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Abstract: In this paper we prove that a subharmonic function in R™ of finite A-type can
be represented (within some subharmonic function) as the sum of a generalized Weierstrass
canonical integral and a function of finite A-type which tends to zero uniformly on compacts of
R™. The known Brelot-Hadamard representation of subharmonic functions in R™ of finite order
can be obtained as a corollary from this result. Moreover, some properties of R-remainders of
A-admissible mass distributions are investigated.
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1 Introduction

Throughout this paper R™ is the m-dimensional Euclidean space, S™ is the unit sphere
in R™ centered at the origin and w,, is its surface area.

Let A denote the Laplace operator. If u is a subharmonic function in R™, then Au
1

dmwm

measure, which is called the Riesz mass distribution associated with u (see, e.g. [1, pp.
55-58], [13, p.43]). Here dy = 1 and d,,, = m — 2 for m > 2.
For any integer ¢ > 0, define

is non-negative in the sense of generalized functions, and u, = Au is a positive

ln’l—%

Kq(%g) =
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where ¢ is the angle between the radius-vectors of points y,( € R?; (-,+) is the scalar
product in R™, m > 2, and C} are the Gegenbauer polynomials [2, pp. 302, 329], [12,
p.125] of degree k and order v = (m — 2)/2.

Let p be a mass distribution in R™ such that 0 ¢ suppp and p = p,, denotes the least

dpu(t)
tm+p—1

o
nonnegative integer number for which [ < 00.

The function ’
MWW=/KM@WQ
¢l<oc

is called the Weierstrass canonical integral of genus p [1, p. 78], [13, pp. 67-68]. It is
a subharmonic function and p is its associated Riesz mass distribution (see, e.g. [3, p.
163]).

Let u be a subharmonic function in R™ which is harmonic in some neighborhood
of the origin, with «(O) = 0, and let A be a positive continuous increasing function on
(0, +00), which is called the function of growth.

Put B(r,u) = max{u(y) : |y| <r}.

Definition 1.1. [4] A subharmonic function u is called a function of finite A-type if there
exist constants A and B such that

B(r,u) < AXNBr)
for all » > 0. The class of such functions is denoted by A;.

It is known (see [5], [13, pp. 68-69]) that in the case A(r) = r2, o > 0, the subharmonic
function u € Ay is represented in the form of sum

u(y) = Jp(y; ) + Prly), (1)

where p < o and P, is a harmonic polynomial of degree n < p. If we denote

un(y) = / 5,(4:) dpa(C) + Puly) (R > 0)

ISR

the sum (1) can be written as

u(y) = unly) + / K (5 €) dpa(0).
[(I>R

In addition, the Riesz mass distributions associated with the functions v and ug coincide
in the ball {y € R™ : |y| < R}, the function u — ugr converges to zero uniformly on
compacts of R™ as R — oo. Moreover, each of functions u,ugr,u — ug belongs to the
class Ay (see, e.g. [1, pp. 79-80]).

We shall generalize this result to the case of arbitrary functions u € A, subharmonic
in R™, m > 3, with a more general growth. The analogous generalization for entire
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functions f in the plane, such that In|f| € Ay was obtained by L.Rubel [6] and for
subharmonic in R? functions of finite A-type by Ya.Vasylkiv [7].
Let a[A] denote a lower order of A defined by

o = lim BAT)

r—oo INT

Theorem 1.2. For every function u € A there exist a subharmonic function h #Z —oo,
an unbounded set R of positive numbers and a family {up: R € R} of subharmonic
functions such that

1) the Riesz mass distributions associated with the functions ug and u + h coincide in
the ball {y € R™: |y| < R} for all R € R;

2) the difference (u+h)—ug tends to 0 uniformly on compacts of R as R — oo, R €

3) hyug,(u+h) —ug € A for all R € R.
If a[A\] = 0o, then we can take h = 0 and if In A\(r) is convex in Inr, then we can take
h=0and ®={R: R > Ry} for some Ry > 0.

Definition 1.3. The family of functions {ug : R € R} defined by the preceding theorem
is called the generalized Weierstrass canonical integral of function w.

In the next section we obtain some auxiliary results, which will be used for the proof
of Theorem.
2 The remainders

Definition 2.1. [4] A mass distribution g in R™, 0 & supp p, is called A\-admissible, if
there exist constants A, B and [ € R, such that

Y du(y) [ A(Bry)  A(Bra)
o (2, L <Ak +1 n 2

/ ¢ K |y|>] e | S AR @
r1<|y|<ra

for all r1,ry >0, k € Z,, x € S™. Here and below, v = (m — 2)/2.
Put V' = {y € R™ : Jy| < R}.

Definition 2.2. A mass distribution pug (R > 0) defined for any Borel set G C R™ by
the equality up(G) = u(G \ V&) is called the R-remainder of .

Let R be a non-empty set of positive numbers.

Definition 2.3. If the set ® is unbounded, the family of remainders {ugr : R € R} is
called complete.
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Definition 2.4. A family of remainders {ur : R € R}, 0 & supp pg, is called uniformly
A-admissible, if it satisfies the inequality (2) for all r1,79 > 0, k € Z,, z € S™ and R € R.

A spherical harmonic or a spherical Laplace function of degree k (k € Z, = {0,1,2,...}),
denoted Y®) | is defined as the restriction of a homogeneous, harmonic polynomial of
degree k on the unit sphere S™ (see, e.g. [8], [9]).

Let g be a mass distribution in R™ such that 0 & suppu, and let Y = {Y®) ()}
(k€ Z,, YO(z) = 0) be some sequence of spherical harmonics.

Definition 2.5. [4] The functions

cr(a,r; Y, p) = YW ()t 4 rh / (Jg[(x C)}%

<]
ci<r

- [ ket | (e )] an© ez

I¢I<r

are called the spherical harmonics of the pair (Y, u).

Proposition 2.6. Let i be a A-admissible mass distribution in R™. Then

1) there exists A-admissible mass distribution p/ > p whose family of remainders {u/y :
R € R} is complete and uniformly A-admissible;

2) for every such remainder p, there exists the sequence Yi = {Y}%k) ()} (k € Zy,
Y}go) () =0, R € R) of spherical harmonics such that

a) |ex(z, 73 Yr, )| < A(k+1)'A(Br) (3)
forallr >0,k € Z,, x € S™, R € R and some positive constants A, B and [ € R;

b) lim cx(x,r; Yr, ) =0 (4)

RSIR—00

forallr >0,k € Z,,x € S™.

If a[\] = oo, then we can take ' = p.
If In A(r) is convex in Inr, then we can take ' = p and {uy} = {pr : R = Ry > 0}.

The following lemma from [6] will be used in the proof of the last special case of
Proposition.

Lemma 2.7. If In A\(r) is convex in Inr, then there is Ry > 0 such that for every R > Ry
we can find o = o(R) > 0, for which

A(BR) _ . A(Br)

Re r>0 19

holds. Here B is some positive constant.
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Proof of statement 1) of Proposition. For r > 0,k € Z,,x € S™ and any mass
distribution g in R™, we put

I o

lyl<r

Ik(ThTQ;xv:u) = Ik(ﬁ;x,ﬂ) - Ik(ﬁ;xaﬂ) (7”1 < 7"2>‘

It follows from the equation C§(t) = 1 [2, p.176], [12, p.125] that the functions Iy(r; x, ),
Iy(r1,79; 2, ) are independent of x.
We distinguish three cases.

I. Let In A(r) be a convex in Inr function, let x be a A-admissible mass distribution
in R™ and the numbers R, o are as in Lemma 1. We shall show that inequality (2)
holds for R-remainder of y at R > Ry, where Ry is defined in Lemma 2.7.

If ry <7y < R, then Ii(ry, 52, ug) = 0.

If R <r <1y, then Iy(ry,ro;x, ur) = Ix(ry,7m9; x, 1) and therefore the mass distri-
bution pg satisfies inequality (2) for all R € R.

If 1 < R < ry, then Iy(ry, 7952, ur) = Ix(R,re; 2z, ). The last expression doesn’t

exceed
L [ABR)  A(Brs)

RF rk ’
where A, B are some positive constants and [ € R, .
Let k > 0. Then, by Lemma 1,

MBRE) MBR) 1 _ABr) 1 _ ABry)

X : _
Rk Ra Rk—a 7’? ,r,llc o ,,Jlf

Ak +1)

Suppose now that £ < ¢. In this case we have

ABR) AMBR) 1 _ABra) 1 _ABr)

R¥ Re Rko = pg ri=o ok
Thus 5 5 B
NBR) _ | (\(Br) ABry
RF rk rh
hence

L (r1, mos @, pr)| < 2A(K + 1) { P —

for all ri,7 > 0, k € Z,, v € S™, R € R. If we choose u’ = pu whose complete
family of remainders is {ug : R > Ry}, the statement 1) of Proposition is proved in
the case I.

IT. Let a[\] = 00, A(0) > 0. For any positive o, put

R, = max { R: \(BR)/R” = inf A(Br)/r" },

where B is some positive constant. Since lim \(Br)/r? = oo for every o > 0 and A
r—00

is a continuous function, the numbers R, are defined correctly and they are positive.
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As it is shown in [6] R, is an increasing unbounded function of o. Therefore the
family of remainders {ug, : ¢ > 0} is complete. Analogously to case I it is easy to
verify that this family is uniformly A-admissible.

III. Let a[\] < co. Then there exists d € N* = {1,2,3, ...} such that lim \(r)/r® =0

T—00

for all b > d. We denote by R the set of positive numbers R satisfying the relation

ABR) _ {/\(Br) } |

Rd r<R rd

It is obvious that lim A(BR)/R% = 0.
RNS3R—00

Let construct the mass distribution g’ in the following way. Consider the function

d
Q&) =D~ 5 S G+ .6, )

where the constant D is chosen in such a way that Q(n,£) > 0 for all n € S™ and all
e S

Let 1 be Ad-admissible mass distribution in R™ and let ¢ be an arbitrary function in
the class Cy(R™) of continuous functions in R™ with compact support. Put

uwszmwww,

Rm™

where
U(psy) = /s@(tn)Q(n;ﬁ) dS(n) (y=t§, t=1yl, £eS")
gm

It is easy to see that L(y) is a linear continuous positive functional defined on Co(R™).
We continue the functional L on the class of semicontinuous functions as this is
done in [3, pp. 105-114] and denote the obtained continuation by L. If Xq is the
characteristic function of the set G C R™, we define the measure ji associated with
the functional L by [i(G) = L(xe).

Let x1 and o be the characteristic functions of the balls VT’;” and VT’; respectively. Since
0 & suppp, then in some neighborhood of the point y = 0, which doesn’t intersect
with supp f1, we change the function C¥[(z, y/|y|)]/|y|*** (z is fixed), so that it becomes
continuous in V™ and hence in V™. Therefore we have

Li(r, oy 2, 1) = Ii(re; o, 1) — In(ri; @, 1)

o (WD g alEnl

’y|k+21/ 1 ‘y’k+2u

()]

Fi(zyy) = Ty

Denote
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Ff(x;y) = max{0; F}.}, F) (x;y) = —min{0; F}. }.
Then F), = F,:r — I, and

L(xiFy) = LOGF) — LOGEY). (7)

Here and below index ¢ takes values 1,2.

Since the balls VTT are compact subsets in R™, the functions y; are upper semicon-
tinuous. Then, according to Theorem 1.4 from [3, p.22|, there exist decreasing sequences
{g%} of continuous functions such that g — x; as n — oo. It is obvious that every
sequence {g’} can be chosen so that the supports of functions ¢’ are contained in some
compact. Further, since F} is a nonnegative continuous function, the sequences {g F;"}
are monotone (decreasing in n) sequences of continuous functions with compact supports,
moreover, g', F" — x; F;f as n — oo. By Theorem 3.3 from [3, p.109] and definition of
the functional L,

L(xi Fy") = lim L(g, F") = lim [ (g, F}sy) dp(y).
Rm
From the non-negativity of function @) we conclude that sequences {g F; @} are mono-
tone decreasing in n. Hence the sequences {U (g’ F,";y)} are also monotone decreasing

in n. Using Lebesgue’s theorem about monotone convergence, we have

L(uFY) = / W B y) du(y).
Rm
Analogously L(y; Fo)= [ 9(x: Fyy)du(y).

RT”
Thus, taking into account equality (7), we obtain

L(xi Fi) = /‘If(xz-Fk;y) du(y).

Rm
Hence, by means of (6), we find

hwrsn) = 4 [raatinEE 0o dstm § duty

R™ Ssm

i <|/< W%S[CZ[(x,n)]Q(n;é) dsS(n) b du(y),  (8)

where y = |y|¢, £ € S™, and 12 is a characteristic function of ring {y € R™ : r; < |y| <
ro}. Denote

Dela; ) = / CY (. )] Q(n: €) dS(n).

Sm
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where the function @ is defined by relation (5).

At k = 0 in consequence of orthogonality of Gegenbauer polynomials [8, p. 179] we
have Dy(z;€) = Dw,y,.

In the case 0 < k < d, using the equalities [2, p. 238]

v v 07 k # j?
[ citemcimerasm =1,
s Lz, k= ]
sm (k+v)I'(v) ’
we get D (z;€) = —CY[(z,€)].
If k> d, then Dy(x;¢) = 0.
Therefore from (8) we conclude that
DwmIO(ThTQ;xmu)a ]f:O,
I (ry, 7m0, 1) = —Ix(ry,ro; 2, 1), 0<k<d,

0, k> d.
Choose 1/ =+ . Then, by virtue of the previous relations, the equalities
(1+ Dwy)Ilo(ry,re;2,10), k=0,
Ii(ry,roym, 1) = 0, 0<k<d,
I (11, m95 2, ), k>d

hold. Therefore it remains to verify that the remainders u, (R € R) are uniformly M-
admissible when k& = 0 and k > d. For this it is sufficient to consider the case ry < R < rs.
Let £ = 0. Then

[To(r1, r; tg)|l = (14 D wm) o (R, ra; 1) < (14D win) [ To(r1, 723 )| < A[MBr1) +A(Bra)),

where A and B are some positive constants.
If k£ > d, we have

ANBR AN Br
a1, 2, )| = B, )] < A+ 1) | AT A
2

for A,B>0and ! € R,. But
AMBR) MBR) 1 o ABry) 1 A(Bry)

S . — 5 —
Rk Rd Rk—d rtli T"If d T'If

and the proof of statement 1) of Proposition is completed.

Proof of statement 2) of Proposition. At first let prove relation (3). Let £ = 0. For
arbitrary mass distribution x4 in R™, define

N = (m—2) [ 2
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where n(t, 1) = [ dp(r). Then the necessary relation can be obtained from the equa-
7|<
tion co(x,7; Yg, L’i;)t = N(r,ps) (see [4]) and the uniform A-admissibility of family of
remainders {y : R € R}.
Suppose now that k& € N*. In this case we shall choose the sequence {Y}gk) (x)} of
spherical harmonics in the same way as in [10] and [4].
If lim A(Br)r=* > 0 holds for all k, we put p[\] = oo, otherwise we put

T—00

p[\] = min {k : lim A(Br)rF = o} :
Let 1 < k < p[A]. Then inf {A\(Br)r=":r > 0} > 0. Therefore for such k there exists
ry, such that A(Br)ry® < 2A\(Br)r= for all » > 0. In this case we choose Y}%k)(x) =
Suppose that k > p[A]. Then there is the sequence {p,}, 0; T 00 as j — oo such that

lim A\(Bp;) gj_p[/\] = 0. 9)

Jj—00

Since

A(Bei) | A(By))
T T %
9; o;

for A,B > 0 and [ € R, then from (9) we find that the sequence {I)(0;;z, 1z)}

is a Cauchy sequence for fixed z, k and R. Therefore for k& > p[\] we put Y]g‘;) (x) =

Ik (0i; 2, 1) — In(0j; @, )| < A(k + 1)

JEN*

— lim Iy (o;; %, ptz). By virtue of such choice of sequence Yy = {Yék) (x)}, we have
j—o00

v y )| ey : /
v+ [ o] (o) | TR = s o) — Do)

ly|<r
< Ak + 1) [A(B[’“) + MB;T)} < 3A(k + 1) MB;’")
T‘k T r

for 1 < k < p[)\] and

y Yy \| drkly :
Ylgk)(x)—l— / Cy {(x,m)} ‘3/’1:523 = lim |[Ix(r;x, u) — Ix(o5; @, 1y)|

Jj—00
lyl<r
<Ak + 1) [ 2B gy ABO gy gy ABY
r im0 of r

for k > p[A]. Therefore

(o Vi )| < 34+ NB) + | (@)kcz{(x,%)}dmy).
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Applying inequality n(r, ') /(2r**) < N(2r, /') (see [4]) to the last addend, we find

2| ()l < e | ai

lyl<r ly|<r

= ) M) <5 1) N2 ).

Hence, taking into account relation C¥(1) = O (k**~1), k — oo (see [9]) and uniform
A-admissibility of family of remainders {y/; : R € R}, we obtain estimate (3) for some
possibly other constants A, B and [ = m — 3.

It remains to proof the relation (4). Since the integrals

[aleae [ wal(y)] s

ly|<r ly|<r

are equal to zero for all R > r, then it is sufficient to show that Y}%k) () = 0asR> R —

00. The last is obvious from the definition of spherical harmonics Ylgk)

possibly with the
exception of the case k > p[)\|, p[A] < co. In this case by the inequation (3), we have

‘Y]g“) (7) rk‘ < A(k + 1)!'\(Br) for r < R and therefore (letting r — R)

A(BR)
Rk

(MBR)
RpA]

V()| < A+ 1) <Ak +1)

since k > p[A].
From the construction of family  (with d = p[)\] in section III of the proof of state-
ment 1) of Proposition) it follows that _lim  A(BR)/RPM = 0, from which _lim Y(k)( )=

ROIR— 0 ROIR—0

0. This completes the proof of Proposition.

Let f € L'(S™), then the series Y Y'®)(x; f) is called its Fourier-Laplace series. Here
k=0

y ) (x5 f) = agk)Yl(k) (x) + agk)YQ(k) () + ...+ a,(ylz)Yw(:) (x),

{Yl(k), VAR %)} is the orthonormal base, a =(f,Y, ")) (1=1,2,...,7).
In the case m = 2 we have the trigonometric Fourier series.
Denote u,(x) = u(rz), r >0, x € S™.

Definition 2.8. [10] The functions
cr(z,mu) =YW (zu,) (keZy, xesm)
are called the spherical harmonics associated with the function u.

Lemma 2.9. Let ® be an unbounded set of positive numbers, and let {gr : R € R}
(9r(0) = 0) be a family of subharmonic functions such that
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a) the Riesz mass distribution associated with the function gg is equal to 0 in the ball
Vs
b) (@, rigr)l < A(k + 1)'A(Br)
for some positive constants A, B, [ € R, and forallr >0, x € S, k€ Z,, R e R,
c) lim c¢g(z,rm9r) =0

RSIR—00
forall k€ Z,, r>0and z € §™.

Then " lli%m gr(y) = 0 uniformly on compacts of R™.
SR—o0

Proof. Since by virtue of condition a) the function gz is harmonic in the ball V7, we
can apply Poisson-Jensen’s formula [3, pp. 139-140] to it. For r < r* < R we obtain

gR(m:) _ (T*>2V / [(r*f — 7,2] gR(r*€> dS(f) (Z’ e Sm),

Win [(r*)? = 2r*r(x, &) + r2]vt!
S’"L

where (-, ) denotes the scalar product in R™. Expanding the Poisson integral in series
in spherical harmonics (see [10]), we have

Choose 7* = 2r. Then |gr(rz)] < > 27%|ci(z,2r; gr)|. For fixed r > 0 and z € S™
k=0

the series > 27 |ex(w, 2r; gr)| is functional one, defined on ®. From condition b) by
k=0

Weierstrass indication this series converges uniformly on R. Let S(R) be its sum. Then

dim S(R) = }%i_fgokz;?k ek (, 2r; gr)| = ,;Zk Aim feg (2,275 gg)| = 0.

Therefore we get o lli%m gr(rz) = 0 uniformly in r < ro < r*.
SR—o0

3 Proof of Theorem

Let u = p, and let ¢/, R, Yr and cx(x,r; Yr, i) be such as in Proposition. By Theorem
1 from [4], in consequence of A-admissibility of mass distribution p’, there exists function
u* € As; whose Riesz mass distribution is u/. We shall assume that «*(0) = 0. According
to Lemma 4 from [4], there are subharmonic functions vg, with vg(0) = 0, such that
cp(x,r;vR) = cp(x, 1 Y, ) for all r > 0, z € S™, k € Z; and also p,, = p for every
R € R. Since the mass distributions u, are A-admissible, then by Theorem 1 from [4]
functions vg belong to the class A;. Moreover, by Lemma 2 when & 5 R — oo these
functions tend to 0 uniformly on compacts of R™.

Put up = u* — vp and h = u* — u. It is obvious that the functions ur and h are
subharmonic and their Riesz mass distributions satisfy condition 1) of Theorem. Since
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(u+ h) —ugp = u* — ug = vg, condition 2) is true. Condition 3) we obtain from [11,
Theorem 1].

The last conditions of Theorem immediately follow from Proposition.

The well-known representation of subharmonic functions in R™ of finite order can
be obtained as a corollary from Theorem, if we take \(r) = r?, 3 > o, [3] = ¢ (with
o and ¢ as in the introduction), h = 0, R = {R : R > Ry} at some Ry > 0, and

up(y) = | K(y;¢)du(C) +Pr(y), where K(y;¢) = —|y — (|, and ®g(y) is harmonic
[CI<R

in y for every R € R.
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