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On Bochner flat para-Kählerian manifolds
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Abstract: Let B be the Bochner curvature tensor of a para-Kählerian manifold. It is

proved that if the manifold is Bochner parallel (∇B = 0), then it is Bochner flat (B = 0)

or locally symmetric (∇R = 0). Moreover, we define the notion of the paraholomorphic

pseudosymmetry of a para-Kählerian manifold. We find necessary and sufficient conditions for a

Bochner flat para-Kählerian manifold to be paraholomorphically pseudosymmetric. Especially,

in the case when the Ricci operator is diagonalizable, a Bochner flat para-Kählerian manifold

is paraholomorphically pseudosymmetric if and only if the Ricci operator has at most two

eigenvalues. A class of examples of manifolds of this kind is presented.
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1 Preliminaries

A triple (M, J, g) is said to be a para-Kählerian manifold ([4, 5]) if M is a connected

differentiable manifold of dimension n = 2m, J is a (1, 1)-tensor field and g is a pseudo-

Riemannian metric of neutral signature on M such that

J2 = I, g(X, JY ) + g(Y, JX) = 0, ∇J = 0 (1)

for any X, Y ∈ X(M), where I is the identity tensor field, X(M) denotes the Lie algebra

of smooth vector fields on M and ∇ is the Levi-Civita connection with respect to g.

Let (M, J, g) be a para-Kählerian manifold. In the sequel, W, X, Y, Z, . . . will denote

arbitrary elements of X(M) if it is not otherwise stated. Let R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ]

be the curvature operator and R the Riemann curvature tensor given by R(X, Y, Z, W ) =
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g(R(X, Y )Z, W ). The symbols Q, S, r will denote the Ricci operator, the Ricci curvature

tensor and the scalar curvature, respectively, and we assume the following convention

Tr {Z 7−→ R(Z, X)Y } = S(X, Y ) = g(QX, Y ), r = Tr Q.

For these tensor fields, we have the following famous consequences of the second Bianchi

identity

∑

i
εi(∇ei

R)(X, Y, Z, ei) = (∇XS)(Y, Z) − (∇Y S)(X, Z), (2)

where (ei; i = 1, . . . , n) stands for an orthonormal frame and εi = g(ei, ei) = ±1.

As it is well-known (cf. e.g. [1]), the Riemannian and Ricci curvature tensors of a

para-Kählerian manifold have additionally the following algebraic properties

R(JX, JY ) = −R(X, Y ), R(X, Y )J = JR(X, Y ),

S(JX, Y ) = −S(JY, X), S(JX, JY ) = −S(X, Y ), QJ = JQ.
(3)

For X, Y ∈ X(M), define the operator X ∧ Y acting on vector fields by

(X ∧ Y )Z = g(Y, Z)X − g(X, Z)Y, Z ∈ X(M).

The Bochner curvature operator B is defined by (see [1, 18])

B(X, Y ) = R(X, Y ) −
1

n + 4
(X ∧ (QY ) + (QX) ∧ Y − (JX) ∧ (QJY )

− (QJX) ∧ (JY ) + 2g(JX, Y )QJ + 2g(QJX, Y )J)

+
r

(n + 4)(n + 2)
(X ∧ Y − (JX) ∧ (JY ) + 2g(JX, Y )J), (4)

and the Bochner curvature (0, 4)-tensor is given by B(X, Y, Z, W ) = g(B(X, Y )Z, W ).

The tensor B has the same symmetry and antisymmetry properties as the usual

curvature tensor and moreover the following additional ones

B(JX, JY ) + B(X, Y ) = 0, B(JX, Y ) + B(X, JY ) = 0,

Tr{Z 7→ B(Z, X)Y } = Tr{Z 7→ B(JZ, X)Y } = 0,

Trg{(W, Z) 7→ B(W, JZ)} = 0.

(5)

The Bochner curvature of para-Kählerian manifolds has been studied by many authors

[1, 2, 6-10, 17-20], etc. In these papers, geometric interpretations and applications of this

tensor can be found.

A big inspiration for the author to study the Bochner curvature tensor on para-

Kählerian manifolds comes from the fact that there are many interesting results concer-

ning the Bochner curvature of Kählerian manifolds (see e.g. [3]; for general theory of

Kählerian manifolds, see e.g. [9, 21]). Note that the defining conditions of a Kählerian

manifold remain the same as (1) except the first one which should be replaced by J2 = −I,
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and the metric g is positive definite. Therefore, the researches in para-Kählerian mani-

folds are not simple translations of the investigations of Kählerian manifolds. However,

certain results look similar.

Here, I would like to point out only the papers [12, 13, 14] concerning Kählerian

manifolds and which are strictly related to our investigations. Precisely, our Theorem

2.1 is a para-Kählerian analogy of Theorem 2 from [12]; Proposition 3.1 corresponds to

the Proposition from [13], p. 221; and Theorems 3.2 and 3.3 are related to, respectively,

Theorems 2 and 3 from [14].

Finally, I would like to turn reader’s attention to the paper [3], which is very important

since it provides an explicit local classification of Bochner-Kähler (Bochner flat Kählerian)

manifolds.

2 Bochner parallelity

A para-Kählerian manifold is called Bochner flat if its Bochner curvature tensor vanishes

identically [1, 20]. In the papers [2, 6, 7] a geometric meaning of the Bochner flatness can

be found; such manifolds are called there to be isotropic para-Kählerian.

A para-Kählerian manifold with ∇B = 0 will be called Bochner parallel . It is obvious

that Bochner flat (B = 0) as well as locally symmetric (∇R = 0) para-Kählerian mani-

folds are Bochner parallel.

Bochner parallel para-Kählerian manifolds were studied by N. Pušić in [18], where

it is proved that such manifolds are Bochner flat or the gradient of the scalar curvature

is isotropic (i.e., g(grad r, grad r) = 0). Generalizing this result, we show that a non

Bochner flat, Bochner parallel para-Kählerian manifold is necessarily locally symmetric.

In our investigations, we need the important formula obtained in [18, eq. (1.8)] for

the covariant derivative ∇S of a Bochner parallel para-Kählerian manifold. Namely,

(∇XS)(Y, Z) =
1

2(n + 2)
(g(X, Z)dr(Y ) + g(X, Y )dr(Z) + 2g(Y, Z)dr(X)

− g(X, JY )dr(JZ) − g(X, JZ)dr(JY )). (6)

Theorem 2.1. If a para-Kählerian manifold is Bochner parallel, then it is Bochner flat

or locally symmetric.

Proof. Let (M, J, g) be a para-Kählerian manifold. By the Ricci identity, we have the

following general formula

(

∇2
UV B −∇2

V UB
)

(X, Y, Z, W )

= − B(R(U, V )X, Y, Z, W ) − B(X, R(U, V )Y, Z, W )

− B(X, Y, R(U, V )Z, W ) − B(X, Y, Z, R(U, V )W ), (7)

where ∇2
UV = ∇U∇V −∇∇UV is the second covariant derivative.

Assume that (M, J, g) is additionally Bochner parallel. Then ∇B = 0, and also
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∇2
UV B = 0. Consequently, by (7), it follows

B(R(U, V )X, Y, Z, W ) + B(X, R(U, V )Y, Z, W )

+ B(X, Y, R(U, V )Z, W ) + B(X, Y, Z, R(U, V )W ) = 0.

Differentiating the above covariantly, we obtain

B((∇T R)(U, V )X, Y, Z, W ) + B(X, (∇T R)(U, V )Y, Z, W )

+ B(X, Y, (∇T R)(U, V )Z, W ) + B(X, Y, Z, (∇TR)(U, V )W ) = 0,

which can be rewritten as follows
∑

j
εj((∇T R)(ej , X, V, U)B(ej , Y, Z, W ) + (∇T R)(ej , Y, V, U)B(X, ej , Z, W )

+ (∇T R)(ej , Z, V, U)B(X, Y, ej, W ) + (∇T R)(ej , W, V, U)B(X, Y, Z, ej)) = 0. (8)

Note that in virtue of (2) and (6), we have

∑

i
εi(∇ei

R)(X, Y, Z, ei) =
1

2(n + 2)
( − g(X, Z)dr(Y ) + g(Y, Z)dr(X)

− 2g(X, JY )dr(JZ) − 2g(X, JZ)dr(JY ) + 2g(Y, JZ)dr(JX)). (9)

Taking the trace of the equality (8) with respect to the pair T, U (that is, substituting

T = U = ei into (8), multiplying it by εi and summing over i = 1, . . . , n) and applying

relations (5) and (9), we get

g(V, X)B(grad r, Y, Z, W ) + g(V, Y )B(X, grad r, Z, W )

+ g(V, Z)B(X, Y, grad r, W ) + g(V, W )B(X, Y, Z, grad r)

− B(V, Y, Z, W )dr(X)− B(X, V, Z, W )dr(Y )

− B(X, Y, V, W )dr(Z) − B(X, Y, Z, V )dr(W )

− B(JV, Y, Z, W )dr(JX) − B(X, JV, Z, W )dr(JY )

− B(X, Y, JV, W )dr(JZ) − B(X, Y, Z, JV )dr(JW )

+ g(V, JX)B(J grad r, Y, Z, W ) + g(V, JY )B(X, J grad r, Z, W )

+ g(V, JZ)B(X, Y, J grad r, W ) + g(V, JW )B(X, Y, Z, J grad r) = 0. (10)

Taking the trace of (10) with respect to the pair V, X, and using (5) and the first Bianchi

identity, we find

B(grad r, X, Y, Z) = 0. (11)

The equalities (10), (11) are in fact proved in [18, eq. (1.9), (1.12)] with applying the

local coordinates convention. We included the proofs of them for completness only.

In virtue of (11) and (5), we rewrite the relation (10) as follows

B(V, Y, Z, W )dr(X) + B(X, V, Z, W )dr(Y )

+ B(X, Y, V, W )dr(Z) + B(X, Y, Z, V )dr(W )

− B(V, JY, Z, W )dr(JX) − B(JX, V, Z, W )dr(JY )

− B(X, Y, V, JW )dr(JZ) − B(X, Y, JZ, V )dr(JW ) = 0. (12)
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Summing up (12) cyclically with respect to V, Y, X and using (5) and the first Bianchi

identity, we find

B(V, Y, Z, W )dr(X) + B(X, V, Z, W )dr(Y ) = B(X, Y, Z, W )dr(V ). (13)

Interchanging the pairs X, Y and Z, W in (13), we have

B(X, Y, V, W )dr(Z) + B(X, Y, Z, V )dr(W ) = B(X, Y, Z, W )dr(V ). (14)

As consequences of (13), (14) and (5), we also obtain

B(V, JY, Z, W )dr(JX) + B(JX, V, Z, W )dr(JY )

= B(JX, JY, Z, W )dr(V ) = −B(X, Y, Z, W )dr(V ), (15)

B(X, Y, V, JW )dr(JZ) + B(X, Y, JZ, V )dr(JW )

= B(X, Y, JZ, JW )dr(V ) = −B(X, Y, Z, W )dr(V ). (16)

In virtue of (13) - (16), from (12), we get

B(X, Y, Z, W )dr(V ) = 0. (17)

Let the manifold (M, J, g) be additionally non-Bochner flat. Since B is parallel, B

is non-zero at every point of M . Now, from (17) it follows that dr = 0, i.e. the scalar

curvature is constant. Then by (6) the Ricci tensor S is parallel. Consequently, using

(4), we see that ∇R = 0, that is, the manifold is locally symmetric. �

Results concerning locally symmetric para-Kählerian manifolds one can find in [15, 16];

and (globally) symmetric para-Kählerian spaces are classified in [8]; we refer [5] for more

details about classifications of such spaces.

3 Paraholomorphic pseudosymmetry

The usual pseudosymmetry conditions for para-Kählerian manifolds were studied by the

author in [11]. Below, we will define the new notion of paraholomorphic pseudosymmetry.

Let (M, J, g) be a para-Kählerian manifold. Besides the curvature operators R(U, V ),

we will consider also the operators R1(U, V ) acting on X(M), which are defined for any

U, V ∈ X(M) by

R1(U, V ) = U ∧ V − JU ∧ JV − 2g(U, JV )J. (18)

For a (0, k)-tensor field K on M , define (0, k + 2)-tensor fields R · K and R1 · K by

(R · K)(U, V, X1, . . . , Xk) =
(

∇2
UV K −∇2

V UK
)

(X1, . . . , Xk)

= −
k

∑

a=1

K(X1, . . . , R(U, V )Xa, . . . , Xk), (19)

(R1 · K)(U, V, X1, . . . , Xk) = −
k

∑

a=1

K(X1, . . . , R
1(U, V )Xa, . . . , Xk). (20)
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We say that a (0, k)-tensor field K is of paraholomorphically pseudosymmetric type

if the condition R · K = f R1 · K is fulfilled on M with a certain function f .

A para-Kählerian manifold will be called to be

(i) paraholomorphically pseudosymmetric if its Riemann curvature tensor R is of paraho-

lomorphically pseudosymmetric type, i.e.,

R · R = f R1 · R, f : M → R; (21)

(ii) paraholomorphically Ricci-pseudosymmetric if its Ricci curvature tensor S is of para-

holomorphically pseudosymmetric type, i.e.,

R · S = f R1 · S, f : M → R. (22)

Clearly, the paraholomorphic pseudosymmetry implies the paraholomorphic Ricci-

pseudosymmetry, the semisymmetry (R · R = 0) implies the paraholomorphic pseudo-

symmetry and the Ricci semisymmetry (R · S = 0) implies the paraholomorphic Ricci-

pseudosymmetry.

Before we state necessary and sufficient conditions for a Bochner flat para-Kählerian

manifold to be paraholomorphically pseudosymmetric, we prove the following auxiliary

result:

Proposition 3.1. For a Bochner flat para-Kählerian manifold of dimension n = 2m > 4,

(n + 4)
(

n∇2
XY r − (∆r)g(X, Y )

)

= 2n(n + 2)S(QX, Y ) − 2nrS(X, Y ) − 2((n + 2)Tr Q2 − r2)g(X, Y ), (23)

∆ =
∑

i εi∇
2
eiei

being the Laplace operator.

Proof. We can apply the formula (6). Covariant differentiation of (6) gives

2(n + 2)
(

∇2
WXS

)

(Y, Z) = g(X, Z)∇2
WY r + g(X, Y )∇2

WZr

+ g(Y, JX)∇2
WJZr + g(Z, JX)∇2

WJY r + 2g(Y, Z)∇2
WXr.

Antisymmetrizing the last identity with respect to W and X, we obtain

2(n + 2)
((

∇2
WXS

)

(Y, Z) −
(

∇2
XWS

)

(Y, Z)
)

= g(X, Z)∇2
WY r + g(X, Y )∇2

WZr − g(W, Z)∇2
XY r

− g(W, Y )∇2
XZr + g(Y, JX)∇2

WJZr + g(Z, JX)∇2
WJY r

− g(Y, JW )∇2
XJZr − g(Z, JW )∇2

XJY r. (24)

Taking the trace of the above equality with respect to the pair W, Z, we find

2(n + 2)
∑

i
εi

((

∇2
eiX

S
)

(Y, ei) −
(

∇2
Xei

S
)

(Y, ei)
)

= ∇2
JXJY r + (∆r)g(X, Y ) − (n − 1)∇2

XY r, (25)
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where we used the symmetry of ∇2
XY r. On the other hand, by the Ricci identity, we have

∑

i
εi

((

∇2
eiX

S
)

(Y, ei) −
(

∇2
Xei

S
)

(Y, ei)
)

= S(QX, Y ) −
∑

i
εiR(ei, X, Y, Qei). (26)

Moreover, by B = 0, (4) and (3), we find

(n + 4)
∑

i
εiR(ei, X, Y, Qei) =

n

n + 2
rS(X, Y ) + 4S(QX, Y ) +

(

TrQ2 −
r2

n + 2

)

g(X, Y ).

Applying the last relation into (26), and next using the obtained identity into (25), we

get

(n + 4)
(

∇2
JXJY r + (∆r)g(X, Y ) − (n − 1)∇2

XY r
)

= − 2nrS(X, Y ) + 2n(n + 2)S(QX, Y ) − 2
(

(n + 2) Tr Q2 − r2
)

g(X, Y ). (27)

Substituting, respectively, JX and JY instead of X and Y into (27), and adding the

obtained relation to (27), we get with the help of (3)

∇2
JXJY r = −∇2

XY r. (28)

Consequently, (27) turns into (23). �

Theorem 3.2. For a Bochner flat para-Kählerian manifold (M, J, g), the following con-

ditions are equivalent:

(i) the manifold is paraholomorphically pseudosymmetric;

(ii) the manifold is paraholomorphically Ricci-pseudosymmetric;

(iii) for the Ricci curvature tensor S and a function f : M → R, it holds

∇2
XY r −

1

n
(∆r)g(X, Y ) = −2(n + 2)f

(

S(X, Y ) −
r

n
g(X, Y )

)

; (29)

(iv) for the Ricci operator Q and a function f : M → R, it holds

Q2 +
(

(n + 4)f −
r

n + 2

)

Q −
1

n

(

TrQ2 −
r2

n + 2
+ (n + 4)rf

)

I = 0. (30)

Proof. Suppose that (M, J, g) is a Bochner flat para-Kählerian manifold.

At first, we remark that in virtue of (4) and B = 0, the equivalence (i) ⇔ (ii) is rather

obvious. Precisely, the pseudosymmetry conditions (21) and (22) hold simultanously with

the same function f .

To prove the remaining equivalences, first recall that

(R · S)(W, X, Y, Z) = (∇2
WXS)(Y, Z) − (∇2

XW S)(Y, Z).

Next, by applying the above relation, (24), (18) - (20) with K = S, we find the following

auxiliary formula

2(n + 2)
(

R · S − fR1 · S
)

(Y, X, Z, W )

= − g(Y, W )∇2
ZXr + g(X, W )∇2

ZY r − g(Z, Y )∇2
WXr + g(Z, X)∇2

WY r

− g(Z, JY )∇2
JWXr + g(Z, JX)∇2

JWY r − g(W, JY )∇2
JZXr

+ g(W, JX)∇2
JZY r + 2(n + 2)f(g(Z, X)S(Y, W )− g(Y, Z)S(X, W )

+ g(X, W )S(Y, Z) − g(Y, W )S(X, Z) + g(X, JZ)S(JY, W )

− g(Y, JZ)S(JX, W ) + g(X, JW )S(JY, Z) − g(Y, JW )S(JX, Z)), (31)
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f being an arbitrary function on M .

(ii) ⇔ (iii) Assume that the manifold is paraholomorphically (Ricci-)pseudosym-

metric. Contracting (31) with respect to X, Z and using (22), we get

(n − 1)∇2
WY r −∇2

JWJY r − (∆r)g(W, Y ) = − 2(n + 2)f(nS(W, Y ) − rg(W, Y )),

which with help of (28) turns into (29). Conversely, having (29), equality (31) yields (22).

(iii) ⇔ (iv) Having in mind (23), we check easily that (29) and (30) are equivalent. �

Now, we are going to present the case of the Ricci operator is diagonalizable.

Theorem 3.3. Let (M, J, g) be an n(= 2m)-dimensional Bochner flat para-Kählerian

manifold. Assume that at every point of the manifold, the Ricci operator Q is diagonali-

zable and not proportional to the identity operator. Then (M, J, g) is paraholomorphically

pseudosymmetric if and only if the Ricci operator has two different eigenvalues; and in

this case if λ 6= µ are the eigenvalues of Q, then the characteristic function f is related

to them by

2(m + 1)(m + 2)f + (m − p + 1)λ + (p + 1)µ = 0. (32)

Proof. Let us assume that the Ricci operator Q is diagonalizable at a point p of the

para-Kählerian manifold (M, J, g). By the commuting rule QJ = JQ, there exits an

adapted basis (ei, 1 6 i 6 n = 2m) of the tangent space TpM consisting eigenvectors of

Q so that it holds

g(eα, eα) = −g(eα′ , eα′) = 1, , Jeα = eα′ , Jeα′ = eα, Qeα = λαeα, Qeα′ = λαeα′

for 1 6 α 6 m, α′ = α + m, and g(ei, ej) = 0 otherwise.

Assume that the manifold (M, J, g) is paraholomorphically pseudosymmetric. By the

relation (30), there are at most two different eigenvalues of Q. Since Q is not proportional

to the identity operator, there are exactly two eigenvalues of Q, say λ 6= µ, λ being of

multiplicity 2p (1 6 p 6 m − 1) and µ of multiplicity 2m − 2p. By (30), the eigenvalues

λ and µ must fulfil the equality

λ + µ + (n + 4)f −
r

n + 2
= 0.

Hence, since r = 2pλ + 2(m − p)µ, the relation (32) follows.

Conversely, assume that λ and µ are two different eigenavlues of Q, with λ being of

multiplicity 2p (1 6 p 6 m − 1) and µ of multiplicity 2m − 2p, and LS is given by (32).

Then also r = 2pλ + 2(m − p)µ and consequently

(n + 4)f −
r

n + 2
= −(λ + µ).

Moreover, since Tr(Q2) = 2pλ2 + 2(m − p)µ2, we have

1

n

(

TrQ2 −
r2

n + 2
+ (n + 4)rf

)

= −λµ.
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In view of the last two equalities, the equation (30) takes the following form

Q2 − (λ + µ)Q + λµI = 0,

which shows that this equation is just fulfilled under our assumptions. Therefore, by

Theorem 3.2, the manifold is paraholomorphically pseudosymmetric. �

Corollary 3.4. Any 4-dimensional Bochner flat para-Kählerian manifold with diagona-

lizable Ricci operator is paraholomorphically pseudosymmetric.

Proof. In this dimension, at every point of the manifold, the Ricci operator has one

eigenvalue of multiplicity 4, or two different eigenvalues each of multiplicity 2. In the

first case, the Ricci operator has the shape Q = (r/4)I, consequently R · S = 0, which

is just the semisymmetry condition. In the second case, by Theorem 3.3, the manifold is

paraholomorphically Ricci-pseudosymmetric. �

4 Example

Let (xα, xα′

, z, t), 1 6 α 6 m, α′ = α + m, be the Cartesian coordinates in the Cartesian

space R
2m+2. Let (a, b) be an open interval and h : (a, b) → R be a function such that

h′(t) 6= 0 at every t ∈ (a, b). Define a pseudo-Riemannian metric of signature (m+1, m+1)

on M = R
2m+1 × (a, b) ⊂ R

2m+2 by assuming

gαβ = e2h(t)δαβ, gα′β′ = e2h(t)
(

4h′2(t)xαxβ − δαβ

)

,

gα′(2m+1) = −2h′2(t)e2h(t)xα, g(2m+1)(2m+1) = h′2(t)e2h(t),

g(2m+2)(2m+2) = −e2h(t), gij = 0 otherwise.

Define also a (1, 1)-tensor field J on M by assuming

Jα
β′ = Jα′

β = δα
β , J2m+1

α = 2xα, J2m+2
α′ = −2h′(t)xα,

J2m+1
2m+2 = 1/h′(t), J2m+2

2m+1 = h′(t), J i
j = 0 otherwise.

By straighforward computations, one verifies that (J, g) is a para-Kählerian structure,

which is paraholomorphically pseudosymmetric with f = h′′(t)e−2h(t) as the structure

function realizing (20). Moreover, it can also be checked that the structure (J, g) is

Bochner flat if and only if function h fulfils the ordinary differential equation

h′′′ − 6h′h′′ + 4h′3 = 0.

The function

h(t) = −(1/2) ln(t2 + a), a = constant,

is a concrete function realizing this equation. In this case, the structure (J, g) is Bochner

flat and paraholomorphically pseudosymmetric.
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