2= {xll3}jeqs x €M),
where

Hxﬂj 1= sup{lxgl s v sj}, jeN (see [3]).

The multiplication of sequences belonging tov C(N) we define
by the formula

xy t= {xvyv}qu' x,¥ ¢ C{Nj.

C(N) is not an unitary space. E.g. for the caquehces

x = {0,41,2,0,0,06,0,0..},
7 = {0,0,0,3,4,5,6,.0.}

we have

|x+y|2 + |x-y|2 = {0,2,8,18.32.50,72,...}
and

2(]x]2 + |9]%) = {0,2,8,26,40,58,80,...}.

Thus the paralleioéram 1ieniity oondition (5) does not hold
in this case,

B, For Y s= R', K = R := {yeR's 320}, £ = 1 the Hil-
bert space H = {X,<s|*>) ¢f the type (X.R',R]) is a Hilbert
spacs 1in tha claseiosl e2sa.

Co Let C([ct,# . &) Bu a complex linear space of continuous
functions dsfined ~u the interval Rx,ﬂ] cR1 with complex valu~-
es, Similarily, let C([x, ], R') be a real linear space of
continuous functions defined on the interval Bx,@] with real
values. Defins

it -
X:= P clo.3],8), ¥ 2= C([a,B],R).
=1 _
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Then Z 1s a complex linear space of continuous functions de-
fined on [x,P] with complex values.

Let
K :-{{ y(t)}ex : /\ y(t)?o}

te[o,p]

and

131 1= {130}, {Gya0(0} = {3,(0)3,(0)},

where y = {y(t)}, Iy = {31(':)}, I, = {yz(t)} e Y.
The sxpression

n
CEq|Fp> 1= {Z x}(t)x?(t’)}, %, = {30}, 32-{3‘2(t)}ex
J=1

defines a scalar product in X, as for eny te¢ hx.ﬁ]<x1|x2>(t)
is & scalar product in 1

We shall demonstrate that the considered unitsry space
(X,<*] +>} of the type {X,Y,K) is & Hilbert space.

We have here

= {F(t)} e x.

y v
2. lx;j(“‘z ’
J=1

Let {x‘,}\7€N be & sequance of veotor functions belonging to X

satisfying the Cauchy conditlon

VoAV A { 2 | y(t)-x(t)lz} {e£(t)} .

{f(t)}eK e>0 M povzM

Hence for sny arbitrary € > O there exists a nhumber M such
that for any u,v> M and for any te[x,b] we have

ng(t) - xj(t)l sef(t) semax{2(t) : te[o,B]}, 3 = 1,.c.,n.

It follows from this condition, that the sequencs {xg(t)},
J=1,...,0 18 uniformly convergent to some continuous function

-8 =
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{xj(t)}. J=1,e0.,n, Therefors for anmy arbitrary €> 0 there
exists a number M such that for any v M and for any te [x,p]
we have

lxg(t) - Ij(t)ls £ J = 14eee,n.

Taking f = {VE} we infer that {3;} = XeX, where " —3 "
stands for the regular convergence.

D. Lst (x,<-|->1) be an unitary space of the type (X,Y,K)
and let Ve L(Z,Z) and Viye L{Y,Y) be a non-negative operation,
i,e,

(8) ‘ V(K) ¢k,
satlisfying the condition
(9) (V(x1lx1>1v<12|12>1)2 - (V<x1|x2>1v<x1|12>1)2 €K, xq4,X5¢Xs

Moreover, let VIK be an injeation, 1i.e.

(10) (Vy=0)= (3y=0), 7yeK,
Then
(11) <(xgl x50, 1= V<x1l12>1, XqsX, € X

is a soalar product in X.
As the operation V is additive and homogensous the condi-
tions (i.1) and (1.2) for the product (11) sre obvious., As

(12) Vz = (Vz), z¢2

therefore
<x1!12>2 = V(x1lx2)1 = V<x2|x1>1 = (V(12|x1>1) = <x2|x1>2.
XqsXs5 € X,

i.e. condition {i.3) holds,
From properties (8) and (10) we obtain conditions (i.4):

(x|x>2 - V(x[x>1 €K, as <xlx>1 €K, x¢X,

-9-
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(<x|x>2=V<xlx>1¢0) = (<x|x>1=0) = (x=0}, x ¢ X

From (9) and definition (11) as well as from property (12) of
operation V we get the Cauchy-Buniakowski-Schwarz condition
{(i.5) for the socalar product <'l'>é.

E. Given the Bittner operational calculus

co(1°,1l,s,T 1829,Q)  (ses [2,3]),

q

where 1.° and L1 ares real linsar spaces such that L1c Lo; the
operation S« L{L',5°) called tho derivative is a surjection,
i,8. S(1') = 1° The slements of the kernel of S, i.s. the
elsments of

KerS := {ca L1 : Sc=0}

will bse called the constants of the derivative S.

¢ is an arbitrary set of indexes q for the operations
qu L(L°,L1) such that ST w = w, we L° {oalled integrals) and
for the operations sqe L(L1,L1) such that T _Sx = x - qu,
X € L1 {called limit conditions). By induction we define a se=-
quence of spaces LO,'OC N such that

g {xeL‘)"1 : Sxequ}, J2eN.

Then
s e CLOCLQ-1C...CL1CL°, QGN
and
s?(1°) = 1°,
where
$” 1= So0S0... 08¢ L(L’,1°), 9eN.
o—tiﬁes
Put also
9 noo5 n
L,:== @ L', (KerS) := P Kers, n,veN,
J=1 J=1

- 10 =
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Bele Lot X := Lg, 2 =Y := 1L° rossess properties of the
speces X and Y quoted in §1 and let
n
- e 1.2 - -
<x1|x2)1 1= :Z: X3X5s  XqaXp € L.
j=1
Suppose also that condition (i.5) holds.
From (Y.3) and {X.5) we get

(<XIX>,=0) = (x%= ... =xZ=0), Fe1l,

Herefrom and from (Y.4) we obtain Xy T eee =Xy = 0, i.e. X = 0w
It is easy to verify that also the remaining properties of the
scalar product are satisfied.

Let

V=T =-T =38 T ¢eL{L°1°), 95:94 € G

be an operation satisfying the same assumptions as in Exam-
ple D. It follows from Example D that
. f1,§2 3 Lg

O T
o Jx5%

n
(13) F11%pp = 2 (1
3=

I
ig

is also a scalar product in Lg. As

sq(L1) = KerS, geG (sae [3])

therefore
V(L°) ¢ Kers

and for any 51,;2 eLg we have <§1§§2>26 KerSc 1.°.

Mieloszyk has defined in his paper [6] the scalar rroduct
(13) for n = 1 quoting its forms in various models of ths opa=
rational calculus.

BEe2e Lot X 2= L7, 2 = Y := L° poggess propertiss of the
spaces X and Y as in §7 and let the cperation

n

V=T =1 95384 €W
qO _{1’ 0?91
satisfy the assumptions (8) and ({0},

- 11 =
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Define

{14) <x1lx‘,2>1 i= (‘I‘q -Tq1\)(x1x2+8x18x2+...+Snx1Snx2), X ,x2an

0
and let (i.5) be satisfied.

&s for any x ¢ L c 1.° we have
xz,(Sx)z....,(Snx)zeK,

what follows from (Y.3), and because operation V is non-nega-
tive, therefore

<x|x>1 ¢ K, x ¢ LY,

As V|y is an injection, therefore from (K.5) we infer

[<xlx>4=0] = [x2=(Sx)2=...=(Snx)2=o], xe 1B,

Therefrom and from (Y.4} we get x = 0.

It ie easy to verify that alzo tii= rraaining propertiss of
the scalar product are satisfied. Therefora (Ln,<-l'>1) is
an unitary space of the type (IP,L°,K). &nd also (x.‘|12>1 €

€ KerScLo, x1,xzeLn.
Let
-1 n=1
(15) <Xy X0 $= 8. X8 Xo + eee + 8. 82 'x.8. S2x, +
117272 9 1 CIA 2 9, 1 9, 2
\ n n, n
+ (’lqo-Tq1)S x1S Xos x1,x2cL .

Assume also that (i.5) is satisfied. As we have for any x ¢ LP

(sqox)z,..., (sqosn'1x)2 ek
and
(qu-'rq1 JisPx)2e K

therefore
(x|x>, €K, xe 1m.

From (K.5) we obtain
[Kx|x>,=0] = [(sq ox)2=. . .=(sq osn'1x) 2 (Tq o-Tq 1) (Snx)2=0] ,

xe LB,
- 12 =
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Therefrom and from (Y.4) we get

n=1
8 X m ,90 = 8 S x =0
qo qo

and
[(2, o )(s"x)"’-o]=>[(s“x)2-o]=>[s°x-o], x el
9,y

Therefore x = 0, as any element xelP posseeses a Taylor de-
velopment

ne~1
X = sqx+ququ + eee + Tq sq

I% 18 easy to prove that also the remaining properties of the
scslar product are satisfied, Therefore (Ln,<-l->2) is an
unitary space. Morsover, if KerS is an algebra, then
<xy1x3>, ¢ KerSc 1%, x,,x,¢ L%

1¢ 1° 1= 12([0,1],R') 18 a real linear space of functions

Sn’1x+T§Snx, qeQ (see [2,3]).

x: [0,1] = &'
such that the funotions {[x(t)]z} ars Lebesgue=-integrable and

L ; t
d -
S 1= 32 8 = T = T = j q.=0,9,=1¢Q 1={0,1
dt L] qo |t 1 qo g’ q1 1 » [0} ’1 l.']

then the nerme [*],, |+|, 1 1* —»{{c} eKer & : c30} = &!

determined by the soalar producss (14) and (15) are equivalent
in the Hilbert spaoce

1” » w2([0,1],8")
being & real Sobolev spaes of fanetions
x 1 [0,1] =R

such that the derivative of omder n~1 is abselutely oconti~
nuous, whereas the derivetive of oxder n belongs to
12([0,1],R") (see [4]).
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B.3. Let {X,<¢|*>) us an unitary space of the type (X,Y,K)
and let X°c X.

Definition 8 (of. [1,5]). The operetion
$ e L(X°,X) is called quasi-unitary (quasi-orthogonal) if

(¢x1[ ¢x2>“- (X[ X5>y  XqpXy € x°,

Definition 9 (see [5]). The endomorphism
4 e L{X,X) is called antisymmetric {antihermitian) if

<Ax11x2> = -<x1|A12>, x1;xze X.

Consider the abstract differential equation

(16) SX = A%
with the limit oondition
(17) qux = xo’
wherse
eQ, xeL',” X_ e (Kers) AeL{12,19)
9p€ Vo n* ° n’ Vipebn
and
Sx 8. x > oA, .x, !
1 qo 1 3=1 1j J i
SX 1= : . 8, X i= : ’ Ax := : y
* qo [ ] [ ] t
|
n !
an sqozn e Andxj :
L 4 L J L

Definition 10 (of. [3]). For a fixed value
of ge Q, the endomorphism A€ L(L:,Lg) is called s guasi-lo~
garithm if

T -2



Generalization of the Hilbert_gggpe 15

where

~ - [+ A
n
It is easy to prove that A is a quasi-logarithm if ahd
only if

[(s§ = W) (o =8)] = [#=0], er).

Let

Definition 11, An nperation $q (2) «

)
4o 8y

L

n o
€ L((KerS)n,M(n)) such that & {4) = id(KerS)n is oallad

the resolvent of the equation {16i}.
Assume that for arditrary fixsd 9, ¢ q, foe (Kors)n the

solution of the problea {16}, (17} exists,
If 3 18 a quasi-logerithm then the unique solution of that

problea kas ths form

T . 2 AT
X ¢q0\3)x°v

KA Ta $q {K) is the resolvent of the equation (16).
0
Using the notion of vresult and operator (see [2,3]) we can
give the form of the operstion éq {d). Namely, it is sasy to

0
prove that the problem (16), (17) is eguivalent to the ab-
stract integral squation

-

(I - quA)x = X,

if 3 is a quasli~-logarithm then the solution of ths egqua-
tion is the veault

-
X =

IT-~1 4

If that result is an element of the space Lg then it is
also an elemeunt of Ll and the operstor

- 15 w
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= N Lalkd

Qq (A) = X

A
0 I - A
9

is the resolvent of the equation (16).

Let X 1= L:, Z =Y 1= 1° possess the properties of the
spaces X and Y a8 in §1 and let (Lg,<‘|'>) be an unitary space
of the type (Lg,L°.K) with the scalar product <e*|+)> possessing

the following property
(18) (%)%, c L)) = «F,15,> ¢ 1),

Definition 12, We shall say that the deri-
vative S satisfles the Leibniz condition on the scalar pro=-
duct <+fed> if

(19) KT, 13,0 = (S8R 1E,0 + <, IS%, %%, L.

We shall say that the limit condition Bgsd € Q is multipli-
cative on the scalar product {<|°*> if

(20) sq<§AI§2> * <sq§1laq§2>, q¢Q, 51,32 eLl.

Theorem 2 (cf. Lemma IX.9[5]). If the solu~-
tion of the problem (16), (17) exists, the derivative S sa=-
tisfies the Leibniz condition, the limit condition sqo is
multiplicative, the quesi-logarithm 11s antisymmetric, then
the resolvent éb (a) of equetion (16) is a quesi~-unitary ope~-
ration, °

Proof. For any 301,502 ¢ (KerS), the elements
x, = ?qo(A)xo1, x, = ‘qu(A)x02

are solutions of equation (16) with the limit conditions

respeotively, Hence we have
SGE, X0 = (BF, | X +<F, 5T, = AF, T +F, |4%,> = -<i1|7\}2> +
+ <x]|Ax2> = 0.
- 16 -
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Theraefore
<§1|§é> = 0, oc¢ KerS.
As
8, 0= 0, o ¢ KerS
9%
therefora

¢ = sq°<11532> - (sqox1|aq012> = <x°1lx°2>

and finally
<¢q°(A)xo1l@q°(A)x°2> = <x°1|x°2).

Corollary 2. If the assuwmptions of Theorem 2
are gatisfiled, then the resolvent Qq (a) of equation (16) is
o

a continuous bijection. .
Proof. 48 the operation Qq (A) i quesi-unitary,
0

therefors for any ;oe (Kers), we have

It follows therefrom, that the resolvent &h (A) is a bounded
)

injection. On the other hand, for any Xe¢ M p) there exists

x, = sqoxe (KerS)n such that X = @QO(A)xo, i.e. qu(é) maps

(KerS)n onto M(n)’
The system of equations

x () = glt)xy(¢)
xé(t} = -g(t)x1(t)

with the initisl conditions
{x1(8) 50} = {10 b {2(8) | 40}= {Zap b {x10)s{xp0} € Ker %?Efﬂ

has the form
- N -
SX = AX, sqox =X,

-17 =
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if we introduce an operational calculus in which

LO = Co([a, ﬁ],R1), OeNu{O}, 9,=0€Q := [ox,ﬁ]cR‘,
f
d
S tm S T_ = B 1=
dt 1} 1
° % ° lt-O
and
0 gl(t)
x '-{ }. {B(t)} €:L°o

~g(t) 0
The resolvent of the considered system has the form

-

t t
cos | g(z)dr .ein § g(t)de
0 0

t : t
-sin é glt)dr coB é gl7)ar

The quasi-logarithm A is an antisymmetric operation in the
scalsr product

Gy lEp> 1= {x)(0)xB(6)4xd(6)x3(8)}, Fo={F, ()}, Fp={Fp(t)}c2]

possessing property (18}.

The derivative S = 31 and the limit condition s = It .
possess properties (19) and (20) respesctively. It follows

therefore from the last theorem that the resolvent 60(3) is
a quasi-unitary operation.
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