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Abstract: In this paper we prove that a subharmonic function in R
m of finite λ-type can

be represented (within some subharmonic function) as the sum of a generalized Weierstrass

canonical integral and a function of finite λ-type which tends to zero uniformly on compacts of

R
m. The known Brelot-Hadamard representation of subharmonic functions in R

m of finite order

can be obtained as a corollary from this result. Moreover, some properties of R-remainders of

λ-admissible mass distributions are investigated.
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1 Introduction

Throughout this paper R
m is the m-dimensional Euclidean space, Sm is the unit sphere

in R
m centered at the origin and ωm is its surface area.

Let ∆ denote the Laplace operator. If u is a subharmonic function in R
m, then ∆u

is non-negative in the sense of generalized functions, and µu = 1
dmωm

∆u is a positive

measure, which is called the Riesz mass distribution associated with u (see, e.g. [1, pp.

55–58], [13, p.43]). Here d2 = 1 and dm = m− 2 for m > 2.

For any integer q ≥ 0, define

Kq(y; ζ) =





ln
∣∣∣1− y

ζ

∣∣∣+
q∑
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k
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k
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− 1
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∣∣∣yζ
∣∣∣
k

Cν
k

[(
y

|y|
, ζ
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, m > 2,
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where ϕ is the angle between the radius-vectors of points y, ζ ∈ R
2; (·, ·) is the scalar

product in R
m, m > 2, and Cν

k are the Gegenbauer polynomials [2, pp. 302, 329], [12,

p.125] of degree k and order ν = (m− 2)/2.

Let µ be a mass distribution in R
m such that 0 6∈ suppµ and p = pµ denotes the least

nonnegative integer number for which
∞∫
0

dµ(t)
tm+p−1 <∞.

The function

Jp(y;µ) =

∫

|ζ|<∞

Kp(y; ζ)dµ(ζ)

is called the Weierstrass canonical integral of genus p [1, p. 78], [13, pp. 67–68]. It is

a subharmonic function and µ is its associated Riesz mass distribution (see, e.g. [3, p.

163]).

Let u be a subharmonic function in R
m which is harmonic in some neighborhood

of the origin, with u(O) = 0, and let λ be a positive continuous increasing function on

(0,+∞), which is called the function of growth.

Put B(r, u) = max {u(y) : |y| 6 r}.

Definition 1.1. [4] A subharmonic function u is called a function of finite λ-type if there

exist constants A and B such that

B(r, u) 6 Aλ(Br)

for all r > 0. The class of such functions is denoted by Λs.

It is known (see [5], [13, pp. 68–69]) that in the case λ(r) = r%, % > 0, the subharmonic

function u ∈ Λs is represented in the form of sum

u(y) = Jp(y;µu) + Pn(y), (1)

where p 6 % and Pn is a harmonic polynomial of degree n 6 %. If we denote

uR(y) =

∫

|ζ|6R

Kp(y; ζ) dµu(ζ) + Pn(y) (R > 0)

the sum (1) can be written as

u(y) = uR(y) +

∫

|ζ|>R

Kp(y; ζ) dµu(ζ).

In addition, the Riesz mass distributions associated with the functions u and uR coincide

in the ball {y ∈ R
m : |y| 6 R}, the function u − uR converges to zero uniformly on

compacts of R
m as R → ∞. Moreover, each of functions u, uR, u − uR belongs to the

class Λs (see, e.g. [1, pp. 79–80]).

We shall generalize this result to the case of arbitrary functions u ∈ Λs, subharmonic

in R
m, m > 3, with a more general growth. The analogous generalization for entire
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functions f in the plane, such that ln |f | ∈ Λs was obtained by L.Rubel [6] and for

subharmonic in R
2 functions of finite λ-type by Ya.Vasylkiv [7].

Let α[λ] denote a lower order of λ defined by

α[λ] = lim
r→∞

lnλ(r)

ln r
.

Theorem 1.2. For every function u ∈ Λs there exist a subharmonic function h 6≡ −∞,

an unbounded set < of positive numbers and a family {uR : R ∈ <} of subharmonic

functions such that

1) the Riesz mass distributions associated with the functions uR and u+ h coincide in

the ball {y ∈ R
m : |y| 6 R} for all R ∈ <;

2) the difference (u+h)−uR tends to 0 uniformly on compacts of R
m as R→∞, R ∈ <;

3) h, uR, (u+ h)− uR ∈ Λs for all R ∈ <.

If α[λ] =∞, then we can take h ≡ 0 and if lnλ(r) is convex in ln r, then we can take

h ≡ 0 and < = {R : R > R0} for some R0 > 0.

Definition 1.3. The family of functions {uR : R ∈ <} defined by the preceding theorem

is called the generalized Weierstrass canonical integral of function u.

In the next section we obtain some auxiliary results, which will be used for the proof

of Theorem.

2 The remainders

Definition 2.1. [4] A mass distribution µ in R
m, 0 6∈ suppµ, is called λ-admissible, if

there exist constants A,B and l ∈ R+ such that

∣∣∣∣∣∣∣

∫

r1<|y|6r2

Cν
k

[(
x,

y

|y|

)]
dµ(y)

|y|k+2ν

∣∣∣∣∣∣∣
6 A(k + 1)l

[
λ(Br1)

rk1
+
λ(Br2)

rk2

]
(2)

for all r1, r2 > 0, k ∈ Z+, x ∈ S
m. Here and below, ν = (m− 2)/2.

Put V̄ m
R = {y ∈ R

m : |y| 6 R}.

Definition 2.2. A mass distribution µR (R > 0) defined for any Borel set G ⊂ R
m by

the equality µR(G) = µ(G \ V̄ m
R ) is called the R-remainder of µ.

Let < be a non-empty set of positive numbers.

Definition 2.3. If the set < is unbounded, the family of remainders {µR : R ∈ <} is

called complete.
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Definition 2.4. A family of remainders {µR : R ∈ <}, 0 6∈ suppµR, is called uniformly

λ-admissible, if it satisfies the inequality (2) for all r1, r2 > 0, k ∈ Z+, x ∈ S
m and R ∈ <.

A spherical harmonic or a spherical Laplace function of degree k (k ∈ Z+ = {0, 1, 2, . . .}),

denoted Y (k), is defined as the restriction of a homogeneous, harmonic polynomial of

degree k on the unit sphere Sm (see, e.g. [8], [9]).

Let µ be a mass distribution in R
m such that 0 6∈ suppµ, and let Y = {Y (k)(x)}

(k ∈ Z+, Y
(0)(x) = 0) be some sequence of spherical harmonics.

Definition 2.5. [4] The functions

ck(x, r;Y, µ) = Y (k)(x) rk + rk
∫

|ζ|6r

Cν
k

[(
x,

ζ

|ζ|

)]
dµ(ζ)

|ζ|k+2ν

−
1

rk+2ν

∫

|ζ|6r

|ζ|kCν
k

[(
x,

ζ

|ζ|

)]
dµ(ζ) (k ∈ Z+)

are called the spherical harmonics of the pair (Y, µ).

Proposition 2.6. Let µ be a λ-admissible mass distribution in R
m. Then

1) there exists λ-admissible mass distribution µ′ > µ whose family of remainders {µ′R :

R ∈ <} is complete and uniformly λ-admissible;

2) for every such remainder µ′R there exists the sequence YR = {Y
(k)
R (x)} (k ∈ Z+,

Y
(0)
R (x) = 0, R ∈ <) of spherical harmonics such that

a) |ck(x, r;YR, µ
′
R)| 6 A(k+1)lλ(Br) (3)

for all r > 0, k ∈ Z+, x ∈ S
m, R ∈ < and some positive constants A,B and l ∈ R+;

b) lim
<3R→∞

ck(x, r;YR, µ
′
R) = 0 (4)

for all r > 0, k ∈ Z+, x ∈ S
m.

If α[λ] =∞, then we can take µ′ = µ.

If lnλ(r) is convex in ln r, then we can take µ′ = µ and {µ′R} = {µR : R > R0 > 0}.

The following lemma from [6] will be used in the proof of the last special case of

Proposition.

Lemma 2.7. If lnλ(r) is convex in ln r, then there is R0 > 0 such that for every R > R0

we can find σ = σ(R) > 0, for which

λ(BR)

Rσ
= inf

r>0

λ(Br)

rσ

holds. Here B is some positive constant.
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Proof of statement 1) of Proposition. For r > 0, k ∈ Z+, x ∈ Sm and any mass

distribution µ in R
m, we put

Ik(r;x, µ) =

∫

|y|6r

Cν
k

[(
x,

y

|y|

)]
dµ(y)

|y|k+2ν
,

Ik(r1, r2;x, µ) = Ik(r2;x, µ)− Ik(r1;x, µ) (r1 6 r2).

It follows from the equation Cν
0 (t) = 1 [2, p.176], [12, p.125] that the functions I0(r;x, µ),

I0(r1, r2;x, µ) are independent of x.

We distinguish three cases.

I. Let lnλ(r) be a convex in ln r function, let µ be a λ-admissible mass distribution

in R
m and the numbers R, σ are as in Lemma 1. We shall show that inequality (2)

holds for R-remainder of µ at R > R0, where R0 is defined in Lemma 2.7.

If r1 6 r2 6 R, then Ik(r1, r2;x, µR) = 0.

If R 6 r1 6 r2, then Ik(r1, r2;x, µR) = Ik(r1, r2;x, µ) and therefore the mass distri-

bution µR satisfies inequality (2) for all R ∈ <.

If r1 6 R 6 r2, then Ik(r1, r2;x, µR) = Ik(R, r2;x, µ). The last expression doesn’t

exceed

A(k + 1)l
[
λ(BR)

Rk
+
λ(Br2)

rk2

]
,

where A,B are some positive constants and l ∈ R+.

Let k > σ. Then, by Lemma 1,

λ(BR)

Rk
=
λ(BR)

Rσ
·

1

Rk−σ
6
λ(Br1)

rσ1
·

1

rk−σ
1

=
λ(Br1)

rk1
.

Suppose now that k < σ. In this case we have

λ(BR)

Rk
=
λ(BR)

Rσ
·

1

Rk−σ
6
λ(Br2)

rσ2
·

1

rk−σ
2

=
λ(Br2)

rk2
.

Thus
λ(BR)

Rk
6 max

{
λ(Br1)

rk1
,
λ(Br2)

rk2

}

hence

|Ik(r1, r2;x, µR)| 6 2A(k + 1)l
[
λ(Br1)

rk1
+
λ(Br2)

rk2

]

for all r1, r2 > 0, k ∈ Z+, x ∈ Sm, R ∈ <. If we choose µ′ = µ whose complete

family of remainders is {µR : R > R0}, the statement 1) of Proposition is proved in

the case I.

II. Let α[λ] =∞, λ(0) > 0. For any positive σ, put

Rσ = max
{
R : λ(BR)/Rσ = inf

r>0
λ(Br)/rσ

}
,

where B is some positive constant. Since lim
r→∞

λ(Br)/rσ =∞ for every σ > 0 and λ

is a continuous function, the numbers Rσ are defined correctly and they are positive.
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As it is shown in [6] Rσ is an increasing unbounded function of σ. Therefore the

family of remainders {µRσ
: σ > 0} is complete. Analogously to case I it is easy to

verify that this family is uniformly λ-admissible.

III. Let α[λ] <∞. Then there exists d ∈ N
∗ = {1, 2, 3, . . . } such that lim

r→∞
λ(r)/rb = 0

for all b > d. We denote by < the set of positive numbers R satisfying the relation

λ(BR)

Rd
= inf

r6R

{
λ(Br)

rd

}
.

It is obvious that lim
<3R→∞

λ(BR)/Rd = 0.

Let construct the mass distribution µ′ in the following way. Consider the function

Q(η; ξ) = D −
Γ(ν)

2πν+1

d∑

j=1

(j + ν)Cν
j [(η, ξ)], (5)

where the constant D is chosen in such a way that Q(η, ξ) > 0 for all η ∈ Sm and all

ξ ∈ Sm.

Let µ be λ-admissible mass distribution in R
m and let ϕ be an arbitrary function in

the class C0(R
m) of continuous functions in R

m with compact support. Put

L(ϕ) =

∫

Rm

Ψ(ϕ; y)dµ(y),

where

Ψ(ϕ; y) =

∫

Sm

ϕ(tη)Q(η; ξ) dS(η) (y = tξ, t = |y|, ξ ∈ Sm).

It is easy to see that L(ϕ) is a linear continuous positive functional defined on C0(R
m).

We continue the functional L on the class of semicontinuous functions as this is

done in [3, pp. 105–114] and denote the obtained continuation by L̃. If χG is the

characteristic function of the set G ⊂ R
m, we define the measure µ̃ associated with

the functional L̃ by µ̃(G) = L̃(χG).

Let χ1 and χ2 be the characteristic functions of the balls V̄ m
r1

and V̄ m
r2

respectively. Since

0 6∈ supp µ̃, then in some neighborhood of the point y = 0, which doesn’t intersect

with supp µ̃, we change the function Cν
k [(x, y/|y|)]/|y|

k+2ν (x is fixed), so that it becomes

continuous in V̄ m
r1

and hence in V̄ m
r2
. Therefore we have

Ik(r1, r2;x, µ̃) = Ik(r2;x, µ̃)− Ik(r1;x, µ̃)

= L̃


χ2

Cν
k

[(
x, y

|y|

)]

|y|k+2ν


− L̃


χ1

Cν
k

[(
x, y

|y|

)]

|y|k+2ν


 . (6)

Denote

Fk(x; y) =
Cν

k

[(
x, y

|y|

)]

|y|k+2ν
,
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F+
k (x; y) = max{0;Fk}, F−k (x; y) = −min{0;Fk}.

Then Fk = F+
k − F−k and

L̃(χiFk) = L̃(χiF
+
k )− L̃(χiF

−
k ). (7)

Here and below index i takes values 1,2.

Since the balls V̄ m
ri

are compact subsets in R
m, the functions χi are upper semicon-

tinuous. Then, according to Theorem 1.4 from [3, p.22], there exist decreasing sequences

{gin} of continuous functions such that gin → χi as n → ∞. It is obvious that every

sequence {gin} can be chosen so that the supports of functions gin are contained in some

compact. Further, since F+
k is a nonnegative continuous function, the sequences {gin F

+
k }

are monotone (decreasing in n) sequences of continuous functions with compact supports,

moreover, gin F
+
k → χi F

+
k as n → ∞. By Theorem 3.3 from [3, p.109] and definition of

the functional L,

L̃(χi F
+
k ) = lim

n→∞
L(gin F

+
k ) = lim

n→∞

∫

Rm

Ψ(gin F
+
k ; y) dµ(y).

From the non-negativity of function Q we conclude that sequences {gin F
+
k Q} are mono-

tone decreasing in n. Hence the sequences {Ψ(gin F
+
k ; y)} are also monotone decreasing

in n. Using Lebesgue’s theorem about monotone convergence, we have

L̃(χi F
+
k ) =

∫

Rm

Ψ(χi F
+
k ; y) dµ(y).

Analogously L̃(χi F
−
k ) =

∫
Rm

Ψ(χi F
−
k ; y) dµ(y).

Thus, taking into account equality (7), we obtain

L̃(χi Fk) =

∫

Rm

Ψ(χi Fk; y) dµ(y).

Hence, by means of (6), we find

Ik(r1, r2;x, µ̃) =

∫

Rm





∫

Sm

χ1,2(|y|η)
Cν

k [(x, η)]

|y|k+2ν
Q(η; ξ) dS(η)



 dµ(y)

=

∫

r1<|y|6r2





1

|y|k+2ν

∫

Sm

Cν
k [(x, η)]Q(η; ξ) dS(η)



 dµ(y), (8)

where y = |y|ξ, ξ ∈ Sm, and χ1,2 is a characteristic function of ring {y ∈ R
m : r1 < |y| 6

r2}. Denote

Dk(x; ξ) =

∫

Sm

Cν
k [(x, η)]Q(η; ξ) dS(η),
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where the function Q is defined by relation (5).

At k = 0 in consequence of orthogonality of Gegenbauer polynomials [8, p. 179] we

have D0(x; ξ) = Dωm.

In the case 0 < k 6 d, using the equalities [2, p. 238]

∫

Sm

Cν
k [(x, η)]C

ν
j [(η, ξ)] dS(η) =





0, k 6= j,

2πν+1Cν
k
[(x,ξ)]

(k+ν)Γ(ν)
, k = j,

we get Dk(x; ξ) = −C
ν
k [(x, ξ)].

If k > d, then Dk(x; ξ) = 0.

Therefore from (8) we conclude that

Ik(r1, r2;x, µ̃) =





Dωm I0(r1, r2;x, µ), k = 0,

−Ik(r1, r2;x, µ), 0 < k 6 d,

0, k > d.

Choose µ′ = µ+ µ̃. Then, by virtue of the previous relations, the equalities

Ik(r1, r2;x, µ
′) =





(1 +Dωm)I0(r1, r2;x, µ), k = 0,

0, 0 < k 6 d,

Ik(r1, r2;x, µ), k > d

hold. Therefore it remains to verify that the remainders µ′R (R ∈ <) are uniformly λ-

admissible when k = 0 and k > d. For this it is sufficient to consider the case r1 6 R 6 r2.

Let k = 0. Then

|I0(r1, r2;µ
′
R)| = (1+Dωm)|I0(R, r2;µ)| 6 (1+Dωm)|I0(r1, r2;µ)| 6 A[λ(Br1)+λ(Br2)],

where A and B are some positive constants.

If k > d, we have

|Ik(r1, r2;x, µ
′
R)| = |Ik(R, r2;x, µ)| 6 A(k + 1)l

[
λ(BR)

Rk
+
λ(Br2)

rk2

]

for A,B > 0 and l ∈ R+. But

λ(BR)

Rk
=
λ(BR)

Rd
·

1

Rk−d
6
λ(Br1)

rd1
·

1

rk−d
1

=
λ(Br1)

rk1

and the proof of statement 1) of Proposition is completed.

Proof of statement 2) of Proposition. At first let prove relation (3). Let k = 0. For

arbitrary mass distribution µ in R
m, define

N(r, µ) = (m− 2)

r∫

0

n(t, µ)

tm−1
dt,



O. Veselovska / Central European Journal of Mathematics 2(4) 2004 593–604 601

where n(t, µ) =
∫

|τ |≤t

dµ(τ). Then the necessary relation can be obtained from the equa-

tion c0(x, r;YR, µ
′
R) = N(r, µ′R) (see [4]) and the uniform λ-admissibility of family of

remainders {µ′R : R ∈ <}.

Suppose now that k ∈ N
∗. In this case we shall choose the sequence

{
Y
(k)
R (x)

}
of

spherical harmonics in the same way as in [10] and [4].

If lim
r→∞

λ(Br)r−k > 0 holds for all k, we put p[λ] =∞, otherwise we put

p[λ] = min

{
k : lim

r→∞
λ(Br)r−k = 0

}
.

Let 1 6 k < p[λ]. Then inf
{
λ(Br)r−k : r > 0

}
> 0. Therefore for such k there exists

rk such that λ(Brk)r
−k
k 6 2λ(Br)r−k for all r > 0. In this case we choose Y

(k)
R (x) =

−Ik(rk;x, µ
′
R).

Suppose that k > p[λ]. Then there is the sequence {%j}, %j ↑ ∞ as j →∞ such that

lim
j→∞

λ(B%j) %
−p[λ]
j = 0. (9)

Since

|Ik(%i;x, µ
′
R)− Ik(%j;x, µ

′
R)| 6 A(k + 1)l

[
λ(B%i)

%ki
+
λ(B%j)

%kj

]

for A,B > 0 and l ∈ R+, then from (9) we find that the sequence {Ik(%j;x, µ
′
R)}j∈N∗

is a Cauchy sequence for fixed x, k and R. Therefore for k > p[λ] we put Y
(k)
R (x) =

− lim
j→∞

Ik(%j;x, µ
′
R). By virtue of such choice of sequence YR =

{
Y
(k)
R (x)

}
, we have

∣∣∣∣∣∣∣
Y
(k)
R (x) +

∫

|y|6r

Cν
k

[(
x,

y

|y|

)]
dµ′R(y)

|y|k+2ν

∣∣∣∣∣∣∣
= |Ik(r;x, µ

′
R)− Ik(rk;x, µ

′
R)|

6 A(k + 1)l
[
λ(Brk)

rkk
+
λ(Br)

rk

]
6 3A(k + 1)l

λ(Br)

rk

for 1 6 k < p[λ] and
∣∣∣∣∣∣∣
Y
(k)
R (x) +

∫

|y|6r

Cν
k

[(
x,

y

|y|

)]
dµ′R(y)

|y|k+2ν

∣∣∣∣∣∣∣
= lim

j→∞
|Ik(r;x, µ

′
R)− Ik(%j;x, µ

′
R)|

6 A(k + 1)l

[
λ(Br)

rk
+ lim

j→∞

λ(B%j)

%kj

]
6 A(k + 1)l

λ(Br)

rk

for k > p[λ]. Therefore

|ck(x, r;YR, µ
′
R)| 6 3A(k + 1)lλ(Br) +

1

r2ν

∣∣∣∣∣∣∣

∫

|y|6r

(
|y|

r

)k

Cν
k

[(
x,

y

|y|

)]
dµ′R(y)

∣∣∣∣∣∣∣
.
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Applying inequality n(r, µ′)/(2r2ν) 6 N(2r, µ′) (see [4]) to the last addend, we find

1

r2ν

∣∣∣∣∣∣∣

∫

|y|6r

(
|y|

r

)k

Cν
k

[(
x,

y

|y|

)]
dµ′R(y)

∣∣∣∣∣∣∣
6

1

r2ν
Cν

k (1)

∫

|y|6r

dµ′R(y)

= Cν
k (1)

n(r, µ′R)

r2ν
6 2Cν

k (1)N(2r, µ′R).

Hence, taking into account relation Cν
k (1) = O (k2ν−1), k →∞ (see [9]) and uniform

λ-admissibility of family of remainders {µ′R : R ∈ <}, we obtain estimate (3) for some

possibly other constants A,B and l = m− 3.

It remains to proof the relation (4). Since the integrals

∫

|y|6r

Cν
k

[(
x,

y

|y|

)]
dµ′R(y)

|y|k+2ν
,

∫

|y|6r

|y|k Cν
k

[(
x,

y

|y|

)]
dµ′R(y)

are equal to zero for all R > r, then it is sufficient to show that Y
(k)
R (x)→ 0 as < 3 R→

∞. The last is obvious from the definition of spherical harmonics Y
(k)
R possibly with the

exception of the case k > p[λ], p[λ] < ∞. In this case by the inequation (3), we have∣∣∣Y (k)
R (x) rk

∣∣∣ 6 A(k + 1)lλ(Br) for r < R and therefore (lettinq r → R)

∣∣∣Y (k)
R (x)

∣∣∣ 6 A(k + 1)l
λ(BR)

Rk
6 A(k + 1)l

λ(BR)

Rp[λ]

since k > p[λ].

From the construction of family < (with d = p[λ] in section III of the proof of state-

ment 1) of Proposition) it follows that lim
<3R→∞

λ(BR)/Rp[λ] = 0, from which lim
<3R→∞

Y
(k)
R (x) =

0. This completes the proof of Proposition.

Let f ∈ L1(Sm), then the series
∞∑
k=0

Y (k)(x; f) is called its Fourier-Laplace series. Here

Y (k)(x; f) = a
(k)
1 Y

(k)
1 (x) + a

(k)
2 Y

(k)
2 (x) + . . .+ a(k)γk

Y (k)
γk

(x),

{Y
(k)
1 , Y

(k)
2 , . . . , Y

(k)
γk } is the orthonormal base, a

(k)
i = (f, Y

(k)
i ) (i = 1, 2, . . . , γk).

In the case m = 2 we have the trigonometric Fourier series.

Denote ur(x) = u(rx), r > 0, x ∈ Sm.

Definition 2.8. [10] The functions

ck(x, r;u) = Y (k)(x;ur) (k ∈ Z+, x ∈ S
m)

are called the spherical harmonics associated with the function u.

Lemma 2.9. Let < be an unbounded set of positive numbers, and let {gR : R ∈ <}

(gR(0) = 0) be a family of subharmonic functions such that
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a) the Riesz mass distribution associated with the function gR is equal to 0 in the ball

V̄ m
R ;

b) | ck(x, r; gR)| 6 A(k + 1)lλ(Br)

for some positive constants A,B, l ∈ R+ and for all r > 0, x ∈ Sm, k ∈ Z+, R ∈ <;

c) lim
<3R→∞

ck(x, r; gR) = 0

for all k ∈ Z+, r > 0 and x ∈ Sm.

Then lim
<3R→∞

gR(y) = 0 uniformly on compacts of R
m.

Proof. Since by virtue of condition a) the function gR is harmonic in the ball V̄ m
R , we

can apply Poisson-Jensen’s formula [3, pp. 139–140] to it. For r < r∗ < R we obtain

gR(rx) =
(r∗)2ν

ωm

∫

Sm

[(r∗)2 − r2] gR(r
∗ξ) dS(ξ)

[(r∗)2 − 2r∗r(x, ξ) + r2]ν+1
(x ∈ Sm),

where ( · , · ) denotes the scalar product in R
m. Expanding the Poisson integral in series

in spherical harmonics (see [10]), we have

gR(rx) =
∞∑

k=0

( r
r∗

)k

Y (k)(x; (gR)r∗).

Choose r∗ = 2r. Then |gR(rx)| 6
∞∑
k=0

2−k |ck(x, 2r; gR)|. For fixed r > 0 and x ∈ Sm

the series
∞∑
k=0

2−k |ck(x, 2r; gR)| is functional one, defined on <. From condition b) by

Weierstrass indication this series converges uniformly on <. Let S(R) be its sum. Then

lim
R→∞

S(R) = lim
R→∞

∞∑

k=0

2−k |ck(x, 2r; gR)| =
∞∑

k=0

2−k lim
R→∞

|ck(x, 2r; gR)| = 0.

Therefore we get lim
<3R→∞

gR(rx) = 0 uniformly in r 6 r0 < r∗.

3 Proof of Theorem

Let µ = µu and let µ′,<, YR and ck(x, r;YR, µ
′
R) be such as in Proposition. By Theorem

1 from [4], in consequence of λ-admissibility of mass distribution µ′, there exists function

u∗ ∈ Λs whose Riesz mass distribution is µ′. We shall assume that u∗(0) = 0. According

to Lemma 4 from [4], there are subharmonic functions vR, with vR(0) = 0, such that

ck(x, r; vR) = ck(x, r;YR, µ
′
R) for all r > 0, x ∈ Sm, k ∈ Z+ and also µvR = µ′R for every

R ∈ <. Since the mass distributions µ′R are λ-admissible, then by Theorem 1 from [4]

functions vR belong to the class Λs. Moreover, by Lemma 2 when < 3 R → ∞ these

functions tend to 0 uniformly on compacts of R
m.

Put uR = u∗ − vR and h = u∗ − u. It is obvious that the functions uR and h are

subharmonic and their Riesz mass distributions satisfy condition 1) of Theorem. Since
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(u + h) − uR = u∗ − uR = vR, condition 2) is true. Condition 3) we obtain from [11,

Theorem 1].

The last conditions of Theorem immediately follow from Proposition.

The well-known representation of subharmonic functions in R
m of finite order can

be obtained as a corollary from Theorem, if we take λ(r) = rβ, β > %, [β] = q (with

% and q as in the introduction), h ≡ 0, < = {R : R > R0} at some R0 > 0, and

uR(y) =
∫

|ζ|6R

K(y; ζ) dµ(ζ)+ΦR(y), where K(y; ζ) = −|y− ζ|−2ν , and ΦR(y) is harmonic

in y for every R ∈ <.
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