Central European Central European Journal
Science Journals of Physics

W W W . c e s j . c om

CEJP 3 (2003) 393-420

Uncertainty relations expressed
by Shannon-like entropies

V. Majernik!?, Eva Majernikoval?, S. Shpyrko®

L Department of Theoretical Physics,
Palacky University,
Tr. 17. listopadu 50, CZ-77207 Olomouc, Czech Republic

2 Institute of Mathematics,

Slovak Academy of Sciences,

Stefanikova 49, SK-81473 Bratislava, Slovak Republic,
3 Institute of Physics,

Slovak Academy of Sciences,
Dibravskd cesta, SK-84 228 Bratislava, Slovak Republic

Received 6 November 2002; revised 22 April 2003

Abstract: Besides the well-known Shannon entropy, there is a set of Shannon-like
entropies which have applications in statistical and quantum physics. These entropies
are functions of certain parameters and converge toward Shannon entropy when these
parameters approach the value 1. We describe briefly the most important Shannon-like
entropies and present their graphical representations. Their graphs look almost identical,
though by superimposing them it appears that they are distinct and characteristic of each
Shannon-like entropy. We try to formulate the alternative entropic uncertainty relations
by means of the Shannon-like entropies and show that all of them equally well express
the uncertainty principle of quantum physics.
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1 Introduction

All types of the Shannon-like (S-L, for short) entropies®, like the Shannon entropy, are
based on the notions of probability and uncertainty. Although there is a well-defined
mathematical theory of probability, there is no universal agreement about the meaning

§ The Shannon-like entropies are sometimes called the nonstandard [16] or generalized entropies [23].
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of probability. Thus, for example, there is the view that probability is an objective
property of a system, and another view that it describes a subjective state of belief of
a person. Then there is the also the point of view that the probability of an event is
the relative frequency of its occurrence in a long or infinite sequence of trials. This latter
interpretation is often employed in the mathematical statistics and statistical physics.
The probability in everyday life means the degree of ignorance about the outcome of
a random trial. Commonly, the probability is interpreted as the degree of the subjective
expectation of an outcome of a random trial. Both subjective and statistical probability
are “normed” which means that the degree of expectation that an outcome of a random
trial occurs, and the degree of the “complementary” expectation, that it does not, always
add up to unity.

Intuitively, the uncertainty of a random trial is given by the spread of probabilities
of its outcomes. The uncertainty of a many component probability distribution is quan-
titatively given by one number H that is a function of all components of a probability
distribution, H(P) = F(Py, Ps, ..., P,). This number H satisfies the following require-
ments’:

(i) If the probability distribution contains only one component then H(P) = 0. In this
case, there is no uncertainty in a random trial because one outcome is realized with
certainty.

(ii) The more spread the probability distribution P is, the larger becomes the value of
its uncertainty.

(iii) For a uniform probability distribution Py, H(Py) becomes maximal.

An important quantity in the theory of probability is the random variable. A random
variable Z is a mathematical quantity assuming a set of values with corresponding prob-
abilities. All data necessary for the characterization of a random trial, and the assigned
random variable, are usually given by a so-called probabilistic scheme. If Z is a discrete
random variable then its probability scheme is of the form

S S So Sn,
P | P(x1) P(z2) P(xy)
I xT9 In

S, Ss, ..., S5 are the outcomes of a random trial (in quantum physics the quantum
states), P(x1), P(x3), ..., P(x,) are their probabilities and xy, z, ..., 23 are the values de-
fined on Sy, S, ..., S, (in quantum physics the eigenvalues). A probability distribution,
P = {P,P,,..., P,}, is the complete set of probabilities of all individual outcomes of
a random trial.

It is well-known that there are several measures of the uncertainty in the theory of
probability which can be divided into two classes [29]:

¥ From the mathematical point of view, the probabilistic uncertainty measures map the nonnegative

orthant R(f) of the n-dimensional Euclidean space R™ into R.
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(i) The moment measures which give the uncertainty of a random trial by means of the
scatter of its values. The moment measures of the uncertainty contain as a rule the
values of a random trial as well as the elements of its probability distribution and
are often taken as their central statistical moments [6].

(ii) The probabilistic or entropic measures of uncertainty containing in their expressions
only components of the probability distribution of a random trial. They determine
the sharpness and spreading out of its probability distribution, independent of its
actual value of z.

H(P) is written as a sum of functions of the individual components of P (for details
see [4] and [15])

H(P) = (P,

Functions f,(P,) are to be chosen so that their sum satisfies the above requirements
arising from an entropic measure of uncertainty. It must result in zero if P,, = 1 or 0,
and it must be graphically represented by a concave curve. There are several functions
of the probability components which satisfy these requirements. The most important
are: ,gl)(Pm) = —P,, log P, and f,§2)(Pm) = P,,(1 — Pp,,). If we take for the uncertainty
measure the sum of the functions f,ﬁ” we have

H(P):S(P):Zfél)(Pi):—ZPilogPi. (1)

This is the well-known entropic measure of uncertainty called the Shannon entropy [8].
If we take ff) we obtain

Ho(P) = fP(P) =) P(1—P)=) (P.~F}).
i=1 i=1 i=1
Since " | P; =1, we have

Ho(P)=1- Z P2, (2)

The quantity He(P) is a special case of an entropic uncertainty measure called sometimes
the zero-continent entropy [18]. We will deal with it in the next few Sections.

The S-L entropies depend on certain parameters. If these parameters approach 1
then they converge toward the Shannon entropy. In Sec.2 we present some important S-L
entropies and describe their mathematical properties. In Sec.3 we depict their graphical
representations as a function of components of a probability distribution and the corre-
sponding parameters. In Sec.4 we show how to formulate the uncertainty principle of
quantum physics by means of S-L entropies.

2 The Shannon-like entropies

The classical measure of uncertainty, the Shannon entropy H(P), has dominated the liter-
ature since it was proposed by Shannon. Recently, due to the desire, mainly in the applied
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sciences (see e.g. [16], [14] and [13]), to employ entropic measures of uncertainty having
properties similar to the Shannon entropy but which are simpler to handle mathemati-
cally, the interest in S-L entropies has increased considerably [16]. As a consequence, in
the last decades a variety of S-L entropies have been invented.

The central role in the construction of the S-L entropies is played by the expression [29]

Lia) = Y P! ®)

and the function of it F'(L) called the basic function. Unlike the Shannon entropy, a S-L
entropy does not represent the sum of functions f, but instead it is a simple function of
L. Any basic function must satisfy the condition
dF(L(a — 1))
dL

An important property of L(a) is that its derivative becomes for a — 1 the expression

= *£1.

for the Shannon entropy but with the opposite sign

dL -
(@) = Z P;log P,. (3a)
i=1

da

This fact is utilized by the formulation of the S-L entropies. One takes a suitable basic
function of L(a), e.g. F(L(a)) = log(L(a)), which becomes for a — 1 zero and divides
it by other function f;(a) which for a — 1 becomes likewise zero, e.g. fy(a) = a — 1.
An S-L entropy then represents the ratio

H(P)= M. (4)
a(a)
To evaluate the limit @ — 1 of H(P) we must use the L'Hopital rule which yields
dF(L(a) n
H(L(a = 1)) = = - > P,log P,.
da i=1

According to the basic function one obtains different S-L entropies. The most impor-
tant of them are the following [1]:
(i) The Rényi entropy Hg(P), with the logarithmic basic function, is defined for all real
numbers as follows [25]

Hg(P) =

1 n
1_alog{;Pf}, a#£ 1. (4a)

Its 3D-plot for the two-component probability distribution is given in Fig.2.
(ii) The Havrda-Charvat entropy (or S-entropy) with a simple rational basic function,
is defined as [10]

HC(P>:ﬁ<ZPf—1> ) 66(07OO>7 ﬂ?’él (5)
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Its 3D-plot for the two-component probability distribution is given in Figs.4.
(iii) The entropy Hr, with the trigonometric basic function, has the form [18]

m(y—1)

Its 3D-plot for the two-component probability distribution is given in Fig.6.

He(P) = —2— cos <w/z Z(P])) v AL (6)

All the S-L entropies listed above converge towards Shannon’s entropy if «, 8 and
~v — 1. In some instances, it is simpler to compute Hg, Ho or Hy and then recover the
corresponding Shannon entropy by taking limits o, 8,7 — 1.

A quick inspection shows that three S-L entropies listed above are all mutually func-
tionally related. For example, each of the Havrda-Charvat entropies can be expressed as
a function of Rényi entropy, and vice versa

He(P) (exp((1 — B)HR(P)) = 1).

1
=13

There are six properties which are usually considered desirable for a measure of un-
certainty defined in terms of probability distributions: (i) symmetry, (ii)expansibility,
(iii) subadditivity, (iv) additivity, (v) normalization, and (vi) continuity [1]. The only
uncertainty measure which satisfies all these requirements is Shannon’s entropy. Each
of the other entropies violates at least one of them. As such, the previously mentioned
classes of entropies are generalizations of the Shannon entropy in various ways. They are
most meaningful for a, 3,v > 0 since they violate the smallest number of the properties
in this range of parameters, e. g. Rényi entropies violate only the subaddivity prop-
erty, Havrda-Charvat entropies violate the additivity property. More details about the
properties of each entropies can be found elsewhere (e.g. [1]).

Among the existing S-L entropies, the Havrda and Charvat entropy are perhaps best
known and most widely used. This is mainly because Havrda and Charvat entropies
have a number of desirable properties which are crucial in many applications. It is more
general than Shannon entropy and simpler than Rényi entropy. It depends on a parameter
(@ which is in the interval 8 € (0,00). As such, it represents a family of uncertainty
measures which includes the Shannon entropy as a limiting case when 3 — 1. I All the
afore mentioned S-L entropies have three important properties:

(i) They assume their maxima for the uniform probability distribution P,.
(ii) They become zero for the one-component probability distributions.
(iii) They express a measure of the spreading out of a probability distribution. The larger
this spread becomes, the smaller values they assume.

The S-L entropies are mathematical quantities which represent the measures of un-

certainty of a probability of a statistical system. In physics, the S-L entropies can be

I 1t is noteworthy that two mathematicians, Havrda and Charvat, introduced already in 1967 the 3— en-
tropy defined as [10] Sg(P) = ﬁ (31 (P;)P—1). This entropy is formally identical with Tsallis entropy
reinvented in statistical physics in 1988 [26]. However, one must keep in mind that in the Tsallis entropy
P, i=1,2,...,n are to be replaced by the relative frequencies of a statistical ensemble. We will not
further deal with the application of Tsallis entropy in statistical physics. The reader is referred to [27].
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used everywhere where the uncertainty degree of physical probability or statistical sys-
tems is needed, i.e., in quantum and statistical physics and in the theory of physical
measurement. According to Jaynes theorem, the probabilistic uncertainty of a statisti-
cal system is uniquely associated with its physical entropy. The S-L entropies are used
by the description of the nonextensive statistical systems where the common statistical
systems, based on the Boltzmann-Shannon entropy, cannot be applied. For example,
using one of the S-L entropies, called the Tsallis entropy, a number of nonextensive sys-
tems have been successfully described, e.g. correlated-type anomalous diffusions [22] [3],
turbulence in electron plasmas [2], nonlinear dynamical systems [9] etc. (for details see
[27]). Moreover, by means of general statistical systems, based on Tsallis” entropy, a class
of physical phenomena, e.g. ferromagnetism, multifractals etc. can be successfully de-
scribed from a unified point of view. In quantum physics the measures of uncertainty of
two non-commuting observables are crucial to the formulation of the entropic uncertainty
relations (UR) given in the form of the inequalities whose left-hand sides are the sums
of uncertainties of two non-commuting observables and their right-hand sides represent
the corresponding non-trivial lower bounds. The use of the S-L entropies as measures
of the quantum uncertainty may considerably simplify the variational procedure neces-
sary for finding these lower bounds. In the physical theory of measurement, the S-L
entropies can appropriately express the degree of ‘inaccuracy’ of a certain type of phys-
ical measurement. Apart from the mentioned applications, the S-L entropies have also
been successfully applied in theory of scattering [11] [12].

3 Graphical representation of the Shannon-like entropies

To get an idea of the properties of the S-L entropies we consider a two component probabil-
ity distribution which makes it possible to show their graphical representation in 3D-plots.
A two component probability distribution can be written in the form P = {P, (1 — P)}
so that the corresponding S-L entropies are functions only of two parameters: P and a.
In 3D-plots they can be visually shown as functions of these parameters. To compare the
graphical representations of S-Li entropies with the Shannon entropy we first depicted in
Fig.1 the shape of the Shannon entropy as a function of P.

The Shannon entropy as a function of P is concave and its maximum is at P = 1/2.
In Fig.2, we plotted the Rényi entropy in 3D-graph to illustrate the dependence on P
and « for a € [0, 10].

We see that as « increases, the shapes of the entropy curves change considerably.
An interesting feature of Rényi entropy is that the maxima of its entropy curves do not
change with changing a. In order to demonstrate the change of shape of the entropy
curves we plotted some of them for the different values of « in Fig.3. The dependencies
of the entropy curves on « is clearly visible here.

While the entropy curve for o = 100 resembles a triangle, that for o = 0.3 lies over
the curve assigned to the Shannon entropy.

In Fig.4, we show plots of 3D-graphs for the entropy curves of the Havrda-Charvat
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entropy as a function of § and P for § € [0, 10].

The maxima of these curves decrease as (3 increases. The shape of the entropy curves
as function of g is shown in Fig.5.

This plot shows how the shape of entropy curves becomes more and more flat as 3
increases. In Fig.6, the entropy curves of the S-L entropy Hp are represented as functions
of P and v for v € [0,10]. Again, the shape of these curves become more and more flat
with the increase of ~.

Their maxima are plotted against # and v in Fig.7 (the maxima of Hp are constant
and independent of «, Fig.3). The characteristic feature of these shapes is that for
B =~ =1 they have the same value (0.67).

The foregoing figures provide a clear illustration of the dependence of S-Li entropies
on P and parameters «, 3 and 7. The graphs of the various S-L entropies look similar,
though by superimposing these graphs on one another, we see that they are distinct and
characteristic of each S-L entropy. In the next Section we will formulate the well-known
uncertainty principle of quantum physics by means of the above described S-L entropies.

4 Uncertainty relations expressed by means of Shannon-like
entropies

The fact that two canonically conjugate observables A and B cannot simultaneously
have sharp eigenvalues represents the cornerstone of the principle in quantum mechanics
and can be quantitatively expressed in different forms, commonly called the uncertainty
relations. An uncertainty relation provides an estimate of the minimum uncertainty
expected in the outcome of a measurement of an observable, given the uncertainty in
the outcome of measurement of another observable. Here, the essential problem is how
to mathematically express the uncertainty (imprecision) of observables considered as
random variables. In the Heisenberg formulation of the uncertainty relation the standard
deviations (variances) of non-commuting observables are taken as the measures of their
uncertainties while in the entropic uncertainty relations the entropies of observables are
taken as their uncertainties.

The Shannon entropic uncertainty relation is given as the sum of the Shannon en-
tropies of two non-commuting observables. We take for the S-L entropic uncertainty
relations likewise the sums of their S-L entropies. The sum of the Rényi Hgz(P), Havrda-
Charvat Ho(P) and Hp(P) entropy for two probability distributions Py = {Py, P, ..., P, }
and Py = {P{, P;,..., P/} is

e s - (55 (507)]

i=1
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1 n LI 1 -
Ho(PY) + Ho(PY?) = — - <Z PO 1LY PO - 1) _ m(g PO
i=n n=1 i=n
DS 2) (5)
HT(P(7)> + HT(P,(W)) - <g P(w > 1 cos <g ZP{MN

(Z P _ ZP’” ) H o

=n

respectively.

It is worth noting that the S-L entropies have especially simple forms for a = 2, f = 2
and 7 = 2. In that case, the expression L(a) is called ‘information energy’ and is given
by [28]

E; =) P (9a)
i=k

Inserting the corresponding information energies in the S-L entropies we have

HI(? = —log F;,

HY =1-E;, (10)
2 E

H:(r2) = —cos (W )
e

Traditionally, in the mathematical formulation of the uncertainty principle, we con-
sider two Hermitian operators A and B which represent two non-commuting observ-
ables A and B in a finite N-dimensional Hilbert space. Let {|a;)|} and {|b;)}, 4,7 =
1,2,..., N, be the corresponding complete sets of normalized eigenvectors. The compo-
nents of the probability distributions of observables A and B, P4, = {p1,p2, ..., p,} and
Ps ={q1,q,...,¢,}, when the quantum state of the investigated system is described by
|®), are given by the equations

pi=Kail®)* g5 = [(b;]®)]*.

The Heisenberg variance uncertainty relation is given by an inequality whose left-hand
side represents the product of standard deviations of two non-commuting observables A
and B. Usually, we write it in the Robertson form (i = 1) [7]

AA AB > (1/2)|(®|[A, B]|®)|, (10a)

where AA and AB are the standard deviations of A and B and [A, B] is their commutator.
It has been pointed out that the Robertson uncertainty relation has the following serious
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shortcoming (see, e.g. [17]). If A and B are two non-commuting observables of a finite
N-dimensional Hilbert space then the right-hand side of Robertson uncertainty relation
is not a fixed lower bound, but it depends on the state of |®). If one of observables
A or B is in its eigenstate then the right-hand side of Robertson uncertainty relation
equals zero and no restriction for AAAB is imposed by the Heisenberg UR. Other ways
of expressing the uncertainty principle of quantum physics were invented in order to avoid
this shortcoming. It has been shown that if we use instead of the product of standard
deviations the sum of the entropies of non-commuting observables of the left-hand side of
(10a) then the corresponding uncertainty relation does not suffer from the shortcoming
mentioned above and better reflects the uncertainty principle of quantum physics than
the corresponding Heisenberg one.

The Shannon entropic uncertainty relation has the form of the following inequality

S(A) + S(B) > S(AB),

where S(A) and S(B) are Shannon’s entropies of two non-commuting observables A and
B. The sum of Shannon entropies is independent of the quantum state bounded by a
non-trivial real number S(AB) (see, e.g. [17]).

When formulating the S-L entropic uncertainty relations for two non-commuting observ-
ables A and B we proceed on the lines of the familiar Shannon entropic UR, i.e. we take
the following inequalities

HY)(A)+ HY(B) > HY(AB),

HP(A4) + BY (B) = HP (AB) (11)
and
HY(A) + HY(B) > HY(AB), (12)

where HI(;)(AB),Héﬁ)(AB) and H:(FW)(AB) denote the lower bounds of their left-hand
sides. Since, according to the definition of the non-commuting observables, they can-
not occur simultaneously in one of their eigenstates, P and Q cannot become simulta-
neously one-component probability distributions, therefore HI(;)(A,B), Héﬁ )(A,B) and
H:(FW)(A,B) are positive numbers (different from zero). The crucial problem concerning
the above uncertainty relations is to find these positive numbers which represent their
lower bounds. Their determination does not follow easily and the general treatment of
this issue would exceed the scope of this article. Commonly, there are two methods of
solving this problem: (i) the determination of these bounds by a variational calculation
(ii) their determination by an estimation.

Consider two observables A and B with noncommuting Hermitian operators A and B
in an N-dimensional Hilbert space, whose corresponding complete orthonormal sets of
eigenvectors {|z;)} and {|ly;)} (1 = 1,2,...,N) are disjointed and have nondegenerate
spectra. Let |¢) be a normalized state vector of N-dimensional Hilbert space, thus we

have
N

0) =D aidz), o) = ijlyﬁ-

i
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According to the quantum transformation theory we have the property,

N N

[6) = (O aslaily)lyn) + (D ailailyz))ly2) +

N
Z a;i(w:ly;)|y;)

Pi(A) = [(@il9)* = la,l?, (13)
Qi(B) = Ibsl* = Wy;lo)* = (X aswile))I?,

i

I
Q.Mz N

where (z;|y;) 4,5 = 1,2,3,..., N are the elements of the transformation matrix T be-
tween the observables A and B

(ilyr)  (@alyz) - (@1lyn)
T =

Accordingly, the sum of Havrda-Charvat entropies of A and B has the form

(SR () )

Given T, the lower bounds of S-Li entropic uncertainty relations can be found by vari-

a;

ation of corresponding entropic sum over the coefficients aq, as, ..., a,, and thus take the
minimum (maximum) variational value as the ezact lower (upper) bound. Generally, this
leads to a series of complicated coupled equations which are often intractable, especially
for the sum of Shannon entropies [19]. However, for some simple quantum systems the
variational procedure leads quickly to the lower bounds of the corresponding entropies
sum. An example of such a quantum system will be described in the next section.

Using an inequality from linear algebra, the lower bounds can also be estimated. For
example, according to [5] and [21] the following inequality holds

®) ®) ! 2\
() + (Q)zﬁ[1—< )

— + (1= M H(P)HE(Q).

where ¢ = sup;;[(z|y;)|. For 3 > 1 the term Ho(P)Hc(Q) becomes positive and the ex-

pression
1=
6—1 (1 + c)

represents a (weak) lower bound of Havrda-Charvat entropy sum for g € (1, 00). Of course,

by using other more appropriate inequalities from the linear algebra, sharper lower bounds
for the entropic sums may be found. Next we write the S-Li entropic uncertainty relations
for a = 8 = v = 2 for a spin-1/2 particle and compare them with the Heisenberg variance
uncertainty relation.
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5 Particle with spin 1/2

This quantum system instructively illustrates the difference between the S-L uncertainty
relations, the Heisenberg variance uncertainty relation and the Shannon entropic uncer-
tainty relation. Consider a quantum system containing a particle with spin /2. We are
looking for the different uncertainty relations between the spin components J, and J,.
According to Eq. (10a), the Heisenberg uncertainty relation for J, and J, has the form

2

(AT)ATL) > 2= (@], L@
The state vector of the considered quantum system is a spinor
) = ay|21) + azl2),
where
ajay + agas = 1.

In order to compare the Heisenberg, the Shannon and the S-L entropic uncertainty
relations for the components J, and J,, we calculate the product of their standard devia-
tions Ug(J,, J.), the sum of their Shannon entropies S(J,, J,) as well as sums of their S-L
entropies HI(;)(JI, J.), Héﬁ)((]r, J.) and H:(FW)(JI, J.). The product of standard deviations
of J, and J, is [20]

U(Ja, J2) = {(02 = (0:))"){(02 = (02))7).

where

If we express Us(Jy, J,) in terms of a1, as, a] and a} we have

h4
Us(Jyy J) = 16 [1— (alaz + ara3)?] [1 — (ajar — azad)?] . (14)

We now introduce the variables r and ¢ by
a; = rexp(iyy), ay = <\/ 1- 7"2) exp(ips), © =1 — Pa

and calculate the S-L uncertainty relations for spin components J, and J, given by the
wave functions |®), = a1]z1) + as|z2).
The probabilistic scheme for J, and J, are

J, |Zl> |22>

* *
P | aqa] aqaj
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and

Jy |1’1> |l’2>

P | 27 ay + az)(a] + a}) 27'(ay — ap)(a} — a3)

We now turn our attention to the S-L entropies with a = 2,8 = 2 and v = 2. In
terms of the variables r and ¢, the probability distributions for J, and J, become

P;, = {7"2, (1-— 7"2)}
and

z

P; E{%<1+2TMCOSQO>,%(1—2T\/ﬁc08(p>}, (15)

respectively. Inserting these components in the formula for the information energy, given
by Eq.(9a), we obtain
EZ(JI) — ity (1 _ 7n2>2
1
EZ-(JZ) =3 +2r%(1 — 7?) cos® . (16)

With EZ-(JZ) and EZ-(JZ), the S-L entropic uncertainty relations assume the form

1
HP(L) + H (1) = HY (o, ) = =log(r' + (1= 12)2) (5 (17)
+27%(1 — r?) cos® <p> (18)
HP(L) + HP (1) = HO (Jo, 1) = 1= 4+ (1 = %) 4 1 (19)

1
- (5 + 27"2(1 - 7"2) cos? w) ,

2
HP (L) + H? (J,) = HP (J,, J.) = = COSG(T‘* +(1- 7“2)2))

™

+zcos<g<%+2r2(1 — r2) cos? (p))- (20)

™

The expression H(C2)(Jr, J.) can be rearranged to a simpler form
1
HE (T, J.) = 5 + (sin)’2r(1 = 1), (21)

Similar rearrangement can be done also for Hg)((]m, J.) and Hj(?)((]m, J.).

It is a straightforward calculation in principle, to determine the wave function at
which the minimum or maximum of the entropies of J, and J, occurs, and then determine
the exact bounds of Hl(f)((]r, J.), H(C2)(Jr, J,) and H:(F2)(Jr, J.). The necessary conditions
for these extreme values for the corresponding entropies are

OH(J,,J.)

or
0H (J, J.)

Oy

=0 (20a)

~0. (20D)
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Inserting Eq.(21) into Eqs.(20a) and (20b) we obtain the following equations which
are easy to solve analytically

2)

(9.2[7? = 4r(sin(p))?(1 — 27%) = 0 (21a)
2)

82[0 = 47*(1 — r*) sin(¢p) cos(p) = 0. (21b)
¥

A simple calculation yields the value of 7 and ¢ for which Hg )(Jz, J.) assumes the
extreme values: (i) 7 = 1 or r = 0 with arbitrary ¢ and (i) r = 1/v/2 and ¢ = /2. With
these values, Hg)((]r, J.) gets its minimum and maximum equal to 1/2 and 1. Hence,
Hg)((]r, J.) is bounded as follows

<HP(J,,J.) <1.

N | —

3D-plots of Hg)(A, B), Hg)(A, B) and H:(F2)(A, B) are shown as functions of r and ¢ in
F igs.10, 11 and 12.

We see that the value of H(.J,, J,) for all entropies does not fall below certain real non-
zero value representing their lower bounds. A remarkable feature of these S-L entropic
uncertainty relations is that there is a peak in their graphs in the vicinity of ¢ = 7/2 and
r = 1/v/2. In Fig.10 we see that the determined maximum and minimum of Hg)(A, B)
is in agreement with those given by its graphical representation.

Now we compare the determination of the upper and lower bounds of S-L entropic un-
certainty relations with that of the Shannon entropic and Heisenberg variance uncertainty
relations. In our parametrization, S(J,,J,) and U(J,,J,) gets the form

S(Jy, J.) = —r*Inr? — (1 —r*) In(1 — 7?) — %(1 + 2rv1 —r2cos <p>
1 1
In [§<1 +2rv'1 —r2cos<p>] — 5(1 —2rv'1 —r2coscp>

In B (1 — 2rvT = 12 cos go)] (22)

and 1
U(Jg,J,) = 1—67“2(1 - 7"2) [1 - 47"2(1 - 7"2) cos? <p] , (23)

respectively. Inserting S(J,J,) into Egs.(20a) and (20b) we obtain a complicated tran-
scendental equation which we do not present here. These equations are analytically
intractable and we have to apply numerical methods for their solutions.

It is easy to verify that the Heisenberg uncertainty relation for » = 0 or 1 and for
r=1/v2, Uy(r, ¢) has its minimum and maximum equal to zero and and 1/64, respec-
tively. Therefore, the Heisenberg uncertainty relation is bounded as follows

1
< < —.
0<UsJ,,J,) < o
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This demonstrates nicely the differences between the Heisenberg variance uncertainty
relation, the Shannon entropic uncertainty relation and the S-L uncertainty relations
for a pair of the discrete complementary conjugate observables. The relative ease of
obtaining the lower and upper bounds of H, (02 ) (Jz, J,) analytically is an advantage of this
uncertainty relation over the Shannon entropic one. Figs. 11 and 12 show the Heisenberg
and Shannon uncertainty relation as functions of r» and ¢. The difference between them
is clearly seen. From what has been said so far, it follows that:

(i) Besides the well-known Shannon entropy, there is a set of S-L entropies which are
generally dependent on certain parameters. These entropies converge to Shannon
entropy when these parameters approach 1.

(ii) Considering the two-component probability distribution, the S-L entropies can be
shown in 3D-plots as functions of the components of such probability distribution
and the corresponding parameters. We have shown that these graphs resemble one
another, shearing common properties with the Shannon entropy.

(iii) The sums of the S-L entropies of two non-commuting observables depends on the
state of the quantum system. In all S-L entropic uncertainty relations, these sums
never fall below certain positive non-zero value.

(iv) It appears that all S-L entropic uncertainty relations express the uncertainty prin-
ciple of quantum physics equally well.

(v) Due to availability of a number of S-L entropies, a question arises about the criteria
for the choice of the proper S-L entropy to be used in a particular case. For this
purpose a user has to know the properties which each S-L entropy has and also those
which it does not have.

(vi) The choice of the particular S-L entropy for the construction of an actual entropic
uncertainty relation is mainly restricted by the degree of the simplicity of the calcu-
lation of the upper and lower bands of the corresponding uncertainty relation.
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Fig. 1 The Shannon entropy for two-component probability distribution as a function of P.
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Fig. 2 3D-plot of Hy as function of P and « for « € [0, 10].
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Fig. 3 Graphical representation of the entropy function Hgr as a function of P for « = 0.3
(curve a), & = 0.999 (curve b), and oo = 100 (curve c).
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Fig. 4 3D-plot of H¢ as function of P and 8 for 8 € [0, 10].
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Fig. 5 The shapes of the entropy curves of Heo for 8 = 0.2 (curve a) 8 = 0.999 (curve b) and
B =10 (curve c).
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Fig. 7 The maxima of the entropy curves Ho and Hrp plotted against parameter 8 (curve b)
and 7 (curve a) for P = 0.5.
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0.015

Fig. 8 The Heisenberg variance uncertainty relation for the spin components J, and J, as
function of r and ¢.
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Fig. 9 The Shannon entropic uncertainty relation for spin components J, and J, as function of
r and .
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Fig. 10 The uncertainty relation for the spin components J, and J, as function of r and ¢.
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Fig. 11 The uncertainty relation with Rényi entropy for the spin components J, and J, as
function of r and ¢.
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H{?

Fig. 12 The uncertainty relation with Hr for the spin components J, and J, as function of r
and .



