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Abstract: Let V be a closed surface, H C m(V) a subgroup of finite index ¢ and D =
[A1,..., An] a collection of partitions of a given number d > 2 with positive defect v(D). When
does there exist a connected branched covering f : W — V of order d with branch data D and
Fa(m(W)) = H?

It has been shown by geometric arguments [4] that, for £ = 1 and a surface V different from
the sphere and the projective plane, the corresponding branched covering exists (the data D
is realizable) if and only if the data D fulfills the Hurwitz congruence v(D) = 0 mod 2. In
the case £ > 1, the corresponding branched covering exists if and only if v(D) =0 mod 2, the
number d/¢ is an integer, and each partition A; € D splits into the union of ¢ partitions of
the number d/¢. Here we give a purely algebraic proof of this result following the approach of
Hurwitz [11].

The realization problem for the projective plane and ¢ = 1 has been solved in [7,8]. The case of
the sphere is treated in [1, 2, 12, 7].
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1 Introduction

Branched coverings of surfaces have been studied by Hurwitz since 1891, see [11]. He gave
a result for the existence of branched coverings and also for the classification of them.
For the existence he postulated a condition on the branch data — that is the collection
of the branching orders at the different branch points — and the connectedness of the
covering surface. Very little has been done for the more refined, yet still natural question
of existence of branched coverings between surfaces p: W — V under the additional
condition that the image of the fundamental group m; (W) under py is a given subgroup
H C 71(V) of finite index; in particular, for the main, or primitive, case where H = (V).
In this paper we will extend results of the literature and give a full solution of this problem
assuming that the target V is neither the sphere nor the projective plane. The question
is transformed to a simple arithmetic one, see Theorem 2.4. Our arguments in the proofs
are of purely algebraic nature following the approach of Hurwitz [11].

The next section contains a more detailed presentation of the problem, its history
and the main results in an introductory form. In section 3, we consider the reduction to
an algebraic group theoretical problem. In section 4, we introduce a “gluing” operation
of homomorphisms to symmetric groups, which is used to answer the algebraic question
in sections 5 (for primitive branched coverings over the torus), 6 (over the Klein bottle),
and 7 (for the general case).

2  On the classification of branched coverings

Let us first recall some basic notions and facts. Let f: W — V be a branched covering
of finite degree d between closed connected surfaces and let zy,...,x,, € V be the points
over which the branching occurs. Assume that over x; there are r; points with branching
orders d;i, . .., d;., where these numbers form a partition of d, that is,

We denote this partition by A; = [d;1,...,d;,| and call D = [A4, ..., A,,] the branch data
of the branched covering. The number

(D) = Zi(dw ~1=> <—ri +2dij> =2 [@d=r)=md=} n

is non-negative and is called the defect of the branched covering. It has the following
important property:

v(D)=0 mod 2
which is called the Hurwitz congruence [11]. A proper branching happens if and only
if v(D) > 0. We choose to call a system D = [Ay,...,A,], with A; = [d;1,...,d,], of

partitions of d with the aforementioned properties virtual branch data of orderd. Finally,
the branched covering f: W — V defines the subgroup H = fu(mi(W)) < m (V) of
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finite index; in fact, its system of conjugate subgroups is a suitable invariant of f. The
covering is called primitive if H = (V).

Given a connected closed surface V', virtual branch data D, and a subgroup H of
m (V) the following questions arise:

Problems 2.1.

(a) Does there exist a connected branched covering f: W — V with the branch data D?

(b) Does there exist a primitive connected branched covering f: W — V with the
branch data D?

(c) Does there exist a connected branched covering f: W — V with the branch data D
and fu(m (W)) = H?

(d) How many “different” connected branched coverings solve the considered problem?

Edmonds, Kulkarni and Stong [7] gave a positive answer to the first question for any
surface V' # S% and the full answer to questions (a) and (b) for the projective plane.
Positive answers to questions (b) and (c) are given for all closed surfaces different from
the sphere and the projective plane in [4]. The proof in [4] consists of constructing
the corresponding branched coverings by figures for “small” cases and using a gluing
procedure for the general case. Here we follow the Hurwitz approach [11] of constructing
branched coverings using representations of the fundamental groups in symmetric groups.
The suitable representations were found by looking at the figures from [4], but the formal
algebraic proof of the claim given in this article appears simpler and more algorithmic
than the geometric one.

Let us also remark that, according to the theorem of Gabai-Kazez [9], Problem 2.1 (c)
is not only of interest in itself, but also plays an important role in the Nielsen theory to
find the minimal number of roots in the homotopy class of the given mapping [3].

Two branched coverings f;: W, — V are considered as equivalent if there exists a
homeomorphism h: W; — Wy such that fo = f; o h. A lower bound for the number
asked for in Problem 2.1 (d) could be found from a solution of the following problem:
What is the maximal number m such that the branched covering is the composition of
m branched coverings of degree > 27 It would also be of interest to find other invariants
of branched coverings of geometric nature.

By the Hurwitz approach, with each branched covering f of degree d over a closed
surface V' with the set of branch points By C V one associates a homomorphism
or: m(V\By) — X4 called the Hurwitz representation realized by f, see 3.1. We
first find out the necessary and sufficient algebraic conditions to guarantee that a repre-
sentation is realized by a branched covering admitting the prescribed subgroup H, see
Theorem 3.2. Then, for given virtual branch data and a subgroup of finite index in the
fundamental group of the closed surface, we construct representations of the fundamental
groups to the symmetric groups which provide the desired branched coverings.

Our main algebraic results are the following two implying the existence of primitive
branched coverings over the torus and the Klein bottle. By the commutator and the
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quasi-commutator of two elements a,b we mean [a,b] = aba *b~! and [a,b]_ = abab™!.

Theorem 2.2. For each partition A = [dy,...,d,] of the number d with a positive even
defect v(A) = (dy —1)+...+ (d, — 1) = d — r > 0 there are permutations @,b € 3y with
the following properties:

(a) The subgroup of ¥, generated by d,Z) acts transitively on {1,...,d}.
(b) The commutator [&,b] consists of cycles of the lengths dy, . . ., d,.

(¢) The symbol 1 is fixed under the action of a.

(d) The symbol 1 is fixed under bla, b] or under b[a2, b].

Theorem 2.3. For each partition A = [dy, ..., d,] of the number d with a positive even
defect v(A) = (dy — 1)+ ...+ (d, — 1) = d —r > 0 there are permutations a,b € ¥, and
a natural number ¢ with the following properties:

(a) The subgroup of ¥, generated by d,Z) acts transitively on {1,...,d}.

(b) The quasi-commutator [a,b]_ consists of cycles of the lengths di, ..., d,.
(¢) The symbol 1 is fixed under the action of a.

(d) The symbol 1 is fixed under bla, b] .

These two results of special nature can easily be joined to a geometric result on
branched coverings over surfaces of arbitrary genus.
We say that the subgroup H of w1 (V') corresponds to the branched covering f: W — V.

it H = fy(m(W)).

Theorem 2.4. [4, Theorem 4.2] Let V be a closed surface different from the sphere and
the projective plane, H C m;(V) a subgroup, and let D = [A4,..., A,,] be some virtual
branch data of order d. Then the following two assertions are equivalent.

(1) The subgroup H corresponds to some connected branched covering between closed
surfaces realizing the branch data D.
(2) H is a subgroup of finite index ¢ such that ¢|d. For each i € {1,...,m} there exist
¢ partitions
Biy = [di1y, -+ direiy]s - -5 Bie = [dien, - -+ diery,]

of the number d/¢ such that
Aj =By U...UBjy = [dir, -y ditryys - - > digrs - -+ diery).-

The algebraic version of this theorem follows. For a homomorphism ¢: 7 — 3,
of a group 7, consider the corresponding action of 7w on the set {1,...,d}. Denote by
Stab,(k), 1 < k < d the stabilizer of the symbol k under this action. By (z1,...)) we
denote the smallest normal subgroup containing the elements x1,....

Theorem 2.5. Let m = (a1, ...,0n,81,.--,8m | [ *(s1...8n)) where n > 2, m > 1, and
1 = H?ﬁ[agi,l,agi] or [["=a2-... a2, and let H < 7/((s1,...,8m)) be a subgroup.

n’
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Furthermore let oy,...,0,, € X4, where o; # id for at least one i, be some permutations
such that [, o; is an even permutation. Denote by A; the collection of the orders of
the cycles of o;. Then the following two assertions are equivalent:

(1) There exists a homomorphism ¢: © — ¥, such that
(a) the group ¢(m) < X4 acts transitively on {1,...,d},
(b) ¢(s;) is conjugate to o; in Xy,
(c) the image of the composition Stab,(1) — 7 — 7/{(s1,...,sm) is H.
(2) H is a subgroup of finite index ¢ such that ¢|d. For each i € {1,...,m} there exist
¢ partitions
B = [dir, -y dirva], - -+, Bie = [diea, - -, digr, ]

of the number d/¢ such that

Aj =By U...UBjy = [ditr, -y ditryys - - > digs - -+ diery).-

3 A reduction to algebra

In this section we transform the problem of constructing (primitive) branched coverings
over surfaces into algebraic terms. First we describe the Hurwitz representation associated
to a branched covering.

Hurwitz Representation 3.1. Let f: W — V be a d-fold branched covering of a
connected closed surface W over V', let By C V denote the set of branch points of f
and xy € V \ By, *y € f71(*y) the basepoints. Take a small disk U arround s such
that p~1(U) consists of disjoint disks each of which is mapped homeomorphically to U.
Enumerate the disks by {1,...,d} where the disk with label 1 contains *y in its interior.
Moreover let *y; be the point over *y in the i-th disk, in particular, sy = *p1. A closed
path v in V' \ By starting in %, admits, for each ¢ € {1,...,d}, a uniquely determined
lift 4; that starts in *y;. Adjoining to 7 the label of the endpoint of 4;, we obtain a
permutation ¢¢(v) lying in the symmetric group 4. This permutation remains the same
when 7 is continuously deformed in V'\ By such that the start and end of y always stay at
the basepoint *y. Thus ¢ induces a homomorphism of the fundamental group of V' \ By
to the symmetric group which we also denote by ¢y; now ¢¢: m(V \ By, *y) — X4 is
called the Hurwitz representation associated to f. We can interpret this as an action of
m(V \ By, *y) on {1,...,d}. This action is transitive since W is connected. For details
see [11], [5], [15, 6.7.2].

In the following we use the notation (i)o = j if the permutation ¢ maps i to j. By
(41,142, ...,14,) we denote the cyclic permutation sending i; to i;41, 1 < j <k — 1 and i
to 71.

As above, let Stab, (k) denote the stabilizer of the symbol k under the action of
m(V \ By, *y) on {1,...,d} corresponding to the Hurwitz representation ¢, that is,

Stab, (k) = {a € m(V \ By, *v) | (k)ps(a) = k}.
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Theorem 3.2. Let ig: (V \ By, *y) — (V,*y) be the inclusion. Under the hypotheses
from above,

Fa(m(W,sw)) = i g4 (Staby,(1)).

Proof. Consider the restriction g = f|W\f_1(Bf) and the inclusion
gre W\ f7H(By), *w) — (W, %), From 3.1, see also [13, §58], it follows that

g4 (m(W\ f7H(By), #w)) = Staby, (1) C m(V \ By, #y).

Clearly, the homomorphisms
igp: m(V\By,xy) = m(Vyoky),  jra: m(W N\ fTH(By), *w) — m(W, %)

are surjective; hence,

fa(m(Wosw)) = fu 0 jpa(mW\ f7H(By), *w))
= ip 0 gu(m(W\ f7H(By), *w)) = isp(Staby,(1)).
O

From the definitions and Theorem 3.2, the following corollaries are direct conse-

quences.

Corollary 3.3. Let f: W — V be a branched covering of order d between two connected
closed surfaces, By C V the set of branch points, and ¢g: m(V \ By, *y) — X, the
Hurwitz representation for f. Then the following conditions are equivalent:

(a) f is primitive;

(b) the composition Stab, (k) — 7w (V \ By,*y) — mi(V,*y) is surjective for each
symbol k € {1,...,d};

(c) the composition Stab, (k) — m(V \ By, *y) — m1(V,*y) is surjective for some
symbol k € {1,...,d}. O

Corollary 3.4. Let f: W — V be a branched covering of order d between two connected
closed surfaces, By C V the set of branch points, ¢;: 7 (V' \ By, *y) — £, the Hurwitz
representation for f, and H < m(V, %) a subgroup. Then the following conditions are
equivalent:

(a) the subgroup H corresponds to the branched covering f;
(b) the image of the composition Stab, (1) = m (V' \ By, *y) — w1 (V, *y) is H. O

Remark that the fundamental groups m (V' \ By, *y) and m;(V, *y,) are isomorphic to
the groups 7 and 7/((s1,...,Sm)) considered in Theorem 2.5 respecting the projections
m(V\ By, xy) — m(V,xy) and m — 7/((S1,- -, Sm))-

It follows from Corollary 3.4 that the Theorems 2.4 and 2.5 are equivalent.
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4 A Gluing Operation on Homomorphisms to Symmetric Groups

From two representations ¢1: G — X, and ¢o: G — X, we easily construct the direct
sum @1 X @o: G — X, ., but it is not of geometric interest since in the corresponding
covering the source consists of two connected components corresponding to the two given
representations. To get a connected source we use a gluing procedure [4, Section 2] for
the two covering surfaces and, thus, have to find in both surfaces a non-separating simple
loop such that both curves are mapped to the same power of a loop of the target. We
describe an algebraic version of the gluing operation, but only for the groups G = G+
where G, = {(a,b,c | [a,b]c™!) and G_ = (a,b,c | abab~'c™1), the fundamental groups of
the torus and the Klein bottle minus a “small” disk. We also assume that the two loops
are mapped homeomorphically to the same loop of the standard homotopy class a.

Notation 4.1. The image of an element g € G under a representation ¢ to 3, is denoted
by g; similarly, g; denotes p;(g) for i = 1,2. To denote a permutation we write it either
explicitly or by adding a “"”.

Construction of a Gluing Operation 4.2. Let the permutations a; and by generate a
subgroup transitively acting on {1,...,n} and assume that the symbol 7; stays invariant
under a;. Similarly, let ao, b generate a subgroup acting transitively on {n+1,...,n+m}
and let iy be fixed under as. Clearly, for n > 2 it follows from the transitivity that 81
does not fix ;. The element a € ¥,,,,, is defined as the direct sum of a; and as, that is,
it operates on the first n symbols like a; and on the last m like a,. In the following the
direct sum of a; and a, is denoted by a1 X a5. The permutation be Y nim is defined as the
direct sum 31 X 32, followed by the transposition (i,42) of the symbols i; and i, that is,
b= (31 X 32) o (i1,19). For elements ¢, ¢y, ¢, related to the a, b,... as in the presentations
of G4 or G_, it will be shown below (Proposition 4.4) that ¢ = ¢ X ¢, is the permutation
corresponding to ¢ = [a,b] or ¢ = abab~!. The result of the gluing operation on the
representations 1 and ¢, is the representation ¢: G — %, with ¢(a) = a = a; X ao,
o(b) = b= (by X by) o (i1, i2).

Proposition 4.3. If the subgroups generated by dl,él and dg,BQ transitively act on
{1,...,n} and {n + 1,...,n + m}, respectively, then the subgroup generated by a,b
transitively acts on {1,...,n +m}.

Proof. Observe that the orbit of any symbol i < n contains i5. In fact, there is a word
in a, 31 which maps ¢ to the symbol (iﬁéfl. Take the shortest word with this property.
If we replace in this word a; by a and by by b then the obtained word in a and b also
maps the symbol i to (iﬁéfl. If we next apply once more b then we obtain the symbol
i9. A consequence is that there is a word in d,Z) that maps ¢ into i5. Analogously, there
exists a word in d,Z) that transforms a symbol j > n + 1, in particular io, into the symbol
11. Hence, every symbol can be sent to 4; and this shows the transitivity. (I

In the study of branched coverings over nonorientable surfaces an important role is
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played by the quasi-commutator
[a,b]_ = abab™

now a corresponds to a two-sided, but b to a one-sided curve. To unify the notions of
the commutator and the quasi-commutator, let us consider a more general analog of the
commutator. For integers r and s, let [a,b],, = a"ba*b~'. Then [a,b]; -1 = [a,b] and
la,b]11 = [a,b]—.

Proposition 4.4. For any integers r and s,

~

[&7b]rs = [&lvbl]rs X [&27b2]rs-
Proof. Consider a symbol i < n. We identify a4, 61, ao, 32 with the elements

1:d1Xid,b1:b1Xid,

Q>

d2:idXd2,b2:ide2

of ¥4n. Then

(i)a"ba*h™" = ()b o (i1, is) 0 @b~ 1.
Suppose that (i)aiby # i1, thus (i)a"ba*b™* = (i)atbiash™". Since the symbol i is fixed
under a; it follows that (i)d’igldf # 41. Hence, under the action of b1 the transposition
(i1,45) is not applied to the obtained element and, thus, (i)atb,asb~ = (i)aib,ashy". For
(iYatby = iy we obtain

(iYarbath™' = ()alhy (iy,dp) @%b = (i) (iy, i9) a*b "

(i)@' = (io)b™" = (i1)by" = (in)ash; "

(iYarbyashy ™.
For i > n + 1 a similar consideration takes place. O

5 Realization of Primitive Branched Coverings over the Torus

Proof of Theorem 2.2 by induction on r. We assume that dy > dy > ... > d,.

Case r = 1: From the condition that the defect v(A) is even and > 0 it follows that the
number d is odd and > 2; hence, d = 2k + 1 with £ > 0. Put

o1 kE+1 2k 2k+1

a = s
1o kk+2...2k+1 k+1

; 1 .k k+1lk+2...2k+1

2k+1...k+2k+1 1 ... &k
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Next we check the claims (a) — (d).

(b): By a direct calculation it follows that
(%) [a,b] = (1, 2,..., 2k, 2k +1).

(a) is a direct consequence of (), claim (c) is obvious.

(d): (1)bla, ] = (2k + 1)[a,b] =1 by ().
Caser > 2: If there is an odd number d; then we consider the partitions A" = [d;, ..., d;_1,
djt1,...,d.] and A” = [d;] of the numbers

d,:d—d]:d1++d],1+d]+1++dr and d”:d]'.
If d, =1 we put j = r. Since the defect v([d;]) = d; — 1 of the partition [d;] is even and
v(4) = v(4) +v(A"),

both considered partitions have an even defect. Furthermore, v(A’) > 0 and v(A") =
d; — 1 > 0, thus the induction hypothesis can be applied to both partitions except for
the case d” = d; = 1 where v(A"”) = 0. But for the trivial permutation the properties (a)
— (d) are easily checked. By induction hypothesis, there are pairs of permutations ar, 51
and s, by realizing the corresponding partitions A’ and A” of d’ and d”. Since these pairs
of permutations have the property (c), we can apply the gluing operation 4.2 to them.
As the result of this operation, we obtain a pair of permutations a, b. Let us check the
properties (a) — (d) for them.

The property (a) follows from Proposition 4.3; (b) follows from Proposition 4.4; and
(¢) is a consequence of (1)a = (1)a; = 1. To check the truth of (d) it suffices to use i; = 1
for the gluing operation. In fact, using Proposition 4.4, we have

(198[a, b] = ((1)b1) ([al,él] x [az,éz]) — (Ubifan, bl =1  or
(Wba2, 5] = (D) ([a2,51] % a3, bo]) = ()bifad ba] = 1,

in dependence on the equality from (d) fulfilled by ay, by.
Now let all d; be even. Then the number d is also even and, thus, r too.

Consider the case r = 2. It follows from the hypothesis that d = 2k for some k > 2
and that d; and dy are even. Thus £ = (d; — d3)/2 is an integer with 0 < /¢ < k — 2; now
di=k+/land dy =k — /.

Next we consider a more general situation assuming only that dy > 1, that is, £ < k—2.
In other words, for the next steps we do not need that d; and dy are even, but only that
do > 1.
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For 0 < ¢ <k — 2 we define

ot k=1 k k+1...2k—12k

B TR SIS P

; 1 o k—1kk+1.. k+lk+0+1k+0+2... 2k
I T A TR A" (41 k-1

The columns with the upper symbols k + 1,...,k + £ in the last formula are ignored if
¢=0.
Next we check the claims (a) — (d).

(b): By a direct calculation we obtain

i Lo k+0—1k+0k+0+1...2k—1 2k
a,b] =
2... k+0 1 k+l+2... 2k k+l0+1

= (1, 2.k Okl 1,. .., 2k).

(a): The transitivity follows from the fact that the commutator consists of two cycles and
that @ maps the symbol 2k from the second cycle to the symbol k of the first cycle.
The property (c) is obvious.

(d): This follows from (1)b = 2k — 1 and (2k — 1)[a%,b] = 1.

If » > 3 then r > 4 and d, > 2. Since any two permutations from ¥, are conjugate
in ¥, if they admit (up to a permutation) the same systems of lengths of their cycles,
we can apply the gluing operation to pairs of permutations realizing the partitions A’ =
di,...,d,—5] and A” = [d,_1,d,] of the numbers ' =d —d,—1 —d, =d; + ...+ d,—2 and
d"=d,_, +d,. O

Corollary 5.1. Let ¢ € ¥, be a non-trivial even permutation. Then there are permuta-
tions a, b with the following properties:

(a) The permutations a, b generate a subgroup of X5 which transitively acts on {1,...,d}.
(b) ¢é=[a,b].

(¢) The symbol 1 is fixed under the action of a.

(d) The symbol 1 is fixed under bla, b] or under b[a2, b]. O

Notice, the usual proof [7,8,12] of the existence theorem of a branched covering with
given branch data of even defect over the torus and surfaces of higher genus is obtained
as the geometric equivalent (according to the Hurwitz criterion) of the algebraic fact
that each even permutation ¢ is the commutator of two permutations where one of these
permutations is a large cycle and the other one admits a fized symbol. Corollary 5.1
of Theorem 2.2 gives a new proof that each even permutation is the commutator of
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two permutations generating a transitive subgroup. In our representation of the even
permutation ¢ as a commutator of a and b, the permutation a has exactly v(¢)/2+ e fixed
symbols, where e is the number of cycles of length 1 of the permutation ¢ = [a, b].

6 Realization of Primitive Branched Coverings over the Klein
Bottle

Proof of Theorem 2.3 by induction on r. We assume that d; > ... > d,.

Caser = 1. From the condition that the defect v(A) is even it follows that d = 2k +1

for some integer k > 1. Consider

o tkke1.. 2% 2%+l
R R T TP I
: 1 2 o k4+lk42...2k+1
T A B

(b): By a direct calculation we obtain
[a,b]- = (1, 2,..., 2k, 2k +1).

(a) is a direct consequence of (b), claim (c) is obvious.

(d): b maps the symbol 1 to the symbol 2k + 1 and this is mapped by [a,b]_ back
into 1.

Caser > 2. If there is an odd dj, then the assertion is obtained by the same arguments
as in the proof of Theorem 2.2. Therefore, we may assume that all numbers d; are even.
Then d and thus, r are even.

Consider the case r = 2. From the conditions it follows that d = 2k for some k > 2
and that d,dy are even. Put £ = (dy — dy)/2, thus d; = k + ¢ and dy = k — £.

Now we obtain more general conclusions which are possible for dy > 1, that is,
¢ < k — 2. In other words, for the following discussion we may only assume that ds > 1.

For 0 < ¢ <k — 2 we define

o1 k=1 k k41212

B TR SIS TP

T O LA R LR R
koo.2k—1 1 ... ¢ 2  £+41 .. k-1

The columns with the upper symbols k + 1,...,k + £ in the last formula are ignored if
¢=0.
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(b): A direct calculation gives

&) Lo k+0—1k+Lk+0+1...2k—1 2k
a,bl_ =
2... k+€ 1 k+€6+2... 2k k+l+1

= (1, 2 kO (1, 2k).

Now (a) follows from the facts that the quasi-commutator consists of two cycles and
that under the action of a the symbol 2k from the second cycle goes into the symbol k
from the first cycle. (c) is obvious.

(d): Under the action of b the symbol 1 goes into k and this one is mapped by [a, b]“"*
to 1.

The case r > 3, i.e. r > 4 can be handled in the same way as at the end of the proof

of the Theorem 2.2. O

Corollary 6.1. Let ¢ € ¥; be a non-trivial even permutation. Then there are permuta-
tions a, b and a natural number ¢ with the following properties:

(a) The permutations a, b generate a subgroup of X5 which transitively acts on {1,...,d}.
(b) é=la,b]_.

(¢) The symbol 1 is fixed under the action of a.

(d) The symbol 1 is fixed under bla, b]? . O

Thus, each non-trivial even permutation ¢ € 3, is the quasi-commutator of two
permutations which generate a subgroup of ¥, acting transitively on {1,...,d}. Since

[a,b]- = a?b™2 with a; = ab

we also obtain that ¢ is the product of the squares of two permutations which generate a
subgroup of ¥, acting transitively on {1,...,d}.

7 The General Case

Proof of Theorem 2.5 for the primitive case H = w/{(s1,...,8m)). Remark that, in
this case, the condition (2) of Theorem 2.5 is always true. So, we must prove that (1) is
always true too.

First consider the case ™ = (a,b, $1,. .., 8m | [a,b] - (s1...5mn)) where m > 1.

Assume m = 1 and denote A; = [dy,...,d,]. According to Corollary 5.1 there are
two permutations d,Z) € Y4 such that the commutator [a, Z)] consists of cycles of lengths
di,...,d.. The Hurwitz representation ¢ of the group m = (a, b, c | [a,b]c™!) is given by
a+ @, b b, ¢ [a,b]. Now the properties (a) and (b) follow from the assertions (a) and
(b) of Corollary 5.1. By the assertions (c¢) and (d) of Corollary 5.1, the symbol 1 is fixed
under the actions of a and Z)[&q, Z)] for an appropriate integer ¢, thus a, bla?, b] € Stab,(1).
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Therefore, the composition Stab,(1) — m — 7/((c)) is surjective. So, the property (c) is

fulfilled.

Let m > 2 and denote A; = [dY, ..., d.]. We take some permutations §; € ¥, consisting
of cycles of lengths di, ... ,dii, respectively. If the permutation ¢ = §;-...- 8§, # €, € the
identity, we apply Corollary 5.1 to it. If §; -...-§,, = é then one of the following three

cases is possible:

(1) in some §; there exists a cycle of length > 3;
(2) all cycles have length < 2, but d > 3;
(3) d=2.

In the first case, replace 3; by 3; ! In the second case, permute in §; # é one symbol
appearing in a cycle of length 2 with a symbol appearing in another cycle. In both cases,
the new §; have cycles of the same length, but the product of §; is not the identity, so
Corollary 5.1 can be applied. Now the Hurwitz representation ¢: m — ¥, is given by
a b, b a, s; — &, thus [a,b] - (s1...8m) — 4,07 81... 8, = é. As for the case
m = 1, the assertions (a) — (d) of Corollary 5.1 imply the required properties (a) — (c).

In the third case, there is a §; # é. Take arbitrary permutations d,B € XYy. The
required properties (a) — (c¢) are easily checked.

Assume that 7 = (a1,...,a29, 815+, Sm | [[ -($1...8,)) where m > 1, and [[* =
Hle[azi,l,agi]. For definition of the Hurwitz representation @ — X,;, we map aq, as,

S1,...,5mn as above and map as, ..., as, to the identity permutation.
For the case m = {(a1,...,an,81,---,8m | [1"+(51...5m)), where m > 1, n > 2, and
[I"=a?-...-a%, we proceed as before, but using Corollary 6.1. (Il

Proof of Theorems 2.5 and 2.4 in the general case. Since the Theorems 2.5 and 2.4
are equivalent, we have obtained Theorem 2.4 for the primitive case H = m1(V) and it
remains to prove it for the general case.

(1) = (2): Let f: W — V be a branched covering with f (7 (W)) = H. Consider
the unbranched covering p: V — V corresponding to the subgroup H. Then f lifts to
f: W — V. Now, for any branch point = € By, the union of the branch data (with
respect to f) of £ points {y1,...,y.} = p~'(z) gives the branch data for f at .

(2) = (1): Let p: V — V be the unbranched covering which corresponds to the
subgroup H. Consider the virtual branch data D = [Byy,..., B ..., B, .-, Bl
Since x(V) = £ x(V) < 0, the surface V is different from the sphere and the projective
plane. It follows from Theorem 2.4 for the primitive case that there is a connected
primitive branched covering h: W — V which realizes D. Therefore po h is the required
covering. |
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