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1. Introduction

Underground coal mining is one of the most hazardous 
occupations because it is normally performed in a hostile 
workplace with limited space, narrowed vision, and high dust 
concentration. Although industrial development has promoted 
the mechanization of mining production, manual activities are 
still required for driving, loading, and cleaning activities [1]. 
Thousands of mining accidents and injuries were reported every 
year including equipment operating errors, slips, trips, and falls 
[2–4]. In China, there were over 2,000 deaths resulted from 
frequent accidents in the coal mining industry every year [5].

It indicates that the improper design of workwear may restrict body 
movements, impair work performance, and thereby increase 
expenditure, which can all lead to serious injuries [3, 6]. Zungu 
[7] also found that when the workwear is poor in fi t and comfort, 
the workers would refuse to wear them, which increases safety 
and health risks. So far, scholars have conducted ergonomic 
design and evaluation of varied workwear to improve workers’ 
mobility performance. For example, Lin et al. [8] and Zhai et 
al. [9] designed a coverall for disaster rescuers whose mobility 
performance was evaluated by experimental simulations of 
work tasks, and then analyzed based on the range-of-motion 
(ROM) of wearers. The wearers’ ROM measurement was also 
effectively used for fi refi ghter ensembles evaluation by Coca 
et al. [10] and Ciesielska-Wróbel et al. [11]. Further, subjective 
sensation rating was shown to be valid to obtain information 

about wearer mobility and comfort in the two studies of 
chemical/biological protective suit and pear farmers work suit 
development[12, 13]. Furthermore, movement speed, time 
consumption, and energy expenditure were also measured 
for ergonomic evaluation of workwear [14, 15]. Despite many 
efforts involved in the ergonomic improvement of workwear, 
only limited research has experimentally examined or improved 
the mobility performance of workwear for coal miners.

In addition, cold exposure is another problem in the mining 
industry. Low temperature can occur in shallow underground 
coal mines during cold weather or in high-latitude areas [16]. 
Previous research has indicated that the cold environment 
raises the prevalence of musculoskeletal pain and arthralgia 
among miners [17]. Jussila et al. [18] evaluated the thermal 
protective properties of six types of miners’ workwear by using 
questionnaires and a thermal manikin. The results showed that 
thermal protection was insuffi cient even though multi-layered 
fabrics were used.

The protective workwear is essential for the hazardous mining 
work. Unfortunately, the existing workwear was simply designed 
and very limited attention has been paid to improve workwear 
performance. Especially, there is a lack of research to minimize 
cold stress and provide good mobility performance. To bridge 
this research gap, this study aimed to develop a new workwear 
(NEW) for coal miners that meets the requirements of cold 
protection and body mobility. Wear trials were conducted to 
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investigate the thermal and mobility performance of NEW by 
comparing it with a commercially available and commonly worn 
workwear (CON). It was hypothesized that the NEW would 
improve the thermal and movement comfort.

2. Design of miner workwear

2.1. Interview program

The purpose of this study was to carry out coal miner workwear 
designs having optimal functional characteristics to meet the 
demands of cold protection and body mobility. Questionnaires 
were prepared for this purpose. The questionnaires were 
distributed to 10 miners from the Xiqu mine (Shanxi, China). 
A face-to-face interview was also conducted to further know 
about their needs and preferences regarding the workwear. 
The results of the questionnaire survey were summarized as 
follows:

a.	 Thermal protection and waterproofness are primarily 
required for the workers who operate in cold and wet 
work areas. However, the current workwear provides 
poor thermal protection. Hence, the workers had to put 
on additional mid-layer clothing to keep warm, which was 
bulky as well as impair freedom of movement. The moisture 
from spray equipment soaked the workwear, which reduced 
comfort and accelerated cooling.

b.	 Clothing should not restrict movement. Mine work involves 
a wide range of body movements, including crawling, 
kneeling, squatting, bending, and arm raising. Improper 

design of workwear would reduce the comfort of mobility 
and work efficiency.

c.	 Higher pocket capacity is required. The pocket capacity 
should be sufficient for the storage of tools and other 
accessories, including work gloves, safety lamps, first-aid 
kits, toolkits, notebooks, and pens.

d.	 Wearing comfort at the calf regions requires improvement. 
Some interviewees complained that it was not comfortable 
enough when tucking the trousers leg areas into the boots. 
The trousers’ structure at calves needs modification.

2.2. Materials

The materials of NEW consisted of three kinds of shell fabrics 
and padded cotton as a thermal liner. All the materials were 
outsourced from Changzhou Buku Textiles Co. Ltd. (Changzhou, 
China). The drill fabric and knitted fabrics were made of 100% 
cotton, which is considered to be anti-static in highly humid 
conditions. And the wear-resistant fabric used 98% cotton and 
2% conductive wires with the waterproof property. The material 
properties were tested and shown in Table 1.

2.3. Workwear design

The NEW consists of a long-sleeved jacket and a pair of 
trousers, as shown in Figure 1. The jacket length, chest girth, 
sleeve length, shoulder width, trouser length, waist girth, and 
hip girth were 78 cm, 114 cm, 64 cm, 47 cm, 110 cm, 82 cm, 
and 110 cm, respectively, which fit men in the height range of 
175–185 cm. Its total weight was 2.38 kg. Its thermal insulation 
was estimated to be 1.19 clo [24].

Table 1. Material properties of NEW and CON.

Fabric properties
NEW CON

Drill fabric Wear-resistant fabric Knitted 
fabric

Padded cotton Drill fabric

Material 100% 
cotton

98% cotton and 2% conductive 
wires (water-repellent agent 

treated)
100% cotton 100% cotton 100% 

cotton

Structure 3/1 twill 
weave 2/1 twill weave Interlock knit Nonwoven 2/1 twill 

weave

Warp and weft density 
(thread/cm) 45*25 50*24 N/A N/A 42*22

Thickness (mm) [19] 0.66 0.55 0.95 3.67 0.75

Weight (g/m2) [20] 282.7 238.8 398.5 N/A 276.1

Thermal conductivity 
(W/m/K) [21] 0.069 0.043 0.089 N/A 0.059

Water vapor permeability 
(g/m2/day) [22] 5,696.0 7,408.7 6,989.7 N/A 2,884.8

Air permeability (mm/s) 
[23] 147.3 44.4 46.8 28.0 31.8

CON, commonly worn workwear; N/A, not applicable; NEW, new workwear.
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weight, height, and body mass index (BMI) were 25.9 ± 
0.8 years, 77.7 ± 9.2 kg, 1.80 ± 0.03 m, and 23.87 ± 2.81 kg/
m2, respectively. Their body dimensions were similar and thus 
all could fi t the same size of the experimental ensembles. They 
were in good health condition and could bear the load of the 
trials. Before consenting to participation, they were informed 
about the purpose and details of this study and signed a 
consent form. They were also notifi ed that they could quit this 
study at any time unconditionally. This study strictly followed 
the Declaration of Helsinki.

3.3. Test condition

All trials were conducted in a cold and humid environment using 
a climate chamber (Espec Corp, Japan). Air temperature of 
10.0 ± 0.5°C, RH of 75 ± 5%, and air velocity of 0.15 ± 0.05 m/s 
were maintained. Such a condition was selected to simulate 
the underground coal mining environment in Northern China 
[25].

3.4. Test protocol

Each subject underwent two wear trials (i.e., NEW and CON) in 
random order. For each subject, the two trials were conducted 
at the same time of the days, spaced by at least 24 h, to 
eliminate the effects of circadian variation. All subjects were 
asked not to drink coffee, tea, and alcohol 1 day before the 
test. They were also instructed to not perform any strenuous 
activities at least 24 h before each testing.

Upon arrival at the laboratory (room condition: 25°C, 
RH = 60%), subjects needed to rest for 30 min to reach a 
thermos-neutral state (feel neither warm nor cool and have 
no sensible sweating). In the meantime, they were briefed 
about the test procedure and the meanings of the subjective 
sensation rating scale.

Subjects were then asked to attach the temperature sensor 
(iButton® DS1922L, Maxim Integrated, USA, resolution: 
0.0625°C) at 10 skin sites (i.e., forehead, chest, abdomen, 
scapula, lower back, upper arm, forearm, hand, thigh, and calf) 
using surgical tapes (3M Co., USA), put on the experimental 
ensembles, and entered into the climate chamber. During 

The jacket was composed of the main body and a fl ap over 
the shoulders. The main body was made of drill fabric. The 
fl ap was a three-layer composite, i.e., wear-resistant fabrics 
used for outer and inner layers and padded cotton as a thermal 
liner, which was waterproof to avoid being drenched by spray 
equipment. The fl ap was fastened to the body using the Velcro 
fasteners and hence it was easy to don and doff. We designed 
fi ve pockets (i.e., four in the front and one in the back) to carry 
tools. The wear-resistant fabric was used in elbow areas to 
prevent fabric fraying. Moreover, hoop and loop tapes were 
used at the cuffs and the hem regions to prevent the dust from 
getting inside.

The drill fabric was used for the trousers. The fi t of the 
trousers was signifi cantly affected by the crotch. Therefore, 
we increased the crotch depth of the trousers. The waistline 
at the back was also raised to add extra ease to the center 
back. The thigh and knee areas used the three-layered cotton-
padded materials. The pleats in the knee areas could help the 
knees to bend easily. The trouser legs are usually tucked into 
the boots. It would lead to discomfort if too much fabric was 
piled in the boots. Thus, we decreased the trousers’ girths in 
the lower legs and used elastic knitted fabrics so that it would 
not be uncomfortably tight.

3. Methods

3.1. Experimental ensembles

In addition to the NEW described above, a typical and CON was 
provided by Yulin Coal Industry Co., Ltd. for comparison, as 
shown in Figure 2. The CON was made of a cotton drill, whose 
fabric properties were presented in Table 1. Its total weight was 
2.41 kg. Its thermal insulation was estimated to be 0.96 clo. 
Apart from the workwear, subjects were also dressed in the 
same knitted cotton shirt and pants as underclothing and were 
equipped with a helmet, a pair of gloves, and mining boots.

3.2. Subjects

Eleven male students of the university voluntarily participated 
in this study. The mean and standard deviation of their age, 

Figure 1. The diagram and photos of newly developed workwear. 
1—shoulder fl ap; 2—cargo pockets; 3—hoop and loop tapes; 4—
retrorefl ective strips; 5—pleats; 6—knitted lower leg; 7—belt loops; 
and 8—patch pocket.

Figure 2. The diagram and photos of CON. CON, commonly worn 
workwear.

AUTEX Research Journal, Vol. 22, No 2, June 2022, DOI 10.2478/aut-2021-0020

http://www.autexrj.com/ 157



The sweat production was calculated which is the difference 
of nude body weight before and after the test. The sweat 
evaporation effi ciency was derived from: (the clothed body 
weight change/the nude body change) x 100%.

3.6. Statistical analysis

Data were analyzed using SPSS version 22.0. A two-way 
repeated measures ANOVA was carried out to determine if there 
was any signifi cant difference in the local skin temperatures, 
Tskin, Ttorso, Tleg, and thermal comfort between NEW and CON. A 
paired samples t-test was conducted to compare the movement 
comfort during each movement (the ratings in the twice 
repeated processes were averaged), the sweat production, 
and the sweat evaporation effi ciency between NEW and CON. 
Statistical signifi cance was set to p < 0.05 (marked as * on the 
graphs).

4. Results and discussion

4.1. Physiological responses

4.1.1. Local skin temperatures

Figure 4 presents the local skin temperatures at chest, scapula, 
thigh, and calf. For these four body parts, signifi cantly higher 
local skin temperatures were observed in NEW than that in CON 
(p < 0.05). In CON, the temperature at chest, scapula, thigh, and 
calf decreased by 2.9°C, 1.9°C, 4.0°C, and 3.1°C, respectively 
at most. In contrast, for those in NEW, the decrease was 
about 2.2°C, 1.6°C, 2.0°C, and 2.6°C, respectively. However, 
for the other local body parts (i.e., forehead, abdomen, lower 
back, upper arm, forearm, and hand), no signifi cant statistical 
difference in local skin temperatures was observed between 
the two scenarios.

The previous study has concluded that the cold protective 
performance of clothing mainly depends on the thermal 
insulation capability of fabrics [27]. As shown in Table 1, the 
thermal conductivity of most fabric materials in NEW was 
higher than that in CON. But the addition of padded cotton 
(i.e., thermal liner) used in the shoulder fl ap and thigh areas 
in NEW contributed to increase in the thermal insulation and 
thereby diminished the body heat dissipation to the cold 
environment. This fact was evident from the improvement of 
local skin temperatures at chest, scapula, and thigh in NEW. 

the trials, subjects needed to perform a series of movements 
as shown in Figure 3, which closely resembled the physical 
movements commonly carried out by miners in their daily work: 
(i) 10-min sitting, (ii) 10-min shoveling, (iii) 2-min squatting, and 
(iv) 5-min crawling at the speed of about 1.5 km/h. All of these 
movements were repeated once. Each trial lasted for 54 min 
and skin temperatures were recorded for every 1 min throughout 
the trial. Moreover, subjective thermal comfort and movement 
comfort were rated immediately after each body movement. 
A 7-point subjective thermal comfort scale ranging from –3 
(very uncomfortably cold), –2 (uncomfortably cold), –1 (slightly 
uncomfortably cold), 0 (comfortable), +1 (slightly uncomfortably 
hot), +2 (uncomfortably hot) to +3 (very uncomfortably hot) was 
used. Meanwhile, the movement comfort for the whole body 
and fi ve local body parts (i.e., elbows, waist, crotch, knees, and 
calves) was rated using a 4-point scale ranging from –3 (very 
uncomfortable), –2 (uncomfortable), –1 (slightly uncomfortable) 
to 0 (comfortable).

To determine the sweat production and the sweat evaporation 
effi ciency, the semi-nude body weight (i.e., just with briefs), 
the clothed body weight (i.e., with all pieces of clothing and 
instrument items), and each clothing piece were weighed 
before and after trials using a weighing scale (KCC150s, 
Mettler-Toledo Ag, Switzerland, accuracy: ±1 g).

3.5. Calculations

The mean skin temperature (Tskin), the mean torso temperature 
(Ttorso), and the mean leg temperature (Tleg) were calculated 
using the following Eqs (1),–(3), respectively [26].

(1)

 (2)

 (3)

where Tforehead, Tscapula, Tchest, Tupper arm, Tforearm, Thand, Tthigh, Tcalf, 
Tabdomen, and Tlower back are local skin temperatures at the forehead, 
scapula, chest, upper arm, forearm, hand, thigh, calf, abdomen, 
and lower back, respectively.

Figure 3. (a) Diagram of the test procedure and (b) Photo of a subject during the experiment.
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1.7% in NEW and CON, respectively. No statistical difference 
was observed in sweat production and sweat evaporation 
effi ciency between the two scenarios, indicating that the sweat 
management properties in NEW needed further improvement.

4.2. Perceptual responses

4.2.1. Thermal comfort

The thermal comfort in NEW and CON was presented in 
Figure 6. The thermal comfort in both NEW and CON dropped 
during 0–10 min and 27–37 min (i.e., the sitting periods) and 
gradually increased during 10–27 min and 37–54 min (i.e., 
the shovelling, squatting, and crawling periods), respectively. 
In NEW, the thermal comfort was rated between –1.4 (i.e., 
approaching slightly uncomfortably cold) and 0.6 (i.e., 
approaching slightly uncomfortably hot) throughout the test. 
In CON, the thermal comfort was rated between –2.1 (i.e., 
approaching uncomfortably cold) and –0.2 (i.e., approaching 
neutral). A signifi cant increase was observed in the thermal 
comfort in NEW after 10th min (p < 0.05), compared with CON.

Considering the changes in skin temperature between NEW 
and CON, it was not surprising to fi nd that the ratings of thermal 
comfort in NEW were higher than that in CON. However, their 
evolution was not consistent. When subjects were shoveling, 

This fact was consistent with a previous study result that the 
placing of the insulation had a decisive infl uence on local skin 
temperature [28].

4.1.2. Mean skin, torso, and leg temperatures

Figure 5 illustrates the comparison of Tskin, Ttorso, and Tleg in NEW 
and CON. Generally, the mean, torso, and leg temperatures in 
both NEW and CON exhibited a decline in the initial 10–20 min 
and were relatively stable till the end of the test. The Tskin of NEW 
had improved by about 1.0°C as compared with that of CON, 
which was within the thermal-neutral range (i.e., 32–34°C) [29, 
30]. That means the cold protective performance had improved 
in NEW. Furthermore, the cold protective effectiveness of NEW 
was more apparent at the lower body (i.e., legs) than at torso. 
It might be because, in the cold environment, skin temperature 
in CON decreased much more at limbs that were farther away 
from the core body than the torso [31]. The thermal liner in 
NEW reduced the drop of skin temperature at legs and thereby 
provided a signifi cant improvement in cold protection.

4.1.3. Sweat production and sweat evaporation effi ciency

The sweat production was 228 g and 217 g in NEW and CON, 
respectively. The sweat evaporation effi ciency was 1.8% and 

Figure 4. Local skin temperatures in NEW and CON: (a) Chest skin temperatures; (b) Scapula skin temperatures; (c) Thigh skin temperatures; and 
(d) Calf skin temperatures. i—sitting period; ii—shoveling period; iii—squatting period; and iv—crawling period. CON, commonly worn workwear; 
NEW, new workwear.
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4.2.2. Movement comfort

Figure 7 presents the movement comfort in NEW and CON at 
six body parts (i.e., whole body, elbows, waist, crotch, knees, 
and calves) during four movements (i.e., sitting, shoveling, 
squatting, and crawling). All points are the mean ratings from 
the twice repeated movements. During sitting and shovelling 
periods, NEW and CON exhibited no signifi cant difference 
in movement comfort, and they were relatively comfortable 
at all the six tested body parts. During squatting period, the 
movement comfort ratings in NEW at whole body, waist, crotch, 
and knee were signifi cantly higher than that in CON (i.e., –0.1 
in NEW versus –0.7 in CON, –0.5 in NEW versus –0.8 in CON, 
–0.4 in NEW versus –1.1 in CON, and –0.2 in NEW versus –1.1 
in CON, respectively; p < 0.05). During crawling period, NEW 
was signifi cantly more comfortable than CON at whole body, 
elbows, waist, crotch, and knees (i.e., –1.0 in NEW versus –1.8 
in CON, –0.9 in NEW versus –1.4 in CON, 0 in NEW versus 
–0.7 in CON, –0.2 in NEW versus –1.0 in CON, and –1.5 in 
NEW versus, –1.9 in CON, respectively; p < 0.05).

The movement comfort increased when subjects were 
wearing NEW, especially during the squatting and crawling 
periods. When the workers squat down or crawl forward, body 
dimensions changed greatly in the leg and buttock areas. Note 
that the CON was tightly fi tted to the body and restricted body 
movement at knees and crotch. In contrast, the new pattern 
used in NEW had overcome these problems and enhanced 
the movement comfort. Further, the movement comfort 
was also improved at the waist when crawling, because the 
increased crotch depth, as well as raised waistline, could keep 
the trousers’ back waist from sliding down. In summary, the 
movement comfort ratings showed that design features in NEW 
can be expected to have a positive impact on body comfort 
when miners perform work activities.

4.3. Limitations

Some limitations of this study should be acknowledged. Only 
male students of the university were recruited for clothing 
ergonomic evaluation, so the fi ndings may not accurately 
represent coal miners. Manual workers may have different 
physiological and perceptual responses in a cold environment 

squatting, and crawling, their ratings of thermal comfort 
gradually increased with time while the skin temperature was 
relatively low and stable. This result was mainly due to the 
increased skin wettedness during the dynamic periods. On one 
hand, skin wettedness contributed to the low skin temperatures. 
On the other hand, the skin wettedness was more important for 
thermal comfort perception than the skin temperature [32]. That 
means although the skin temperatures were relatively low in 
the current study, the thermal comfort of “uncomfortably hot” 
sensation was registered when subjects began to sweat during 
physical activities. Consequently, further improvements were 
still required to reduce sweat accumulation in clothing and skin 
surface.

Figure 5. (a) Mean skin temperatures, (b) mean torso temperatures, 
and (c) mean leg temperatures. i—sitting period; ii—shovelling period; 
iii—squatting period; and iv—crawling period. CON, commonly worn 
workwear; NEW, new workwear.

Figure 6. Thermal comfort in NEW and CON. i—sitting period; ii—
shovelling period; iii—squatting period; and iv—crawling period. CON, 
commonly worn workwear; NEW, new workwear.
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