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Abstract: The problem of determining the harmonic content in the voltage that appears
on a superconducting wire carrying cosine-like AC current was resolved theoretically, using
two approaches. First, the Fourier components of the voltage spectrum were found by
numerical integration. Importance of individual terms was established, leading to two
conclusions: a) it is the cosine component of the 3rd harmonic that represents the bulk
of harmonic distortion, b) for the practical purposes it is sufficient to consider higher
harmonics with n < 7. Then, the analytical formulas were derived. While for the
sine components a general expression containing an infinite series was found, closed-form
formulas were derived for the cosine components of the harmonics 1, 3, 5, 7. Consequences
of the results to the experimental technique used to study the AC transport properties of
superconductors are discussed.
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Introduction

The shape of voltage signal from a superconductor carrying AC transport current bears

significant information about the dynamics of magnetic flux penetration [1-3]. Due to

the periodicity, it is natural to characterize the waveform by its harmonic spectrum.

This is particularly convenient when the variation of current-carrying mechanisms (e.g.
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temperature) should be investigated [4,5]. Surprisingly, the formulas for higher harmonics
in AC transport regime of superconductors have not been derived yet, in contrast to the
case of AC magnetic experiments [6-10].

In our previous paper [11], we have shown how to express, across a complex equiv-
alent inductance, the fundamental component of voltage on hard superconductor that
transports AC current. Furthermore, both the electromagnetic energy dissipation and
dispersion were described in a compact form.

Here we go further, deriving the higher harmonic components of such voltage. They
could not contribute to energy-related characteristics like AC loss provided the AC current
does not contain higher harmonics. However, they reflect the peculiarities of the voltage
signal waveform. Our effort was motivated by the fact that the surface electrical field
is the physical quantity currently investigated in standard AC transport experiments on
superconducting samples. Extension of the commonly used technique of transport AC
loss determination, based only on the separation of the in-phase fundamental harmonic
component, to a more complex harmonic analysis offers, in our opinion, better description

of the dynamics of magnetic flux penetration.

2 Time evolution of the electrical field

In this paper we investigate the waveform of the electrical field that has to be imposed to
a wire from hard type II superconductor to make it carry the harmonic current of the form
I(t) = Iycoswt. An infinitely long, round wire, possessing perfect rotational symmetry
with respect to its longitudinal axis, is considered in the following analysis. Distribution
of the current density in the wire cross-section is supposed to follow the principles of
the critical state model with constant value of the critical current density, j. [12]. It
has previously been shown how the AC current distributes in a round wire from hard
superconductor, i.e. type II superconductor with flux pinning centres in its volume [13].
This process can be characterized as the magnetic flux penetration inwards the wire, with
the penetration fronts in form of concentric circles that start from the surface, defined
by the wire radius R. On the moving penetration front, the sign of local current density
changes. Its value remains constant, given by the material’s critical current density, j..
This process happens twice in each AC cycle. For AC current amplitudes (1) lower than
the wire’s critical current (I, = wR?j.), a current-free zone remains near the wire axis
where the electrical field is also zero. It is therefore often called the neutral zone. With
the help of auxiliary variable F' = /1. one can describe the current density distribution
in the first half of the cycle (0 < wt < 7) as

—jo for Ry (t) <r <R
J(rt) =19 +je for Ro <r < R (t) (1)

lO for r < R,
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where Ry = Rv/1 — F is the radius of neutral zone and R, (t) = R+/1 — (coswt — 1) F/2
is the radius of flux penetration front. In the second half of the cycle (7 < wt < 27)

jrt)=j(nt—mjw) (2)

and R, (t) = Ry/1 — (coswt + 1) F/2. The current distribution given by Eq.(1) generates
on the wire surface (r = R) the magnetic field characterized by the vector potential

I 1—-F 2—-F+F t F F
As(t):—uiﬂo cos wt + 7 In(l—-F)— +F ke 1n<1—5+gcoswt>]

and a similar expression can be found also for the second half of the cycle.

Due to the existence of the neutral zone, the electrical field on the wire surface is
entirely given by the time derivative of the vector potential, Ey (t) = —0A, (t) /Ot. Thus
for the first half of the cycle 0 < wt < 7 we find that

1 F F
E;(t) = —%w sin wt In (1 -3 + 3 cos wt) (3)

™

while for m < wt < 27 the surface electrical field will be

1 F F
E,(t) = —%w sinwt In (1 —5 ~gcos wt) (4)

7

Comparing the last two expressions one finds that
Es(rit+m/w) = Es (1) (5)

The voltage waveform is given by the time-dependent dimensionless quantity

47

es (t) = Eq (t) rolow

(6)

illustrated for a series of current amplitudes (i.e. with various parameter F') in Fig. 1. It
is to be noted that for the case of an infinite slab, the shape of the waveform would not
change with F' [3]. However, experimental data [1,2] confirm the shape derived in [2] for

a round wire.

3 Harmonic analysis of F,(t)

The voltage waveform from Fig. 1 can be expressed by the series of Fourier components

Z [e cos (nwt) + e, sin (nwt) (7)

n=1

where
, 1

e, = —/0 ' e, (t) sin (nwt) dwt (8)

™
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s 1P
e, = —/ es (t) cos (nwt) dwt 9)
0

0
Because of the symmetry (5), only odd harmonics are expected. This conclusion has been
supported by experimental data [4] as well. When we performed the above integrations
in numerical way, the results were obtained that for n up to 7, and are plotted in Fig. 2
by symbols. All the components except e; (this is that one responsible for the dissipa-
tion) bear negative sign, thus they were multiplied by —1 to allow for logarithmic scale.
From the sine components, only that fundamental one is significant at low current ampli-
tudes. Higher sine components increase rapidly when I, approaches I., and eventually at
F — 1, when I, = I, they reach the level quite close to that of the cosine components.
Thus, for low current amplitudes (i.e., low F') the magnitude of any higher harmonic is
essentially given by its cosine component. However, from Fig. 2 one can see that at the
current amplitudes up to Iy = I./2, the slope of all the cosine components is equal and
corresponding to the second power of the AC current: eZ‘F«l o« F2. Due to this, at low
currents the content of harmonics does not change with AC current amplitude, maintain-
ing the relations presented in Table 1. As the reference quantity, the fundamental cosine
component was chosen in this comparison. This is because it could be experimentally
better defined than the sine component that in practice cannot be clearly distinguished
from a parasitic voltage induced in the signal leads. We see that the bulk of higher har-
monic generation is described by the third harmonic component. Our result for the 3™
harmonics is in agreement with the result of numerical finite-element computation [14].

The significance of the 3'% harmonic illustrates Fig. 3, where the original waveform
calculated for F' = 0.1 is compared with two substitutions generated by finite number of
harmonic constituents. Fair agreement is reached already by the insertion of the third
harmonic, and further addition of the 5'" and 7*" harmonics results in very good waveform
description. Nevertheless, for large currents, the higher harmonics cease rather slowly,
resembling the Gibbs problem due to sharp edges of the waveform at ¢t =0 and t = 7/w,
respectively. This is illustrated in Fig. 4 where the same comparison is presented for
F = 1. This is, however, an exceptional situation, and for most current amplitudes the
use of the first seven harmonics is sufficient.

The problem of finding analytical solution for the integrals (8)—(9) for practical pur-
poses can be therefore restricted to n < 7. Detailed derivation of analytic expressions
for the Fourier components (8)—(9) is explained in the Appendix, here the summary of
results is given. We found that only the expressions for cosine components exhibit true
analytical form. For the sake of completeness, let us start with the cosine component of
the fundamental harmonic:

efz%[F(l—%)—|—(1—F)ln(1—F) (10)

This result could be also easily derived from the classical paper of Norris [13]. The cosine
components for n = 3,5 and 7 were found as

7 2

€3 = 3 [F(F—2)(F?+24F —24) —6(F— 1) (F* —=8F +8)In(1— F)]  (11)
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, ) [ F (F —2)(7TF*+ 440F3 — 4280 F? + 7680F — 3840) + ]

€ = ¢ (12)
ASTE® | 30 (F — 1) (3F* — T2F3 + 328F — 512F + 256) In (1 — F)J
( 20FS5 + 3472F5 — 84112F* + 483840F3+\
F(F-2) +
) A k —1048320F2 4 967680F — 3225600 ) )
e = ——0 13
630mE 3FS — 144F5 + 1424F* — 5632F3+
—210(F — 1) In(l—F)
+10496F? — 9216 F + 3072

As one can see, the limitation to the first 7 harmonics is conformal also with the re-
quirement of practical applicability of the analytic results. Let us now revert to the sine
components. For the first sine component we found

= (1_§> _22;31];6@2”1)! <2fF>2k (14)

This result is a simpler form of our previous equivalent inductance formula (6) in [11].

The sine components for n = 3,5 and 7 were found as

, = (2k— 1) F \*

— 1
& 32 %1k (% + 2)! (2—F> (15)
, (k—1)@2k—DI [ F \*

_ 1
% 52 261k (k + 3)! (2—F> (16)
, Y(k—1)@2k—1 [ F \*

_ 1
“r 723 2k+1k (k + 4)! (2—F> (17)

It is possible to express the sine component for n > 3 in the general form

n—3
00 2k T2

: (2k — 1)! F |
e”:_n; 21 (k + 2] (2—F> [Le=9) (18)

=1

In all the previous formulas the symbol (2k — 1)!! stands for the product of the odd
numbers 1 X 3 x5 x ... (2k —1).

Plots of these expressions are given in Fig. 2 by lines. The differences with respect to
the values obtained by numerical integration are only on the level of calculation precision.

4 Discussion of results

Our results give quantitative description of the generally expected phenomena of non-
harmonic voltage generation on a wire of hard superconductor carrying sinusoidal trans-
port current. The formulas (10)—(18) do not depend on the wire dimensions. Further, the
angle frequency of AC current, w, appears as a pre-factor in the formula (6) for electrical
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field, as well as the amplitude of the current, I,. Thus, the waveform of electrical field,
es, is entirely determined by only one independent variable: the ratio F' between the AC
current’s amplitude and the wire’s critical current, I.. This means the previous formulas
are rather general and applicable to wide range of cases. We would like to underline two
important consequences of our results.

The first consequence regards the measurement of superconductor’s properties in AC
transport conditions. At the present time, it commonly means the detection, with the help
of a pair of voltage taps soldered to the wire surface, of fundamental voltage component
in phase with transport current. The reason is that the AC loss, i.e. the electromagnetic
energy converted in heat, can be determined in this way. In such procedure, only the
information about e] defined above is extracted from the measured signal. In the cases
when the “loss behaviour” did not appear in agreement with theoretical predictions,
several phenomena have been proposed to contribute to the observed losses. Most of them
are of linear eddy-current like in nature, with no contribution to higher harmonics of the
voltage signal [15,16]. This means they do not affect our predicted results of the harmonic
composition of that part of the voltage that is linked with irreversible flux penetration
into the superconductor bulk. Compliance with our results for higher harmonics would
also indicate that the critical state model with constant j. is appropriate in description
of the flux dynamics in given wire, and vice versa; the deviation of observed harmonic
composition from our predictions would mean that a correction to the theoretical model
is necessary. Constant j. can be achieved by superimposing a DC field much larger than
that produced by transport current on a perfectly uniform wire. In this case, a deviation
from the harmonic behaviour predicted here would point towards a radial inhomogeneity
of je. And, if the harmonic pattern would change at DC field removal, it is the j.(B)
dependence that could not be more neglected. We observed slightly lower content of
higher harmonics with respect to that calculated here, when experimenting without DC
superimposed field on wires from high temperature superconductor [17].

The second consequence regards the experimental technique of studying the AC trans-
port properties of superconducting wires as well, though now it does not concern the mea-
sured voltage, but that furnished by the power supply. The current circuit does always
make contact with the sample on its surface. This means that the non-harmonic voltage
drop (3)—(5) must be present at the current leads to secure that the current in the wire is
harmonic. Importance of maintaining a harmonic waveform of the current flowing in the
sample is crucial; otherwise, the experimental conditions are no more defined, and any
comparison with theoretical predictions or other results becomes defined. One can see in
Fig. 2 how rich the harmonic content is when the AC current amplitude is approaching
Ic. Therefore, checking the harmonic purity of the current should be highly recommended
in these conditions.
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5 Conclusions

We have analysed the harmonic content of the voltage that appears on a superconducting
wire carrying harmonic AC current. The problem of finding the Fourier components was
resolved by two different approaches. We first determined the Fourier components of the
voltage spectrum by numerical integration of the product of the voltage and the respective
harmonic function. To reach more general results, we derived the analytical formulas for
at least some significant terms. Because the waveform symmetry inhibits the even terms,
only those with odd order number were regarded.

We found that the cosine component of the 3'¢ harmonic represents significant part
of the harmonic distortion. The sine components, except the fundamental one that
remains at any condition the largest component, are negligible in comparison to the
cosine components starting from low currents up to around the half of the critical current.
The decrease of Fourier coefficients is rather slow at the currents with amplitudes quite
close to I., but for the rest of the current range one could limit the analysis to the
harmonics with n < 7. We derived the analytical formulas for all the sine components that
represent a general expression containing an infinite series, and for the cosine components
with n = 1,3,5,7 that have the form of analytical expressions with rapidly increasing
complexity.

Our results allow to check the behaviour of superconducting wire by an analysis that
is more complex than the single AC loss evaluation generally used at the present time.
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6 Appendix

The details of deriving of the expressions for the Fourier’s coefficients, defined by the
equations (8), (9) are given in the following. Because of the symmetry (5), only odd
harmonics are expected. Taking into account also the symmetry of the trigonometric
functions, the expressions can be written as:

(

, 2 [ e, (t) sin (nwt) dwt  n odd
en =
O n even
\
(
” % fo7r es (t) cos (nwt) dwt n odd
en =
O n even

\
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From the De Moivre’s formula it is possible to get the following expressions for sine and

cosine of n times the given angle:

cos (nwt) + i sin (nwt) = (cos wt + i sin wt)"”

and then:
cos (nwt) = "1=1 (1) (—1)% sin' wt cos™ ! wt
nl even - l
sin (nwt) = >"1=1 (1) (1) sin' wt cos™ ™ wt
l'odd

where the brackets represent the binomial coefficients.
For the real part e;: the integration doesn’t present any difficulty. It is enough to
perform the substitution y = coswt and dy = —w sin wt to obtain

s 2! F F ”
en:—/ ln(l———l——x)Pn(x)dx
T J_4 2 2

where P, (z) is an n degree polynomial of x:

(

T forn=1

., 42% — 3z forn=23
P, (z) =

1625 — 2023 + 5x forn=>5

\ 6427 — 1122° + 5623 — Tx forn =17

Such expressions are easily computed with the help of integrating by parts, and the results
lead to the expressions (10)-(13).

The computation of the sine components of the Fourier expansion presents more
difficulties. The first step is to make the substitution wt = x and dwt = dz, then to
rewrite and expand the In in the expression for the surface electrical field as follows:

In (1 F+F =In|1 F +In{1+ F
n 7 T zeosz) =In 5 n 5 C0S®

F (=)t F "
:ln<1—5>+z( 73 (2—F> cos" x

n=1

The expression for the sine components, with even n, in the Fourier’s expansion will be

then:
/7 2 F 4 7
e, = —1In (1 — 5) / P, (cosz) sin® xdx
0

9 %) 1 F n LA
-Z E — | —— / P, (cos ) sin® z cos”™ zdx
T n\2—F 0
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where
(
1 forn=1
, dcos’z — 1 forn=23
P (cosx) =
16 cos*z — 12cos?z + 1 forn=>5
64 cos®z —80cos*x +24cos’zr —1 forn=7

\

At this stage it is possible to perform the computation taking advantage of another useful
relation derived from Handbook of Mathematical Functions, (Ed. By M. Abramowitz and
[.A. Stegun):

(2k — 1!

" 2%k _ m
/O Sl xr COS .'I}d.'I} = ma

The result of this computation are the expressions (14)-(18).
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n 305 7 9 11
72 m 2
M 0.6 0.144 0067 0.039 0.026
1

Table 1 Relative magnitude of harmonic components at low currents
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Fig. 1 Waveform of the surface voltage at different values of the ratio F = I,/
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Fig. 2 Harmonic components of the voltage from Fig. 1. Dashed quantities in the legend
mean the cosine parts and double-dashed the sine ones. Symbols were calculated by numerical
integration, while the lines represent the analytical formulas.
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