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Abstract: Mono(6-deoxy-dimethylpyridinium)-β-cyclodextrins have been synthesized in

reaction of mono (p-toluenesulfonyl) derivative of β–cyclodextrin with the appropriate lutidine

under microwave irradiation and conventional conditions. The results indicate that the

mechanism consists of inclusion complex formation.
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1 Introduction

Cyclodextrins (CD) as well as their derivatives and polymers have gained high popularity

in the last years because of their industrial importance [1-3]. Their abilities to complex

a wide variety of organic and inorganic compounds are broadly utilized. CD derivatives

may form chemoreceptors for different guests [4,5]. Interestingly, similar structures could

be used as carriers to increase bioavailability of water insoluble drugs [6,7]. Many new

possibilities have been discovered with new, microwave-assisted protocols for synthesis

of such structures [8-11]. This prompted us to present our preliminary observations

regarding to new procedure facilitating synthesis of new monomodified, water soluble β–

CD derivatives, containing heterocyclic moieties. These could be of great importance in

understanding the reactivities of cyclodextrins under both conventional and solid state,
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microwave assisted conditions [12].

2 Results and discussion

In our experience, an efficient way of obtaining water soluble monofunctionalized cy-

clodextrins is through the formation of monotosyl derivatives. There are a number of

methods of monotosylation of CDs [13,14]. We performed this using simple and easy

to monitor protocol [12]. We synthesized p-toluenesulfonyl salts of β-cyclodextrin func-

tionalized with dimethylpyridine moieties as shown in Scheme 1. The microwave-assisted

synthesis affords lower yields than conventional heating; however, this technique is much

faster and very convenient. Table 1 shows the results obtained by conventional and

microwave-assisted synthesis in comparison to similar compounds described in the liter-

ature.

Scheme 1 Synthesis of monomodified of β–CD.

Products obtained this way need no further purification by column chromatography.

Use of equimolar amounts of substrates reduces the waste and additional chemicals nec-

essary in synthesis (e.g. solvents). Microwave-assisted synthesis in solid state reported

here matches well with the aims of “green chemistry”.

Unexpectedly, we observed that there was no product in the cases of 2,6-dimethylpyri-

dine, 3,5-dimethylpyridine, and 2,4,6-collidine. An explanation of this observation may

be an effect of steric disturbances during the formation of inclusion complexes, as shown

in Scheme 2. This implicates that these reactions are undergoing a two-step mechanism.

First, the molecule of substituted pyridine is complexed into the β-CD cavity, then the

proper substitution takes place. In cases of structurally extended compounds the inclusion

complex is formed in the “tail first” manner that prevents the next step and product

formation.

3 Experimental section

All 1H NMR and 2D NMR spectra were recorded on Bruker NMR 300 MHz instru-

ment in DMSO-d6; diffuse signals from easily exchangeable protons were not listed. For
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Compound Procedure
Microwave Conventional

Pyridine – 12h/18 % [15]

3-methyl-pyridine – 12h/91 % [12]

4-methyl-pyridine – 12h/89 % [12]

2,3-dimethyl-pyridine 2min/47 % 2h/90 %

2,4-dimethyl-pyridine 2min/65 % 2h/93.5 %

3,4-dimethyl-pyridine 2min/65 % 2h/94 %

2,6-dimethyl-pyridine – –*

3,5-dimethyl-pyridine – –*

2,4,6-trimethyl-pyridine – –*

* After 12h reflux or 2min irradiation the product was not formed.

Table 1 Traditional and microwave assisted synthesis of mono[6–(lutidinyl)–6–deoxy]–β–
cyclodextrins

Scheme 2 Inclusion complex dependent mechanism of modification of β–CD

better visualization, examples of 1HNMR and 2D NMR (in COSY experiment) spectra

of mono(6-deoxy-6-(2,3-dimethyl)pyridinium)-β-cyclodextrin tosylate are shown in Sup-

porting Information (www.cesj.com/chemistry/files/13-paper-Support-SI1-SI3.pdf). Tra-

ditional reactions were carried out in a standard oil bath and microwave assisted synthesis

were carried out using a Sharp domestic microwave oven. IR spectra were recorded on a

Nexus Nicloet FTIR apparatus (KBr). TLC experiments were done on SiO2 precoated

plates with UV indicator (butanol/ethanol/water in proportions 3/5/3 was used as a

mobile phase).

3.1 Materials

For the reason that β–cyclodextrin forms very stable complex with six molecules of water

[2], β-CD, after recrystallization from water was dried under low pressure for 12 hours at

100 ◦C. Pyridine was dried with solid NaOH and then fractionally distilled. Commercially
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available p–toluenesulfonyl chloride (Anal. purity) and pyridine derivatives were used

without further purification.

MTs–β–CD was synthesized as described before [8]. Crude MTs–β–CD was recrys-

tallized from water and dried under low pressure at 90 ◦C. Monomodification was verified

by liquid chromatography followed by 1H NMR spectroscopy, yield 5 g, 22 % [12].

3.2 General procedure A

0.5 g of MTs–β–CD was added into 30 ml of lutidine and the solution was refluxed under

nitrogen atmosphere for 2 hours. Next the precipitate was extracted with acetone in a

Soxhlet apparatus, dissolved in a small amount of water and after filtering, precipitated

with acetone and centrifuged, filtered and dried under vacuum at 60 ◦C. When it was

necessary the product was purified by column chromatography on Sephadex G25.

3.3 General procedure B

0.5 g of MTs–β–CD and 3 ml of lutidine were mixed with 5 g of Al2O3 Montmorillonite

and put into the open reactor. Then the mixture was subjected to microwave irradiation

for 2 minutes (4 x 0.5 minutes with 2-minute intervals) at output power level 850 W.

After the reaction the mixture was added to a small amount of water, filtered and the

product precipitated with an excess of acetone. Next the precipitate was centrifuged and

dried under vacuum at 60 ◦C.

Mono(6-deoxy-6-(2,3-dimethyl)pyridinium)-β-cyclodextrin tosylate, was obtained as a

light brown solid.
1HNMR (DMSO-d6) (δ ppm) 2.082(s, 3H); 2.286(s, 3H); 2.497(s, 3H); 3.20–5.12(m, 42H);

6.28(s 7H); 7.10(d, J=7.8Hz 2H). IR(neat, cm−1); 3374, 2928, 1646, 1558, 1417, 1367,

1300, 1156, 1080, 1032, 950–530.

Mono(6-deoxy-6-(2,4-dimethyl)pyridinium)-β-cyclodextrin tosylate, was obtained as a

light brown solid.
1HNMR (DMSO-d6) (δ ppm) 2.25 (s, 3H); 2.375 (s, 3H); 2.475 (s, 3H); 2.875-5.125 (m,

42H); 5.75 (s, 7H); 7.075 (d, J=7.5Hz, 2H); 7.475 (d, J=7.5Hz, 2H); 7.69-7.95 (m, 1H);

8.25 (d, J=6.25Hz, 1H); 8.65-8.875 (m, 1H). IR(neat, cm−1); 3374, 2928, 1643, 1573,

1412, 1367, 1300, 1156, 1080, 1031, 950–530.

Mono(6-deoxy-6-(3,4-dimethyl)pyridinium)-β-cyclodextrin tosylate, was obtained as the

yellow solid.
1HNMR (DMSO-d6) (δ ppm) 2.079 (s, 3H); 2.29 (s, 3H); 2.5 (s, 3H); 2.9-5.1 (m, 42H);

5.76 (s, 7H); 7.14 (d, J=7.8Hz, 2H); 7.5 (d, J=8.3Hz, 2H); 7.76-8.1 (m, 1H); 8.16-8.37 (m,

1H); 8.52-8.9 (m, 1H). IR (neat, cm−1); 3374, 2928, 1642, 1576, 1412, 1367, 1300, 1156,

1080, 1032, 950–530.
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