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1 Introduction

Jacobi brackets are local Lie brackets on the algebra C1(M ) of smooth functions on a

manifold M . This goes back to the well-known observation by Kirillov [Ki] that in the

case of A = C1(M ) every local Lie bracket on A is of ¯rst order (an algebraic version of

this fact for arbitrary commutative associative algebra A has been proved in [Gr]).

Since every skew-symmetric ¯rst-order bidi®erential operator J on C1(M ) is of the

form J = ¤ + I ^ ¡, where ¤ is a bivector ¯eld, ¡ is a vector ¯eld and I is identity, the

corresponding bracket of functions reads

ff; ggJ = ¤(f; g) + f ¡(g) ¡ g¡(f ): (1)

The Jacobi identity for this bracket is usually written in terms of the Schouten-Nijenhuis
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bracket [[¢; ¢]] as follows:

[[¡; ¤]] = 0; [[¤; ¤]] = ¡ 2¡ ^ ¤: (2)

Hence, every Jacobi bracket on C1(M ) can be identi¯ed with the pair J = (¤; ¡) satis-

fying the above conditions, i.e. with a Jacobi structure on M (cf. [Li]). Note that we use

the version of the Schouten-Nijenhuis bracket which gives a graded Lie algebra structure

on multivector ¯elds and which di®ers from the classical one by signs. The Jacobi bracket

(1) has he following properties:

(1) fa; bg = ¡ fb; ag (anticommutativity),

(2) fa; bcg = fa; bgc + bfa; cg ¡ fa; 1gbc (generalized Leibniz rule),

(3) ffa; bg; cg = fa; fb; cgg ¡ fb; fa; cgg (Jacobi identity),

The generalized Leibniz rule tells that the bracket is a bidi®erential operator on C1(M )

of ¯rst order. In the case when ¡ = 0 (or, equivalently, when the constant function 1 is

a central element), we deal with a Poisson bracket associated with the bivector ¯eld ¤

satisfying [[¤; ¤]] = 0.

For a smooth manifold M we denote by ¤M the canonical Poisson tensor on T ¤M ,

which in local Darboux coordinates (xl; pj) has the form ¤M = @pj
^ @xj. In [GU] the

following characterization of Poisson tensors, in terms of the complete (tangent) lift of

contravariant tensors X 7! X c from the manifold M to T M , is proved.

Theorem 1.1. A bivector ¯eld ¤ on a manifold M is Poisson if and only if the tensors

¤M and ¡ ¤c on T ¤M and T M , respectively, are ]¤-related, where

]¤ : T ¤M ! T M; ]¤(!x) = i!x¤(x):

So, for a Poisson tensor ¤ the map ]¤ : (T ¤M; ¤M) ! (T M; ¡ ¤c) is a Poisson map.

The aim of this note is to generalize the above characterization including Jacobi

brackets and canonical structures associated with Lie algebroids and Jacobi algebroids.

2 Lie and Jacobi algebroids

A Lie algebroid is a vector bundle ½ : E ! M , together with a bracket [[¢; ¢]] on the

C1(M )-module Sec(E) of smooth sections of E , and a bundle morphism » : E ! T M

over the identity on M , called the anchor of the Lie algebroid, such that

(i) the bracket [[¢; ¢]] is R-bilinear, alternating, and satis¯es the Jacobi identity;

(ii) [[X; f Y ]] = f [[X; Y ]] + » (X )(f )Y for all X; Y 2 Sec(E) and all f 2 C1(M ).

From (i) and (ii) it follows easily

(iii) » ([[X; Y ]]) = [» (X ); » (Y )] for all X; Y 2 Sec(E).

We will often identify sections · of the dual bundle E¤ with linear (along ¯bres) functions

´ ¹ on the vector bundle E : ´ ¹(Xp) =< · (p); Xp >. If ¤ is a homogeneous (linear)

2-contravariant tensor ¯eld on E , i.e. ¤ is homogeneous of degree -1 with respect to

the Liouville vector ¯eld ¢E , then < ¤; d ´ ¹ « d ´ º >= f ´ ¹; ´ ºg¤ is again a linear function

associated with an element [ · ; ¸ ]¤. The operation [ · ; ¸ ]¤ on sections of E¤ we call the



J. Grabowski, P. Urbański / Central European Journal of Mathematics 1 (2003) 123{140 125

bracket induced by ¤. This is the way in which homogeneous Poisson brackets are related

to Lie algebroids.

Theorem 2.1. There is a one-one correspondence between Lie algebroid brackets [[¢; ¢]]¤
on the vector bundle E and homogeneous (linear) Poisson structures ¤ on the dual bundle

E¤ determined by

´ [[X;Y ]] ¤ = f ´ X ; ´ Y g¤ = ¤(d ´ X ; d ´ Y ): (3)

For a vector bundle E over the base manifold M , let A(E) = ©k2ZAk(E),

Ak(E) = Sec(
Vk E), be the exterior algebra of multisections of E . This is a basic geo-

metric model for a graded associative commutative algebra with unity. We will refer to

elements of ­ k(E) = Ak(E¤) as to k-forms on E . Here, we identify A0(E) = ­ 0(E) with

the algebra C1(M ) of smooth functions on the base and Ak(E) = f0g for k < 0. Denote

by jX j the Grassmann degree of the multisection X 2 A(E).

A Lie algebroid structure on E can be identi¯ed with a graded Poisson bracket on

A(E) of degree -1 (linear). Such brackets we call Schouten-Nijenhuis brackets on A(E).

Recall that a graded Poisson bracket of degree k on a Z-graded associative commutative

algebra A = ©i2ZAi is a graded bilinear map

f¢; ¢g : A £ A ! A

of degree k (i.e. jfa; bgj = jaj + jbj + k) such that

(1) fa; bg = ¡ ( ¡ 1)(jaj+k)(jbj+k)fb; ag (graded anticommutativity),

(2) fa; bcg = fa; bgc + ( ¡ 1)(jaj+k)jbjbfa; cg (graded Leibniz rule),

(3) ffa; bg; cg = fa; fb; cgg ¡ ( ¡ 1)(jaj+k)(jbj+k)fb; fa; cgg (graded Jacobi identity).

It is obvious that this notion extends naturally to more general gradings in the algebra.

For a graded commutative algebra with unity 1, a natural generalization of a graded

Poisson bracket is graded Jacobi bracket. The only di®erence is that we replace the

Leibniz rule by the generalized Leibniz rule

fa; bcg = fa; bgc + ( ¡ 1)(jaj+k)jbjbfa; cg ¡ fa; 1gbc: (4)

Graded Jacobi brackets on A(E) of degree -1 (linear) we call Schouten-Jacobi brack-

ets. An element X 2 A2(E) is called a canonical structure for a Schouten-Nijenhuis or

Schouten-Jacobi bracket [[¢; ¢]] if [[X; X ]] = 0.

As it was already indicated in [KS], Schouten-Nijenhuis brackets are in one-one cor-

respondence with Lie algebroids:

Theorem 2.2. Any Schouten-Nijenhuis bracket [[¢; ¢]] on A(E) induces a Lie algebroid

bracket on A1(E) = Sec(E) with the anchor de¯ned by » (X)(f ) = [[X; f ]]. Conversely,

any Lie algebroid structure on Sec(E) gives rise to a Schouten-Nijenhuis bracket on A(E)

for which A1(E) = Sec(E) is a Lie subalgebra and » (X )(f ) = [[X; f ]].

We have the following expression for the Schouten-Nijenhuis bracket:

[[X1 ^ : : : ^ Xm; Y1 ^ ¢ ¢ ¢ ^ Yn]] = (5)
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X

k;l

( ¡ 1)k+l[[Xk; Yl]] ^ : : : ^ cXk ^ : : : ^ Xm ^ Y1 ^ : : : ^ bYl ^ : : : ^ Yn;

where Xi; Yj 2 Sec(E) and the hat over a symbol means that this is to be omitted.

A Schouten-Nijenhuis bracket induces the well-known generalization of the standard

Cartan calculus of di®erential forms and vector ¯elds [Ma, MX]. The exterior derivative

d : ­ k(E) ! ­ k+1(E) is de¯ned by the standard formula

d · (X1; : : : ; Xk+1) =
X

i

( ¡ 1)i+1[[Xi; · (X1; : : : ; bXi; : : : ; Xk+1)]]

+
X

i<j

( ¡ 1)i+j · ([[Xi; Xj]]; X1; : : : ; bXi; : : : ; bXj; : : : ; Xk+1); (6)

where Xi 2 Sec(E). For X 2 Sec(E), the contraction iX : ­ p(E) ! ­ p¡1(E) is de-

¯ned in the standard way and the Lie di®erential operator $X is de¯ned by the graded

commutator

$X = iX ¯ d + d ¯ iX : (7)

Since Schouten-Nijenhuis brackets on A(E) are just Lie algebroid structures on E , by

Jacobi algebroid structure on E we mean a Schouten-Jacobi bracket on A(E) (see [GM]).

An analogous concept has been introduced in [IM1] under the name of a generalized Lie

algebroid. Every Schouten-Jacobi bracket on the graded algebra A(E) of multisections

of E turns out to be uniquely determined by a Lie algebroid bracket on a vector bundle

E over M and a 1-cocycle © 2 ­ 1(E), d© = 0, relative to the Lie algebroid exterior

derivative d, namely it is of the form [IM1]

[[X; Y ]]© = [[X; Y ]] + xX ^ i©Y ¡ ( ¡ 1)xyi©X ^ Y; (8)

where [[; ¢; ¢]] is the Schouten bracket associated with this Lie algebroid and where we use

the convention that x = jX j ¡ 1 is the shifted degree of X in the graded algebra A(E).

Note that © is determined by the Schouten-Jacobi bracket by i©X = ( ¡ 1)x[[X; 1]]©, so

that (4) is satis¯ed:

[[X; Y ^ Z ]]© = [[X; Y ]]© ^ Z + ( ¡ 1)x(y+1)Y ^ [[X; Z ]]© ¡ [[X; 1]]© ^ Y ^ Z: (9)

We already know that there is one-one correspondence between Lie algebroid structures

on E and linear Poisson tensors ¤E ¤
on E¤. To Jacobi algebroids correspond Jacobi

structures JE ¤
© on E¤ which are homogeneous of degree -1 with respect to the Liouville

vector ¯eld ¢E ¤ , namely

J E ¤

© = ¤E ¤
+ ¢E ¤ ^ ©v ¡ I ^ ©v ;

where ©v is the vertical lift of © to a vector ¯eld on E¤. The above structure generates

a Jacobi bracket which coincides on linear functions with the Poisson bracket associated

with ¤E ¤
.

One can develop a Cartan calculus for Jacobi algebroids similarly to the Lie alge-

broid case (cf. [IM1]). For a Schouten-Jacobi bracket associated with a 1-cocycle © the
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de¯nitions of the exterior di®erential d© and Lie di®erential $© = d© ¯ i + i ¯ d© are

formally the same as (6) and (7), respectively. Since, for X 2 Sec(E), f 2 C1(M ), we

have [[X; f ]]© = [[X; f ]] + (i©X)f , one obtains d© · = d · + © ^ · . Here [[¢; ¢]] and d are,

respectively, the Schouten-Nijenhuis bracket and the exterior derivative associated with

the Lie algebroid.

Example 2.3. A canonical example of a Lie algebroid over M is the tangent bundle T M

with the bracket of vector ¯elds. The corresponding complex (­ (T M ); d) is in this case

the standard de Rham complex. A canonical structure for the corresponding Schouten-

Nijenhuis bracket is just a standard Poisson tensor.

Example 2.4. A canonical example of a Jacobi algebroid is (T1M = T M © R; (0; 1)),

where T1M is the Lie algebroid of ¯rst-order di®erential operators on C1(M ) with the

bracket

[(X; f ); (Y; g)]1 = ([X; Y ]; X (g) ¡ Y (f )); X; Y 2 Sec(T M ); f; g 2 C1(M );

and the 1-cocycle © = (0; 1) is ©((X; f )) = f . A canonical structure with respect to the

corresponding Schouten-Jacobi bracket on the Grassmann algebra A(T1M ) of ¯rst-order

polydi®erential operators on C1(M ) turns out to be a standard Jacobi structure. Indeed,

it is easy to see that the Schouten-Jacobi bracket of A = A1 + I ^ A2 2 Aa+1(T1M ) and

B = B1 + I ^ B2 2 Ab+1(T1M ) reads

[[A1 + I ^ A2; B1 + I ^ B2]]1 = [[A1; B1]] + ( ¡ 1)aI ^ [[A1; B2]] + I ^ [[A2; B1]]

+aA1 ^ B2 ¡ ( ¡ 1)abA2 ^ B1 + (a ¡ b)I ^ A2 ^ B2: (10)

Hence, the bracket f¢; ¢g on C1(M ) de¯ned by a bilinear di®erential operator

¤ + I ^ ¡ 2 A(T1M ) is a Lie bracket (Jacobi bracket on C1(M )) if and only if

[[¤ + I ^ ¡; ¤ + I ^ ¡]]1 = [[¤; ¤]] + 2I ^ [[¡; ¤]] + 2¤ ^ ¡ = 0:

We recognize the conditions (2) de¯ning a Jacobi structure on M .

There is another approach to Lie algebroids. As it has been shown in [GU1, GU2], a

Lie algebroid structure (or the corresponding Schouten-Nijenhuis bracket) is determined

by the Lie algebroid lift X 7! X c which associates with X 2 T (E) a contravariant tensor

¯eld X c on E . The complete Lie algebroid and Jacobi algebroid lifts are described as

follows.

Theorem 2.5. ([GU1]) For a given Lie algebroid structure on a vector bundle E over

M there is a unique complete lift of elements X 2 Sec(E­k) of the tensor algebra

T (E) = ©kSec(E­k) to linear contravariant tensors X c 2 Sec((T E)­k) on E , such that

(a) f c = ´ df for f 2 C1(M );

(b) X c( ´ ¹) = ´ X¹ for X 2 Sec(E); · 2 Sec(E¤);

(c) (X « Y )c = X c « Y v + X v « Y c, where X 7! X v is the standard vertical lift of

tensors from T (E) to tensors from T (T E), i.e. the complete lift is a derivation with

respect to the vertical lift.
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This complete lift restricted to skew-symmetric tensors is a homomorphism of the corre-

sponding Schouten-Nijenhuis brackets:

[[X; Y ]]c = [[X c; Y c]]: (11)

Moreover,

[[X; Y ]]v = [[X c; Y v]]: (12)

Corollary 2.6. If P 2 A2(E) is a canonical structure for the Schouten bracket, i.e.

[[P; P ]] = 0, then P c is a homogeneous Poisson structure on E . The corresponding Poisson

bracket determines the Lie algebroid bracket

[[¬ ; ­ ]]P = i#P ( )d­ ¡ i#P (¯)d ¬ + d(P ( ¬ ; ­ )) (13)

on E¤.

Remark. For the canonical Lie algebroid E = T M , the above complete lift gives

the better-known tangent lift of multivector ¯elds on M to multivector ¯elds on T M

(cf. [IY, GU]). In this case the complete lift is an injective operator, so ¤ is a Poisson

tensor on M if and only if ¤c is a Poisson tensor on T M . The complete Lie algebroid lift

of just sections of E , i.e. the formula (b), was already indicated in [MX1].

Let us see how these lifts look like in local coordinates. Let (xa) be a local coordinate

system on M and let e1; : : : ; en be a basis of local sections of E . We denote by e¤1; : : : ; e¤n

the dual basis of local sections of E¤ and by (xa; yi) (resp. (xa; ¹ i)) the corresponding

coordinate system on E (resp. E¤), i.e., ´ ei = ¹ i and ´ e ¤ i = yi. The vertical lift is given

by

(ci1;:::;ikei1 « ¢ ¢ ¢ « eik)v = ci1;:::;ik@yi1 « ¢ ¢ ¢ « @yik :

If for the Lie algebroid bracket we have [ei; ej] = ck
ijek and if the anchor sends ei to da

i @xa,

then

¤E ¤
=

1

2
ck

ij ¹ k@»i
^ @»j + da

i @»i
^ @xa: (14)

Moreover,

f c =
@f

@xa
da

j yj (15)

and

(X iei)
c = X ida

i @xa + (X ick
ji +

@Xk

@xa
da

j )yj@yk : (16)

It follows that, for P = 1
2
P ijei ^ ej, we have

P c = P ijda
j @yi ^ @xa + (P kjci

lk +
1

2

@P ij

@xa
da

l )yl@yi ^ @yj : (17)

There is an analog of the Lie algebroid complete lift for Jacobi algebroids which will

represent the Schouten-Jacobi bracket on A(E) in the Schouten-Jacobi bracket of ¯rst-

order polydi®erential operators on E . Here by polydi®erential operators we understand
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skew-symmetric multidi®erential operators. Let [[¢; ¢]]© be the Schouten-Jacobi bracket on

A(E) associated with a Lie algebroid structure on E and a 1-cocycle ©.

De¯nition. ([GM]) The complete Jacobi lift of an element X 2 T k(E) is the multidif-

ferential operator of ¯rst order on E , i.e. an element of Sec((T1E)­k), de¯ned by

bX© = X c ¡ (k ¡ 1) ´ ©X v + iI­d(¶ © )X
v; (18)

where X c is the complete Lie algebroid lift, Xv is the vertical lift and iI­d(¶© ) is the

derivation acting on the tensor algebra of contravariant tensor ¯elds which vanishes on

functions and satis¯es iI­d(¶ © )X = X( ´ ©)I on vector ¯elds. The derivation property yields

iI­d(¶© )(X
v
1 « ¢ ¢ ¢ « Xv

k ) =
X

i

hXi; ©iXv
1 « ¢ ¢ ¢ « X v

i¡1 « I « X v
i+1 « ¢ ¢ ¢ « Xv

k :

for X1 : : : ; Xk 2 Sec(E).

Theorem 2.7. ([GM]) The complete Jacobi lift has the following properties:

(a) bf© = ´ d© f for f 2 C1(M );

(b) bX© = X c + (i©X )vI for X 2 Sec(E);

(c) \(X « Y )© = bX© « Y v + X v « bY© ¡ ´ ©(X v « Y v);

(d) For skew-symmetric tensors X and Y ,

[[ bX©; bY©]]1 = ([[X; Y ]]©)
^
©;

where [[¢; ¢]]1 is the Schouten-Jacobi bracket of ¯rst-order polydi®erential operators;

(e) For skew-symmetric X and Y

[[ bX©; Y v]]1 = ([[X; Y ]]©)v;

We remark that in [GM] only skew-symmetric tensors have been considered, but the

extension to arbitrary tensors is straightforward.

De¯nition. ([GM]) The complete Poisson lift of an element X 2 T k(E) is the contravari-

ant tensor bX c
© 2 Sec((T E)­k), de¯ned by

bX c
© = X c ¡ (k ¡ 1) ´ ©Xv + i¢E­d(¶© )X

v; (19)

where ¢E is the Liouville vector ¯eld on the vector bundle E and X c is the complete

Lie algebroid lift, X v is the vertical lift and i¢E­d(¶© ) is the derivation acting on the

tensor algebra of contravariant tensor ¯elds which vanishes on functions and satis¯es

i¢­d(¶ © )X = X( ´ ©)¢E on vector ¯elds.

Theorem 2.8. ([GM]) The Poisson lift has the following properties:

(a) bf c
© = ´ d© f for f 2 C1(M );

(b) bX c
©( ´ ¹) = ´ ©

X¹ for X 2 Sec(E), · 2 Sec(E¤);



130 J. Grabowski, P. Urbański / Central European Journal of Mathematics 1 (2003) 123{140

(c) \(X « Y )
c

© = bX c
© « Y v + X v « bY c

© ¡ ´ ©(X v « Y v);

(d) For skew-symmetric X and Y

[[ bX c
©; bY c

©]] = ([[X; Y ]]©)
^c
© :

Corollary 2.9. If P 2 A2(E) is a canonical structure for the Schouten-Jacobi bracket,

i.e. [[P; P ]]© = [[P; P ]] + 2P ^ i©P = 0, then bP© (resp. bP c
©) is a homogeneous Jacobi

(resp. homogeneous Poisson) structure on E . The corresponding Jacobi and Poisson

brackets coincide on linear functions and determine the Lie algebroid bracket

[[¬ ; ­ ]]P = i#P( )d
©­ ¡ i#P (¯)d

© ¬ + d©(P ( ¬ ; ­ )) (20)

on E¤.

3 Characterization of Poisson tensors.

Theorem 1.1 of the Introduction can be generalized in the following way. Let us remark

¯rst that any two-contravariant tensor ¤ (which is not assumed to be skew-symmetric)

de¯nes a bracket [¢; ¢]¤ on 1-forms on M by

[· ; ¸ ]¤ = i]¤ (¹)d ¸ ¡ i]¤ (º)d · + d < ¤; · « ¸ >; (21)

where < ¢; ¢ > is the canonical pairing between contravariant and covariant tensors.

Theorem 3.1. For a two-contravariant tensor ¤ on a manifold M the following are

equivalent:

(i) ¤ is a Poisson tensor;

(ii) ]¤ induces a homomorphism of [¢; ¢]¤ into the bracket of vector ¯elds:

]¤([ · ; ¸ ]¤) = []¤( · ); ]¤( ¸ )]; (22)

(iii) The canonical Poisson tensor ¤M and the negative of the complete lift ¡ ¤c are

]¤-related;

(iv) There is a vector bundle morphism F : T ¤M ! T M over the identity on M such

that the canonical Poisson tensor ¤M and the negative of the complete lift ¡ ¤c are

F -related;

(v) The morphism ]¤ relates ¤M with the complete lift of a 2-contravariant tensor ¤1.

(vi) There is a vector bundle morphism F : T ¤M ! T M over the identity on M such

that

F ([ · ; ¸ ]¤) = [F ( · ); F ( ¸ )]: (23)

(vii) There is a 2-contravariant tensor ¤1 on M such that

]¤([ · ; ¸ ]¤1) = []¤( · ); ]¤( ¸ )]; (24)
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Proof. The implication (i) ) (ii) is a well-known fact (cf. e.g. [KSM]).

Assume now (ii). To show (iii) one has to prove that the brackets on functions

f¢; ¢g¤M
and f¢; ¢g¤c induced by tensors ¤M and ¤c by contractions with di®erentials of

functions are ]¤-related, i.e.

¡ ff; gg¤c ¯ ]¤ = ff ¯ ]¤; g ¯ ]¤g¤M (25)

for all f; g 2 C1(T M ). Due to the Leibniz rule, it is su±cient to check (25) for linear

functions, i.e. for functions of the form ´ ¹, where · is a 1-form and ´ ¹(vx) =< · (x); vx >.

It is well known (see [Co, GU]) that the brackets induced by ¤ and its complete lift are

related by

f ´ ¹; ´ ºg¤c = ´ [¹;º] ¤ : (26)

It is also known (cf. (3)) that

´ [X;Y ] = f ´ X ; ´ Y g¤M

for vector ¯elds X; Y on M . Since ´ ¹ ¯ ]¤ = ¡ ´ ] ¤ (¹), we get

¡ f ´ ¹; ´ ºg¤c ¯ ]¤ = ¡ ´ [¹;º ] ¤ ¯ ]¤ = ´ ] ¤ ([¹;º ] ¤ ) (27)

= ´ []¤ (¹);] ¤ (º)] = f ´ ]¤ (¹); ´ ] ¤ (º)g¤M

= f ´ ¹ ¯ ]¤; ´ º ¯ ]¤g¤M

which proves (ii) ) (iii). In fact, (27) proves equivalence of (ii) and (iii).

Replacing in (27) the mapping ]¤ by a vector bundle morphism F : T ¤M ! T M ,

we get equivalence of (iv) and (vi). Similarly, (v) is equivalent to (vii). The implication

(iii) ) (iv) is obvious, so let us show (iv) ) (i). Assume that F relates ¤M and ¤c.

We will show that this implies that ¤ is skew-symmetric and F = ]¤. Since the assertion

is local over M we can use coordinates (xa) in M and the adapted coordinate systems

(xa; pi) in T ¤M and (xa; _xj) in T M . Writing ¤ = ¤ij@xi « @xj and F (xa; pi) = (xa; F ijpi),

we get

F¤(@pi
^ @xi) = F ijps

@F sk

@xi
@ _xj ^ @ _xk ¡ F ij@xi ^ @ _xj : (28)

Since

¤c =
@¤ij

@xk
_xk@ _xi « @ _xj + ¤ij(@xi « @ _xj + @ _xi « @xj); (29)

comparing the vertical-horizontal parts we get ¤ij = F ij = ¡ F ji, i.e. ¤ is skew-symmetric

and F = ]¤. Going backwards with (27) we get (ii). But for skew tensors we have

(cf. [KSM])
1

2
[[¤; ¤]]( · ; ¸ ; ® ) =< ]¤([ · ; ¸ ]¤) ¡ []¤( · ); ]¤( ¸ )]; ® >; (30)

where [[¢; ¢]] is the Schouten-Nijenhuis bracket, so that [[¤; ¤]] = 0, i.e. ¤ is a Poisson

tensor.

Finally, (v) is equivalent to (iii), since (iii) ) (v) trivially and exchanging the role

of F and ¤ in (28) and (29) we see that, as above, ¤ij = F ij, so that any tensor whose

complete lift is ]¤-related to ¤M equals ¡ ¤.
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A similar characterization is valid for any Lie algebroid. Let us consider a vector

bundle E over M with a Lie algebroid bracket [[¢; ¢]] instead of the canonical Lie algebroid

T M of vector ¯elds (cf. [Ma, KSM, GU0]). The multivector ¯elds are now replaced by

multisections A(E) = ©kAk(E), Ak(E) = Sec(
Vk

E), of E and the standard Schouten-

Nijenhuis bracket with its Lie algebroid counterpart. A Lie algebroid Poisson tensor

(canonical structure) is then a skew-symmetric ¤ 2 A2(E) satisfying [[¤; ¤]] = 0. Such

a structure gives a triangular Lie bialgebroid in the sense of [MX]. We have the exterior

derivative d on multisections of the dual bundle E¤ (we will refer to them as to "exterior

forms"). For any ¤ 2 Sec(E « E) the formula (21) de¯nes a bracket on "1-forms". We

have an analog of the complete lift (cf. [GU1, GU2])

Sec(E­k) 3 ¤ 7! ¤c 2 Sec((T E)­k)

of the tensor algebra of sections of E into contravariant tensors on the total space E . The

Lie algebroid bracket corresponds to a linear Poisson tensor ¤E ¤
on E¤ (which is just ¤M

in the case E = T M ) by (3). Since the tensor ¤E ¤
may be strongly degenerate, linear

maps F : E¤ ! E do not determine the related tensors uniquely, so we cannot have

the full analog of Theorem 3.1. However, since for skew-symmetric tensors the formula

(30) remains valid [KSM], a part of Theorem 3.1 can be proved in the same way, mutatis

mutandis, in the general Lie algebroid case. Thus we get the Lie algebroid version of

Theorem 1.1 (cf. [GU1]).

Theorem 3.2. For any bisection ¤ 2 A2(E) of a Lie algebroid E the following are

equivalent:

(i) ¤ is a canonical structure, i.e. [[¤; ¤]] = 0;

(ii) ]¤ induces a homomorphism of [¢; ¢]¤ into the Lie algebroid bracket:

]¤([ · ; ¸ ]¤) = []¤( · ); ]¤( ¸ )]; (31)

(iii) The canonical Poisson tensor ¤M and the negative of the complete lift ¡ ¤c are

]¤-related.

4 Jacobi algebroids and characterization of Jacobi structures

We have introduced in Section 2 Jacobi and Poisson complete lifts related to Jacobi

algebroids. For a standard Jacobi structure J = (¤; ¡) on M we will denote these lifts of

J by bJ and bJ c, respectively. The Jacobi lift bJ is the Jacobi structure on E = T M © R
given by [GM]

bJ = (¤c ¡ t¤v + @t ^ (¡c ¡ t¡v); ¡v); (32)

where ¤v and ¡v are the vertical tangent lifts of ¤ and ¡, respectively, and t is the standard

linear coordinate in R. We consider here tangent lifts as tensors on T M © R = T M £ R
instead on T M . The linear Jacobi structure (32) has been already considered by Iglesias

and Marrero [IM].
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Similarly, the Poisson lift bJ c is the linear Poisson tensor on T M © R given by [GM]

bJ c = ¤c ¡ t¤v + @t ^ ¡c + ¢TM ^ ¡v; (33)

where ¢T M is the Liouville (Euler) vector ¯eld on the vector bundle T M . This is exactly

the linear Poisson tensor corresponding to the Lie algebroid structure on T ¤M ©R induced

by J and discovered ¯rst in [KSB]:

[( ¬ ; f ); (­ ; g)]J = ( L ] ¤ ( )­ ¡ L ] ¤ (¯) ¬ ¡ d < ¤; ¬ ^ ­ > +f L ¡­ ¡ g L ¡ ¬ ¡ i¡( ¬ ^ ­ );

< ¤; ­ ^ ¬ > +]¤( ¬ )(g) ¡ ]¤(­ )(f ) + f¡(g) ¡ g¡(f )); (34)

Of course, these lifts and an analog of the bracket (34) are well-de¯ned for any ¯rst-order

bidi®erential operator

J = ¤ + I « ¡1 + ¡2 « I + ¬ I « I ; (35)

where ¤ is a 2-contravariant tensor, ¡1; ¡2 are vector ¯elds, and ¬ is a function on M .

The associated bracket acts on functions on M by

ff; ggJ =< ¤; df « dg > +f¡1(g) + g¡2(f ) + ¬ f g;

The Jacobi lift of J is the ¯rst-order bidi®erential operator on T M © R given by

bJ = ¤c ¡ t¤v + @t « (¡c
1 ¡ t¡v

1) + (¡c
2 ¡ t¡v

2) « @t + ( ¬ c ¡ t¬ v)@t « @t

+I « (¡v
1 + ¬ v@t) + (¡v

2 + ¬ v@t) « I

and the Poisson lift is the 2-contravariant tensor ¯eld

bJ c = ¤c ¡ t¤v + @t « (¡c
1 ¡ t¡v

1) + (¡c
2 ¡ t¡v

2) « @t + ( ¬ c ¡ t¬ v)@t « @t

+¢E « (¡v
1 + ¬ v@t) + (¡v

2 + ¬ v@t) « ¢E

= ¤c ¡ t¤v + @t « ¡c
1 + ¡c

2 « @t + ( ¬ c + t¬ v)@t « @t

+¢TM « ¡v
1 + ¡v

2 « ¢T M :

The mapping ]J : E¤ = T ¤M © R ! E = T M © R reads

]J(!x; ¶ ) = (]¤(!x) + ¶ ¡1(x); ¡2(x)(!x) + ¬ (x) ¶ ):

Note that any morphism from the vector bundle E¤ = T ¤M © R into E = T M © R over

the identity on M is of this form.

The bidi®erential operators bJ and bJ c de¯ne brackets f¢; ¢g bJ and f¢; ¢g bJc, respectively,

on functions on T M © R. These brackets coincide on linear functions which close on

a subalgebra with respect to them, so that they de¯ne the bracket [¢; ¢]J on sections of

T ¤M © R (which coincides with the bracket (34) for skew-symmetric operators) by

f ´ (¹;f ); ´ (º;g)g bJ = f ´ (¹;f); ´ (º;g)gJc = ´ [(¹;f);(º;g)]J ;

where · ; ¸ are 1-forms, f; g are functions on M , and ´ (¹;f ) = ´ ¹ + tf v. Here we identify

T ¤M ©R with T ¤M £R and use the linear coordinate ¶ in R. For the similar identi¯cation

of T M © R we use the coordinate t of R in T M £ R, since both R’s play dual roles.
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We have two canonical structures on the vector bundle E¤ = T ¤M © R ’ T ¤M £ R.

One is the Jacobi structure (bracket)

JM = ¤M + ¢T ¤ M ^ @¸ + @¸ ^ I (36)

and the other is the Poisson structure ¤M regarded as the product of ¤M on T ¤M with

the trivial structure on R. These brackets coincide on linear functions which close on a

subalgebra with respect to both brackets, so that they de¯ne a Lie algebroid structure

on the dual bundle E = T M © R. This is the Lie algebroid of ¯rst-order di®erential

operators with the bracket

[(X; f ); (Y; g)]1 = ([X; Y ]; (X(g) ¡ Y (f ));

where X; Y are vector ¯elds and f; g are functions on M .

Theorem 4.1. For a ¯rst-order bidi®erential operator J the following are equivalent:

(J1) J is a Jacobi bracket;

(J2) The canonical Jacobi bracket JM and ¡ bJ are ]J -related;

(J3) There is a ¯rst-order bidi®erential operator J1 such that JM and ¡ bJ are ]J1-related;

(J4) There is a ¯rst-order bidi®erential operator J1 such that JM and ¡ bJ1 are ]J -related;

(J5) The contravariant tensors ¤M and ¡ bJ c are ]J -related;

(J6) There is a ¯rst-order bidi®erential operator J1 such that ¤M and ¡ bJ c are ]J1-related;

(J7) There is a ¯rst-order bidi®erential operator J1 such that ¤M and ¡ bJ c
1 are ]J -related;

(J8) For any 1-forms · ; ¸ and functions f; g on M

]J([( · ; f ); ( ¸ ; g)]J) = []J ( · ; f ); ]J( ¸ ; g)]1:

(J9) There is a ¯rst-order bidi®erential operator J1 such that

]J1([( · ; f ); ( ¸ ; g)]J) = []J1( · ; f ); ]J1( ¸ ; g)]1:

(J10) There is a ¯rst-order bidi®erential operator J1 such that

]J([( · ; f ); ( ¸ ; g)]J1) = []J( · ; f ); ]J( ¸ ; g)]1:

Before proving this theorem we introduce some notation and prove a lemma. For a

¯rst-order bidi®erential operator J as in (35), the poissonization of J is the tensor ¯eld

on M £ R of the form

PJ = e¡s(¤ + @s « ¡1 + ¡2 « @s + ¬ @s « @s); (37)

where s is the coordinate on R. Identifying T ¤(M £R) with T ¤M £T ¤R (with coordinates

(s; ¶ ) in T ¤R) and T (M £ R) with T M £ T R (with coordinates (s; t) in T R) we can write

¤M£R = ¤M + @¸ ^ @s;

P c
J = e¡s(¤c ¡ t¤v + @t « (¡c

1 ¡ t¡v
1) + (¡c

2 ¡ t¡v
2) « @t

+@s « (¡v
1 + ¬ v@t) + (¡v

2 + ¬ v@t) « @s + ( ¬ c ¡ t¬ v)@t « @t;

]PJ(!x; ¶ s) = e¡s(]¤(!x) + ¶ s¡1(x); ¡2(x)(!x) + ¶ s ¬ (x)):
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In local coordinates x = (xl) on M and adapted local coordinates (x; p) on T ¤M and

(x; _x) on T M we have

(xl; s; _xi; t) ¯ ]PJ
= (xl; s; e¡s(¤kipk + ¶ ¡i

1); e¡s(¡k
2pk + ¶ ¬ ))

for ¤ = ¤ij@xi « @xj , ¡u = ¡k
u@xk, u = 1; 2. It is well known that PJ is a Poisson

tensor if and only if J is a Jacobi structure [Li, GL]. In view of Theorem 3.2, we can

conclude that J is a Jacobi structure if and only if ¤M£R and P c
J are related by the map

]PJ : T ¤(M £ R) ! T (M £ R). Since T (M £ R) ’ E £ R and T ¤(M £ R) ’ E¤ £ R, we

can consider the bundles E = T M © R and E¤ = T ¤M © R as submanifolds of T (M £ R)

and T ¤(M £ R), respectively, given by the equation s = 0.

For any function ¿ 2 C1(E) we denote by ¸¿ the function on T (M £ R) = E £ R
given by ¸¿ (vx; s) = es ¿ (vx). Similarly, for any function ’ 2 C1(E¤) we denote by ~’ the

function on T ¤(M £ R) = E¤ £ R given by ~’(ux; s) = es’(e¡sux).

It is a matter of easy calculations to prove the following.

Lemma 4.2.

(a) The maps ¿ 7! ¸¿ and ¿ 7! ~¿ are injective.

(b) For any ¯rst-order bidi®erential operator J ,

¸¿ ¯ ]PJ = ( ¿ ¯ ]J )
»

:

(c) For any ¿ ; Ã 2 C1(E),

f¸¿ ; Ã̧gP c
J

= (f ¿ ; Ãg bJ)^:

(d) For any ¿ ; Ã 2 C1(E¤),

f ~¿ ; ~Ãg¤M£R = (f ¿ ; ÃgJM)
»

:

(e) For linear ¿ ; Ã 2 C1(E),

f¸¿ ; Ã̧gP c
J

= (f ¿ ; ÃgJc)^:

(f) For linear ¿ ; Ã 2 C1(E¤),

f~¿ ; ~Ãg¤M£R = (f ¿ ; Ãg¤M)
»

:

Proof of Theorem 4.1. Due to the above Lemma the following identities are valid for

arbitrary ¿ ; Ã 2 C1(E) and arbitrary ¯rst-order bidi®erential operators J; J1:

(f ¿ ; Ãg bJ ¯ ]J1)
»

= (f ¿ ; Ãg bJ)^ ¯ ]PJ1
= f¸¿ ; Ã̧gP c

J
¯ ]PJ1

(f ¿ ¯ ]J1; Ã ¯ ]J1gJM)» = f( ¿ ¯ ]J1)»; (Ã ¯ ]J1)»g¤M£R = f¸¿ ¯ ]PJ1
; Ã̧ ¯ ]PJ1

g¤M£R :

Thus

¡ f ¿ ; Ãg bJ ¯ ]J1 = f ¿ ¯ ]J1; Ã ¯ ]J1gJM

if and only if

¡ f ¸¿ ; Ã̧gP c
J

¯ ]PJ1
= f¸¿ ¯ ]PJ1

; Ã̧ ¯ ]PJ1
g¤M£R ; (38)



136 J. Grabowski, P. Urbański / Central European Journal of Mathematics 1 (2003) 123{140

which means that JM and ¡ bJ are ]J1-related if and only if ¤M£R and the complete lift of

the poissonization ¡ P c
J are ]PJ1

-related. Due to Theorem 3.2, we get that PJ1 = PJ and

the poissonization PJ is a Poisson tensor which, in turn, is equivalent to the fact that J

is a Jacobi bracket. Thus we get

(J1) , (J2) , (J3) , (J4):

Using now linear functions ¿ ; Ã , we get in a similar way that (38) is equivalent to

¡ f ¿ ; Ãg bJc ¯ ]J1 = f ¿ ¯ ]J1; Ã ¯ ]J1g¤M

which, due to Theorem 3.2, gives

(J1) , (J5) , (J6) , (J7):

Finally, completely analogously to (27) we get (J5) , (J8) , (J9) , (J10).

Remark. In the above proof we get the lifts bJ , J c, and the map ]J in a natural way by

using the poissonization and its tangent lift. This is a geometric version of the methods

in [Va] for obtaining J c. Note also that JM is the canonical Jacobi structure on T ¤M £ R
regarded as a contact manifold in a natural way and that the equivalence (J1) , (J8) is

a version of the characterization in [MMP].

The above theorem characterizing Jacobi structures one can generalize to canonical

structures associated with Jacobi algebroids as follows.

Consider now a Jacobi algebroid, i.e. a vector bundle E over M equipped with a Lie

algebroid bracket [¢; ¢] and a `closed 1-form’ © 2 ­ 1(E). We denote by [[; ¢; ¢]] the Schouten-

Nijenhuis bracket of the Lie algebroid and by T (E) 3 X 7! X c 2 T (T E) the complete lift

from the tensor algebra of E into the tensor algebra of T E . The corresponding Schouten-

Jacobi bracket we denote by [[¢; ¢]]© and the corresponding complete Jacobi and Poisson

lifts by T (E) 3 X 7! bX© 2 T (T E) and T (E) 3 X 7! X c
© 2 T (T E), respectively.

If the 1-cocycle © is exact, © = ds, we can obtain the bracket [[¢; ¢]]© from [[¢; ¢]] using

the linear automorphism of A(E) de¯ned by Ak(E) 3 X 7! e¡(k¡1)sX (cf. [GM1]).

This is a version of the Witten’s trick [Wi] to obtain the deformed exterior di®erential

d© · = d · + © ^ · via the automorphism of the cotangent bundle given by multiplication

by es.

Even if the 1-cocycle © is not exact, there is a nice construction [IM1] which allows one

to view © as being exact but for an extended Lie algebroid in the bundle bE = E £ R over

M £R. The sections of this bundle may be viewed as parameter-dependent (s-dependent)

sections of E . The sections of E form a Lie subalgebra of s-independent sections in the

Lie algebroid bE which generate the C1(M £ R)-module of sections of bE and the whole

structure is uniquely determined by putting the anchor b» (X ) of a s-independent section

X to be b» (X ) = » (X) + h©; X i@s, where s is the standard coordinate function in R and

» is the anchor in E . All this is consistent (thanks to the fact that © is a cocycle) and

de¯nes a Lie algebroid structure on bE with the exterior derivative d satisfying ds = ©.
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Let now U : T (E) ! T ( bE) be the natural embedding of the tensor algebra of E

into the tensor subalgebra of s-independent sections of bE . It is obvious that on skew-

symmetric tensors U is a homomorphism of the corresponding Schouten brackets:

[[U (X); U (Y )]]̂ = U ([[X; Y ]]);

where we use the notation [[¢; ¢]] and [[¢; ¢]]̂ for the Schouten brackets in E and bE , respec-

tively. Let us now gauge T (E) inside T ( bE) by putting

P ©(X) = e¡ksU (X )

for any element X 2 Sec(E­(k+1)). Note that X 7! P ©(X ) preserves the grading but not

the tensor product. It can be easily proved (cf. [GM1]) that the Schouten-Jacobi bracket

[[¢; ¢]]© can be obtained by this gauging from the Lie algebroid bracket.

Theorem 4.3. ([GM1]) For any X 2 A(E); Y 2 A(E) we have

[[P ©(X); P ©(Y )]]̂ = P ©([[X; Y ]]©): (39)

We will usually skip the symbol U and write simply P ©(X ) = e¡ksX , regarding T (E)

as embedded in T ( bE). The complete lift for the Lie algebroid bE will be denoted by

X 7! Xbc to distinguish from the lift for E . It is easy to see that

(P ©(X ))bc = (e¡ksX )bc = e¡ks(X c ¡ k´ ©Xv + @s ^ (i©X )v):

Here we understand tensors on E as tensors on bE = E £ R in obvious way. Note that
d(E¤) = ( bE)¤ and the linear Poisson tensor ¤

bE ¤
reads

¤
bE ¤

= ¤E ¤
+ ©v ^ @s;

where ¤E ¤
is the Poisson tensor corresponding to the Lie algebroid E and ©v is the

vertical lift of ©. Recall that on E¤ we have also a canonical Jacobi structure

J E ¤

© = ¤E ¤
+ ¢E ¤ ^ ©v ¡ I ^ ©v

which generates a Jacobi bracket which coincides with the Poisson bracket of ¤E ¤
on

linear functions.

Let us remark that the map P © plays the role of a generalized poissonization. Indeed,

for the Jacobi algebroid of ¯rst-order di®erential operators E = T M © R the extended

Lie algebroid bE £ R is canonically isomorphic with T (M £ R), U ((X; f )) = X + f@s, and

for J 2 Sec(E­2) the tensor ¯eld P ©(J) coincides with (37).

Let now J 2 A2(E). The tensor J is a canonical structure for the Jacobi algebroid

(E; ©), i.e. [[J; J ]]© = 0, if and only if P ©(J ) is a canonical structure for the Lie algebroid
bE , i.e. [[P ©(J ); P ©(J )]]̂ = 0. Moreover,

]P © (J)(ux; s) = (e¡s]J (ux); s):
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Like above, for any function ¿ 2 C1(E) we denote by ¸¿ the function on bE = E £R given

by ¸¿ (vx; s) = es ¿ (vx) and for any function ’ 2 C1(E¤) we denote by ~’ the function on
bE¤ = E¤ £ R given by ~’(ux; s) = es’(e¡sux). Recall that (cf. Section 2)

bJ© = J c ¡ ´ ©Jv + I ^ (i©J)v

and
bJ c
© = J c ¡ ´ ©J v + ¢E ^ (i©J)v :

The corresponding brackets on functions on E coincide on linear functions and de¯ne a

bracket [¢; ¢]J on sections of E¤ in the standard way:

´ [¹;º]J = f ´ ¹; ´ ºg bJ ©
= f ´ ¹; ´ ºg bJc

©

Completely analogously to Lemma 4.2 we get the following.

Lemma 4.4. (a) The maps ¿ 7! ¸¿ and ’ 7! ~’ are injective.

(b) For any J 2 A2(E)
¸¿ ¯ ]P © (J) = ( ¿ ¯ ]J)

»
:

(c) For any ¿ ; Ã 2 C1(E)

f ¸¿ ; Ã̧g(P © (J))bc = (f ¿ ; Ãg bJ©
)^:

(d) For any ¿ ; Ã 2 C1(E¤)

f~¿ ; ~Ãg
¤ bE¤ = (f ¿ ; ÃgJE¤

©
)

»
:

(e) For linear ¿ ; Ã 2 C1(E)

f¸¿ ; Ã̧g(P © (J))bc = (f ¿ ; Ãg bJc)
^:

(f) For linear ¿ ; Ã 2 C1(E¤)

f~¿ ; ~Ãg
¤ bE¤ = (f ¿ ; Ãg¤E¤ )

»
:

Now, repeating the arguments from the classical case, one easily derives the following.

Theorem 4.5. For any bisection J 2 A2(E) of the vector bundle E of a Jacobi algebroid

(E; ©) the following are equivalent:

(1) J is a canonical structure, i.e. [[J; J ]]© = 0;

(2) The canonical Jacobi bracket JE ¤

© and ¡ bJ© are ]J -related;

(3) The bivector ¯elds ¤E ¤
and ¡ bJ c

© are ]J -related;

(4) For any `1-forms’ · ; ¸ 2 ­ 1(E),

]J([ · ; ¸ ]J) = []J ( · ); ]J( ¸ )];

where the bracket on the right-hand-side is the Lie algebroid bracket on E .

Note that a canonical structure for a Jacobi algebroid gives rise to a triangular Jacobi

bialgebroid [GM] (or a triangular generalized Lie bialgebroid in the terminology of [IM1]).
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