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1 Introduction

Jacobi brackets are local Lie brackets on the algebra C°°(M) of smooth functions on a
manifold M. This goes back to the well-known observation by Kirillov [Ki] that in the
case of A = C°°(M) every local Lie bracket on A is of first order (an algebraic version of
this fact for arbitrary commutative associative algebra A has been proved in [G1]).

Since every skew-symmetric first-order bidifferential operator J on C*°(M) is of the
form J = A+ I AT, where A is a bivector field, I' is a vector field and I is identity, the
corresponding bracket of functions reads

{f.9}s =A(f,9) + fT(g) — gT'(f). (1)

The Jacobi identity for this bracket is usually written in terms of the Schouten-Nijenhuis
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bracket [, -] as follows:

[0,A] =0, [A,A]=—20AA. 2)

Hence, every Jacobi bracket on C°°(M) can be identified with the pair J = (A, I') satis-
fying the above conditions, i.e. with a Jacobi structure on M (cf. [Li]). Note that we use
the version of the Schouten-Nijenhuis bracket which gives a graded Lie algebra structure
on multivector fields and which differs from the classical one by signs. The Jacobi bracket
(1) has he following properties:

(1) {a,b} = —{b,a} (anticommutativity),

(2) {a,bc} ={a,blc+ b{a,c} — {a,1}bc (generalized Leibniz rule),

(3) {{a,b},c} ={a,{b,c}} —{b,{a,c}} (Jacobi identity),

The generalized Leibniz rule tells that the bracket is a bidifferential operator on C*° (M)
of first order. In the case when I' = 0 (or, equivalently, when the constant function 1 is
a central element), we deal with a Poisson bracket associated with the bivector field A
satisfying [A, A] = 0.

For a smooth manifold M we denote by Aj,; the canonical Poisson tensor on T*M,
which in local Darboux coordinates (z!,p;) has the form Ay = 9,, A 9,5. In [GU] the
following characterization of Poisson tensors, in terms of the complete (tangent) lift of
contravariant tensors X +— X¢ from the manifold M to T'M, is proved.

Theorem 1.1. A bivector field A on a manifold M is Poisson if and only if the tensors
Ay and —A° on T*M and T'M, respectively, are fx-related, where

fa:T"M — TM,  f5(ws) = iw,A(2).

So, for a Poisson tensor A the map #, : (T*M,Ay) — (T M, —A°) is a Poisson map.
The aim of this note is to generalize the above characterization including Jacobi
brackets and canonical structures associated with Lie algebroids and Jacobi algebroids.

2 Lie and Jacobi algebroids

A Lie algebroid is a vector bundle 7 : E — M, together with a bracket [-,-] on the
C*>(M)-module Sec(E) of smooth sections of E, and a bundle morphism p : E — TM
over the identity on M, called the anchor of the Lie algebroid, such that

(i) the bracket [-,-] is R-bilinear, alternating, and satisfies the Jacobi identity;

(ii) [X, fY] = fIX, Y] + p(X)(f)Y for all X,V € Sec(F) and all f € C*(M).
From (i) and (ii) it follows easily

(iil) p([X,Y]) = [p(X), p(Y)] for all X, Y € Sec(E).
We will often identify sections p of the dual bundle E* with linear (along fibres) functions
t, on the vector bundle E: ¢,(X,) =< p(p),X, >. If A is a homogeneous (linear)
2-contravariant tensor field on E, i.e. A is homogeneous of degree -1 with respect to
the Liouville vector field Ag, then < A,de, ® diy, >= {1,, 1 }a is again a linear function
associated with an element [u,v]x. The operation [u, v, on sections of E* we call the
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bracket induced by A. This is the way in which homogeneous Poisson brackets are related
to Lie algebroids.

Theorem 2.1. There is a one-one correspondence between Lie algebroid brackets [-, ]
on the vector bundle E and homogeneous (linear) Poisson structures A on the dual bundle
E* determined by

xy]y = 1ex, ey ba = A(dex, dey). (3)

For a vector bundle E over the base manifold M, let A(E) = @z A*(E),

A¥(E) = Sec(\" E), be the exterior algebra of multisections of E. This is a basic geo-
metric model for a graded associative commutative algebra with unity. We will refer to
elements of Q*(E) = A*(E*) as to k-forms on E. Here, we identify A%(E) = Q°(E) with
the algebra C>(M) of smooth functions on the base and A*(E) = {0} for k < 0. Denote
by | X| the Grassmann degree of the multisection X € A(E).

A Lie algebroid structure on E can be identified with a graded Poisson bracket on
A(E) of degree -1 (linear). Such brackets we call Schouten-Nijenhuis brackets on A(E).
Recall that a graded Poisson bracket of degree k on a Z-graded associative commutative
algebra A = @;czA" is a graded bilinear map

{-,-}:AX.A—>A

of degree k (i.e. |{a,b}| = |a| + |b| + k) such that

(1) {a,b} = —(—1)Ual+RRI+R [ 4} (graded anticommutativity),

(2) {a,bc} = {a,b}c+ (—1)el+RPIpLg ¢} (graded Leibniz rule),

(3) {{a,b},c} = {a,{b,c}} — (=1)Uel+RWHRLL L4 3} (graded Jacobi identity).

It is obvious that this notion extends naturally to more general gradings in the algebra.
For a graded commutative algebra with unity 1, a natural generalization of a graded
Poisson bracket is graded Jacobi bracket. The only difference is that we replace the
Leibniz rule by the generalized Leibniz rule

{a,be} = {a,b}c+ (—1)HPPIpLa 3 — {a, 1} be. (4)

Graded Jacobi brackets on A(FE) of degree -1 (linear) we call Schouten-Jacobi brack-
ets. An element X € A%(E) is called a canonical structure for a Schouten-Nijenhuis or
Schouten-Jacobi bracket [-,-] if [X, X] = 0.

As it was already indicated in [KS], Schouten-Nijenhuis brackets are in one-one cor-
respondence with Lie algebroids:

Theorem 2.2. Any Schouten-Nijenhuis bracket [-,-] on A(F) induces a Lie algebroid
bracket on A!'(E) = Sec(E) with the anchor defined by p(X)(f) = [X, f]. Conversely,
any Lie algebroid structure on Sec(E) gives rise to a Schouten-Nijenhuis bracket on A(E)

for which A*(E) = Sec(E) is a Lie subalgebra and p(X)(f) = [X, f].

We have the following expression for the Schouten-Nijenhuis bracket:

[Xan. . . AXp, YIA---AY,] = (5)
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ST YA AXGA A X AYIA L AYIA LAY,
k.l

where X;,Y; € Sec(E) and the hat over a symbol means that this is to be omitted.
A Schouten-Nijenhuis bracket induces the well-known generalization of the standard

Cartan calculus of differential forms and vector fields [Ma, MX]. The exterior derivative
d: QY E) — QFY(E) is defined by the standard formula

d/'L(le s 7Xk+1> = Z(_l)l+1 [[Xm /'L(le s 7551'7 s 7Xk+1>]]

Y D)X XL X X X X)), (6)
i<j
where X; € Sec(F). For X € Sec(E), the contraction ix:QF(E) — QP Y(E) is de-
fined in the standard way and the Lie differential operator £ x is defined by the graded
commutator
£y =ixod+doiy. (7)

Since Schouten-Nijenhuis brackets on A(E) are just Lie algebroid structures on E, by
Jacobi algebroid structure on E we mean a Schouten-Jacobi bracket on A(FE) (see [GM]).
An analogous concept has been introduced in [IM1] under the name of a generalized Lie
algebroid. Every Schouten-Jacobi bracket on the graded algebra A(FE) of multisections
of E turns out to be uniquely determined by a Lie algebroid bracket on a vector bundle
E over M and a l-cocycle ® € Q!(E), d® = 0, relative to the Lie algebroid exterior
derivative d, namely it is of the form [IM1]

[X,Y]o = [X,Y] + 2X AigY — (—=1)"yisX AY, (8)

where [, -, -] is the Schouten bracket associated with this Lie algebroid and where we use
the convention that x = |X| — 1 is the shifted degree of X in the graded algebra A(FE).
Note that ® is determined by the Schouten-Jacobi bracket by ie X = (—1)"[X,1]s, so
that (4) is satisfied:

[X,Y A Z]e = [X,Y]e AZ + (—1)*UTDY A [X, Z]e — [X, 1] AY A Z. (9)

We already know that there is one-one correspondence between Lie algebroid structures
on E and linear Poisson tensors AP on E*. To Jacobi algebroids correspond Jacobi
structures JE" on E* which are homogeneous of degree -1 with respect to the Liouville
vector field Ag+ namely

JE = AP L Apen® —TADY,

where @Y is the vertical lift of ® to a vector field on E*. The above structure generates
a Jacobi bracket which coincides on linear functions with the Poisson bracket associated
with AF™

One can develop a Cartan calculus for Jacobi algebroids similarly to the Lie alge-
broid case (cf. [IM1]). For a Schouten-Jacobi bracket associated with a 1-cocycle ® the
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definitions of the exterior differential d® and Lie differential £® = d® oi + i o d?® are
formally the same as (6) and (7), respectively. Since, for X € Sec(E), f € C*(M), we
have [X, fle = [X, f] + (iaX)f, one obtains d®u = du + ® A . Here [-,-] and d are,
respectively, the Schouten-Nijenhuis bracket and the exterior derivative associated with
the Lie algebroid.

Example 2.3. A canonical example of a Lie algebroid over M is the tangent bundle T'M
with the bracket of vector fields. The corresponding complex (Q(T'M),d) is in this case
the standard de Rham complex. A canonical structure for the corresponding Schouten-
Nijenhuis bracket is just a standard Poisson tensor.

Example 2.4. A canonical example of a Jacobi algebroid is (I'M = TM & R, (0, 1)),
where T1 M is the Lie algebroid of first-order differential operators on C*°(M) with the
bracket

[(X7f>7(ng>]1:([X7Y]7X(g>_y(f>)7 X7Y€SQC(TM>7 f»gECOO(M>7

and the 1-cocycle ® = (0,1) is ®((X, f)) = f. A canonical structure with respect to the
corresponding Schouten-Jacobi bracket on the Grassmann algebra A(T3M) of first-order
polydifferential operators on C'*°(M) turns out to be a standard Jacobi structure. Indeed,
it is easy to see that the Schouten-Jacobi bracket of A = A; + I A Ay € A" (T M) and
B =By + 1A By € ATYT M) reads

[[Al + I /\ AQ,Bl + I /\ B2]]1 - [[AlyBl]] + (—1)aI /\ [[Al,BQ]] + I /\ [[AQ,Bl]]
+QA1 VAN B2 - (—1)abA2 A Bl + (CZ - b)[ A A2 A B2. (10)

Hence, the bracket {-,-} on C*°(M) defined by a bilinear differential operator
A+IANT € A(T1 M) is a Lie bracket (Jacobi bracket on C*°(M)) if and only if

[A+IAT,A+TAT]y =[AA]+2I AT,A]+2AAT =0.

We recognize the conditions (2) defining a Jacobi structure on M.

There is another approach to Lie algebroids. As it has been shown in [GU1, GU2|, a
Lie algebroid structure (or the corresponding Schouten-Nijenhuis bracket) is determined
by the Lie algebroid lift X — X¢ which associates with X € 7 (F) a contravariant tensor
field X on E. The complete Lie algebroid and Jacobi algebroid lifts are described as
follows.

Theorem 2.5. ([GU1]) For a given Lie algebroid structure on a vector bundle E over
M there is a unique complete lift of elements X € Sec(E®*) of the tensor algebra
T(E) = ®Sec(E®*) to linear contravariant tensors X¢ € Sec((TE)®*) on E, such that
(a) f¢=tay for f € C=(M);

(b) X¢(ty) = texy for X € Sec(E), p € Sec(E¥);

() (X®Y) =XQY"+ X"®Y° where X — XV is the standard vertical lift of
tensors from 7 (E) to tensors from 7 (TE), i.e. the complete lift is a derivation with
respect to the vertical lift.
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This complete lift restricted to skew-symmetric tensors is a homomorphism of the corre-
sponding Schouten-Nijenhuis brackets:

[X,Y]e = [X¢, Y. (11)

Moreover,

[X,Y]" = [X, Y] (12)

Corollary 2.6. If P € A*(E) is a canonical structure for the Schouten bracket, i.e.
[P, P] = 0, then P¢ is a homogeneous Poisson structure on E. The corresponding Poisson
bracket determines the Lie algebroid bracket

[[O[, ﬂ]]P = i#P(a)dﬂ - i#P(ﬁ)da + d(P((L ﬂ)) (13)

on E*.

Remark. For the canonical Lie algebroid £ = TM, the above complete lift gives
the better-known tangent lift of multivector fields on M to multivector fields on T'M
(cf. [IY, GU]J). In this case the complete lift is an injective operator, so A is a Poisson
tensor on M if and only if A¢is a Poisson tensor on T'M. The complete Lie algebroid lift
of just sections of E, i.e. the formula (b), was already indicated in [MX1].

Let us see how these lifts look like in local coordinates. Let (z*) be a local coordinate
system on M and let eq, ..., e, be a basis of local sections of E. We denote by e*!,..., e™
the dual basis of local sections of E* and by (z%y') (resp. (z%¢&;)) the corresponding
coordinate system on E (resp. E*), i.e., t,, = & and 1.« = y'. The vertical lift is given
by

(Ciyoin€iy @ - ® e )" = CigpinOyn @+ @ 8yik,

If for the Lie algebroid bracket we have [e;, ;] = cfjek and if the anchor sends e; to df0ya,
then

Moreover,
c af a, j
Fo= iV’ (15)
and
i c i ja ik an ay,,j
(X' = X'd}0pa + (X ¢+ de)y Oy (16)
It follows that, for P = %Pijei A ej, we have
c ij ja | 1 aPZJ a
P¢ = PYd$0,i N Oya + (PMej) + = A1)y Dyi A Dy (17)

2 Oz

There is an analog of the Lie algebroid complete lift for Jacobi algebroids which will
represent the Schouten-Jacobi bracket on A(FE) in the Schouten-Jacobi bracket of first-
order polydifferential operators on E. Here by polydifferential operators we understand
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skew-symmetric multidifferential operators. Let [-, -J¢ be the Schouten-Jacobi bracket on
A(E) associated with a Lie algebroid structure on E and a 1-cocycle ®.

Definition. ([GM]) The complete Jacobi lift of an element X € T*(E) is the multidif-
ferential operator of first order on E, i.e. an element of Sec((TyE)®*), defined by

)/(:é = X°¢— (k — 1)L<1>Xv + i[@d(@)Xv, (18)

where X¢ is the complete Lie algebroid lift, X is the vertical lift and i;gq(.,) is the
derivation acting on the tensor algebra of contravariant tensor fields which vanishes on
functions and satisfies i;g4(.,)X = X (te)! on vector fields. The derivation property yields

irodie) (X7 ® @ X)) =) (X, ®)X{® @ X, @I @ X, ® @ X},

1

for X1..., X € Sec(E).

Theorem 2.7. ([GM]) The complete Jacobi lift has the following properties:
(a) ]’:1) = 1qe5 for f € C*(M);
(b) Xo = X+ (ioX )] for X € Sec(E);
() (X @Y)y = Xo®Y" + X°® Vg — 10(X* ® Y?);
(d) For skew-symmetric tensors X and Y,

[Xo, Yol = ([X,Y]a)s,

where [-,-]; is the Schouten-Jacobi bracket of first-order polydifferential operators;
(e) For skew-symmetric X and Y

[Xo, Y] = ([X,Y]a)";

We remark that in [GM] only skew-symmetric tensors have been considered, but the
extension to arbitrary tensors is straightforward.

Definition. ([GM]) The complete Poisson lift of an element X € T*(E) is the contravari-
ant tensor X§ € Sec((TE)®*), defined by

X(% = X°— (k - 1)L<1>Xv + iAE@)d(L@)Xv, (19)

where Apg is the Liouville vector field on the vector bundle E and X°¢ is the complete
Lie algebroid lift, X" is the vertical lift and iacd(.4) is the derivation acting on the
tensor algebra of contravariant tensor fields which vanishes on functions and satisfies
ined(e)X = X (to)Ap on vector fields.

Theorem 2.8. ([GM]) The Poisson lift has the following properties:
() T = g0, for [ € C(M);
(b) X§(tp) = vgn, for X € Sec(E), p € Sec(E”);
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(@) (XQY)y=X50Y '+ X' QYL — 16(X" @ YY);
(d) For skew-symmetric X and Y’

(X5, Y] = (1X, Y]a)p"

Corollary 2.9. If P € A*(E) is a canonical structure for the Schouten-Jacobi bracket,
i.e. [P,P]e = [P,P]+ 2P NigP = 0, then Ps (resp. ]35) is a homogeneous Jacobi
(resp. homogeneous Poisson) structure on E. The corresponding Jacobi and Poisson
brackets coincide on linear functions and determine the Lie algebroid bracket

[[O[, ﬂ]]P = i#p(a)dq)ﬂ - i#P(ﬁ)d(I)a + d‘b(P(a, ﬂ)) (20)

on E*.

3 Characterization of Poisson tensors.

Theorem 1.1 of the Introduction can be generalized in the following way. Let us remark
first that any two-contravariant tensor A (which is not assumed to be skew-symmetric)
defines a bracket [-,-]4 on 1-forms on M by

[, VA = Ui (dV — g dp +d < ANp@v >, (21)
where < -, - > is the canonical pairing between contravariant and covariant tensors.

Theorem 3.1. For a two-contravariant tensor A on a manifold M the following are
equivalent:

(i) A is a Poisson tensor;

(ii) f5 induces a homomorphism of [-,-]5 into the bracket of vector fields:

Al v]a) = [Ba(p), fa(V)]; (22)

(iii) The canonical Poisson tensor Aj; and the negative of the complete lift —A°¢ are
fa-related;

(iv) There is a vector bundle morphism F' : T*M — TM over the identity on M such
that the canonical Poisson tensor Aj; and the negative of the complete lift —A° are
F-related;

(v) The morphism f, relates Ay, with the complete lift of a 2-contravariant tensor A;.

(vi) There is a vector bundle morphism F' : T*M — TM over the identity on M such
that

F(lu, vIa) = [F(n), F(v)]. (23)

(vii) There is a 2-contravariant tensor A; on M such that

iallp, vlay) = [Ea(p), fa(W)]; (24)
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Proof. The implication (i) = (ii) is a well-known fact (cf. e.g. [KSM]).

Assume now (i7). To show (#ii) one has to prove that the brackets on functions
{,-}a,, and {-,-}ac induced by tensors Ay; and A® by contractions with differentials of
functions are fa-related, i.e.

—{f, g acofa ={f o, golatan (25)

for all f,g € C*°(T'M). Due to the Leibniz rule, it is sufficient to check (25) for linear
functions, i.e. for functions of the form ¢,, where p is a 1-form and ¢,(v,) =< p(x), v, >.
It is well known (see [Co, GU]) that the brackets induced by A and its complete lift are
related by

Lo, twtae = L (26)
It is also known (cf. (3)) that
Lx,y] = {LX» LY}AM

for vector fields X,Y on M. Since ¢, 0 fo = —t4,(), We get

_{L,u» LV}AC o ﬁA = “Upw]a © ﬁ/\ = Uia((p,v]a) (27)
= Uau ()] = Lia(n)s ()} Ans
= {tp0ta, w0 fatan

which proves (i7) = (ii7). In fact, (27) proves equivalence of (i7) and (7ii).

Replacing in (27) the mapping fs by a vector bundle morphism F : T*M — TM,
we get equivalence of (iv) and (vi). Similarly, (v) is equivalent to (vii). The implication
(131) = (iv) is obvious, so let us show (iv) = (i). Assume that F relates Ay, and A°.
We will show that this implies that A is skew-symmetric and F' = f,. Since the assertion
is local over M we can use coordinates (z*) in M and the adapted coordinate systems
(2% p;) in T*M and (2%, 47) in TM. Writing A = AY0,: ® d,; and F (2%, p;) = (2%, Fp;),
we get

. OF*®k y
F (0, N 0yi) = F”psTﬁij N Oy — FY0, N Oy (28)
xl
Since N
. OAY .
comparing the vertical-horizontal parts we get AY = F% = —FJ¢ je. A is skew-symmetric

and F' = f5. Going backwards with (27) we get (7). But for skew tensors we have
(cf. [KSM])

ST AT, v, 7) =< B ) = En(), 20,7 >, (30)

where [-,-] is the Schouten-Nijenhuis bracket, so that [A,A] = 0, i.e. A is a Poisson
tensor.

Finally, (v) is equivalent to (7ii), since (iii) = (v) trivially and exchanging the role
of F and A in (28) and (29) we see that, as above, A¥ = F% so that any tensor whose
complete lift is fy-related to Ay equals —A. B
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A similar characterization is valid for any Lie algebroid. Let us consider a vector
bundle E over M with a Lie algebroid bracket [, -] instead of the canonical Lie algebroid
TM of vector fields (cf. [Ma, KSM, GUO]). The multivector fields are now replaced by
multisections A(E) = @, A*(E), A¥(E) = Sec(\" E), of E and the standard Schouten-
Nijenhuis bracket with its Lie algebroid counterpart. A Lie algebroid Poisson tensor
(canonical structure) is then a skew-symmetric A € A?(E) satisfying [A,A] = 0. Such
a structure gives a triangular Lie bialgebroid in the sense of [MX]. We have the exterior
derivative d on multisections of the dual bundle E* (we will refer to them as to ”exterior
forms”). For any A € Sec(E ® E) the formula (21) defines a bracket on ”1-forms”. We
have an analog of the complete lift (cf. [GU1, GU2])

Sec(E®*) 3 A — A° € Sec((TE)®%)

of the tensor algebra of sections of F into contravariant tensors on the total space . The
Lie algebroid bracket corresponds to a linear Poisson tensor A¥"on E* (which is just Ay,
in the case E = TM) by (3). Since the tensor A¥" may be strongly degenerate, linear
maps F' : E* — FE do not determine the related tensors uniquely, so we cannot have
the full analog of Theorem 3.1. However, since for skew-symmetric tensors the formula
(30) remains valid [KSM], a part of Theorem 3.1 can be proved in the same way, mutatis

mutandis, in the general Lie algebroid case. Thus we get the Lie algebroid version of
Theorem 1.1 (cf. [GU1]J).

Theorem 3.2. For any bisection A € A%*(E) of a Lie algebroid E the following are
equivalent:

(i) A is a canonical structure, i.e. [A,A] = 0;

(ii) £5 induces a homomorphism of [-, |5 into the Lie algebroid bracket:

Al v]a) = [Ba(p), fa(V)]; (31)

(iii) The canonical Poisson tensor Aj; and the negative of the complete lift —A¢ are
fa-related.

4 Jacobi algebroids and characterization of Jacobi structures

We have introduced in Section 2 Jacobi and Poisson complete lifts related to Jacobi
algebrmds For a standard Jacobi structure J = (A, T") on M we will denote these lifts of
J by J and J° , respectively. The Jacobi lift J is the Jacobi structure on E = TM & R
given by [GM]

J = (A= tA" + 9, A (T¢ —tI), T), (32)

where AV and I'" are the vertical tangent lifts of A and I', respectively, and ¢ is the standard
linear coordinate in R. We consider here tangent lifts as tensors on TM @R =TM x R
instead on T'M. The linear Jacobi structure (32) has been already considered by Iglesias
and Marrero [IM].



J. Grabowski, P. Urbanski / Central European Journal of Mathematics 1 (2003) 123-140 133

Similarly, the Poisson lift J¢ is the linear Poisson tensor on TM & R given by [GM]

~

J=AN —tA"+ 0, AT+ Appr AT, (33)

where Ay, is the Liouville (Euler) vector field on the vector bundle TM. This is exactly
the linear Poisson tensor corresponding to the Lie algebroid structure on T*M @R induced
by J and discovered first in [KSB]:

(e, )y (Bs9)]s = (Lep@B — Loy —d < AyaANB > +fLrB — gLra —ir(a A B),
<A, BAa>+ia(a)(g) = Ea(B)(f) + fT(g) — gT(f)), (34)

Of course, these lifts and an analog of the bracket (34) are well-defined for any first-order
bidifferential operator

J=A+IT@T +T, 0T +al @1, (35)

where A is a 2-contravariant tensor, I'y, 'y are vector fields, and « is a function on M.
The associated bracket acts on functions on M by

{f,9}, =< A, df ®dg > +fT1(9) + gl2(f) + afg,

The Jacobi lift of J is the first-order bidifferential operator on TM @ R given by

~

J = AC - tAv + (9t &® (Fi - tF?) + (F; - th) & (9t + (O[C - ta”)@t &® at
+I @ (I +a"0) + (T +a’0) @1

and the Poisson lift is the 2-contravariant tensor field

~

JO= A —tA" 4+ 0, ® (I'f —tI'7) + (I'§ — tI'y) ® 0, + (a° — ta”)0, ® O
+Ap ® (I'Y +a"0;) + (I's + a"0;) ® Ap
=N —tAN"+ 0, @+ T5® 0 + (o + ta”)0; ® O,
+Aryn @] + 15 @ Arayg.

The mapping §;: E* =T"M ®R — E =TM ® R reads
f(we, A) = (fa(ws) + Al (2), Ta(2) (wa) + () A).

Note that any morphism from the vector bundle E* = T*"M & R into E = TM & R over
the identity on M is of this form.

The bidifferential operators J and J¢ define brackets {-,-}; and {-, -} 7., respectively,
on functions on T'M & R. These brackets coincide on linear functions which close on
a subalgebra with respect to them, so that they define the bracket [-,-]; on sections of
T*M @& R (which coincides with the bracket (34) for skew-symmetric operators) by

{eur) bt 7= L b Le = ) o) s

where p,v are 1-forms, f, g are functions on M, and ¢(, 5y = ¢, +tf”. Here we identify
T*M &R with T*M xR and use the linear coordinate A in R. For the similar identification
of TM & R we use the coordinate ¢t of R in TM x R, since both R’s play dual roles.



134 J. Grabowski, P. Urbanski / Central European Journal of Mathematics 1 (2003) 123-140

We have two canonical structures on the vector bundle E* =T*M &R ~ T*M x R.
One is the Jacobi structure (bracket)

Ju=Ay+Apsas A0+ AT (36)

and the other is the Poisson structure A,; regarded as the product of Ay, on T*M with
the trivial structure on RR. These brackets coincide on linear functions which close on a
subalgebra with respect to both brackets, so that they define a Lie algebroid structure
on the dual bundle £ = TM & R. This is the Lie algebroid of first-order differential
operators with the bracket

(X, 1), (Y, 9)h = (X, Y], (X(9) = Y(f)),

where X,Y are vector fields and f, g are functions on M.

Theorem 4.1. For a first-order bidifferential operator J the following are equivalent:
J1) J is a Jacobi bracket;
J2) The canonical Jacobi bracket Jj; and —J are # j-related;
J3) There is a first-order bidifferential operator J; such that Jy; and —J are #7,-related;

J6) There is a first-order bidifferential operator .J; such that A,; and —J¢ are # 7,-related;
J7) There is a first-order bidifferential operator J; such that Ay, and —J§ are § ;-related;

(
(
(
(J4) There is a first-order bidifferential operator .J; such that Jy; and —J; are §j-related,;
(
(
(
(J8) For any 1-forms p, v and functions f,g on M

)
)
)
J5) The contravariant tensors Ay, and —J¢ are §;-related;
)
)
)

2, 1), (v, 9)1s) = [0 (s 1), 85 (v, 91
(J9) There is a first-order bidifferential operator J; such that

ﬁJl([(”v f>7 (V7 g)]J) = [ﬁ]l(/‘bv f>7 ﬁJl(V7 g)]l
(J10) There is a first-order bidifferential operator J; such that

ﬁJ([(”vf)? (V7g>]J1> = [ﬁJ(ﬂvf)? ﬁJ(Vmg)]l-

Before proving this theorem we introduce some notation and prove a lemma. For a
first-order bidifferential operator J as in (35), the poissonization of J is the tensor field
on M x R of the form

Pr=e¢ (A4+0,®T, + Ty ® 9, + ad, ® 9,), (37)

where s is the coordinate on R. Identifying T (M xR) with T*M x T*R (with coordinates
(s,\) in T*R) and T'(M x R) with TM x TR (with coordinates (s,t) in TR) we can write

Aprxr = Apr + 0\ N O,
P8 = e *(A° — tA" 4+ 0, @ (T — tTY) + (T — 1Y) ® &,
+0, @ (T'] + a"0y) + (T + a”0y) ® 95 + (a° — ta”)0y ® 0y,
£, (W Ae) = € (fa(ws) + A1 (), Da(2) (ws) + Aear(2)).
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In local coordinates z = (z!) on M and adapted local coordinates (z,p) on T*M and

(z,2) on TM we have
(', 5,8, t) o tp, = (2', 5, " (AMpy + AL'Y), e * (Dgpr + Aar))

for A = A0, ® 0,5, Ty = Tk0,%, u = 1,2. It is well known that P; is a Poisson
tensor if and only if J is a Jacobi structure [Li, GL]. In view of Theorem 3.2, we can
conclude that J is a Jacobi structure if and only if Ay« and P§ are related by the map
tp, : T*(M xR) — T(M X R). Since T(M X R)~ E xR and T*(M x R) ~ E* X R, we
can consider the bundles E = TM @R and E* = T*M @& R as submanifolds of T'(M x R)
and T*(M x R), respectively, given by the equation s = 0.

For any function ¢ € C®(E) we denote by ¢ the function on T(M x R) = E x R
given by qz(vz, s) = e*¢(v,). Similarly, for any function ¢ € C*°(E*) we denote by ¢ the
function on T*(M x R) = E* x R given by @(u,, s) = e*p(e "uy).

It is a matter of easy calculations to prove the following.

Lemma 4.2.
(a) The maps ¢ +— ¢ and ¢ — ¢ are injective.
(b) For any first-order bidifferential operator .J,

$otp, = (dots)".

(c) For any ¢,¢ € C*(E), o
(d) For any ¢,v € C*(E*),

{ngll)v}AMﬂ = ({(b?l/)}JM)N'
(e) For linear ¢,v € C*(E),

{0, 9} ps = ({0,903 5¢)

(f) For linear ¢,¢ € C*(E"),

{$7{/;}AM>& = ({¢71/)}AM>N

Proof of Theorem 4.1. Due to the above Lemma the following identities are valid for
arbitrary ¢,¢¥ € C*°(E) and arbitrary first-order bidifferential operators J, Ji:

({(]5,1/)}j0 ﬁJl)N = ({(rb?l/)}f)v o ﬁPJl = {(Z;?l/v)}P? o ﬁPJl
({¢ o ﬁJu Yo ﬁJ1}JM>N = {(¢ o ﬁh)wv (1/) © ﬁJ1>N}AM>& = {Q; o ﬁPlel/j © ﬁPJl }AM>&'

Thus
—{(25,1/)}}(3 ﬁJl = {¢ o ﬁJl?I/) o ﬁJl}JM

if and only if
—{o,d}peotip, ={dotp, Y otr, fare (38)
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which means that J; and —J are # 7,-related if and only if Ay;«g and the complete lift of
the poissonization —P§ are {p, -related. Due to Theorem 3.2, we get that P, = P; and
the poissonization P; is a Poisson tensor which, in turn, is equivalent to the fact that J
is a Jacobi bracket. Thus we get

(J1) & (J2) & (J3) & (J4).
Using now linear functions ¢,1), we get in a similar way that (38) is equivalent to

_{(b?l/)}fc o ﬁJl = {¢ © ﬁJl?l/) © ﬁJl}AM

which, due to Theorem 3.2, gives
(J1) & (Jb) & (J6) & (JT7).

Finally, completely analogously to (27) we get (J5) < (J8) & (J9) & (J10). B

Remark. In the above proof we get the lifts f, J¢, and the map f; in a natural way by
using the poissonization and its tangent lift. This is a geometric version of the methods
in [Va] for obtaining J¢. Note also that Jy is the canonical Jacobi structure on T*M x R
regarded as a contact manifold in a natural way and that the equivalence (J1) < (J8) is
a version of the characterization in [MMP].

The above theorem characterizing Jacobi structures one can generalize to canonical
structures associated with Jacobi algebroids as follows.

Consider now a Jacobi algebroid, i.e. a vector bundle E over M equipped with a Lie
algebroid bracket [-, -] and a ‘closed 1-form’ ® € Q'(E). We denote by [, -, -] the Schouten-
Nijenhuis bracket of the Lie algebroid and by 7 (E) 2 X +— X¢ € 7 (TFE) the complete lift
from the tensor algebra of E into the tensor algebra of T E. The corresponding Schouten-
Jacobi bracket we denote by [-, -] and the corresponding complete Jacobi and Poisson
lifts by 7(F) > X — Xo € T(TE)and T(E)> X — X§ € T(TE), respectively.

If the 1-cocycle @ is exact, ® = ds, we can obtain the bracket [-,-]¢ from [-, -] using
the linear automorphism of A(E) defined by A*¥(E) 3 X — e *"DsX (cf. [GMI]).
This is a version of the Witten’s trick [Wi] to obtain the deformed exterior differential
d®u = dp 4+ ® A p via the automorphism of the cotangent bundle given by multiplication
by e®.

Even if the 1-cocycle @ is not exact, there is a nice construction [IM1] which allows one
to view ® as being exact but for an extended Lie algebroid in the bundle E = E xR over
M xR. The sections of this bundle may be viewed as parameter-dependent (s-dependent)
sections of F. The sections of E form a Lie subalgebra of s-independent sections in the
Lie algebroid E which generate the C*°(M x R)-module of sections of E and the whole
structure is uniquely determined by putting the anchor p(X) of a s-independent section
X to be p(X) = p(X) + (P, X)Js, where s is the standard coordinate function in R and
p is the anchor in E. All this is consistent (thanks to the fact that ® is a cocycle) and
defines a Lie algebroid structure on E with the exterior derivative d satisfying ds = .
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Let now U : T(E) — ’T(E) be the natural embedding of the tensor algebra of E
into the tensor subalgebra of s-independent sections of E. It is obvious that on skew-
symmetric tensors U is a homomorphism of the corresponding Schouten brackets:

[UX), UY)] = U(IX,Y]),

where we use the notation [-,-] and [, -]" for the Schouten brackets in E and E, respec-

~

tively. Let us now gauge 7 (F) inside 7 (E) by putting
P?(X) = e ®U(X)

for any element X € Sec(E®*+1)). Note that X — P®(X) preserves the grading but not
the tensor product. It can be easily proved (cf. [GM1]) that the Schouten-Jacobi bracket
[-,-]& can be obtained by this gauging from the Lie algebroid bracket.

Theorem 4.3. ([GM1]) For any X € A(E),Y € AE) we have
[P*(X), P*(Y)] = P*([X,Y]s)- (39)

We will usually skip the symbol U and write simply P*(X) = e **X | regarding 7 (E)
as embedded in 7(F). The complete lift for the Lie algebroid E will be denoted by
X — X°¢ to distinguish from the lift for E. It is easy to see that

(PY(X))° = (e X)° = e (X° — kio X" 4 05 A (i0X)").

Here we understand tensors on E as tensors on £ = E x R in obvious way. Note that

—

(E*) = (E)* and the linear Poisson tensor AE™ veads
AFT= AP 4 9" A0,

where AF" is the Poisson tensor corresponding to the Lie algebroid E and ®V is the
vertical lift of ®. Recall that on E* we have also a canonical Jacobi structure

JE = A Ape A" — T A DY

which generates a Jacobi bracket which coincides with the Poisson bracket of A¥™ on
linear functions.

Let us remark that the map P? plays the role of a generalized poissonization. Indeed,
for the Jacobi algebroid of first-order differential operators £ = TM & R the extended
Lie algebroid E x R is canonically isomorphic with T(MxR), U((X, f)) =X+ f0s, and
for J € Sec(E®?) the tensor field P®(J) coincides with (37).

Let now J € A?*(E). The tensor J is a canonical structure for the Jacobi algebroid
(E,®),ie. [J,J]s = 0, if and only if P®(J) is a canonical structure for the Lie algebroid
E, ie. [P®(J), P?(J)]" = 0. Moreover,

tpecs (Ue, 8) = (€87 (us), 5).
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Like above, for any function ¢ € C*°(FE) we denote by (5 the function on £ = F xR given
by ¢(ve, s) = €%¢(v,) and for any function ¢ € C°(E*) we denote by @ the function on
E* = E* x R given by ¢(ug, s) = e®*p(e*u,). Recall that (cf. Section 2)

j\q> =J —1J" + 1N (i@J)v

and

JS = J°— 16J" + Ap A (igJ)".

The corresponding brackets on functions on E coincide on linear functions and define a
bracket [-,-]; on sections of E* in the standard way:

Lpply = {Lw Lv}jq> = {Lw Lv}j;
Completely analogously to Lemma 4.2 we get the following.
Lemma 4.4. (a) The maps ¢ — ¢ and ¢ — @ are injective.
(b) For any J € A*(E) ]
potpey = (pots)” .
(c) For any ¢,v¢ € C*(F)
{(57 IE}(P‘P(J))E = ({¢7 1/)}jq>>v
(d) For any ¢, € C*(E*)
{$7 IE}AE* = ({¢7 1/)}]4};3*>N‘
(e) For linear ¢, € C*(F)
{(57 IE}(P‘P(J))E = ({¢7 w}jr:)V
(f) For linear ¢,¢ € C*(E")
{$7 IE}AE* = ({¢7 w}AE*>N‘

Now, repeating the arguments from the classical case, one easily derives the following.

Theorem 4.5. For any bisection J € A?(E) of the vector bundle E of a Jacobi algebroid
(E, ®) the following are equivalent:

(1) J is a canonical structure, i.e. [J, J]o = 0;

(2) The canonical Jacobi bracket JE™ and —Jg are f-related;

(3) The bivector fields AX™ and —j:% are f§ -related;

(4) For any ‘1-forms’ p,v € QY(E),

g vls) = s (), £ ()],
where the bracket on the right-hand-side is the Lie algebroid bracket on E.

Note that a canonical structure for a Jacobi algebroid gives rise to a triangular Jacobi
bialgebroid [GM] (or a triangular generalized Lie bialgebroid in the terminology of [IM1]).
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