
DEMONSTRATIO MATHEMATICA 
v«i xxii N» i tm 

Hubert Wywcki 

ON A GENERALIZATION OF THE HILBERT SPACE 

Introduct ion 
In t h i s pap«r «• have shown a o e r t a i n g e n e r a l i z a t i o n of 

the Hilbert space using f o r t h i s purpose the propert ies of 
the Hikusitlski space and the space normed by elements belong-
ing to the cone of the Mikusitiski space* Ve have given some 
examples of generalised unitary spaces and Hilbert spaoes and 
a p p l i c a t i o n s of these spaoes in the B i t t n e r operat ional o a l c u -
l u s . 

1 . The Hilbert space of the type ( I , Y , K ) 
Let X be a l i n e a r space over the f i e l d r of r e a l or com-

plex numbers. Let I be a Mikusidski space (see [ 3 ] ) with a 
dist inguished aone K e y . Assume that in the l a t t e r space a l s o 
a commutative m u l t i p l i c a t i o n 

(Y.1) y ^ g » y2y1 cT, y 1 t y 2 

i s defined. 
Assume a l s o that the m u l t i p l i c a t i o n i s d i s t r i b u t i v e with 

respeot t o addi t ion , i . e . tha t 

( T . 2 ) 7 ^ 7 2 + 7 3 ) -

and 

(K.1) £ £ K ) » 
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2 H. Wysookl 

(T.3) (y e y) => (y2 y j e K ) , 

(Y.4) [(y e Y) a (y2 = 0 ) ] =4> [y « O], 

(K,2) [ ( 7 i a 7 2 £ A " 7? £ K>1 € Kl> 

(K.3) [ ( 7 , ^ 2 e K ) A ( y 1 = AW = 

(K.4) A V j . - yI. 
^ e K y2 e K 1 * 

I t i s obvious that 

(K.5) [ ( y 1 t y 2 eK) a ( ? 1 + y 2 = 0)] [ 7 l =y 2 = 0 ] . 
Let Z be a l inear oomplex space y+iy (see [ l ] ) with the 

multiplication defined by the formula 

*1 a 2 J = " ;y2 :y4 , + + y2y3*» 

where ẑ  « y1 + i y 2 , y^ + iy^ e Z. Then 

(Z . I ) Z1Z2 " s 2 2 1 e Z ' z -|» z 2 e Z * 

(Z.2) z 1 (z 2 +Zj) • a i z 2 + Z1Z3* a l , 8 2 , ! 8 3 £ z 

by (Y . I ) and ( y . 2 ) . 
Put 

i y1 - i y 2 , 

where z « y^ + i y 2 e Z. I t can easi ly be seen that 

( Z . 3 ) Z1+Z2 " + ®2* 

Let |z| be such an element of the cone X that 

(1) Iz l 2 - zz « y 2 + y|, 
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G e n e r a l i z a t i o n o f t h e H i l b e r t space 

where a - y ^ + i y ^ Z » Ass urns a l s o t h a t f o r any z e Y t h e e l e -
ment \%\ i s - , t h e module d e f i n e d i n K. Moreover , l e t 

( Z . 4 ) | K-| | + |«2| - I a i + * 2 I c K * *1 ' *? . e Z * 

D e f i n i t i o n 1 . We s h a l l say t h a t i n t h e 
space >. - e o a l a r product 

< * 1 1 * 2 > e Z, x 1 t x 2 e X 

i s d e f i n e d , i ; e . a s c a l a r product wi th v a l u e s t a k e n from Z, 
i f t h e f o l l o w i n g c o n d i t i o n s h o l d * ' » 

( 1 . 1 ) < x 1 + * 2 | x 3 > - < * 1 | * 3 > + < x ^ | * 3 > , 

( 1 . 2 ) < J * 1 l *g> - 2 T < * I I * 2 > » 

( 1 . 3 ) < x 1 | x 2 > - < x 2 | x 1 > , 

( 1 . 4 ) < x | x > e K, (<x|x> - 0 ) =4> ( x - 0 ) , 

( 1 . 5 ) ( < x 1 | x 1 > < ^ | x 2 > ) 2 - (<lTjTx 2><x 1 | x 2 > } 2 e K 

( t h e Cauohy-Bunlakowaki-Sehwars c o n d i t i o n ) , , x 2 t x ^ e X , 
a r ^ r . 

D e f i n i t i o n 2 . The couple ( X , < • ! • > ) i s o a l l a d 
u n i t a r y space o f the type ( X , Y , K ) . 

D e f i n i t i o n 3 ( o f . [ 3 ] ) . We say t h a t i n t h e 
space X a norm 

l x I e K, x e X 

i s d e f i n e d , i . e . s norm w i t h v a l u e s t a k e n f r o n K, i f t h e 
f o l l o w i n g coa--iiti'-sas h o l d i 

» U „ 1 ) ( I x i =» 0 ) = > (x » 0 ) , 

( n . 2 ) j j + J * 2 | - J X^+XgI £ K, 

( n . 3 ) » | I I x j , x , x 1 ( x 2 e X , y e r . 

•xi 
L = I + i Y i f X i s a complex space and Z «=Y i f X i s r e a l . 
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D e f i n i t i o n 4. The couple (X,1*1) will be 
referred to as the normed apace of the type (X,Y,K). 

For a given cone K a partial order in the Mikusióski 
space Y i s defined by the relat ion 

def 
(y1 * y 2 ) < = > ( y 2 - y 1 e K), y . , , y 2 e Y . 

Ve shall also use the symbol y 2 ^ y . j . 
Let |x| be an element of K such that 

(2) |x|2 - <x|x>, x eX. 

Then 

( 2 ' ) Ix l 2 - |<x|x>|, x e X . 

I t i s obvious that lx|>0 for x c X. I f |x| « 0 then |x|2 « 
* <x|x> » 0 . Herefrom and from ( i . 4 ) we obtain x * 0 . Using 
( i*2) and ( i . 3 ) we can easily verify that 

<x1|jrx2> - J<x1|x2>, x 1 f x 2 6 X , arcr . 

Henoe 

I 7 » l 2 • <TxlTx> - flf<*l*> - ( l í l U I ) 2 , x e i , f t r . 

Herefrom and from (K.3) we obtain 

|T*I - l r l l * | . « e l . f c r . 

Prom conditions ( i . 5 ) and (K.2) as well as from (1) and (2) 
we obtain the Cauohy-Buniakowskl-Schwars inequality 

(3) |<x1|x2>|« I z j l l ^ l , x 1 , x 2 e l . 

By ( i . 1 ) , ( i . 3 ) and (Z.3) we oan easily verify that 

(4) <x1|x2+x3> « <*1|x2> + <x1|x3>, x 1 f x 2 , x 3 € X. 

As 

Ix-j+xgl 2 « |<x1+x2|x1+x2>|, x 1 t x 2 e X , 
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General izat ion of the Hilbert; space 5 

what can be obtained from ( 2 ' ) , therefore from ( i . 1 ) and (4) 

we get 

¡X-J+Xgl = I <x1 |x1>+<x2jx1>+<x1 ¡x2>+<X9|X?>, x . | , x 2 e X . 

Furthermore, by (2.4) and inequal i ty (3) we have 

|x.,+x2| 2 i <x11 |<*11 *2>| +<*2! x2> $ | x 1 |2+2 |x11 | x 2 | + |x2| 2 = 

= (jx1|+|x2j)2, X1,XPe X. 

This l a s t equal i ty fo l lows from conditions (T.1) and (Y .2) . 
Herefrom and from (K.2) wa obtain 

i * i + x 2 U 1*11 + l x 2 ! ' X T * 2 £ X* 

C o r o l l a r 7; The unitary space (X,<* |»>) of 
the type (X,Y,K} i f n aorœed spac6 (X,1*1 J of the type (X,Y,K) 
where the norm s a t i s f i e s ( 2 ) . 

The proof of the fo l lowing theorem can be e a s i i y obtained 
( c f . T h . 2 , 1 , x l [ l ] ) . 

T h a 0 - a a 1 . The norm M i n the unitary space 
(X,<•!*>) of the type i'X,Y,K) s a t i s f i e s the fo l lowing i d e n t i t y 
of parallelogram 

(5) I * 1 « 2 | 2 + l * i - » 2 | 2 - 2 ( | X l | 2 + | x 2 | 2 ) , x 1 t z 2 e Z . 

Moreover 

(6) * I ( j x ^ x g l 2 - \x^-x 2 1 2 ) , x 1 t x 2 e X 

i f X i s a r e a l »pace and 

(7) < x 1 l x 2 > = J ( | x 1 + x 2 | 2 - | x r x 2 | 2 i - 1 i ( | i x 1 + x 2 | 2 - | i x 1 - x 2 | ^ f 

x.j f x 2 e X 

i f X i s complex. 

In a normed space (X, M ) of the type (X,Y,K) a convergence 
i s defined by the convergence with the regula tor f cK (regular 
convergence) in the Uikusinski spaoe Y (see [ 2 , 3 ] ) . 

Let and {y^j^eu be sequences of elements from 
spaces X and Y r e s p e c t i v e l y . 
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D e f i n i t i o n 5 (see [2 ,3 ] ) 

def 
U i " ^ ) - ' «==> ( V A V A I J* - J r | < e f ) . 

feK e>0 M M 

def ( lim x^ = x ) <=> ( lim I* - - x | - 0 ) . \ -»oo ' W-*oo v ' 

Therefore 

( ¿ i ® = * ) ( V A V A K - x U E f ) • 
feK e>0 M OiU. 

D e f i n i t i o n 6 (see [3 J ) . We say that a sequen-
ce {x.p}^, s a t i s f i e s the Cauchy condition i f 

v A V A - x0|.<£f . 
:U.K t>0 M {J,\>£M 

D e f i n i t i o n 7. If any arbi t rary sequence 
e^e iB3ir i"e s a t i s f y ing the Cauchy condition con-

verges to soma iloisent of X, then the noroed space (X, 1*1 ) of 
the type (X,Y,X) w i l l be cal led a space of the type Xy K ( in 
f31 Xv y i s referred to as the space of the type Xv) , whereas 

X 9 X 
iha unitary space (X,<»)«>) of the type (X,Y,K) w i l l be cal led 

a Hilbevt space of tha type (X,Y,K). 

2. i'>tiiL-JC 
A. La ; ••- ï t * C(N) be a r e a l lineex* space of roa l se -

quence c < ^ 'v lv N common addition of sequences and 
tmlt ip l icav ion of a sequence by a r e a l riteabsr. 

If 
K C (H) : = + x e C(N) s / \ xv > 0 \ v 

Je N 
and 

1*1 ! = {I v»€ W» * e C ( N ) 
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t h e n C(N) i s a Mikue i r i sk i s p a c e . The space d e f i n e d i n t h i s way 
i s a normed space of t he t y p e (C(N) , C(N) , C + (N) ) i f t o any 
sequence x c o r r e s p o n d a s equence of r e a l q u a s i - n o r m s 

a n d t h e n o r m 

M s = { N l j b e N » 

where 

| |* | | j B u p { | x J i j e K ( s e e [3 ] ' ) . 

The m u l t i p l i c a t i o n of s e q u e n c e s b e l o n g i n g t o C(N) we d e f i n e 
by t he f o r m u l a 

«• v-,ejf. x . y e C f N ) . 

C(N) i s not an u n i t a r y a p a c e , B . g . f o r t h e (sequences 

x ~ { 0 , 1 , 2 , 0 , 0 , 0 , 0 , . . . } , 

y - { 0 , 0 , 0 , 3 , 4 , 5 , 6 , . . . } 

we have 

| * + J | 2 + | * - 7 | 2 - { 0 , 2 , 8 , 1 8 , 3 2 , 5 0 , 7 2 , . . . } 

and 

2(\x\2 + | y j 2 ) - { 0 , 2 , 8 , 2 6 , 4 0 , 5 8 , 8 0 , . . . } . 

Thus t h e p a r a l l e l o g r a m i d e n t i t y c o n d i t i o n (5 ) d o e s not h o l d 
i n t h i s c a s e . 

B. Fo r Y t- e \ K r ] s = {y e H1 s yjs 0 } , f := 1 t h e H i l -
b e r t s p a c e H = (X, <>i*>) c f t h e t y p e ( X , R 1

f R j ) i s a H i l b e r t 
apace i n t ha c l a s e l o a l e^viaa. 

C. Le t . & ) bo a complex l i n e a r space of c o n t i n u o u s 
f u n c t i o n s d e f i n e d m t h e n t o r v a l [ a cR^ w i t h complex v a l u -
e s . S i m i l a r i l y , l e t C([cx. ¡5], R 1 ) be a r e a l l i n e a r s p a c e of 
c o n t i n u o u s f u n c t i o n s d e f i n e d on t he i n t e r v a l [ a , ¡5] w i t h r e a l 
v a l u e s . D e f i n e 

n . 
X f}) C( [o 3 ] j <i), Y : = C( [ a , / J ] ,R ) . 
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Than Z i s a complex l i n e a r space of continuous func t ions de-
f ined on [<x,|3] with eoaplax values . 

Let 

and 

K «- { 7 ( t ) } e Y s / \ y ( t ) Z 0 
I t€[«,(i] 

IyI «" { | y ( t ) | } . { (y n y 2 ) (* )} » - { ^ ( t i ^ i t ) } , 

where y = { y ( t ) } , y 1 = i < t ) } . 1 2 ' *>} e i -
The expression 

< x 1 | x 2 > s> 2 x ] ( t ) x 2 ( t ) L - { ? , ( « ) } , x 2 - { x 2 ( t / } e X 
> 1 

def ines a s ca l a r product in X, as fo r aoy t e [cx,/3] < x 1 | x 2 > ( t ) 
i s a s ca l a r product in 

We sha l l demonstrate tha t the considered unitary space 
(X,<•!•>) of the type (X,Y,K) i s a Hi lber t space. 

We have here 

i?i - U E , x = {x( t )} e X. 

Let be a sequence of vector func t ions belonging to X 
s a t i s f y i n g the Cauchy condit ion 

V A V A i/E H 
t )}e K e>0 M u I V J=1 

( t j - t ) * { e f ( t ) } . 

Hence f o r any a rb i t r a ry e > 0 there e x i s t s a number M such 
that fo r any jj,v>;jll and f o r any t e [ a , | i ] we have 

| x^ ( t ) - x j ( t ) | $ e f ( t ) <emax{f(t) i t e [ < x , P ] } t d « l f . . . t n . 

I t follows from t h i s condi t ion, tha t the sequence j x j ( t ) } , 
j » 1 , . . . , n i s uniformly convergent to some continuous func t ion 

- 8 -
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{ x j ( t ) } , 3 « l , . . . , n . Therefore f o r any a r b i t r a r y e > 0 there 
e x i s t s a number M suoh that f o r any <> £ M and f o r any t e [ a , | J ] 
we have 

| x j ( t ) - X j t t j j ^ e , j = 1 , . . . , n . 

Taking f t= {Vn} we i n f e r tha t {x^} x e X, where " => " 
stands f o r the regular convergence. 

D. Let (X,<• |•>1) be an unitary space of the type (X,Y,K) 
and l e t VeL(Z,Z) and V|y e L(Y,Y) be a non-negative operat ion, 
i . e . 

(8) V(K)cK, 

s a t i s f y i n g the oondition 

(9) (V<x1 |x1>1V<x2lx2>1)2 - (V<x1lx2>1V<x1 |x2>1)2 e K, ^ . X j t L 

Moreover, l e t V|K be an i n j e c t i o n , i . e . 

(10) (Vy=0)=» (y-O), y c K . 

Then 

(11) <x 1 | x 2 > 2 j »V<x 1 | x 2 > 1 , x ^ x g e l 

i s a s ca l a r produot in X. 
As the operat ion V i s addi t ive and homogeneous the condi-

t ions ( i . 1 ) and ( i . 2 ) f o r the product (11) are obvious. As 

(12) Vz - (Vz), zeZ 

t he re fo re 

<x1!x2>2 - V<x1 |x2>1 - V<x2 |x1>1 - (V<x2 |x1>1) . <x 2 | x 1 > 2 , 

i . e . condi t ion { i .3 ) holds* 
Prom proper t i es (8) and (10) we obtain condit ions ( i . 4 ) i 

<x|x>2 - V<x|x>1 e K, as <x|x>1 c K, x e X, 
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(<x|x>2=V<x|x>1=0) => (<x|x>1=0) (x-0), x c X. 

Prom (9) and definit ion (11) as well as from property (12) of 
operation V we get the Cauchy-Buniakoweki-Schwerz oondition 
(1.5) for the scalar product <,|,>'2* 

S. Given the Bittner operational calculus 

CO(L°,L1,S,Tq,sq,q,Q) (see [2 ,3 ] ) , 

where 1° and are rea l l inear spaces such that 1? c L°; the 
operation St i (L1 ,L°) called tho derivative i s a surjection, 
i . e . 5(L1) - L°. TJae elements of the kernel of S, i . e . the 
elements of 

KerS i = { c £ i 1 : Sc«=0} 

w i l l be oalled the constants of the derivative S. 
Q i s an arbitrary set of indexes q for the operations 

TqeL(L°,L1) such that STqw = w, w e L° [oalled integra ls ) and 
for the operations s e L(L1,L1) such that TqSx = x - flgX, 
x e L̂  (called limit conditions). By induction we define a se-.j 
quence of spaces L , o e K such that 

L̂  := {x e I ? - 1 : S x e l 9 " 1 } , n N . 

Then 
T-? T•y-̂  T1 T o . T I T . . . c L c L c . . . c L c L , € K 

and 

s U l ? ) = L°, 

where 

S^ := S o S o . . . o S e L(L*,L°), ? e N. 
o-times 

Put also 

Ln := .© L<>' ( K e r S ) n := K s r S» n.^eN. 

- 10 -
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B.1. Let X := L°, Z = Y := L° possess properties of the 
spaces X and Y quoted in §1 and le t 

n 

j = 1 

Suppose also that condition ( i . 5 ) holds. 
From (Y.3) and (K.5) we get 

( < X > 1 = 0 ) => . . . X £ l ° . 

Herefrom and from (Y.4) we obtain x^ = . . . = x n = 0, i . e . x = 0. 
I t i s easy to v e r i f y that also the remaining properties of the 
scalar product are sa t i s f i ed . 

Let 
o T o 1 V := T 

'•o ' q , " V V L i L , L , f V - q i € Q 

be an operation sat is fy ing the same assumptions as in Bxam-
ple D. I t fo l lows from Example D that 

n 
(13) <?1|52>2 ^ S ( Tq - V > H ' W L n 

° 1 

i s also a scalar product in As 

s q ( L 1 ) = KerS, q e Q (see [ 3 ] ) 

therefore 
V(L° ) c KarS 

and fo r any x. ] fx2 e L° we have <x1i e K e r S c L ° « 
Mieloszyk has defined in his pap9r [ 6 ] the scalar product 

(13) f o r n = 1 quoting i t s forms in various models of the ope-
rat ional calculus. 

E.2. Let X t- Ln , Z - Y := L° possess properties of the 
spaces X and Y as in §1 and l e t the operation 

sa t i s f y the assumptions (8) and ( :•.•!, 
- 11 -
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Define 

(14) <x1 lx2>1 (Tq j (x 1x 2+Sx 1Sx 2+. . .+Snx 1Snx 2 ) , x^XgCL11 

and l e t ( i . 5 ) be sa t i s f i ed . 
As f o r any x e Ln c L° we have 

x 2 , ( S x ) 2 , . . . , ( S n x ) 2 e X, 

what fo l lows from (Y .3 ) , and because operation V i s non-nega-
t i v e , therefore 

<x |x>1 t K, x e L^. 

As V|K i s an in j ec t i on , therefore from (K.5) we i n f e r 

[<x|x>1=0]=^ [ x 2 = (Sx ) 2 = . . . = (S n x ) 2 =0] , x e L n . 

Therefrom and from (Y.4) we get x = 0, 
I t i s easy to v e r i f y that also ih\ x-oiaaining properties of 

the scalar product are s a t i s f i e d . Therefore (L q , < *|*> 1 ) i s 
an unitary space of the type { Ln l L y K)» And also <x^ | £ 
e KerScL 0 , x1 ,x2 c Ln . 

Let 

(15) <xJ x ? > ? := s x.,3 Xp + . . . + s S n - 1 x l S Sn~1x2 + 
1 4 0 4 0 ^ 0 0 

+ fa^J8"*^' X 1 f X 2 e L n . 

Assume also that ( i . 5 ) i s s a t i s f i e d . As we have f o r any xe Ln 

( V ) 2 , . . . , ( s q o S ^ x ) 2 e K 
and 

( t q -T0 ) ( S n x ) 2 e K \ q 0 q-| / 

therefore 
<x |x>2 e K, x e Ln . 

Prom (K.5) we obtain 

[ < x | x > 2 = 0 ] ^ [ ( s q o X ) 2 = . . . = ( s q o S n - 1 x ) 2 = : ( T q o - T q i ) ( S n x ) 2 =0 ] , 

x c L n . 
- 12 -
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Tberefrom and from (7.4) we get 

s x - . . . » s Sn"1x « 0 
q o q o 

and 

[ ( T q o - T q i ) ( S D x ) 2 - 0 ] [ ( S n x ) 2 - 0 ] = » [ S n x - 0 ] , x c Ln . 

Therefore x * 0, as any element x c L n possesses a Taylor de-
velopment 

x - 8qx+Tq8qSx + . . . + Tj ,~1BqSn-1x+Tjsnx, qc Q (see [ 2 , 3 ] ) . 

I t i s easy to prove that also the remaining properties of the 
•oalar product are sat i s f i ed . Therefore (Ln ,<«|*>2) is an 
unitary space. Moreover, i f KerS is an algebra, then 
<x1 |xj>2 e KerSc L° , x^XgeL 1 1 . 

I f L° j - I»2( [0,1] , I 1 ) i s a real l inear space of functions 

x : [ 0 ,1 ] - * - S1 

such that the function« j[x(t)]2j are Lebesgue-integrable and 

t t 

S dt • 8q0 ! - | t - 0 » Tq 0 s - J » T Q i f • 9 0 « 0 »V 1 < Q , - [ < ) ' 1 3 

then the neros f «|1 § J*|2 i Ln -•> { { c } c Ker s c j s o } « « ] 

determined by the scalar produots (14) and (15) are equivalent 
in the Hilbert spaoe 

1J ( [0 ,1 ] ,H 1 ) 

being a rea l Sobolev spaee of fanetions 

x i [ o , l ] - * I 1 

such that the derivative of oaHer a-1 ie absolutely conti-
nuous, whereas the derivative of ardmr n belone« to 
1 2 ( [ 0 , 1 ] , H 1 ) (see [ 4 ] ) . 

- 13 -
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B.3. Let (X, <*| *> ) be an un i ta ry 3pace of the type (X,Y,K) 
and l e t I ° c X. 

D e f i n i t i o n 8 ( o f . [ 1 , 5 ] ) . The ope ra t ion 
$ eL(X°,X) i e ca l l ed q u a s i - u n i t a r y (quas i -o r thogona l ) i f 

| $x 2 >-» x 2 >, x 1 t x 2 £ X 0 . 

D e f i n i t i o n 9 (see [ 5 ] ) . The endomorphism 
Ael (X,X) i s ca l l ed ant isymmetric ( a n t i h e r m i t i a n ) i f 

< A X 1 | * 2 > « - < X 1 | A X 2 > , x 1 t x 2 e X . 

Consider the a b s t r a c t d i f f e r e n t i a l equa t ion 

(16) Sx = Âx 

with the l i m i t cond i t i on 

(17) s x = î 0 , 

where 

q 0 e Q , î e L ^ , î o e ( K e r S ) n , ' À c L ( l ^ L ^ ) / T 0 Y 0 | 

and 

Sx ; = 

Sx, 

Sx. 

a x : = 
^o 

V 

q o n 

Ax 

2 Z A«,x 
d-1 i r j 

ti 
D e f i n i t i o n 10 ( c f . [ 3 ] ) . For a f ixed value a n A 

of q c Q, the endomorphism A e L(L n ,L n ) i s c a l l ed a q u a s i - l o -
gari thm i f 
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where 

Î id w e L j . TqÂ « :« [ V i j n - n -
L n 

I t i s eaay to prove that A i s a quasi-logarithm i f ahd 
only i f 

[(Sw « Aw) ~ (sqw » 0 ) ] => [w = O], w e L^. 

Let 
M î i " j x e L^ î Sx » îx j » 

D e f i n i t i o n 11. Aa operation $ (A) c 
~ q o 

e L( (KerS)n,M^n^ ) such that e^ (A) «= i d (KerS) i e o a l l 9 d 

tf 0 Û 
the resolvent of the equation (16J, 

Assume that for arbitrary fixed qQe Q, xQ e (KerS) f l the 
solution of the problem {16), (17/ e x i s t s . 

I f A i a a quàsi-lcgarithm then the unique solution of that 
problem has the form 

x - $ ('À)x , 

"¡laa."* (A) i s the resolvent of the equation (16). 

Uniog the notion of resu l t and operator {see [2 ,3 l ) we can 
A A 

give the form of the operation $ (A). Namely, i t i s easy to 
q o 

prove that the problem (16), (17) i s equivalent to the ab-
s tract integral equation 

(I - T i ) 5 = X0. 
^ o 

I f A iH a quaai-logarithm then the solution of tha equa-
tion i s the resu l t 

I - T A 

I f that resul t i s an element of the space L? then i t i s 
1 n 

also an element of L^ and the operator 

- 15 » 
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$a (A) - * 
qo I - T A 

i s the resolvent of the aquation (16) . 
Let I t« L®, Z • T «• 1° possess the properties of the 

spaces Z and 7 as in $1 and let ( L ° , < * l *> ) be an unitary space 
of the type (L° ,L° ,K) with the scalar product <*|*> possessing 
the following property 

(18) ( x 1 f * 2 c L^) (<x1|x2> e L 1 ) . 

D e f i n i t i o n 12. We shall say that the de r i -
vative S sa t i s f i e s the Leibniz condition on the soalar pro-
duct <•'!•> i f 

(19) S<?1|x2> « <Sx1|x2> + <x1|Sx2>, 5 1 t x 2 e L j . 

Ve shall say that the limit condition s q , q e Q i s mult ip l i -
cative on the soalar product <*|#> i f 

(20) s q<x 1 lx 2> - <sqx1 |sqx2>, q e Q , x1 ,x2 e L^. 

T h e o r e m 2 ( c f . Lemma IX.9 [ 5 ] ) . I f the solu-
tion of the problem (16) , (17) exists, the derivative S sa -
t i s f i e s the Leibniz condition, the limit condition s i s 

A 0 
multiplicative, the quasi-logarithm A i s antisymmetric, then A /N 
the resolvent $ (A) of equation (16) i s a quasi-unitary ope-

, . "o ration. 
P r o o f . For any x q 1 , x o 2 e (KerS)Q the elements 

- f q 0 ( i , 3 o 1 » h " ^ q o ( * , ; o 2 

are solutions of equation (16> with the limit conditions 

8q0x1 = *01> s q o x 2 = xo2 

respectively. Hence we have 

S<x.||x2> = < Sx 11 x2>+<x1 | Sx2 > = <Ax1|x2>+<x1 |AX2> = -<x1|Ax2> + 

+ <x. | Ax 0> = 0 . I c 
- 16 -
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Therefore 

<*11*2> » o , o e KerS. 

As 

V b„ o • o, o t KerS 
•o 

therefore 

Q - B q < X x l i 2 > - <Bqo?1|8q&i2> - < i o 1 l i o 2 > 

and f inal ly 

<K ^ » o l ^ a (A)Xq2> - <xo 1|*o 2>. 0 0 
C o r o l l a r y 2. I f the assumptions of Theorem 2 

A ^ 

are satisf ied, then the resolvent (A) of equation (16) is 
a continuous bisection. 0 

A A 

P r o o f . As the operation $ (A) is quasi-unitary, — 0 

therefore for any x0 e (KerS)n we have 

|#q o (2>x0| - | S 0 | . 

A A 

It follows therefrom, that the resolvent $ (A) is a bounded 
0 

injection. On the other hand, for any * e M ( n ) there exists 
x » s xe (KerS) such that x « $ (A)x , i . e . $. (A) maps 

wo Ho 
(KerS)n onto M(n ) . 

The system of equations 

* , ( t ) - g ( t ) x 2 ( t ) 

4 ( t ) = -g ( t )x . , ( t ) 

with the init ia l conditions 

{ * 1 ( t , l t = o M x 1 o } ' { z 2 ( t , l t - o } - { * 2 o } ' { * 1 o M x 2 o } £ K e r ! i r f i 1 

has the form 
Sx S Ax, S „ X -q0 0 
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i f we introdaoe an operational oaloalus in which 

I? I - ( ^ ( [ a , P>],H1), ; e N u { 0 } , q « O t Q s- [a ,0] c R1 , 

S 8- 3t » To » " i ' 
0 

8o t-0 
and 

A r A I - { 
0 g ( t ) 

- g { t ) 0 
} , { g ( t ) } £ i ° . 

The resolvent of the considered system has the form 

/N A f 
$0 (A) - { 

cos J g ( t )dr sin J g(r )dt 

-s in i g ( t )dt cos J g ( t )d t 

The quasi-logarithm A i s an antisymmetric operation in the 
scalar produot 

<x1|x2> := { x ] ( t ) x * ( t ) + x J ( t ) j § ( t ) } t t ) } ( x 2 = { x 2 ( t ) } € l | 

possessing property (18). 
The derivative S = ^ and the l imit condition s0 

t-0 
possess properties (19) and (20) respectively. I t follows 
therefore from the last th< 
a quasi-unitary operation. 
therefore from the last theorem that the resolvent $0 (A) is 
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