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Abstract:

This article presents a method for modeling the material characteristics of synthetic fabrics based on static tensile
test results with consideration of material orthotropy. Material characteristics were determined for fabrics under load
at three different angles in relation to their orthotropy. The fabrics examined were the following: polyester fabrics
Bratex and Ortalion, cotton fabric with nylon and elastin fabric (poplin), and Gore-Tex membrane fabric. Considering
the material mechanical characteristics, the differences were in grammage, maximum strain, and tensile strength.
The study allowed us to determine the nonlinear elastic dependency between strain and stress. Test results were
implemented within the Abaqus/Explicit framework for the purpose of performance of verification simulations. The
correlation between simulated and experimental results was established. A high degree of similarity allows us to
classify the obtained material model as usable in simulation work.

Keywords:

polyester fabrics; down, feathers; fluff; picture frame test; static shear test; numerical simulation; materials modeling

1. Introduction

Manufacturing of synthetic fabrics, mostly polyester and
viscose-based, has been on the increase in previous years.
This was brought about by the growing demand from the textile
market, but also environmental limitations imposed on the
manufacturing of cotton and other natural fabrics [24]. Currently,
synthetic fabrics constitute nearly 76% of all fabrics produced
worldwide; in 2015, the global total for manufactured fabrics
was approximately 68.9 million tons [1]. Polyester fabrics are
the most widely used fabrics in the world. In 2018, polyester
fabrics constituted nearly 52% of all the manufactured fabrics,
which at that time amounted to 52 million tons of polyester
[2, 3]; cotton comes second, at slightly above 24% of total
manufacturing, followed by polyamide fabrics 5% and other
fabrics (including synthetic) at approximately 19%. Growing
production increases the amount of waste generated [4]. In
2008, recycled strands amounted for 8% of total production,
whereas in 2018, it rises to 13% [2, 3]. As evident from Figure
1, the growing share of recycled fabrics in global manufacturing
is lower than the general increase in the demand for fabrics.
At present, an effort is being made to reverse this trend and
increase the usage of recycled materials in the global textile
manufacture [3]. Consumer awareness of product recycling
continues to increase as well [7]. These efforts are aided by,
among others, the Directive of the European Parliament and
Council (EU) of May 30, 2018, applicable for the entire European
Economic Area (EEA), which requires the EU member states

to encourage their citizens to recycle products and establish
systems to promote the reuse, in particular, of electronics,
textiles, furniture, packaging, and construction materials and
products. The same directive requires that member states
enact selective waste collection for textiles from January 1,
2025, similar to the selective collection process currently in
place for paper, metal, glass, and plastics [26].

Recycled polyester fabrics are typically made of plastic PET
bottles but can also use other end-of-lifetime products such
as jackets, pillows, duvets, clothing, weaving scraps and other
textile products [5, 6]. The most popular approach to reuse
textile products is with mechanical recycling which entails
detangling, separation, or fragmentation of waste material. The
disadvantage of mechanical recycling is the increase of fabric
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Figure 1. Global polyester production (own elaboration, based on [3]).
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twist and the increase in the number of short monofilaments
[8]. The development of this process aims to increase the
average strand length as well as to increase the number of
monofilament yield per weight unit of recycled waste [8, 9].
Development works on mechanical recycling methods are
implemented slowly, focusing on the modification of existing
systems or introducing new methods of work [8, 9].

Recycling does not apply exclusively to fabric. Feathers and
down used as fillings are other valuable resources for recycling.
This has caused a new area of development to emerge in the
down manufacturing and clothing industry, which entails a
reuse of down and feathers from end-of-life jackets, duvets,
and pillows [10]. The shell of these products, as mentioned
earlier, is primarily made of polyester fabrics [5, 6]. Therefore,
the industry recycles not just the fabric used to manufacture the
jackets, pillows, and duvets, but also the filling, i.e., the down
and feathers. This new trend for reusing recycled down strives
to limit the otherwise necessary breeding of geese and ducks
used for this purpose, limiting the use of fodder and the amount
of waste generated [10,11,12]. The down is characterized by
low self-weight and offers good airflow insulation, therefore
being highly suitable for use in winter jackets, duvets, pillows,
etc. [13]. Only 30 grams of down can be harvested from a single
goose [14]. Whereas, for example, a winter duvet contains from
0.7 kilogram to up to 2.5 kilograms of down. In the latter case, it
requires 84 geese to manufacture such an article. Furthermore,
each year globally we observe a growing demand for products
containing down. The feather and down industry worldwide in
2017 was worth $5.9 billion, in 2020 the worth was estimated
at $6.7 billion, and it is expected to reach $10.25 billion by 2025
[15]. It therefore appears to be the right approach to recycle
down for this purpose. Clothing industry and down industry
employs detergent to clean the recovered down so that a high
product quality can be produced that is suitable for reuse. The
process of collection of end-of-life products to recover down
begins with the customer [10]. To replace or dispose of a used
down-containing product, the customer gives the product away
to clothing bins, second hand stores, or recycling facilities
directly. At the down works, employees cut open the casing of
the duvet, pillow, jacket, etc., and the down is then removed
from the articles and vacuumed into bags. In the next stage, the
recovered product is placed in a washing machine. Cleaning
of this type of filling materials should follow the relevant OHS
regulations as well as the EN 12935:2001 standard detailing
the obligatory requirements for feather and/or down cleaning
and hygiene that is to be used as filling material; this allows
the mixing of the recovered down with fresh material. After
reprocessing and verification that the relevant standards are
met, the recovered down can be reused as filling material [10].
The down to be recycled is confined within a relatively small
space in articles of clothing. It is therefore required to destroy
the fabric to recover the desired filling material. It is evident that
the process that destroys the casing (fabric) must not affect the
actual down. The process recovers not only the down, but also
fabrics that are the byproducts thereof. The manual process
of recovery is time consuming and inefficient. Improving the
speed and economic efficiency of the recovery of down and
fabric from textile products would call for employing industrial-
grade automation and mechanical solutions. The operating
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principle of the device based on these solutions would be
based on tearing the textile material used for casing for jackets,
pillows, etc. This necessitates the development of a model to
describe the characteristics of the fabric so that it can be used
to model the process of destroying the fabric in the above-
mentioned device.

This work presents the results of a static tensile test. The
examination was carried out along the main orthotropic
directions within the material, in line with the direction of strands
forming the weft and warp as well as for samples cut at a 45°
angle to the assumed arrangement. The materials examined
differ with respect to strength, grammage, composition, and
application. The aim of the experimentation was to determine
the material characteristics that allow the development and
description of the process of decomposition of synthetic fabrics
in the course of future works.

2. Materials and methods

The fabrics are made of weft and warp. The purpose of the
warp is to absorb and transfer loads as well as to maintain the
dimensional stability of the product. The purpose of the weft is
not to transfer loads within the fabric, so it doesn’t need to be
as strong. The perpendicular threading of the weft through the
warp forms the textile. The directions of weft and warp treads
constitute the main (orthotropic) directions within the fabric.
When designing textile materials, we require information both
on the strength of the material that we want to use as well as
on how the material’s strength varies, e.g., under prestress
[27, 28]. The base materials for obtaining yarn, thread, and
fabric are fibers. These are typically anisotropic. This follows
from their composition in which the structural components
(macromolecules) align more or less in an ordered manner
with the main axis of the fiber. The fiber tears as a result of
chemical bonds being broken, the breaking of the much weaker
molecular bonds and through lateral displacement of structural
components in relation to one another. Fibers—in particular,
polymer—demonstrate a clearly indicated dependence
between their strength and the conditions of examination, e.g.,
the velocity with which the load is applied [27, 28]. The presence
of structural defects in fibers causes a localized concentration
of stress and facilitates its tearing [27, 28]. The materials used
in the study are four different synthetic fabrics available on the
market. One of them is Gore-Tex, which consists of a thin layer
of Teflon (PTFE), ~50 um thick, which, together with the upper
nylon fabric and polyurethane bottom layer, forms a water
barrier. At the same time, this fabric is classified as vapor-
permeable [16]. Gore-Tex is used to make clothing such as
jackets. The second material used in the study is Bratex. Bratex
polyester fabric is also classified as vapor-permeable and is a
laminated woven product used as a shell. It is characterized
as wind-proof and highly hydrophobic. lts main application is
in making hunting jackets. The remaining materials used in
the study are conventional fabrics. One of these materials is
Ortalion (100% polyester fabric) with grammage of 65 g/m?;

201



AUTEX Research Journal, Vol. 23, No 2, June 2023, DOI 10.2478/aut-2022-0002

another is Poplin, with 82% cotton, 15% nylon, and 3% elastin
content and grammage of 105 g/m?2.

2.2. Methods

In order to determine the characteristics of tensile stress
and strain, the fabrics Gore-Tex, Bratex, Ortalion, and Poplin
underwent tensile stress testing along the direction of the weft
and warp. Shear strength testing was also carried out through
the use of a picture frame fixture, in order to determine the
characteristics of shear stress depending on the displacement
angle. All the tests were carried out using the MTS Insight 50
kN strength machine. The results obtained were employed to
develop a material model in the Abaqus software framework.
The model developed was used to carry out simulations of
material stretching at a 45° angle to the direction of the weft
and warp strands. Additional testing of fabric stretching was
carried out at a 45° angle to the orthotropic directions, which
allowed us to verify the numerical model.

2.21. Picture/Shear frame test

The purpose of the picture frame test is to gain information on
the mechanical behavior of the woven material under shear
forces, along the plane of the material [18, 19, 20]. The picture
frame fixture is a rhomboid-shaped device with variable integral
angles [29]. The upper and lower frame grips are attached
to the strength machine. The sample is affixed in the picture
frame by fastening the four side grippers (Figure 2b), securing
it in place and preventing motion along all its sides. The upper
gripper of the fixture moves upwards at a constant velocity;
subsequently, the displacement enacts a rotating motion at the
frame arm joints, changing the inner angles of the device. In
order to minimize the motion resistance, the nodes of the frame
designed were fitted with needle bearings. Consequently, the
friction associated with the momentary rotation at the joint of

the frame arms are reduced and are within the range of the
measurement error rating of the strength machine.

During the examination, the force of reaction at the upper grip
and the displacement of this grip are measured. These data are
necessary to determine the function between the shear stress
and the displacement angle. The formulas employed for the
calculation of shear stress and displacement angle are as in
[18, 19, 20, 21]:

The shear stress is calculated with the formulas below:

= Fsn
Lob

(1.1)

Fop = —2 (1.2)

- 2cosa
where:
T — the shear stress value [MPa],

F, — the shear force [N],

L, — length of the working side of the sample before the
examination [mm],

b — average sample thickness [mm],

F, — force applied along the gripper axis [N],

2a — angle between the sides of the frame [radians].

From the experiment data graphs were prepared to represent
the function of shear strain in relation to shear angle for each

sample. The shear angle was calculated according to [18, 19,
20, 211
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Figure 2. Testing station a static shear test: (1) Picture/Shear Test Frame, (2) examined synthetic fabric material sample, (3) and (4) mounting of
the test frame in the strength machine, and (5) side safety handle; b sample dimensions for static shear test.
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where:

Y — shear strain angle [radians],

L — PFT frame side length [mm],

d — PFT frame gripper displacement [mm].

2.2.2. Static tensile test

Standard fabric stretch testing are carried out separately along
the direction of the weft and warp of the material. Fabrics are
flat products; however, the thickness of the fabric may differ
depending on the weave and point of measurement [17].
Therefore, the standard examination of textile materials does
not account for thickness and does not determine maximum
stress. The examination determines the maximum tensile force
along the direction of the weft/warp and relative elongation at
maximum force expressed as a percentage. However, for the
purposes of the assumed method of modeling, it is necessary
to determine the characteristics of shear stress o in relation to
the displacement ¢ for the direction of the warp and wetft. In the
present case, for a flat rectangular sample, the tensile stress is
determined to be the tensile force for the cross-section area.
The cross-section area of the fitting affected by the tensile
force depends on the sample width and its thickness. In order
to determine the characteristic of the tensile stress o,(¢,) in the
direction of the fabric warp as well as the characteristic of the
tensile stress o,(¢,) in the direction of the weft, the average
thickness of the fabrics examined was determined, as provided
in Table 1.5, and measurements of sample thickness were
taken for each material. The measurement was carried out with
a micrometer with accuracy of up to 0.001 mm.

The ideal description of the thickness parameter of a woven
material (depending on the strand material, weave, and point
of measurement) is included only in cases necessitating a very
accurate representation or description of material reaction to
bending as well as when the material examined is made up
of multiple layers of the fabric [19, 21, 22]. The present work
does not entail the examination of fabric bending or examining
multilayered fabric samples.

The static elongation testing was carried out on the MTS Insight
strength machine. The samples were examined with a constant
movement speed of 2 mm/s. The four materials provided in
Table 1 were subjected to examination. Rectangular samples

Table 1. Synthetic textiles prepared for the examination

Material Average material thickness [mm]
Bratex 0.098

Gore-Tex 0.412

Ortalion 0.1
Poplin 0.182
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with nominal dimensions of 250 x 25 mm were prepared
according to EN I1SO 527-4.

Grippers were used to mount the samples for the static tensile
test. They were connected to the strength machine in a way
that aligns the main axis of the fitting with the direction of the
applied force and in line with the gripper axis. The sample for
testing in the machine was secured with polyurethane foam
pads to immobilize the sample in the gripper. During the
examination, tensile force was applied to the sample until
tearing occurred. In the course of the test, both the tensile
force and the displacement of the upper gripper of the strength
machine.

3. Numerical model

There are several methods for modeling fabrics in a
simulated environment. The modeling of fabric’s mechanical
characteristics in the macro scale as proposed by Xiaoping
Gao and Liping Wang [30] is based on the classical theory of
composite materials. This approach assumes that the fabric is
an orthotropic material consisting of three layers with assigned
different material constants. despite utilizing a simplified model
[30], the study achieved a high degree of convergence between
the simulated and actual results. Per the subject literature [21,
22], the nonlinear mechanical characteristics of fabrics result
from, among other factors, friction between the strands of
the weft and warp, the wrinkling of the fabric, stretching and
shearing in directions that are different from the direction of the
weft and warp strands. High strength is demonstrated by the
fabric only along the direction of the strands (weft and warp),
and therefore, in order to model the material characteristics,
the data are used from the stretching examination in these
directions as well as the behavior of the weft and warp strands
under shear forces. The variance in the shear strain of angle y is
defined as the change of the angle between the two directions
of the fabric strands. For the purposes of this paper, in order
to characterize the fabric model in the macro scale within the
Abaqus/Explicit framework, the *FABRIC material model as
described in [22] was used, which was based on experimental

Figure 3. Testing station, static tensile test: (1) examined synthetic
fabric sample, (2) polyurethane foam pads, (3) upper grip, (4) lower
grip, (5) upper grip jaws, and (6) lower grip jaws.
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data obtained from static tensile tests along the direction of the
weft and warp, as well as the static shear test carried out with
the PFT, providing the nominal fabric stress as a function of
nominal strain in the form of a table. This is a simplified method
of fabric modeling that facilitates representing actual studies
within a simulated environment. The model is intended to be
used for single-layer fabrics with different types of structure.
The method does not account for parameters such as the
distance between strands, the shape of the material cross-
section of the strands, orthe weave. The method used to define
those characteristics assumes that the responses of the textile
material along the direction of the warp, weft, and reaction to
shearing action are independent of each other. Therefore, the
state of composite stress in the single mesh item of the virtual
model depends on the strain of this item. To summarize, the
model is based on three independent sets of data related to
the functions of tensile stresses and material strain along the
warp, with the characteristic of tensile stress and material strain
along the weft as well as the functions of shear stress and the
displacement angle.

In order to verify the *FABRIC material model, the study
discussed in section 2.2.2 was recreated within the Abaqus
virtual framework. The geometric models for 3 flat rectangular
samples were created. The first sample was at a 0° angle to
the local coordinate system, the second sample was at a 90°
angle, and the third sample was at 45° angle. These objects
were defined as deformable or planar (shell), and the thickness
was defined according to the examined fabric. The geometric
models were divided into three parts, two of which were the
parts of the sample representing the location of the grippers of
the fixture. The third section is the stretched part. The cross-
section type of the geometric model was set as a membrane.
The mesh item type is M3D4R. All degrees of freedom of
movement were disabled for the bottom parts of the samples,
using the ENCASTRE edge parameter. Reference points (RP)
were created in the middle of the upper edges of the geometric
models. By use of the COUPLING function, the model reference

points were connected to the upper section of the given sample
(Figure 4a). The reference points were assigned a speed of
motion along the axis of the given sample equal to 2 mm/s.

Due to the quasi-static nature of the examination, in order to
reduce computation time, the simulation employed the Mass
Scaling function. This is justified in cases of a negligible
influence of inertial forces on the results [22, 24]. During this
simulation, the samples were stretched until torn. The data
fed into the framework were obtained directly from empirical
studies.

4. Results

In order to determine the nominal stress as a function of
nominal strain obtained in the course of the simulation, the
Field OUTPUT function was used with the time interval setting
0.05 s. This function allowed us to read the reaction force value
at the reference points depending on the time of the test t. The
stress values were calculated with the formula below (4.1):

Fn
Gn—ﬁ

(4.1)
where:

On — tensile stress [MPa],

F. — tensile force measured during the simulation [N],

b — width of the geometric model (sample), equal to 25 mm,

h - thickness of the geometric model (sample), depending on
the used fabric material, from 0.098 mm to 0.412 mm.

Whereas the strain of the geometric models was calculated
with (4.2):

Figure 4. Geometric sample models: (a) reference points and (b) boundary conditions.
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Figure 5. Comparison of the empirical results data and the MES
analysis from the static tensile test as well as the results from the static

shear test: Bratex (a) 0°, (b) 90°, (c) shear, and (d) 45°.

Table 2. Strength characteristics of selected textiles.
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Figure 6. Comparison of the empirical results data and the MES
analysis from the static tensile test as well as the results from the static
shear test: Gore-Tex (a) 0°, (b) 90°, (c) shear, (d) 45°.

Fiber Bratex Gore-Tex Ortalion Popelina
direction | Empirical| FEM |Empirical| FEM |Empirical| FEM |Empirical | FEM
0° 128.7 132.3 67.6 67.4 99 109.9 40.1 417

Average of tensile .
strength Rm [MPa] 90 79.9 79.3 62 63.2 38.8 425 51.4 53.2
45° 103.4 103.1 455 56.6 70.4 85.3 21.6 23.7
0° 36.4 37.7 48.8 50 19 20.9 66.1 66.5
Average of maximum 90° 31.1 34.2 475 50.4 9.7 1.2 7.4 7.3
strain g,,, [%]
45° 59 58.7 73.9 74 59.8 59.9 61.1 63.7
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t
£, = —-100%
Ly
where:
€y — strain of the geometric model [%],

V — constant speed of motion of the reference points equal
to 2 2 ,

5
t _ time limit (simulation) [s],
Ly —initial length of the stretched area [mm].
After determining the characteristic of stress as a function
of strain, the virtual framework data for the four materials
discussed were used to juxtapose the results obtained in the
simulation with the empirical results (Figures 5-8). Table 2

provides the selected strength characteristics of the examined
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Figure 8. Comparison of the empirical results data and the MES
analysis from the static tensile test as well as the results from the static
shear test: Poplin (a) 0°, (b) 90°, (c) shear, (d) 45°.

fabrics that were obtained after processing the results of the
examination and the numerical analyses.

Given the test results and MES analysis results provided in
this paper, one can conclude that the developed material
models for stretching at the angle of 0°, 90° and 45° are able
to represent the parameters of actual woven materials such as
Bratex, Gore-tex, Ortalion, and Poplin.

5. Summary

This paper presents the results of an experimental study and
modeling of the characteristics of synthetic fibers used in the
manufacture of down jackets.

In order to carry out numerical analyses for woven materials
in the Abaqus/Explicit simulation framework, the nonlinear
characteristics of these materials are to be defined. These
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dependencies are arrived at through experimental data. The
testing was limited to straightforward, uniaxial tensile tests and
uniaxial shear test employing the PFT fixture.

The results of each numerical simulation were juxtaposed
with the results obtained via experimentation. This allowed us
to verify the numerical model. The juxtaposition of actual and
simulated characteristics for stretching and shearing indicate
that the results obtained in the MES analysis are convergent
with the actual results. Consequently, the designed material
models are suitable for employment in the simulated framework.

Following the appropriate calibration, the material model can
be used to simulate the decomposition process of synthetic
fabrics for the purpose of designing shredding machines. The
development of this aspect in mechanical engineering may
serve to improve the usability of waste textile material and
increase the efficiency of recovery of products such as feather
and down.
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