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Abstract:

Contingency and uniqueness are regarded as typical artistic characteristics. To accomplish the realistic effect of
each tie-dyeing pattern artwork, we propose a digital tie-dyeing pattern fast-generation algorithm based on
auxiliary-classifier deep-convolution generative adversarial network (AC-DCGAN) and image-processing tech-
nology. To apply this algorithm, the designer first draws the planar layout diagram of the tie-dyeing patterns.
The diagram consists of a white background and polychrome circles, and the regional-connectivity algorithm
is used to extract information on all the circle positions as well as the pattern categories in the diagram.
Then the AC-DCGAN-generated background image is color-corrected to stitch and complete its construction.
The AC-DCGAN-generated tie-dyeing pattern image is also color-corrected and is then segmented and copied
to the circle area. Mean filtering creates the final digital tie-dyeing patterns. Results show no obvious color
difference in generated patterns, splicing edges show uniform transition, and unique patterns exhibit tie-dye
characteristics, achieving realistic artistic effects.
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1. Introduction

In the production of tie-dye-pattern art products, usually one of
two conventional methods is used. One is the traditional tie-
dyeing process, by which tying workers perform the physical
dyeing by use of the fabric-defending treatment, completing the
production through dip dyeing and the corresponding post-
treatment processing. The other method is to use a digital
scan or analog image that captures the tie-dye characteristics,
generate the pattern by digital-synthesis conversion and other
technologies, and then print the pattern by printing equipment
(Gu, 2004; Liu et al., 2016). The benefit of using the first method
is that each pattern is rendered by hand and is therefore very
flexible and vivid, and all the patterns are different without repe-
tition, each with its own special artistic characteristics of con-
tingency and uniqueness. However, because the whole opera-
tion, including the dip-dyeing process, is manual, there are
limitations in terms of production efficiency, large-scale batch
operation, and fabric selection as well as environmental con-
cerns. The second production method, which makes use of the
advantages of digital technology, allows the patterns to be arbi-
trarily edited and repeatedly copied and printed, and thus this
process has the benefits of minimal limitation for fabric
selection, low pollution, low cost, and fast response, and
it also can adapt well to personalized and mass production.
However, a weak point is that the created patterns are rigid and
inflexible, having lost the artistic soul’s contingency and unique-
ness that are characteristic of tie-dye art. Therefore, there was
a need to work out a method that could generate complex
tie-dyeing patterns by having the designer initially provide
simple pattern outlines, thereby not only ensuring the artistic

characteristics of digital tie-dyeing patterns but also improving
work efficiency.

Effective digital pattern-generation technologies, based on
computer-aided methods, have used chaos or fractal theory
and computer-graphics research to explore and prove mechan-
isms for the construction of intuitive and vivid visual images and
have provided alternative approaches to discover new phe-
nomena and study new patterns (Carter et al., 1998; Lu et al.,
2005, 2017; Lv et al., 2014). Such study has also achieved
abundant results in the design of textile patterns (mainly based
on fractal models) and clothing. In pattern design, in general, the
fundamental pattern unit should first be designed and then a
limited number of iterations created, thus forming a larger unit-
organization cycle. Tian et al. (2019) proposed a method for
automatic generation of a batik floral pattern based on fractal
geometry and achieved automatic simulation of traditional manu-
ally created batik patterns on a computer. Wang et al. (2019), by
using the generation principle and graphic features of a complex
dynamic system and L-system fractal graphics, developed two
art graphics (floral and geometric), used Photoshop to create
secondary designs from the generated art graphics, and applied
them in the design of clothing patterns. Zhou (2004, 2007) put
forward an automated batik-pattern-generation system based on
fractal geometry, fulfilled the pattern design through the use of
computer-aided design weaving software, and simulated weave
patterns. Barnsley and Hurd (2000) used iteration of Julia set
fractal-pattern functions to modify design methods for structural
reorganization of fashion patterns. Together these applications
reveal that most fractal graphics are individual patterns charac-
terized by fine structure, pattern repetition, and brightness but
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that lack naturalness in color. Normally, they cannot be used
directly in pattern design, and thus it was apparent that a sec-
ondary manual design would be required. Because merely using
a method based on complex mathematical models or graphics
results in defects in the variety and effects of the generated tie-
dye patterns, we aimed to derive an appropriate mathematical
calculation for each pattern, set complex parameters, and finally
configure appropriate textures. Therefore, mimicking the tradi-
tional digital-pattern-generation process, we set out to imitate
the basic flower-shaped-pattern features obtained from the tie-
dyeing process and then generate a natural and nonrepetitive
tie-dye pattern based on deep-learning and digital-image tech-
nology, which we expected could solve the perceived problem of
the loss of the soul and vividness in traditional tie-dyeing pat-
terns, thereby developing a new direction for the design of textile
patterns and derivative clothing.

Generative adversarial networks (GANs), which could generate
absolutely realistic-looking samples by automatically learning
the distribution of the real data, have become one of the favorite
research directions in the deep-learning field in recent years
(Goodfellow et al., 2014; Creswell et al., 2017). GANs have
the most profound and diverse application in the image field
and have been widely used, for example, in the generation
of English art fonts (Azadi et al., 2018), human faces
(Huang et al., 2017; Li et al., 2018; Yang et al., 2021), auto-
matic-driving scenarios (Santana and Hotz, 2016), and synthetic-
painting sketches (Chen and Hays, 2018). In terms of the evolution
of the algorithm, to solve the problem of no limitation for the input of
the GAN generation model, which could cause model corruption,
when modeling the generation model and the discriminant
model, Mirza and Osindevo (2014) added conditional variables
to the models to limit their input, thereby proposing conditional
GANs. Radford et al. (2015) introduced the convolutional
neural-network structure into the GAN, made some detailed
improvements to the original GAN structure and the training
process, and proposed deep-convolutional generative adver-
sarial network (DCGAN). Owing to its training stability and
industry-earned value, the DCGAN model has been widely used.
To achieve the controllable generation of images, Odena et al.
(2017) proposed that for the input of the auxiliary-classifier genera-
tive adversarial networks (AC-GANs), in addition to ordinary
noise z in the GAN structure, the category label should also be
added to it, that discrimination would no longer be limited to
determining the authenticity of the input data, and that the
discriminator would analyze the data’s category label.

Based on the above analysis, we have studied the construction
of auxiliary-classifier deep-convolution generative adversarial-
network (AC-DCGAN) to generate nonrepetitive tie-dye flower-
pattern primitives and have synthesized the digital tie-dye
patterns combined with color correction, stitching, and seg-
mentation algorithms in image-processing technology.

This article is organized as follows: Section 2 is a detailed intro-
duction to the digital tie-dyeing pattern-generation algorithm flow,
including the extraction of the data from the planar layout of the
tie-dye patterns, the construction of the AC-DCGAN model, the
stitching of the background, and the flower graphs. Section 3
provides and analyzes the results of image-generation.

2. Digital tie-dyeing pattern-generation
algorithm

In the traditional tie-dye-pattern production process, the tie-
dyeing technicians first need to transform and mark the pattern
using the language of technology, make the tie-dyeing process
production chart indicating the center point where the fabric
needs to be stitched by means of the dot-matrix layout, and
then hand it over to the workers for stitching, dyeing, and other
post-treatment processing. The dot-matrix layout of the tie-
dyeing production process is a key step to obtain the tie-dye
patterns.

The tie-dyeing pattern-generation algorithm creates the digital
tie-dye patterns by combining digital-image-processing tech-
nology and AC-DCGAN (Figure 1). First, it simulates the tie-
dyeing process production chart with the dot-matrix layout.
Then, using the drawing software, the designer draws a tie-
dye-pattern planar layout, which is composed of non-overlap-
ping multicolor circles against a white background. The layout
becomes the input to the algorithm. Then, the regional-con-
nectivity algorithm is used to extract information on all the
circles’ center positions and pattern categories, after which
AC-DCGAN is applied to generate the background image to
fill the layout and copy key areas of the AC-DCGAN-generated
tie-dye pattern to the areas of the circles. Finally, mean fil-
tering is applied to the entire image to obtain the final digital
tie-dye pattern.

Extract pattern-distribution

data on frame diagram

AC-DCGAN generates tie-

dye pattern collage primitives

Output of tie-dye pattern

Color correction for

background image

Design tie-dye pattern layout

diagram
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Background-image collage

and fusion
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Pattern collage

Figure 1. Digital tie-dyeing pattern-generation process.
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2.1. Extraction of data from planar layout of tie-dyeing
patterns

To make the creation of tie-dyeing patterns more flexible, the
designer creates the planar layout of the floral graphs including
circles in different colors representing different types of floral pat-
terns that, when grouped together, form geometric patterns used
to achieve the overall model of the pattern and to improve the
efficiency of pattern design. A collaged tie-dye pattern spliced by
a number of primitives within a rectangular area located on a
rectangular-coordinateXY plane, which is described as a canvas,
is shown in Figure 2. The colored circles represent the five types
of floral patterns, and the planar layout contains information on
the size of the canvas and on the types and position coordinates
of the floral patterns. The primitives collaged on the canvas are
divided into two types: floral patterns and background image.
Additionally, the key areas of the floral patterns are filled with
round areas, and the background image is filled with white areas
in a zigzag pattern.

We defined a digital planar layout red–green–blue (RGB) three-
dimensional image array P converted to a gray matrix Pg and
specified the image size as m × n. Then we extracted all the
circles in the layout by using a four-neighborhood labeling algo-
rithm and scanned the matrix Pg line by line. When center point
C was not white, we judged C’s four neighboring positions
(0,1,2,3), and if those four positions were not white, we consid-
ered C to have been connected with those four positions.
Otherwise, we regarded C as an isolated point. The four-neigh-
borhood labeling algorithm, used to label the layout (Figure 3),
ensured that we obtained w regions and the coordinates r(xi,yi)
of the circle centers, for i = 1,2,… w. We set all points of the
matrix Pg as (255,255,255).

2.2. AC-DCGAN generates collage primitives

GANs were originally intended for generation of data that do not
exist in the real world, which is similar to enabling artificial intelli-
gence to be creative or imaginative. Tie-dye images have profound

features and contain complex texture information. GANs possess
powerful image-generation ability to generate realistic tie-dye
primitives, and, combined with color correction, image splicing,
segmentation, filtering, and other digital-image-processing tech-
nologies, they can generate large-scale tie-dye patterns for use
by designers.

2.2.1. GANs

GANs comprise two models – the generating model G and the
discriminant model D. Through model G, random noise z gen-
erates the sampleG(z), which is subject to the real sample data
distribution Pdata to the maximum degree, and model D deter-
mines whether the input sample is real data x or generated data
G(z). To discern the distribution of data x, the generator first
makes the prior noisy distribution Pz(z) construct a mapping
space G(z;µg), for which the corresponding discriminator map-
ping function is D(x;µd), and then it yields scalar output repre-
senting the probability that x is the real data. The optimization
function of the generated model is as follows:

( ) [ ( )]

[ ( ( ( )))]

( )

( )

∼

∼

V D G E D x

E D G z

min max , = log

+ log 1 − ,

G D
x P x

z P zz

data
(1)

where x represents the real sample, D(x) represents the prob-
ability that x is judged to be the real sample according to the
discriminant network, z represents the noise of the input gen-
erated samples, G(z) represents the samples generated by the
noise z in the generation network, and D(G(z)) represents the
probability that the generated samples are judged to be real
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Figure 2. Example of planar layout of tie-dye pattern.

Figure 3. Four-neighborhood labeling.
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samples after passing through the discrimination network.
The generation network is designed to make the generated
samples as close to the real samples as possible, that is, it
would be preferable when D(G(z)) is close to 1, as V(D,G)
would become smaller. The discrimination network is aimed
at making D(x) close to 1, and when D(G(z)) approaches 0,
V(D,G) will increase.

2.2.2. AC-DCGAN model

AC-DCGAN combines the advantages of both AC-GAN and
DCGAN and introduces the a priori condition class c (on the
basis of DCGAN) to guide the training. The discriminator D not
only judges the authenticity of the input samples but also deter-
mines their type. As a result, it is possible to generate a speci-
fied category of patterns on demand, thus saving the time
of manual classification. Different from GANs, the input of gen-
erator G in GANs only contains the random noise z, while in
AC-GAN every generated sample has its corresponding label
information, and the input of its generator G is from the label
information c of the generated sample and the random noise z
(i.e., the generated image Xfake = G(c,z)). The original GAN
discriminator D is a dual-classifier that determines whether
the input comes from real data or data generated by a gen-
erator, while the discriminator D of AC-GAN consists of both
a dual-classifier (able to determine whether input comes from
real or generated data) and a multiple-classifier (able to accu-
rately classify the labels of both the generated and the real
data). AC-DCGAN introduces the convolutional network into
the structure of AC-GAN to replace the fully connected layer
of the main network, and it directly uses the convolutional layer
to connect the input and output layers of the generator and
discriminator, while also improving the effectiveness of the net-
work by using the powerful feature-extraction capability of the
convolutional layer. The structure diagram of AC-DCGAN is
shown in Figure 4. Thus, the objective function of the discrimi-
nator D is composed of a dual-classifier loss LS and a multiple-
classifier cross-entropy loss LC:

[ ( | )] [ ( | )]L E P S X E P S X= log = real + log = fake ,S real fake (2)

[ ( | )] [ ( | )]L E P C c X E P C c X= log = + log = ,C real fake (3)

where LS represents the loss of the accurately classified real
samples and generated samples, and LC represents the loss of
the category of accurately classified samples. Accordingly, the
optimization goal of the discriminator D of the AC-DCGAN is to
maximize LS + LC, while the optimization goal of the generator
G is to maximize LC − LS.

2.2.3. AC-DCGAN model structure

The generation network has six layers. The input z is a 100-
dimensional random noise vector that is subject to normal dis-
tribution and connects z with the category label c vector
(6 dimensions). After successively passing two linear full-con-
nection layers, it transforms into vectors of 1,024 and 4 × 4 ×
1,024 in size, and then the vector of 4 × 4 × 1,024 in size converts
into a tensor of size [1,024,4,4], thereby resulting in nonlinear
rectified linear unit (ReLU) function transformation. After that, it
would go through four deconvolution layers with a convolution
kernel of size 5 × 5 and a step size of (2,2), and all the outputs
would be activated by the nonlinear ReLU function to obtain a
tensor of size [3,64,64], and finally it would be activated with the
use of the tanh function to output the generator image.

The input of discriminator D, an image with dimensions of
[3,64,64], would go through five convolution layers of size
5 × 5 and a step size of 2 × 2, and leaky ReLU function trans-
formation must be performed for the output of every layer to
obtain a tensor of size [1,024,4,4] and to finally reshape into a
feature vector of size 4 × 4 × 1,024; after that it will successively
pass through two full-connection layers and yield output as a
vector of size 4 × 4 × 1,024, and then it would respectively
connect with two full-connection layers of size 256 to finally
produce two network outputs: the true/false probability of the
image and the class label of the image.

2.3. Background image collage

The images generated by AC-DCGAN are of a fixed and limited
size, but the size of the designed layout diagrams is larger and
can change flexibly, so the background of the canvas must be
collaged by a large number of small background images. In
combination with color correction and collage-fusion treatment,
a complete background image can be generated with uniform
color and without edge segmentation.

2.3.1. Color correction for background image

The images generated by AC-DCGAN are inconsistent in their
brightness and color, but the color correction algorithm could
handle such inconsistency successfully during image stitching
(Li et al., 2016; Tian et al., 2016). This algorithm starts locally
by performing color correction for a single image that is to be
spliced, and it finally obtains a panoramic image with consistent
brightness and color. The key to color correction is to calculate
the color-adjustment factor between the target image and the
reference image. The reference image is determined by the fol-
lowing procedure: First the three-channel RGBmean of all back-
ground images combined is calculated, and then the RGB mean
of each background image is separately calculated to determine
the reference image by choosing an image whose single-image
RGB mean is the closest to the three-channel RGB mean of all
the background images. In this way, the selected reference
image color can be very representative. The method for calcula-
tion of the color-adjustment factor is as follows:

P P P= − ,r dDiff mean mean− −
(4)

G Generated

image

D
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Figure 4. AC-DCGAN model structure diagram.
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( ) ( )
ρ

P P P
= 1 +
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,

d dDiff mean− (5)

P P P ρ′ = + × ,d Diff (6)

where Pr_mean represents the mean brightness of the reference
image, Pd_mean represents the mean brightness of the target
image, and PDiff represents the difference between the mean
brightness of the target image and the reference image; sign
(PDiff) is a symbolic function; Pd represents the current bright-
ness of a pixel in the target image, ρ represents the brightness
adjustment factor of the target image, and P′ represents the
corrected brightness of a pixel in the target image. P in the
formula represents three-component RGB.

2.3.2. Collage and fusion

The background image collage is produced by image stitching
technology, which splices multiple background images into a
seamless panoramic image on the canvas. Suppose that the
number of background images to be collaged on the canvas is
lx × ly based on lx rows and ly columns. The process to create
the background image collage is as follows: The first step is to
move through the lyi columns from left to right on the canvas
while making sure there is an appropriate overlap between
adjacent images so that the images can transition smoothly;
the next step is to move downward, return to the starting point
of the next row, and fill that second row of images similarly from
left to right, while making sure that each image not only over-
laps with its adjacent images in the same row but also with the
adjacent image above it; this acquisition process is to be
repeated until all the lx rows are filled.

To eliminate the splice marks, a weighted-average fusion algo-
rithm is used for the overlapping parts of adjacent images.
During data fusion, the fade-in and fade-out idea is applied to
the image data in the overlapping area so that the transition
area of the spliced images can be smooth and natural. For
different coordinate points, the weighting coefficient β must
be changed. Taking the horizontal direction as an example,
assuming the leftmost position point of the overlapping area
is the origin, the horizontal distance between other overlapping
points and the origin is α, and the β value is set to be the ratio of
α to the overlapping width o with its range within (0,1), revealing
a linear change from left to right within the overlapping area.
The changes in weighting coefficient β are the same in the
vertical direction. The weighted-fusion formula is as follows:

( )P β P β P′ = 1 − × + × .i j i j i j, , , −1 (7)

2.4. Collage of patterns

As soon as the collage of the canvas background image is com-
pleted, the pattern image collage can be created. In the pattern
images generated by AC-DCGAN, there are also inconsisten-
cies in brightness and color, so it is necessary to conduct color
correction for each image, and the algorithm for this is the same
as that for the background image. In addition, the colors of the
background image and the flower image are not the same.

Unlike the background images, the pattern images contain
more color information and are composed of a white pattern
area on a blue background; the white pattern area could affect
the color correction between the background image and the
pattern image. If directly fused with the background image color
correction and overlain, the blue background color of the pattern
image may present a significant contrast with the surrounding
background color. Therefore, an algorithm specifically for the key
area collage is proposed to solve the problem of fusion between
the pattern and the background images. Based on the image-
segmentation algorithm, this algorithm extracts the white pattern
area that reflects the characteristics of the pattern, then directly
copies this area into the pattern position in the canvas, and finally
uses a 3 × 3 filter window to perform mean filtering of three-
channel-RGB canvas image to eliminate the edge effect.

The pattern image (Figure 1) is composed of a bright back-
ground and a foreground. The foreground pattern was extracted
by using the Otsu algorithm for determining the binarization seg-
mentation threshold of an image (Ostu, 1979; Satapathy et al.,
2018). For the threshold obtained by this method, the class var-
iance between the foreground and background image is largest
after binarization segmentation of the image. Because the var-
iance is a measurement of the uniformity of the gray distribution,
the large variance between the background and the foreground
suggests a significant difference between the two parts that
make up the image, and the misclassification of either a partial
foreground into the background or of a partial background into
the foreground will result in a smaller difference between the
two parts. Accordingly, segmentation maximizing such var-
iance between classes minimizes the probability of misclassi-
fication. The specific algorithm method is to convert the image
P from RGB to gray space, assume that the gray level of the
image-segmentation threshold is T, and divide the image into
two areas with gray levels of [0,T] and [T,255] to correspond to
the background and foreground, respectively. The proportions
of background and foreground pixels in the image are θ1 and
θ2 respectively, and their average gray levels in the area are
u1 and u2, respectively; the average gray level is set to u,
which is obtained by

u θ u θ u= × + × ,1 1 2 2 (8)

and the between-class variance is obtained by

( ) ( )σ θ u u θ u u= − + − ,2
1 1

2
2 2

2 (9)

where the effect threshold of the segmentation is better when
σ2 is at a maximum, and the T that corresponds to the max-
imum σ2 is calculated as

T σ= argmax .
T0≤ ≤255

2
(10)

3. Experimental results and analysis

To verify the effectiveness of the algorithms used in this study
and to achieve the generation of tie-dyeing patterns, we
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constructed six small-category datasets consisting of the tie-
dyeing patterns and background images. We performed
AC-DCGAN training and primitive generation verification
based on these datasets and generated digital tie-dye patterns
almost as vivid as the real images.

3.1. Experiment

Point, line, and plane are the basic elements that make up a
pattern. This experiment started from the basic point-like model
shape; a total of five types and 10,000 pieces of themost-common
point and circular model shapes were collected in the tie-dyeing
bundling and sewing process, all of which had white patterns on
blue backgrounds; 2,000 images with blue backgrounds were also
collected for this experiment. The size of each image was set to
96 × 96 pixels, and the images were in RGB color mode. The
model used the TensorFlow 1.1.4 deep-learning framework and
the Compute Unified Device Architecture 10.0. Batch size for each
training was 100, and the experiment involved a total of 10,000
epochs (Figure 5). Optimizing the generator and discriminator, β1
was set to 0.5, and learning rate to 0.0005. The experiment was
performed by using the Windows 10 operating system on the

Anaconda–Spyder 4.6.14 development platform. Hardware con-
figuration for the experiment included the Intel Core E5-2650 v4
CPU (main frequency 2.2GHz), 2 GTX 1080Ti graphics cards, a
1T hard disk, and a 16GB memory.

3.2. Results and analysis

The duration of the image training was 30 h. To make a more-
intuitive observation and comparison of the quality of the
images generated by using different numbers of training gen-
erations, we randomly stacked the 64 generated images of
different generations in the training process to form a large
image. The 0 generation is a pattern generated by random
noise without any effective information. The 500th-generation
pattern has learned the approximate shape of the pattern, but
its texture is indistinct. When the network training attains
the 2,000th generation, the outline of the pattern is basically
formed, with its texture very close to the real one, but the details
of the pattern are not clear enough, as shown in the first, third,
and fourth class diagram. Too, there is also obvious noise in the
blue background area. In the 10,000th generation, however,
the images generated by AC-DCGAN show clear details, are

Figure 5. Diagram of samples generated in training process. (a) 0 Generation, (b) 500th generation, (c) 2,000th generation, and (d) 10,000th
generation.
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very similar to the original training images, and have only minor
noise, thereby closely reflecting core artistic characteristics of
the tie-dyeing process. Accordingly, the network parameters
governing the 10,000 generations should be saved for gener-
ating large digital tie-dyeing patterns.

To quantify the pattern effect, we calculate the Peak Signal to
Noise Ratio (PSNR) and Structural Similarity Index Metric (SSIM)
values of GAN and AC-DCGAN, respectively (Zhou and Gu,
2004). PSNR and SSIM are universal evaluation indicators of
image generation quality. PSNR is an objective evaluation index
used to evaluate the noise level or image distortion. The larger
the PSNR, the less the distortion, and the better the quality of the
generated image. SSIM is used to evaluate the similarity level
between two images. The higher the similarity, the more similar.
The lowest PSNR value of this research method is 22.39, which
indicates that this research method has the lowest image distor-
tion. The lowest SSIM value of AC-DCGAN is 0.81, which indi-
cates that AC-DCGAN-generated image has the highest struc-
tural similarity with the original image. The values of PSNR and
SSIM are consistent with the subjective evaluation of patterns,
reflecting that the image generated by AC-DCGAN has the
lowest distortion and the highest structural similarity (Figure 6).

Thus, we can summarize the digital tie-dyeing pattern-generation
process as follows. The first steps are to design a layout diagram
and use the regional-connectivity algorithm to extract the positions
of all the circles in the diagram andmark themwith red squares so
that all circles can be correctly identified (Figure 7a). Then com-
bined color correction and fusion operations are applied to pro-
cess the background image generated by AC-DCGAN and to
form the layout diagram (Figure 7b); there should be no obvious
color difference between the small images in the diagram and the
transition in the edge area, where the transition should be uniform.
The next steps are to perform the segmentation of the white
pattern area of the tie-dyeing pattern generated by AC-DCGAN
by applying the Ostu algorithm and to directly copy this area to the
pattern position in the canvas. Finally, mean filtering is to be
applied to the RGB three-channel space of the canvas image.
The pattern area should be well preserved, with no edge effect
in the area connected to the background (Figure 7c).

Figure 6. Performance comparison among GAN and AC-DCGAN on five tie-dye patterns in Figure 2.

Figure 7. Tie-dyeing pattern-generation process diagram.
(a) Extraction of pattern position, (b) background collage and fusion
image, and (c) collage image of key areas of pattern.
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According to the requirements of the digital tie-dyeing pat-
tern-generation process, after the layout diagram is designed
on a computer, it is possible to freely design and adjust the
process variations and combinations according to the char-
acteristics of the AC-DCGAN pattern source, thereby quickly
generating a variety of tie-dyeing patterns. Various tie-dyeing
pattern layouts and pattern-generation diagrams are shown in
Figure 8. As seen from the perspective of the artistic effect,
the patterns contain abundant and contrasting blue and white
color layers. Each single small point reflects the characteris-
tics of the tie-dyeing process without repetition, and the pro-
portion and spacing between the points are appropriate and
coordinated, enabling the whole pattern to present a natural

and dynamic impression, thus achieving a highly realistic
artistic effect.

4. Conclusions

In this study, the traditional tie-dyeing process is simulated and
a digital tie-dyeing pattern-generation algorithm is proposed
that is based on deep-learning and image-processing technol-
ogies. The algorithm constructs an AC-DCGAN that can gen-
erate six types of graphs, which can be used for generating
tie-dyeing patterns and background images. In the process
of pattern-generation, the designer first needs to draw the

Figure 8. Tie-dyeing pattern layout and image-generation diagrams. (a) Scattered-point flower-pattern layout diagram, (b) generated image,
(c) plum-blossom pattern layout diagram, (d) generated image, (e) gourd-shaped pattern layout diagram, and (f) generated image.
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tie-dyeing pattern layout diagram, consisting of a white back-
ground and multicolored circles, and then use the regional-
connectivity algorithm to extract the information about the
center positions of the circles as well as the information on
the categories of the patterns. The next step is color correction
of a number of background images to splice together a com-
plete background image. Then color correction for tie-dyeing
patterns is to be performed, and the pattern area is segmented
and copied to the area where the circles are located. Finally,
mean filtering is applied to the entire image to achieve the final
digital tie-dye pattern. The patterns generated contain many
contrasting color layers, and each pattern could be said to
reflect the characteristics of the tie-dye process without repeti-
tion, and the whole pattern image presents a natural and
dynamic impression, thus achieving a highly realistic artistic
effect. Combined with the flexible and changeable combination
of process variation represented by the dot-matrix layout dia-
gram, various tie-dye patterns can be quickly generated.
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