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Abstract: Let V be a closed surface, H ³ º 1(V ) a subgroup of ­ nite index ` and D =

[A1; : : : ; Am] a collection of partitions of a given number d ¶ 2 with positive defect v(D). When

does there exist a connected branched covering f : W ! V of order d with branch data D and

f#( º 1(W )) = H?

It has been shown by geometric arguments [4] that, for ` = 1 and a surface V di¬erent from

the sphere and the projective plane, the corresponding branched covering exists (the data D
is realizable) if and only if the data D ful­ lls the Hurwitz congruence v(D) ² 0 mod 2. In

the case ` > 1, the corresponding branched covering exists if and only if v(D) ² 0 mod 2, the

number d=` is an integer, and each partition Ai 2 D splits into the union of ` partitions of

the number d=`. Here we give a purely algebraic proof of this result following the approach of

Hurwitz [11].

The realization problem for the projective plane and ` = 1 has been solved in [7,8]. The case of

the sphere is treated in [1, 2, 12, 7].
c® Central European Science Journals. All rights reserved.

Keywords: covering, branched covering of surfaces, branching order, Hurwitz problem,

representations to the symmetry groups §d

MSC (2000): 55M20, 57M12, 20F99

¤ E-mail: bogatyi@mech.math.msu.su
y E-mail: dlgoncal@ime.usp.br
z E-mail: eakudr@mech.math.msu.su
x E-mail: heiner.zieschang@ruhr-uni-bochum.de, E-mail: zieschan@mech.math.msu.su



S. Bogatyi et al. / Central European Journal of Mathematics 2 (2003) 184{197 185

1 Introduction

Branched coverings of surfaces have been studied by Hurwitz since 1891, see [11]. He gave

a result for the existence of branched coverings and also for the classi¯cation of them.

For the existence he postulated a condition on the branch data { that is the collection

of the branching orders at the di®erent branch points { and the connectedness of the

covering surface. Very little has been done for the more re¯ned, yet still natural question

of existence of branched coverings between surfaces p : W ! V under the additional

condition that the image of the fundamental group º 1(W ) under p# is a given subgroup

H » º 1(V ) of ¯nite index; in particular, for the main, or primitive, case where H = º 1(V ).

In this paper we will extend results of the literature and give a full solution of this problem

assuming that the target V is neither the sphere nor the projective plane. The question

is transformed to a simple arithmetic one, see Theorem 2.4. Our arguments in the proofs

are of purely algebraic nature following the approach of Hurwitz [11].

The next section contains a more detailed presentation of the problem, its history

and the main results in an introductory form. In section 3, we consider the reduction to

an algebraic group theoretical problem. In section 4, we introduce a \gluing" operation

of homomorphisms to symmetric groups, which is used to answer the algebraic question

in sections 5 (for primitive branched coverings over the torus), 6 (over the Klein bottle),

and 7 (for the general case).

2 On the classi¯cation of branched coverings

Let us ¯rst recall some basic notions and facts. Let f : W ! V be a branched covering

of ¯nite degree d between closed connected surfaces and let x1; : : : ; xm 2 V be the points

over which the branching occurs. Assume that over xi there are ri points with branching

orders di1; : : : ; diri where these numbers form a partition of d, that is,

d = di1 + : : : + diri; 1 µ dij 2 Z; i 2 f1; : : : ; mg:

We denote this partition by Ai = [di1; : : : ; diri] and call D = [A1; : : : ; Am] the branch data

of the branched covering. The number

v(D) =

mX

i=1

riX

j=1

(dij ¡ 1) =

mX

i=1

Ã

¡ ri +

riX

j=1

dij

!

=

mX

i=1

(d ¡ ri) = md ¡
mX

i=1

ri

is non-negative and is called the defect of the branched covering. It has the following

important property:

v(D) ² 0 mod 2

which is called the Hurwitz congruence [11]. A proper branching happens if and only

if v(D) > 0. We choose to call a system D = [A1; : : : ; Am], with Ai = [di1; : : : ; diri], of

partitions of d with the aforementioned properties virtual branch data of order d. Finally,

the branched covering f : W ! V de¯nes the subgroup H = f#( º 1(W )) < º 1(V ) of
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¯nite index; in fact, its system of conjugate subgroups is a suitable invariant of f . The

covering is called primitive if H = º 1(V ).

Given a connected closed surface V , virtual branch data D, and a subgroup H of

º 1(V ) the following questions arise:

Problems 2.1.

(a) Does there exist a connected branched covering f : W ! V with the branch data D?

(b) Does there exist a primitive connected branched covering f : W ! V with the

branch data D?

(c) Does there exist a connected branched covering f : W ! V with the branch data D
and f#( º 1(W )) = H?

(d) How many \di®erent" connected branched coverings solve the considered problem?

Edmonds, Kulkarni and Stong [7] gave a positive answer to the ¯rst question for any

surface V 6= S2 and the full answer to questions (a) and (b) for the projective plane.

Positive answers to questions (b) and (c) are given for all closed surfaces di®erent from

the sphere and the projective plane in [4]. The proof in [4] consists of constructing

the corresponding branched coverings by ¯gures for \small" cases and using a gluing

procedure for the general case. Here we follow the Hurwitz approach [11] of constructing

branched coverings using representations of the fundamental groups in symmetric groups.

The suitable representations were found by looking at the ¯gures from [4], but the formal

algebraic proof of the claim given in this article appears simpler and more algorithmic

than the geometric one.

Let us also remark that, according to the theorem of Gabai-Kazez [9], Problem 2.1 (c)

is not only of interest in itself, but also plays an important role in the Nielsen theory to

¯nd the minimal number of roots in the homotopy class of the given mapping [3].

Two branched coverings fi : Wi ! V are considered as equivalent if there exists a

homeomorphism h : W1 ! W2 such that f2 = f1 ¯ h. A lower bound for the number

asked for in Problem 2.1 (d) could be found from a solution of the following problem:

What is the maximal number m such that the branched covering is the composition of

m branched coverings of degree ¶ 2? It would also be of interest to ¯nd other invariants

of branched coverings of geometric nature.

By the Hurwitz approach, with each branched covering f of degree d over a closed

surface V with the set of branch points Bf » V one associates a homomorphism

’f : º 1(V n Bf ) ! §d called the Hurwitz representation realized by f , see 3.1. We

¯rst ¯nd out the necessary and su±cient algebraic conditions to guarantee that a repre-

sentation is realized by a branched covering admitting the prescribed subgroup H , see

Theorem 3.2. Then, for given virtual branch data and a subgroup of ¯nite index in the

fundamental group of the closed surface, we construct representations of the fundamental

groups to the symmetric groups which provide the desired branched coverings.

Our main algebraic results are the following two implying the existence of primitive

branched coverings over the torus and the Klein bottle. By the commutator and the
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quasi-commutator of two elements a; b we mean [a; b] = aba¡1b¡1 and [a; b]¡ = abab¡1.

Theorem 2.2. For each partition A = [d1; : : : ; dr] of the number d with a positive even

defect v(A) = (d1 ¡ 1) + : : : + (dr ¡ 1) = d ¡ r > 0 there are permutations â; b̂ 2 §d with

the following properties:

(a) The subgroup of §d generated by â; b̂ acts transitively on f1; : : : ; dg.

(b) The commutator [â; b̂] consists of cycles of the lengths d1; : : : ; dr.

(c) The symbol 1 is ¯xed under the action of â.

(d) The symbol 1 is ¯xed under b̂[â; b̂] or under b̂[â2; b̂].

Theorem 2.3. For each partition A = [d1; : : : ; dr] of the number d with a positive even

defect v(A) = (d1 ¡ 1) + : : : + (dr ¡ 1) = d ¡ r > 0 there are permutations â; b̂ 2 §d and

a natural number q with the following properties:

(a) The subgroup of §d generated by â; b̂ acts transitively on f1; : : : ; dg.

(b) The quasi-commutator [â; b̂]¡ consists of cycles of the lengths d1; : : : ; dr.

(c) The symbol 1 is ¯xed under the action of â.

(d) The symbol 1 is ¯xed under b̂[â; b̂]q¡.

These two results of special nature can easily be joined to a geometric result on

branched coverings over surfaces of arbitrary genus.

We say that the subgroup H of º 1(V ) corresponds to the branched covering f : W ! V

if H = f#( º 1(W )).

Theorem 2.4. [4, Theorem 4.2 ] Let V be a closed surface di®erent from the sphere and

the projective plane, H » º 1(V ) a subgroup, and let D = [A1; : : : ; Am] be some virtual

branch data of order d. Then the following two assertions are equivalent.

(1) The subgroup H corresponds to some connected branched covering between closed

surfaces realizing the branch data D.

(2) H is a subgroup of ¯nite index ` such that `jd. For each i 2 f1; : : : ; mg there exist

` partitions

Bi1 = [di11; : : : ; di1ri1]; : : : ; Bi` = [di`1; : : : ; di`ri`
]

of the number d=` such that

Ai = Bi1 t : : : t Bi` = [di11; : : : ; di1ri1; : : : ; di`1; : : : ; di`ri` ]:

The algebraic version of this theorem follows. For a homomorphism ’ : º ! §d

of a group º , consider the corresponding action of º on the set f1; : : : ; dg. Denote by

Stab’(k), 1 µ k µ d the stabilizer of the symbol k under this action. By hhx1; : : : ii we

denote the smallest normal subgroup containing the elements x1; : : : .

Theorem 2.5. Let º = ha1; : : : ; an; s1; : : : ; sm j
Q¤ ¢(s1 : : : sm)i where n ¶ 2, m ¶ 1, andQ¤

=
Qn=2

i=1[a2i¡1; a2i] or
Q¤

= a2
1 ¢ : : : ¢ a2

n, and let H < º =hhs1; : : : ; smii be a subgroup.
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Furthermore let ¼ 1; : : : ; ¼ m 2 §d, where ¼ i 6= id for at least one i, be some permutations

such that
Qm

i=1 ¼ i is an even permutation. Denote by Ai the collection of the orders of

the cycles of ¼ i. Then the following two assertions are equivalent:

(1) There exists a homomorphism ’ : º ! §d such that

(a) the group ’( º ) < §d acts transitively on f1; : : : ; dg,

(b) ’(si) is conjugate to ¼ i in §d,

(c) the image of the composition Stab’(1) ,! º ! º =hhs1; : : : ; smii is H .

(2) H is a subgroup of ¯nite index ` such that `jd. For each i 2 f1; : : : ; mg there exist

` partitions

Bi1 = [di11; : : : ; di1ri1]; : : : ; Bi` = [di`1; : : : ; di`ri`
]

of the number d=` such that

Ai = Bi1 t : : : t Bi` = [di11; : : : ; di1ri1; : : : ; di`1; : : : ; di`ri` ]:

3 A reduction to algebra

In this section we transform the problem of constructing (primitive) branched coverings

over surfaces into algebraic terms. First we describe the Hurwitz representation associated

to a branched covering.

Hurwitz Representation 3.1. Let f : W ! V be a d-fold branched covering of a

connected closed surface W over V , let Bf » V denote the set of branch points of f

and ¤V 2 V n Bf , ¤W 2 f ¡1(¤V ) the basepoints. Take a small disk U arround ¤V such

that p¡1(U ) consists of disjoint disks each of which is mapped homeomorphically to U .

Enumerate the disks by f1; : : : ; dg where the disk with label 1 contains ¤W in its interior.

Moreover let ¤W i be the point over ¤V in the i-th disk, in particular, ¤W = ¤W 1. A closed

path ® in V n Bf starting in ¤V admits, for each i 2 f1; : : : ; dg, a uniquely determined

lift ~® i that starts in ¤W i. Adjoining to i the label of the endpoint of ~® i, we obtain a

permutation ’f( ® ) lying in the symmetric group §d. This permutation remains the same

when ® is continuously deformed in V nBf such that the start and end of ® always stay at

the basepoint ¤V . Thus ’f induces a homomorphism of the fundamental group of V n Bf

to the symmetric group which we also denote by ’f ; now ’f : º 1(V n Bf ; ¤V ) ! §d is

called the Hurwitz representation associated to f . We can interpret this as an action of

º 1(V n Bf ; ¤V ) on f1; : : : ; dg. This action is transitive since W is connected. For details

see [11], [5], [15, 6.7.2].

In the following we use the notation hii ¼ = j if the permutation ¼ maps i to j. By

(i1; i2; : : : ; ik) we denote the cyclic permutation sending ij to ij+1, 1 µ j µ k ¡ 1 and ik

to i1.

As above, let Stab’f
(k) denote the stabilizer of the symbol k under the action of

º 1(V n Bf ; ¤V ) on f1; : : : ; dg corresponding to the Hurwitz representation ’f , that is,

Stab’f
(k) = fa 2 º 1(V n Bf ; ¤V ) j hki’f(a) = kg:
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Theorem 3.2. Let if : (V n Bf ; ¤V ) ! (V; ¤V ) be the inclusion. Under the hypotheses

from above,

f#( º 1(W; ¤W )) = if#(Stab’f(1)):

Proof. Consider the restriction g = f jW nf¡1(Bf) and the inclusion

jf : (W n f ¡1(Bf ); ¤W ) ! (W; ¤W ). From 3.1, see also [13, x58], it follows that

g#( º 1(W n f ¡1(Bf ); ¤W )) = Stab’f
(1) » º 1(V n Bf ; ¤V ):

Clearly, the homomorphisms

if# : º 1(V n Bf ; ¤V ) ! º 1(V; ¤V ); jf# : º 1(W n f ¡1(Bf ); ¤W ) ! º 1(W; ¤W )

are surjective; hence,

f#( º 1(W; ¤W )) = f# ¯ jf#( º 1(W n f ¡1(Bf ); ¤W ))

= if# ¯ g#( º 1(W n f ¡1(Bf ); ¤W )) = if#(Stab’f(1)):

From the de¯nitions and Theorem 3.2, the following corollaries are direct conse-

quences.

Corollary 3.3. Let f : W ! V be a branched covering of order d between two connected

closed surfaces, Bf » V the set of branch points, and ’f : º 1(V n Bf ; ¤V ) ! §d the

Hurwitz representation for f . Then the following conditions are equivalent:

(a) f is primitive;

(b) the composition Stab’f(k) ,! º 1(V n Bf ; ¤V ) ! º 1(V; ¤V ) is surjective for each

symbol k 2 f1; : : : ; dg;

(c) the composition Stab’f
(k) ,! º 1(V n Bf ; ¤V ) ! º 1(V; ¤V ) is surjective for some

symbol k 2 f1; : : : ; dg:

Corollary 3.4. Let f : W ! V be a branched covering of order d between two connected

closed surfaces, Bf » V the set of branch points, ’f : º 1(V n Bf ; ¤V ) ! §d the Hurwitz

representation for f , and H < º 1(V; ¤V ) a subgroup. Then the following conditions are

equivalent:

(a) the subgroup H corresponds to the branched covering f ;

(b) the image of the composition Stab’f(1) ,! º 1(V n Bf ; ¤V ) ! º 1(V; ¤V ) is H .

Remark that the fundamental groups º 1(V n Bf ; ¤V ) and º 1(V; ¤V ) are isomorphic to

the groups º and º =hhs1; : : : ; smii considered in Theorem 2.5 respecting the projections

º 1(V n Bf ; ¤V ) ! º 1(V; ¤V ) and º ! º =hhs1; : : : ; smii.
It follows from Corollary 3.4 that the Theorems 2.4 and 2.5 are equivalent.
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4 A Gluing Operation on Homomorphisms to Symmetric Groups

From two representations ’1 : G ! §n and ’2 : G ! §m we easily construct the direct

sum ’1 £ ’2 : G ! §n+m, but it is not of geometric interest since in the corresponding

covering the source consists of two connected components corresponding to the two given

representations. To get a connected source we use a gluing procedure [4, Section 2] for

the two covering surfaces and, thus, have to ¯nd in both surfaces a non-separating simple

loop such that both curves are mapped to the same power of a loop of the target. We

describe an algebraic version of the gluing operation, but only for the groups G = G§

where G+ = ha; b; c j [a; b]c¡1i and G¡ = ha; b; c j abab¡1c¡1i, the fundamental groups of

the torus and the Klein bottle minus a \small" disk. We also assume that the two loops

are mapped homeomorphically to the same loop of the standard homotopy class a.

Notation 4.1. The image of an element g 2 G under a representation ’ to §d is denoted

by ĝ; similarly, ĝi denotes ’i(g) for i = 1; 2. To denote a permutation we write it either

explicitly or by adding a \^".

Construction of a Gluing Operation 4.2. Let the permutations â1 and b̂1 generate a

subgroup transitively acting on f1; : : : ; ng and assume that the symbol i1 stays invariant

under â1. Similarly, let â2; b̂2 generate a subgroup acting transitively on fn+1; : : : ; n+mg
and let i2 be ¯xed under â2. Clearly, for n ¶ 2 it follows from the transitivity that b̂1

does not ¯x i1. The element â 2 §n+m is de¯ned as the direct sum of â1 and â2, that is,

it operates on the ¯rst n symbols like â1 and on the last m like â2. In the following the

direct sum of â1 and â2 is denoted by â1 £ â2. The permutation b̂ 2 §n+m is de¯ned as the

direct sum b̂1 £ b̂2, followed by the transposition (i1; i2) of the symbols i1 and i2, that is,

b̂ = (b̂1 £ b̂2) ¯ (i1; i2). For elements ĉ; ĉ1; ĉ2 related to the â; b̂; : : : as in the presentations

of G+ or G¡, it will be shown below (Proposition 4.4) that ĉ = ĉ1 £ ĉ2 is the permutation

corresponding to c = [a; b] or c = abab¡1. The result of the gluing operation on the

representations ’1 and ’2 is the representation ’ : G ! §n+m with ’(a) = â = â1 £ â2,

’(b) = b̂ = (b̂1 £ b̂2) ¯ (i1; i2).

Proposition 4.3. If the subgroups generated by â1; b̂1 and â2; b̂2 transitively act on

f1; : : : ; ng and fn + 1; : : : ; n + mg, respectively, then the subgroup generated by â; b̂

transitively acts on f1; : : : ; n + mg.

Proof. Observe that the orbit of any symbol i µ n contains i2. In fact, there is a word

in â1; b̂1 which maps i to the symbol hi1ib̂¡1
1 . Take the shortest word with this property.

If we replace in this word â1 by â and b̂1 by b̂ then the obtained word in â and b̂ also

maps the symbol i to hi1ib̂¡1
1 . If we next apply once more b̂ then we obtain the symbol

i2. A consequence is that there is a word in â; b̂ that maps i into i2. Analogously, there

exists a word in â; b̂ that transforms a symbol j ¶ n + 1, in particular i2, into the symbol

i1. Hence, every symbol can be sent to i1 and this shows the transitivity.

In the study of branched coverings over nonorientable surfaces an important role is
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played by the quasi-commutator

[a; b]¡ = abab¡1;

now a corresponds to a two-sided, but b to a one-sided curve. To unify the notions of

the commutator and the quasi-commutator, let us consider a more general analog of the

commutator. For integers r and s, let [a; b]rs = arbasb¡1. Then [a; b]1;¡1 = [a; b] and

[a; b]1;1 = [a; b]¡.

Proposition 4.4. For any integers r and s,

[â; b̂]rs = [â1; b̂1]rs £ [â2; b̂2]rs:

Proof. Consider a symbol i µ n. We identify â1; b̂1; â2; b̂2 with the elements

â1 = â1 £ id; b̂1 = b̂1 £ id;

â2 = id £ â2; b̂2 = id £ b̂2

of §m+n. Then

hiiâr b̂âsb̂¡1 = hiiâr
1b̂1 ¯ (i1; i2) ¯ âsb̂¡1:

Suppose that hiiâr
1b̂1 6= i1, thus hiiârb̂âsb̂¡1 = hiiâr

1b̂1âs
1b̂¡1. Since the symbol i1 is ¯xed

under â1 it follows that hiiâr
1b̂1âs

1 6= i1. Hence, under the action of b̂¡1 the transposition

(i1; i2) is not applied to the obtained element and, thus, hiiâr
1b̂1âs

1b̂¡1 = hiiâr
1b̂1âs

1b̂¡1
1 . For

hiiâr
1b̂1 = i1 we obtain

hiiâr b̂âsb̂¡1 = hiiâr
1b̂1 (i1; i2) âsb̂¡1 = hi1i(i1; i2) âsb̂¡1

= hi2iâsb̂¡1 = hi2ib̂¡1 = hi1ib̂¡1
1 = hi1iâs

1b̂¡1
1

= hiiâr
1b̂1âs

1b̂¡1
1 :

For i ¶ n + 1 a similar consideration takes place.

5 Realization of Primitive Branched Coverings over the Torus

Proof of Theorem 2.2 by induction on r. We assume that d1 ¶ d2 ¶ : : : ¶ dr.

Case r = 1: From the condition that the defect v(A) is even and > 0 it follows that the

number d is odd and > 2; hence, d = 2k + 1 with k > 0. Put

â =

0

B@
1 : : : k k + 1 : : : 2k 2k + 1

1 : : : k k + 2 : : : 2k + 1 k + 1

1

CA ;

b̂ =

0

B@
1 : : : k k + 1 k + 2 : : : 2k + 1

2k + 1 : : : k + 2 k + 1 1 : : : k

1

CA :
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Next we check the claims (a) { (d).

(b): By a direct calculation it follows that

(¤) [â; b̂] = (1; 2; : : : ; 2k; 2k + 1):

(a) is a direct consequence of (¤), claim (c) is obvious.

(d): h1ib̂[â; b̂] = h2k + 1i[â; b̂] = 1 by (¤).

Case r ¶ 2: If there is an odd number dj then we consider the partitions A0 = [d1; : : : ; dj¡1;

dj+1; : : : ; dr] and A00 = [dj] of the numbers

d0 = d ¡ dj = d1 + ¢ ¢ ¢ + dj¡1 + dj+1 + ¢ ¢ ¢ + dr and d00 = dj:

If dr = 1 we put j = r. Since the defect v([dj]) = dj ¡ 1 of the partition [dj] is even and

v(A) = v(A0) + v(A00);

both considered partitions have an even defect. Furthermore, v(A0) > 0 and v(A00) =

dj ¡ 1 ¶ 0, thus the induction hypothesis can be applied to both partitions except for

the case d00 = dj = 1 where v(A00) = 0. But for the trivial permutation the properties (a)

{ (d) are easily checked. By induction hypothesis, there are pairs of permutations â1; b̂1

and â2; b̂2 realizing the corresponding partitions A0 and A00 of d0 and d00. Since these pairs

of permutations have the property (c), we can apply the gluing operation 4.2 to them.

As the result of this operation, we obtain a pair of permutations â; b̂. Let us check the

properties (a) { (d) for them.

The property (a) follows from Proposition 4.3; (b) follows from Proposition 4.4; and

(c) is a consequence of h1iâ = h1iâ1 = 1. To check the truth of (d) it su±ces to use i1 = 1

for the gluing operation. In fact, using Proposition 4.4, we have

h1ib̂ = hh1ib̂1i(1; i2) = h1ib̂1 =)

h1ib̂[â; b̂] = hh1ib̂1i
³

[â1; b̂1] £ [â2; b̂2]
´

= h1ib̂1[â1; b̂1] = 1 or

h1ib̂[â2; b̂] = hh1ib̂1i
³

[â2
1; b̂1] £ [â2

2; b̂2]
´

= h1ib̂1[â2
1; b̂1] = 1;

in dependence on the equality from (d) ful¯lled by â1; b̂1.

Now let all di be even. Then the number d is also even and, thus, r too.

Consider the case r = 2. It follows from the hypothesis that d = 2k for some k ¶ 2

and that d1 and d2 are even. Thus ` = (d1 ¡ d2)=2 is an integer with 0 µ ` µ k ¡ 2; now

d1 = k + ` and d2 = k ¡ `.

Next we consider a more general situation assuming only that d2 > 1, that is, ` µ k ¡ 2.

In other words, for the next steps we do not need that d1 and d2 are even, but only that

d2 > 1.
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For 0 µ ` µ k ¡ 2 we de¯ne

â =

0

B@
1 : : : k ¡ 1 k k + 1 : : : 2k ¡ 1 2k

1 : : : k ¡ 1 k + 1 k + 2 : : : 2k k

1

CA ;

b̂ =

0

B@
1 : : : k ¡ 1 k k + 1 : : : k + ` k + ` + 1 k + ` + 2 : : : 2k

2k ¡ 1 : : : k + 1 k 1 : : : ` 2k ` + 1 : : : k ¡ 1

1

CA :

The columns with the upper symbols k + 1; : : : ; k + ` in the last formula are ignored if

` = 0.

Next we check the claims (a) { (d).

(b): By a direct calculation we obtain

[â; b̂] =

0

B@
1 : : : k + ` ¡ 1 k + ` k + ` + 1 : : : 2k ¡ 1 2k

2 : : : k + ` 1 k + ` + 2 : : : 2k k + ` + 1

1

CA

= (1; 2; : : : ; k + `)(k + ` + 1; : : : ; 2k):

(a): The transitivity follows from the fact that the commutator consists of two cycles and

that â maps the symbol 2k from the second cycle to the symbol k of the ¯rst cycle.

The property (c) is obvious.

(d): This follows from h1ib̂ = 2k ¡ 1 and h2k ¡ 1i[â2; b̂] = 1.

If r ¶ 3 then r ¶ 4 and dr ¶ 2. Since any two permutations from §d are conjugate

in §d if they admit (up to a permutation) the same systems of lengths of their cycles,

we can apply the gluing operation to pairs of permutations realizing the partitions A0 =

[d1; : : : ; dr¡2] and A00 = [dr¡1; dr] of the numbers d0 = d ¡ dr¡1 ¡ dr = d1 + : : : + dr¡2 and

d00 = dr¡1 + dr.

Corollary 5.1. Let ĉ 2 §d be a non-trivial even permutation. Then there are permuta-

tions â; b̂ with the following properties:

(a) The permutations â; b̂ generate a subgroup of §d which transitively acts on f1; : : : ; dg.

(b) ĉ = [â; b̂].

(c) The symbol 1 is ¯xed under the action of â.

(d) The symbol 1 is ¯xed under b̂[â; b̂] or under b̂[â2; b̂].

Notice, the usual proof [7,8,12] of the existence theorem of a branched covering with

given branch data of even defect over the torus and surfaces of higher genus is obtained

as the geometric equivalent (according to the Hurwitz criterion) of the algebraic fact

that each even permutation ĉ is the commutator of two permutations where one of these

permutations is a large cycle and the other one admits a ¯xed symbol. Corollary 5.1

of Theorem 2.2 gives a new proof that each even permutation is the commutator of
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two permutations generating a transitive subgroup. In our representation of the even

permutation ĉ as a commutator of â and b̂, the permutation â has exactly v(ĉ)=2 + e ¯xed

symbols, where e is the number of cycles of length 1 of the permutation ĉ = [â; b̂].

6 Realization of Primitive Branched Coverings over the Klein

Bottle

Proof of Theorem 2.3 by induction on r. We assume that d1 ¶ : : : ¶ dr.

Case r = 1. From the condition that the defect v(A) is even it follows that d = 2k + 1

for some integer k ¶ 1. Consider

â =

0

B@
1 : : : k k + 1 : : : 2k 2k + 1

1 : : : k k + 2 : : : 2k + 1 k + 1

1

CA ;

b̂ =

0

B@
1 2 : : : k + 1 k + 2 : : : 2k + 1

2k + 1 k + 1 : : : 2k 1 : : : k

1

CA :

(b): By a direct calculation we obtain

[â; b̂]¡ = (1; 2; : : : ; 2k; 2k + 1):

(a) is a direct consequence of (b), claim (c) is obvious.

(d): b̂ maps the symbol 1 to the symbol 2k + 1 and this is mapped by [â; b̂]¡ back

into 1.

Case r ¶ 2. If there is an odd dj, then the assertion is obtained by the same arguments

as in the proof of Theorem 2.2. Therefore, we may assume that all numbers dj are even.

Then d and thus, r are even.

Consider the case r = 2. From the conditions it follows that d = 2k for some k ¶ 2

and that d1; d2 are even. Put ` = (d1 ¡ d2)=2, thus d1 = k + ` and d2 = k ¡ `.

Now we obtain more general conclusions which are possible for d2 > 1, that is,

` µ k ¡ 2. In other words, for the following discussion we may only assume that d2 > 1.

For 0 µ ` µ k ¡ 2 we de¯ne

â =

0

B@
1 : : : k ¡ 1 k k + 1 : : : 2k ¡ 1 2k

1 : : : k ¡ 1 k + 1 k + 2 : : : 2k k

1

CA ;

b̂ =

0

B@
1 : : : k k + 1 : : : k + ` k + ` + 1 k + ` + 2 : : : 2k

k : : : 2k ¡ 1 1 : : : ` 2k ` + 1 : : : k ¡ 1

1

CA :

The columns with the upper symbols k + 1; : : : ; k + ` in the last formula are ignored if

` = 0.
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(b): A direct calculation gives

[â; b̂]¡ =

0

B@
1 : : : k + ` ¡ 1 k + ` k + ` + 1 : : : 2k ¡ 1 2k

2 : : : k + ` 1 k + ` + 2 : : : 2k k + ` + 1

1

CA

= (1; 2; : : : ; k + `)(k + ` + 1; : : : ; 2k):

Now (a) follows from the facts that the quasi-commutator consists of two cycles and

that under the action of â the symbol 2k from the second cycle goes into the symbol k

from the ¯rst cycle. (c) is obvious.

(d): Under the action of b̂ the symbol 1 goes into k and this one is mapped by [â; b̂]`+1
¡

to 1.

The case r ¶ 3, i.e. r ¶ 4 can be handled in the same way as at the end of the proof

of the Theorem 2.2.

Corollary 6.1. Let ĉ 2 §d be a non-trivial even permutation. Then there are permuta-

tions â; b̂ and a natural number q with the following properties:

(a) The permutations â; b̂ generate a subgroup of §d which transitively acts on f1; : : : ; dg.

(b) ĉ = [â; b̂]¡.

(c) The symbol 1 is ¯xed under the action of â.

(d) The symbol 1 is ¯xed under b̂[â; b̂]q¡.

Thus, each non-trivial even permutation ĉ 2 §d is the quasi-commutator of two

permutations which generate a subgroup of §d acting transitively on f1; : : : ; dg. Since

[â; b̂]¡ = â2
1b̂¡2 with â1 = âb̂

we also obtain that ĉ is the product of the squares of two permutations which generate a

subgroup of §d acting transitively on f1; : : : ; dg.

7 The General Case

Proof of Theorem 2.5 for the primitive case H = º =hhs1; : : : ; smii. Remark that, in

this case, the condition (2) of Theorem 2.5 is always true. So, we must prove that (1) is

always true too.

First consider the case º = ha; b; s1; : : : ; sm j [a; b] ¢ (s1 : : : sm)i where m ¶ 1.

Assume m = 1 and denote A1 = [d1; : : : ; dr]. According to Corollary 5.1 there are

two permutations â; b̂ 2 §d such that the commutator [â; b̂] consists of cycles of lengths

d1; : : : ; dr. The Hurwitz representation ’ of the group º = ha; b; c j [a; b]c¡1i is given by

a 7! â, b 7! b̂, c 7! [â; b̂]. Now the properties (a) and (b) follow from the assertions (a) and

(b) of Corollary 5.1. By the assertions (c) and (d) of Corollary 5.1, the symbol 1 is ¯xed

under the actions of â and b̂[âq ; b̂] for an appropriate integer q, thus a; b[aq ; b] 2 Stab’(1).
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Therefore, the composition Stab’(1) ,! º ! º =hhcii is surjective. So, the property (c) is

ful¯lled.

Let m ¶ 2 and denote Ai = [di
1; : : : ; di

r]. We take some permutations ŝi 2 §d consisting

of cycles of lengths di
1; : : : ; di

ri
, respectively. If the permutation ĉ = ŝ1 ¢ : : : ¢ ŝm 6= ê, ê the

identity, we apply Corollary 5.1 to it. If ŝ1 ¢ : : : ¢ ŝm = ê then one of the following three

cases is possible:

(1) in some ŝi there exists a cycle of length ¶ 3;

(2) all cycles have length µ 2, but d ¶ 3;

(3) d = 2.

In the ¯rst case, replace ŝi by ŝ¡1
i . In the second case, permute in ŝi 6= ê one symbol

appearing in a cycle of length 2 with a symbol appearing in another cycle. In both cases,

the new ŝi have cycles of the same length, but the product of ŝi is not the identity, so

Corollary 5.1 can be applied. Now the Hurwitz representation ’ : º ! §d is given by

a 7! b̂, b 7! â, si 7! ŝi, thus [a; b] ¢ (s1 : : : sm) 7! [â; b̂]¡1ŝ1 : : : ŝm = ê. As for the case

m = 1, the assertions (a) { (d) of Corollary 5.1 imply the required properties (a) { (c).

In the third case, there is a ŝi 6= ê. Take arbitrary permutations â; b̂ 2 §2. The

required properties (a) { (c) are easily checked.

Assume that º = ha1; : : : ; a2g; s1; : : : ; sm j
Q¤ ¢(s1 : : : sm)i where m ¶ 1, and

Q¤
=Qg

i=1[a2i¡1; a2i]. For de¯nition of the Hurwitz representation º ! §d, we map a1; a2,

s1; : : : ; sm as above and map a3; : : : ; a2g to the identity permutation.

For the case º = ha1; : : : ; an; s1; : : : ; sm j
Q¤ ¢(s1 : : : sm)i, where m ¶ 1, n ¶ 2, andQ¤

= a2
1 ¢ : : : ¢ a2

n, we proceed as before, but using Corollary 6.1.

Proof of Theorems 2.5 and 2.4 in the general case. Since the Theorems 2.5 and 2.4

are equivalent, we have obtained Theorem 2.4 for the primitive case H = º 1(V ) and it

remains to prove it for the general case.

(1) =) (2): Let f : W ! V be a branched covering with f#( º 1(W )) = H . Consider

the unbranched covering p : ¹V ! V corresponding to the subgroup H . Then f lifts to
¹f : W ! ¹V . Now, for any branch point x 2 Bf , the union of the branch data (with

respect to ¹f ) of ` points fy1; : : : ; y`g = p¡1(x) gives the branch data for f at x.

(2) =) (1): Let p : ¹V ! V be the unbranched covering which corresponds to the

subgroup H . Consider the virtual branch data ¹D = [B11; : : : ; B1`; : : : ; Bm1; : : : ; Bm`].

Since À ( ¹V ) = ` ¢ À (V ) µ 0, the surface ¹V is di®erent from the sphere and the projective

plane. It follows from Theorem 2.4 for the primitive case that there is a connected

primitive branched covering h : W ! ¹V which realizes ¹D. Therefore p ¯ h is the required

covering.
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