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Abstract: Besides the well-known Shannon entropy, there is a set of Shannon-like

entropies which have applications in statistical and quantum physics. These entropies

are functions of certain parameters and converge toward Shannon entropy when these

parameters approach the value 1. We describe brie®y the most important Shannon-like

entropies and present their graphical representations. Their graphs look almost identical,

though by superimposing them it appears that they are distinct and characteristic of each

Shannon-like entropy. We try to formulate the alternative entropic uncertainty relations

by means of the Shannon-like entropies and show that all of them equally well express

the uncertainty principle of quantum physics.
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1 Introduction

All types of the Shannon-like (S-L, for short) entropiesx, like the Shannon entropy, are

based on the notions of probability and uncertainty. Although there is a well-de¯ned

mathematical theory of probability, there is no universal agreement about the meaning

x The Shannon-like entropies are sometimes called the nonstandard [16] or generalized entropies [23].
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of probability. Thus, for example, there is the view that probability is an objective

property of a system, and another view that it describes a subjective state of belief of

a person. Then there is the also the point of view that the probability of an event is

the relative frequency of its occurrence in a long or in¯nite sequence of trials. This latter

interpretation is often employed in the mathematical statistics and statistical physics.

The probability in everyday life means the degree of ignorance about the outcome of

a random trial. Commonly, the probability is interpreted as the degree of the subjective

expectation of an outcome of a random trial. Both subjective and statistical probability

are \normed" which means that the degree of expectation that an outcome of a random

trial occurs, and the degree of the \complementary" expectation, that it does not, always

add up to unity.

Intuitively, the uncertainty of a random trial is given by the spread of probabilities

of its outcomes. The uncertainty of a many component probability distribution is quan-

titatively given by one number H that is a function of all components of a probability

distribution, H(P) = F (P1; P2; :::; Pn): This number H satis¯es the following require-

ments{:

(i) If the probability distribution contains only one component then H (P) = 0. In this

case, there is no uncertainty in a random trial because one outcome is realized with

certainty.

(ii) The more spread the probability distribution P is, the larger becomes the value of

its uncertainty.

(iii) For a uniform probability distribution P , H(P ) becomes maximal.

An important quantity in the theory of probability is the random variable. A random

variable ~x is a mathematical quantity assuming a set of values with corresponding prob-

abilities. All data necessary for the characterization of a random trial, and the assigned

random variable, are usually given by a so-called probabilistic scheme. If ~x is a discrete

random variable then its probability scheme is of the form

S S1 S2 . . . Sn

P P (x1) P (x2) . . . P (xn)

X x1 x2 . . . xn

S1; S2; :::; S3 are the outcomes of a random trial (in quantum physics the quantum

states), P (x1); P (x2); :::; P (xn) are their probabilities and x1; x2; :::; x3 are the values de-

¯ned on S1; S2; :::; Sn (in quantum physics the eigenvalues). A probability distribution,

P ² fP1; P2; :::; Png; is the complete set of probabilities of all individual outcomes of

a random trial.

It is well-known that there are several measures of the uncertainty in the theory of

probability which can be divided into two classes [29]:

{ From the mathematical point of view, the probabilistic uncertainty measures map the nonnegative

orthant R
( )
+ of the n-dimensional Euclidean space R( ) into R.
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(i) The moment measures which give the uncertainty of a random trial by means of the

scatter of its values. The moment measures of the uncertainty contain as a rule the

values of a random trial as well as the elements of its probability distribution and

are often taken as their central statistical moments [6].

(ii) The probabilistic or entropic measures of uncertainty containing in their expressions

only components of the probability distribution of a random trial. They determine

the sharpness and spreading out of its probability distribution, independent of its

actual value of ~x.

H(P) is written as a sum of functions of the individual components of P (for details

see [4] and [15])

H (P) =

nX

i=1

fp(Pi):

Functions fp(Pn) are to be chosen so that their sum satis¯es the above requirements

arising from an entropic measure of uncertainty. It must result in zero if Pm = 1 or 0,

and it must be graphically represented by a concave curve. There are several functions

of the probability components which satisfy these requirements. The most important

are: f
(1)
p (Pm) = ¡ Pm log Pm and f

(2)
p (Pm) = Pm(1 ¡ Pm): If we take for the uncertainty

measure the sum of the functions f
(1)
p we have

H (P) = S(P) =

nX

i=1

f (1)
p (Pi) = ¡

nX

i=1

Pi log Pi: (1)

This is the well-known entropic measure of uncertainty called the Shannon entropy [8].

If we take f
(2)
p we obtain

HC(P) =

nX

i=1

f (2)
p (Pi) =

nX

i=1

Pi(1 ¡ Pi) =

nX

i=1

(Pi ¡ P 2
i ):

Since
Pn

i=1 Pi = 1, we have

HC(P) = 1 ¡
nX

i=1

P 2
i : (2)

The quantity HC(P) is a special case of an entropic uncertainty measure called sometimes

the zero-continent entropy [18]. We will deal with it in the next few Sections.

The S-L entropies depend on certain parameters. If these parameters approach 1

then they converge toward the Shannon entropy. In Sec.2 we present some important S-L

entropies and describe their mathematical properties. In Sec.3 we depict their graphical

representations as a function of components of a probability distribution and the corre-

sponding parameters. In Sec.4 we show how to formulate the uncertainty principle of

quantum physics by means of S-L entropies.

2 The Shannon-like entropies

The classical measure of uncertainty, the Shannon entropy H(P), has dominated the liter-

ature since it was proposed by Shannon. Recently, due to the desire, mainly in the applied
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sciences (see e.g. [16], [14] and [13]), to employ entropic measures of uncertainty having

properties similar to the Shannon entropy but which are simpler to handle mathemati-

cally, the interest in S-L entropies has increased considerably [16]. As a consequence, in

the last decades a variety of S-L entropies have been invented.

The central role in the construction of the S-L entropies is played by the expression [29]

L(a) =

nX

i=1

P a
i (3)

and the function of it F (L) called the basic function. Unlike the Shannon entropy, a S-L

entropy does not represent the sum of functions fp but instead it is a simple function of

L. Any basic function must satisfy the condition

dF (L(a ! 1))

dL
= §1:

An important property of L(a) is that its derivative becomes for a ! 1 the expression

for the Shannon entropy but with the opposite sign

dL(a)

da
=

nX

i=1

Pi log Pi: (3a)

This fact is utilized by the formulation of the S-L entropies. One takes a suitable basic

function of L(a), e.g. F (L(a)) = log(L(a)); which becomes for a ! 1 zero and divides

it by other function fd(a) which for a ! 1 becomes likewise zero, e.g. fd(a) = a ¡ 1.

An S-L entropy then represents the ratio

H (P) =
F (L(a))

fd(a)
: (4)

To evaluate the limit a ! 1 of H (P) we must use the L’Hopital rule which yields

H(L(a ! 1)) =
dF (L(a)

da
dfd(a)

da

= ¡
nX

i=1

Pn log Pn:

According to the basic function one obtains di®erent S-L entropies. The most impor-

tant of them are the following [1]:

(i) The R¶enyi entropy HR(P), with the logarithmic basic function, is de¯ned for all real

numbers as follows [25]

HR(P) =
1

1 ¡ ¬
log

(
nX

i=1

Pi

)

; ¬ 6= 1: (4a)

Its 3D-plot for the two-component probability distribution is given in Fig.2.

(ii) The Havrda-Charvat entropy (or ­ -entropy) with a simple rational basic function,

is de¯ned as [10]

HC(P) =
1

1 ¡ ­

Ã
nX

i=1

P ¯
i ¡ 1

!

; ­ 2 (0; 1i; ­ 6= 1: (5)
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Its 3D-plot for the two-component probability distribution is given in Figs.4.

(iii) The entropy HT , with the trigonometric basic function, has the form [18]

HT (P) =
2

º ( ® ¡ 1)
cos

Ã

º =2

nX

i=1

(P °
i )

!

® 6= 1: (6)

Its 3D-plot for the two-component probability distribution is given in Fig.6.

All the S-L entropies listed above converge towards Shannon’s entropy if ¬ ; ­ and

® ! 1. In some instances, it is simpler to compute HR; HC or HT and then recover the

corresponding Shannon entropy by taking limits ¬ ; ­ ; ® ! 1.

A quick inspection shows that three S-L entropies listed above are all mutually func-

tionally related. For example, each of the Havrda-Charvat entropies can be expressed as

a function of R¶enyi entropy, and vice versa

HC(P) =
1

1 ¡ ­
(exp((1 ¡ ­ )HR(P)) ¡ 1) :

There are six properties which are usually considered desirable for a measure of un-

certainty de¯ned in terms of probability distributions: (i) symmetry, (ii)expansibility,

(iii) subadditivity, (iv) additivity, (v) normalization, and (vi) continuity [1]. The only

uncertainty measure which satis¯es all these requirements is Shannon’s entropy. Each

of the other entropies violates at least one of them. As such, the previously mentioned

classes of entropies are generalizations of the Shannon entropy in various ways. They are

most meaningful for ¬ ; ­ ; ® > 0 since they violate the smallest number of the properties

in this range of parameters, e. g. R¶enyi entropies violate only the subaddivity prop-

erty, Havrda-Charvat entropies violate the additivity property. More details about the

properties of each entropies can be found elsewhere (e.g. [1]).

Among the existing S-L entropies, the Havrda and Charvat entropy are perhaps best

known and most widely used. This is mainly because Havrda and Charvat entropies

have a number of desirable properties which are crucial in many applications. It is more

general than Shannon entropy and simpler than R¶enyi entropy. It depends on a parameter

­ which is in the interval ­ 2 (0; 1). As such, it represents a family of uncertainty

measures which includes the Shannon entropy as a limiting case when ­ ! 1. k All the

afore mentioned S-L entropies have three important properties:

(i) They assume their maxima for the uniform probability distribution Pu.

(ii) They become zero for the one-component probability distributions.

(iii) They express a measure of the spreading out of a probability distribution. The larger

this spread becomes, the smaller values they assume.

The S-L entropies are mathematical quantities which represent the measures of un-

certainty of a probability of a statistical system. In physics, the S-L entropies can be

k It is noteworthy that two mathematicians, Havrda and Charvat, introduced already in 1967 the ­ ¡ en-

tropy de­ ned as [10] S­ (P) = 1
1¡­

(
Pn

i = 1(Pi)
­ ¡ 1): This entropy is formally identical with Tsallis entropy

reinvented in statistical physics in 1988 [26]. However, one must keep in mind that in the Tsallis entropy

Pi; i = 1; 2; :::; n are to be replaced by the relative frequencies of a statistical ensemble. We will not

further deal with the application of Tsallis entropy in statistical physics. The reader is referred to [27].
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used everywhere where the uncertainty degree of physical probability or statistical sys-

tems is needed, i.e., in quantum and statistical physics and in the theory of physical

measurement. According to Jaynes theorem, the probabilistic uncertainty of a statisti-

cal system is uniquely associated with its physical entropy. The S-L entropies are used

by the description of the nonextensive statistical systems where the common statistical

systems, based on the Boltzmann-Shannon entropy, cannot be applied. For example,

using one of the S-L entropies, called the Tsallis entropy, a number of nonextensive sys-

tems have been successfully described, e.g. correlated-type anomalous di®usions [22] [3],

turbulence in electron plasmas [2], nonlinear dynamical systems [9] etc. (for details see

[27]). Moreover, by means of general statistical systems, based on Tsallis’ entropy, a class

of physical phenomena, e.g. ferromagnetism, multifractals etc. can be successfully de-

scribed from a uni¯ed point of view. In quantum physics the measures of uncertainty of

two non-commuting observables are crucial to the formulation of the entropic uncertainty

relations (UR) given in the form of the inequalities whose left-hand sides are the sums

of uncertainties of two non-commuting observables and their right-hand sides represent

the corresponding non-trivial lower bounds. The use of the S-L entropies as measures

of the quantum uncertainty may considerably simplify the variational procedure neces-

sary for ¯nding these lower bounds. In the physical theory of measurement, the S-L

entropies can appropriately express the degree of `inaccuracy’ of a certain type of phys-

ical measurement. Apart from the mentioned applications, the S-L entropies have also

been successfully applied in theory of scattering [11] [12].

3 Graphical representation of the Shannon-like entropies

To get an idea of the properties of the S-L entropies we consider a two component probabil-

ity distribution which makes it possible to show their graphical representation in 3D-plots.

A two component probability distribution can be written in the form P = fP; (1 ¡ P )g
so that the corresponding S-L entropies are functions only of two parameters: P and a.

In 3D-plots they can be visually shown as functions of these parameters. To compare the

graphical representations of S-L entropies with the Shannon entropy we ¯rst depicted in

Fig.1 the shape of the Shannon entropy as a function of P .

The Shannon entropy as a function of P is concave and its maximum is at P = 1=2:

In Fig.2, we plotted the R¶enyi entropy in 3D-graph to illustrate the dependence on P

and ¬ for ¬ 2 [0; 10].

We see that as ¬ increases, the shapes of the entropy curves change considerably.

An interesting feature of R¶enyi entropy is that the maxima of its entropy curves do not

change with changing ¬ . In order to demonstrate the change of shape of the entropy

curves we plotted some of them for the di®erent values of ¬ in Fig.3. The dependencies

of the entropy curves on ¬ is clearly visible here.

While the entropy curve for ¬ = 100 resembles a triangle, that for ¬ = 0:3 lies over

the curve assigned to the Shannon entropy.

In Fig.4, we show plots of 3D-graphs for the entropy curves of the Havrda-Charvat
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entropy as a function of ­ and P for ­ 2 [0; 10].

The maxima of these curves decrease as ­ increases. The shape of the entropy curves

as function of ­ is shown in Fig.5.

This plot shows how the shape of entropy curves becomes more and more °at as ­

increases. In Fig.6, the entropy curves of the S-L entropy HT are represented as functions

of P and ® for ® 2 [0; 10]: Again, the shape of these curves become more and more °at

with the increase of ® .

Their maxima are plotted against ­ and ® in Fig.7 (the maxima of HR are constant

and independent of ¬ , Fig.3). The characteristic feature of these shapes is that for

­ = ® = 1 they have the same value (0.67).

The foregoing ¯gures provide a clear illustration of the dependence of S-L entropies

on P and parameters ¬ ; ­ and ® . The graphs of the various S-L entropies look similar,

though by superimposing these graphs on one another, we see that they are distinct and

characteristic of each S-L entropy. In the next Section we will formulate the well-known

uncertainty principle of quantum physics by means of the above described S-L entropies.

4 Uncertainty relations expressed by means of Shannon-like

entropies

The fact that two canonically conjugate observables A and B cannot simultaneously

have sharp eigenvalues represents the cornerstone of the principle in quantum mechanics

and can be quantitatively expressed in di®erent forms, commonly called the uncertainty

relations. An uncertainty relation provides an estimate of the minimum uncertainty

expected in the outcome of a measurement of an observable, given the uncertainty in

the outcome of measurement of another observable. Here, the essential problem is how

to mathematically express the uncertainty (imprecision) of observables considered as

random variables. In the Heisenberg formulation of the uncertainty relation the standard

deviations (variances) of non-commuting observables are taken as the measures of their

uncertainties while in the entropic uncertainty relations the entropies of observables are

taken as their uncertainties.

The Shannon entropic uncertainty relation is given as the sum of the Shannon en-

tropies of two non-commuting observables. We take for the S-L entropic uncertainty

relations likewise the sums of their S-L entropies. The sum of the R¶enyi HR(P), Havrda-

Charvat HC(P) and HT (P) entropy for two probability distributions P ² fP1; P2; :::; Png
and P ² fP 0

1; P 0
2; :::; P 0

ng is

HR(P
( )

) + HR(P
( )

) =
1

1 ¡ ¬
log

"Ã
nX

i=1

P
( )
i

! Ã
nX

i=1

P
0( )
i

!#

; (7)
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HC(P
(¯)

) + HC(P
0(¯)

) =
1

1 ¡ ­

Ã
nX

i=n

P
(¯)
i ¡ 1 +

nX

n=1

P
0(¯)
i ¡ 1

!

=
1

1 ¡ ­

µ nX

i=n

P
(¯)
i

+

nX

n=1

P
0(¯)
i ¡ 2

¶
(8)

HT (P(°)) + HT (P
0(°)) =

2

º ( ® ¡ 1)

·
cos

Ã
º

2

nX

i=1

P
(°)
i

!

+ cos

Ã
º

2

nX

i=1

P
0(°)
i

!¸

=
4

º ( ® ¡ 1)

·
cos

(³ º

4

´ Ã
nX

i=n

P
(°)
i +

nX

n=1

P
0(°)
i

!)

cos

½ ³ º

4

´

µ nX

i=n

P
(°)
i ¡

nX

n=1

P
0(°)
i

¶¾¸
; (9)

respectively.

It is worth noting that the S-L entropies have especially simple forms for ¬ = 2; ­ = 2

and ® = 2: In that case, the expression L(a) is called `information energy’ and is given

by [28]

Ei =

nX

i=k

P 2
k : (9a)

Inserting the corresponding information energies in the S-L entropies we have

H
(2)
R = ¡ log Ei;

H
(2)
C = 1 ¡ Ei; (10)

H
(2)
T =

2

º
cos

µ
º Ei

2

¶
:

Traditionally, in the mathematical formulation of the uncertainty principle, we con-

sider two Hermitian operators A and B which represent two non-commuting observ-

ables A and B in a ¯nite N -dimensional Hilbert space. Let fjaiijg and fjbjig, i; j =

1; 2; :::; N , be the corresponding complete sets of normalized eigenvectors. The compo-

nents of the probability distributions of observables A and B , PA = fp1; p2; :::; png and

PB = fq1; q2; :::; qng, when the quantum state of the investigated system is described by

j©i, are given by the equations

pi = jhaij©ij2 qj = jhbj j©ij2:

The Heisenberg variance uncertainty relation is given by an inequality whose left-hand

side represents the product of standard deviations of two non-commuting observables A

and B. Usually, we write it in the Robertson form (~ = 1) [7]

¢A ¢B ¶ (1=2)jh©j[A; B]j©ij; (10a)

where ¢A and ¢B are the standard deviations of A and B and [A; B] is their commutator.

It has been pointed out that the Robertson uncertainty relation has the following serious
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shortcoming (see, e.g. [17]). If A and B are two non-commuting observables of a ¯nite

N -dimensional Hilbert space then the right-hand side of Robertson uncertainty relation

is not a ¯xed lower bound, but it depends on the state of j©i. If one of observables

A or B is in its eigenstate then the right-hand side of Robertson uncertainty relation

equals zero and no restriction for ¢A¢B is imposed by the Heisenberg UR. Other ways

of expressing the uncertainty principle of quantum physics were invented in order to avoid

this shortcoming. It has been shown that if we use instead of the product of standard

deviations the sum of the entropies of non-commuting observables of the left-hand side of

(10a) then the corresponding uncertainty relation does not su®er from the shortcoming

mentioned above and better re°ects the uncertainty principle of quantum physics than

the corresponding Heisenberg one.

The Shannon entropic uncertainty relation has the form of the following inequality

S(A) + S(B) ¶ S(AB);

where S(A) and S(B) are Shannon’s entropies of two non-commuting observables A and

B. The sum of Shannon entropies is independent of the quantum state bounded by a

non-trivial real number S(AB) (see, e.g. [17]).

When formulating the S-L entropic uncertainty relations for two non-commuting observ-

ables A and B we proceed on the lines of the familiar Shannon entropic UR, i.e. we take

the following inequalities

H
( )
R (A) + H

( )
R (B) ¶ H

( )
R (AB);

H
(¯)
C (A) + H

(¯)
C (B) ¶ H

(¯)
C (AB) (11)

and

H
(°)
T (A) + H

(°)
T (B) ¶ H

(°)
T (AB); (12)

where H
( )
R (AB); H

(¯)
C (AB) and H

(°)
T (AB) denote the lower bounds of their left-hand

sides. Since, according to the de¯nition of the non-commuting observables, they can-

not occur simultaneously in one of their eigenstates, P and Q cannot become simulta-

neously one-component probability distributions, therefore H
( )
R (A; B), H

(¯)
C (A; B) and

H
(°)
T (A; B) are positive numbers (di®erent from zero). The crucial problem concerning

the above uncertainty relations is to ¯nd these positive numbers which represent their

lower bounds. Their determination does not follow easily and the general treatment of

this issue would exceed the scope of this article. Commonly, there are two methods of

solving this problem: (i) the determination of these bounds by a variational calculation

(ii) their determination by an estimation.

Consider two observables A and B with noncommuting Hermitian operators Â and B̂

in an N-dimensional Hilbert space, whose corresponding complete orthonormal sets of

eigenvectors fjxjig and fjyiig (i = 1; 2; :::; N ) are disjointed and have nondegenerate

spectra. Let j ¿ i be a normalized state vector of N-dimensional Hilbert space, thus we

have

j ¿ i =

NX

i

aijxii; j ¿ i =

NX

j

bjjyji:
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According to the quantum transformation theory we have the property,

j ¿ i = (

NX

i

aihxijy1i)jy1i + (

NX

i

aihxijy2i)jy2i + :::

=

NX

j

NX

i

aihxijyjijyji

Pi(A) = jhxij ¿ ij2 = jaij2; (13)

Qj(B) = jbjj2 = jhyjj ¿ ij2 = j(
X

i

aihyijxji)j2;

where hxijyji i; j = 1; 2; 3; :::; N are the elements of the transformation matrix T be-

tween the observables A and B

T =

0

@
hx1jy1i hx1jy2i ::: hx1jyni

:::

hxnjy1i hxnjy2i ::: hxnjyni

1

A :

Accordingly, the sum of Havrda-Charvat entropies of A and B has the form

1

1 ¡ ­

Ã
nX

i=1

¯̄
¯ai

¯̄
¯
4

+

nX

i=1

¯̄
¯

Ã
X

i

aihyijxji
! ¯̄

¯
4

¡ 2

!

:

Given T, the lower bounds of S-L entropic uncertainty relations can be found by vari-

ation of corresponding entropic sum over the coe±cients a1; a2; :::; am and thus take the

minimum (maximum) variational value as the exact lower (upper) bound. Generally, this

leads to a series of complicated coupled equations which are often intractable, especially

for the sum of Shannon entropies [19]. However, for some simple quantum systems the

variational procedure leads quickly to the lower bounds of the corresponding entropies

sum. An example of such a quantum system will be described in the next section.

Using an inequality from linear algebra, the lower bounds can also be estimated. For

example, according to [5] and [21] the following inequality holds

H
(¯)
C (P) + H

(¯)
C (Q) ¶ 1

­ ¡ 1

"

1 ¡
µ

2

1 + c

¶2(1¡¯)
#

+ (1 ¡ ­ )HC(P)H
(¯)
C (Q);

where c = supijjhxijyjij. For ­ ¶ 1 the term HC(P)HC(Q) becomes positive and the ex-

pression

1

­ ¡ 1

"

1 ¡
µ

2

1 + c

¶2(1¡¯)
#

represents a (weak) lower bound of Havrda-Charvat entropy sum for ­ 2 (1; 1). Of course,

by using other more appropriate inequalities from the linear algebra, sharper lower bounds

for the entropic sums may be found. Next we write the S-L entropic uncertainty relations

for ¬ = ­ = ® = 2 for a spin-1/2 particle and compare them with the Heisenberg variance

uncertainty relation.
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5 Particle with spin 1/2

This quantum system instructively illustrates the di®erence between the S-L uncertainty

relations, the Heisenberg variance uncertainty relation and the Shannon entropic uncer-

tainty relation. Consider a quantum system containing a particle with spin ~=2. We are

looking for the di®erent uncertainty relations between the spin components Jx and Jz.

According to Eq. (10a), the Heisenberg uncertainty relation for Jx and Jz has the form

(¢Jx)(¢Jz) ¶ ~2

4

¯̄
¯h©j[Ĵx; Ĵz]j©i

¯̄
¯ :

The state vector of the considered quantum system is a spinor

j©i = a1jz1i + a2jz2i;

where

a1a¤
1 + a2a¤

2 = 1:

In order to compare the Heisenberg, the Shannon and the S-L entropic uncertainty

relations for the components Jx and Jz, we calculate the product of their standard devia-

tions Us(Jx; Jz), the sum of their Shannon entropies S(Jx; Jz) as well as sums of their S-L

entropies H
( )
R (Jx; Jz); H

(¯)
C (Jx; Jz) and H

(°)
T (Jx; Jz). The product of standard deviations

of Jx and Jz is [20]

U (Jx; Jz) = h( ¼ z ¡ h¼ zi)2ih( ¼ x ¡ h ¼ xi)2i:

where

^¼ x =
~
2

0

B@
0 1

1 0

1

CA ; ^¼ y =
~
2

0

B@
0 ¡ i

i 0

1

CA ; ^¼ z =
~
2

0

B@
1 0

0 ¡ 1

1

CA :

If we express Us(Jx; Jz) in terms of a1, a2, a¤
1 and a¤

2 we have

Us(Jx; Jz) =
~4

16

£
1 ¡ (a¤

1a2 + a1a¤
2)

2
¤ £

1 ¡ (a¤
1a1 ¡ a2a¤

2)
2
¤

: (14)

We now introduce the variables r and ’ by

a1 = r exp(i’1); a2 =
³p

1 ¡ r2

´
exp(i’2); ’ = ’1 ¡ ’2

and calculate the S-L uncertainty relations for spin components Jx and Jz given by the

wave functions j©iz = a1jz1i + a2jz2i.
The probabilistic scheme for Jz and Jx are

Jz jz1i jz2i

P a1a¤
1 a2a¤

2
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and

Jx jx1i jx2i

P 2¡1(a1 + a2)(a¤
1 + a¤

2) 2¡1(a1 ¡ a2)(a¤
1 ¡ a¤

2)

.

We now turn our attention to the S-L entropies with ¬ = 2; ­ = 2 and ® = 2: In

terms of the variables r and ’, the probability distributions for Jx and Jz become

P ²
©

r2; (1 ¡ r2)
ª

and

P ²
½

1

2

³
1 + 2r

p
1 ¡ r2 cos ’

´
;
1

2

³
1 ¡ 2r

p
1 ¡ r2 cos ’

´¾
; (15)

respectively. Inserting these components in the formula for the information energy, given

by Eq.(9a), we obtain

E
(Jx)
i = r4 + (1 ¡ r2)2

E
(Jz)
i =

1

2
+ 2r2(1 ¡ r2) cos2 ’: (16)

With E
(Jx)
i and E

(Jz)
i , the S-L entropic uncertainty relations assume the form

H
(2)
R (Jz) + H

(2)
R (Jx) = H

(2)
R (Jx; Jz) = ¡ log(r4 + (1 ¡ r2)2)

³1

2
(17)

+2r2(1 ¡ r2) cos2 ’
´

(18)

H
(2)
C (Jz) + H

(2)
C (Jx) = H

(2)
C (Jx; Jz) = 1 ¡ r4 + (1 ¡ r2)2 + 1 (19)

¡
µ

1

2
+ 2r2(1 ¡ r2) cos2 ’

¶
;

H
(2)
T (Jz) + H

(2)
T (Jx) = H

(2)
T (Jx; Jz) =

2

º
cos

µ
º

2

³
r4 + (1 ¡ r2)2

´¶

+
2

º
cos

µ
º

2

³1

2
+ 2r2(1 ¡ r2) cos2 ’

´¶
: (20)

The expression H
(2)
C (Jx; Jz) can be rearranged to a simpler form

H
(2)
C (Jx; Jz) =

1

2
+ (sin ’)22r2(1 ¡ r2): (21)

Similar rearrangement can be done also for H
(2)
R (Jx; Jz) and H

(2)
T (Jx; Jz):

It is a straightforward calculation in principle, to determine the wave function at

which the minimum or maximum of the entropies of Jx and Jz occurs, and then determine

the exact bounds of H
(2)
R (Jx; Jz); H

(2)
C (Jx; Jz) and H

(2)
T (Jx; Jz). The necessary conditions

for these extreme values for the corresponding entropies are

@H(Jx; Jz)

@r
= 0 (20a)

@H (Jx; Jz)

@’
= 0: (20b)
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Inserting Eq.(21) into Eqs.(20a) and (20b) we obtain the following equations which

are easy to solve analytically

@H
(2)
C

@r
= 4r(sin(’))2(1 ¡ 2r2) = 0 (21a)

@H
(2)
C

@’
= 4r2(1 ¡ r2) sin(’) cos(’) = 0: (21b)

A simple calculation yields the value of r and ’ for which H
(2)
C (Jx; Jz) assumes the

extreme values: (i) r = 1 or r = 0 with arbitrary ’ and (ii) r = 1=
p

2 and ’ = º =2. With

these values, H
(2)
C (Jx; Jz) gets its minimum and maximum equal to 1=2 and 1. Hence,

H
(2)
C (Jx; Jz) is bounded as follows

1

2
µ H

(2)
C (Jx; Jz) µ 1:

3D-plots of H
(2)
R (A; B); H

(2)
C (A; B) and H

(2)
T (A; B) are shown as functions of r and ’ in

F igs.10, 11 and 12.

We see that the value of H(Jx; Jz) for all entropies does not fall below certain real non-

zero value representing their lower bounds. A remarkable feature of these S-L entropic

uncertainty relations is that there is a peak in their graphs in the vicinity of ’ = º =2 and

r = 1=
p

2. In Fig.10 we see that the determined maximum and minimum of H
(2)
C (A; B)

is in agreement with those given by its graphical representation.

Now we compare the determination of the upper and lower bounds of S-L entropic un-

certainty relations with that of the Shannon entropic and Heisenberg variance uncertainty

relations. In our parametrization, S(Jx; Jz) and U (Jx; Jz) gets the form

S(Jx; Jz) = ¡ r2 ln r2 ¡ (1 ¡ r2) ln(1 ¡ r2) ¡ 1

2

³
1 + 2r

p
1 ¡ r2 cos ’

´

ln

·
1

2

³
1 + 2r

p
1 ¡ r2 cos ’

´¸
¡ 1

2

³
1 ¡ 2r

p
1 ¡ r2 cos ’

´

ln

·
1

2

³
1 ¡ 2r

p
1 ¡ r2 cos ’

´¸
(22)

and

U (Jx; Jz) =
1

16
r2(1 ¡ r2)

£
1 ¡ 4r2(1 ¡ r2) cos2 ’

¤
; (23)

respectively. Inserting S(Jx; Jz) into Eqs.(20a) and (20b) we obtain a complicated tran-

scendental equation which we do not present here. These equations are analytically

intractable and we have to apply numerical methods for their solutions.

It is easy to verify that the Heisenberg uncertainty relation for r = 0 or 1 and for

r = 1=
p

2, Us(r; ’) has its minimum and maximum equal to zero and and 1=64, respec-

tively. Therefore, the Heisenberg uncertainty relation is bounded as follows

0 µ Us(Jz; Jx) µ 1

64
:
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This demonstrates nicely the di®erences between the Heisenberg variance uncertainty

relation, the Shannon entropic uncertainty relation and the S-L uncertainty relations

for a pair of the discrete complementary conjugate observables. The relative ease of

obtaining the lower and upper bounds of H
(2)
C (Jx; Jz) analytically is an advantage of this

uncertainty relation over the Shannon entropic one. Figs. 11 and 12 show the Heisenberg

and Shannon uncertainty relation as functions of r and ’: The di®erence between them

is clearly seen. From what has been said so far, it follows that:

(i) Besides the well-known Shannon entropy, there is a set of S-L entropies which are

generally dependent on certain parameters. These entropies converge to Shannon

entropy when these parameters approach 1.

(ii) Considering the two-component probability distribution, the S-L entropies can be

shown in 3D-plots as functions of the components of such probability distribution

and the corresponding parameters. We have shown that these graphs resemble one

another, shearing common properties with the Shannon entropy.

(iii) The sums of the S-L entropies of two non-commuting observables depends on the

state of the quantum system. In all S-L entropic uncertainty relations, these sums

never fall below certain positive non-zero value.

(iv) It appears that all S-L entropic uncertainty relations express the uncertainty prin-

ciple of quantum physics equally well.

(v) Due to availability of a number of S-L entropies, a question arises about the criteria

for the choice of the proper S-L entropy to be used in a particular case. For this

purpose a user has to know the properties which each S-L entropy has and also those

which it does not have.

(vi) The choice of the particular S-L entropy for the construction of an actual entropic

uncertainty relation is mainly restricted by the degree of the simplicity of the calcu-

lation of the upper and lower bands of the corresponding uncertainty relation.
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Fig. 1 The Shannon entropy for two-component probability distribution as a function of P .
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Fig. 2 3D-plot of HR as function of P and ¬ for ¬ 2 [0; 10].
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Fig. 3 Graphical representation of the entropy function HR as a function of P for ¬ = 0:3
(curve a), ¬ = 0:999 (curve b), and ¬ = 100 (curve c).
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Fig. 4 3D-plot of HC as function of P and ­ for ­ 2 [0; 10]:
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Fig. 5 The shapes of the entropy curves of HC for ­ = 0:2 (curve a) ­ = 0:999 (curve b) and
­ = 10 (curve c).
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Fig. 6 3D-plot of HT as function of P and ® for ® 2 [0; 10]:
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Fig. 7 The maxima of the entropy curves HC and HT plotted against parameter ­ (curve b)
and ® (curve a) for P = 0:5.
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Fig. 8 The Heisenberg variance uncertainty relation for the spin components Jx and Jz as
function of r and ’.
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Fig. 9 The Shannon entropic uncertainty relation for spin components Jx and Jz as function of
r and ’.
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Fig. 10 The uncertainty relation for the spin components Jx and Jz as function of r and ’.
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Fig. 11 The uncertainty relation with Ŕenyi entropy for the spin components Jx and Jz as
function of r and ’.
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Fig. 12 The uncertainty relation with HT for the spin components Jx and Jy as function of r
and ’.


