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Abstract: Principal Component Analysis (PCA) was used for the mapping of geochemical

data. A testing data matrix was prepared from the chemical and physical analyses of the coals

altered by thermal and oxidation effects. PCA based on Singular Value Decomposition (SVD)

of the standardized (centered and scaled by the standard deviation) data matrix revealed three

principal components explaining 85.2 % of the variance. Combining the scatter and components

weights plots with knowledge of the composition of tested samples, the coal samples were divided

into seven groups depending on the degree of their oxidation and thermal alteration.

The PCA findings were verified by other multivariate methods. The relationships among

geochemical variables were successfully confirmed by Factor Analysis (FA). The data structure

was also described by the Average Group dendrogram using Euclidean distance. The found

sample clusters were not defined so clearly as in the case of PCA. It can be explained by the

PCA filtration of the data noise.
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1 Introduction

Real chemical data contain not only important information but also confusing noise. They

are mostly far from normality with collinear and/or autocorrelated variables, containing

outliers and so forth. For extraction of this information with its minimal lost, there are

several chemometric methods for the reduction of data dimensionality, such as Principal

Component Analysis, Factor Analysis, Independent Component Analysis [1], Independent
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Factor Analysis [2], Generative Topographic Mapping [3], etc.

In PCA, we look for new abstract orthogonal components (eigenvectors) which explain

the most of data variation. PCA is based on the Eigenvalue Decomposition (EVD) [4,5] of

covariance/correlation matrixes and/or by the SVD of real data matrices. In comparison

with EVD, SVD is the more robust, reliable, and precise method with no need to compute

the input covariance/correlation matrix [6]. From a numerical point of view, SVD is well

known for its stability and convergence, even in cases of ill-conditioned problems.

SVD decomposes an arbitrary matrix A (nxp) into three matrices:

A = U S VT (1)

where U (nxn) and VT (pxp) are orthogonal and normalized matrices, i.e., UT U=I and

VT V=I. S (nxp) is a diagonal matrix with singular values in decreasing order. The

columns of U are the left singular vectors and the rows of the VT are the right singulars

vectors. Computing the SVD consists of finding the eigenvalues and eigenvectors of AAT

and AT A. The columns of U are eigenvectors of AAT and the rows VT are the eigenvectors

of AT A. The singular values are the square roots of the eigenvalues of AAT or AT A. The

powerful property of SVD is compressing the information contained in A into the first

singular vectors which are mutually orthogonal and their importance rapidly decreases

after the first columns/rows. The importance of each singular vector is given by the

squares of nonnegative singular values of the matrix S.

SVD has already found the wide range of various applications in molecular dynamic

and gene expression analysis [7], information retrieval, e.g., in the technique of Latent

Semantic Indexing [8], image processing [9], spectral analysis [10], etc.

The aim of this paper was to analyze geochemical data by the SVD-based PCA

(PCA/SVD). The testing data matrix summarises the results of chemical and physical

properties of the coal samples taken from the Upper Silesian Coal Basin in the Czech

Republic. There are Carboniferous red bed bodies in this area. Within the red beds and

their vicinity, coals were altered by the oxidation and thermal effects which are manifested

in their macroscopic and microscopic characteristics and various chemical composition.

2 Experimental

2.1 Geochemical data set

PCA/SVD was tested on the data matrix of the coal samples (n= 52) taken from the

region of red bed bodies of the Upper Silesian Coal Basin. This testing data set was

adopted from the work of Klika and Kraussová [11] with the authors courtesy. Coal

analyses, including sampling and preservation, were carried out according to the standard

methods. The parameters were selected in order to classify altered coals. The content of

ash (Ad, wt %), moisture (Wa, wt %), volatile matter (Vdaf , wt %), humic acids (HAdaf ,

wt %), combustion heat (Qdaf , MJ/kg), mean reflectance of vitrinite (RO), concentration

of elements (Cat, Hat, Oat, Nat, all in atom %). The sample summary statistics are given
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in Table 1. It is obvious that the data are not normally distributed and scaling effects

can be expected.

2.2 Multivariate computations

The data matrix for PCA/SVD was prepared and treated in Excel 97. SVD of this matrix

A was executed using the standard MATLAB command svds(A,k) which computes the

k largest values and associated singular vectors of the matrix A. These data are typical

by various types and scales of measured variables. To avoid the scaling effects, the data

were standardized, i.e. centered the mean (average) and scaled the standard deviation of

the original measurement variables [12]. FA and HCA were performed by the software

packages NCSS 97 (Number Cruncher Statistical Systems, Utah).

3 Results and discussion

3.1 Determination of the principal components

Determination of the components number is given by the characteristics of singular values

and is demonstrated in a scree plot (see Fig. 1). The singular values sharply decrease

within three largest singular vectors and then slowly stabilize for remaining ones which

contain a great deal of noise and therefore are not useful. Regarding the SVD theory,

the singular values correspond to the square roots of the eigenvalues. That is why the

variance of the singular vectors (principal components, PCs) can be expressed according

to the equation

var. =
s
2

k
n∑

1

s
2

i

(2)

where sk is a singular value. The revealed PC1 to PC3 contain 46.2 %, 27.4 %, and 11.6 %,

i.e. 85.2 % of the total data variance. This is in close agreement with the conventional

80% of the variance which should be explained by the principal components.

3.2 PCA of the relationships among geochemical variables

The components weights were calculated as the correlation coefficients of the original

variables with the principal components and their plot is displayed in Fig. 2. The strong

relations among Ro, Cat, and their reciprocity to Hat are evident from their opposite

positions in the plot and well agree with the geochemical theory. The reduction of Hat

is associated with the relative increase of Cat. The high reflectance of vitrinite R0 is an

effect of the coal oxidation at higher temperatures. The chemical composition of thermally

altered coals without an influence of oxygen is characterized by the high concentrations

of hydrogen. Under these conditions, Ro, Cat, and Hat can express the intensity of the

thermal changes in coals.
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Parametr Wa Ad Vdaf Qdaf HAdaf R Cat Hat Nat Oat

(%) (%) (%) (MJ/kg) (%) (%) (%) (%) (%)

Count 52 52 52 52 52 52 52 52 52 52

Average 10.6 14.7 24.1 30.4 13.3 2.07 64.7 26.1 1.41 7.598

Variance 47.0 152 135 14.06 712 1.86 71.5 60.2 0.728 17.1

Stnd. dev. 6.86 12.3 11.6 3.75 26.7 1.362 8.46 7.76 0.8529 4.14

Minimum 1.07 2.83 2.28 23.44 0∗ 0.88 55.47 9.34 0.71 1.72

Maximum 24.65 55.51 45.70 35.50 88.41 5.70 88.06 40.32 4.43 15.27

Range 23.58 52.68 43.42 12.06 88.41 4.82 32.59 30.98 3.72 13.55

Skewness 0.7214 5.3599 -1.3122 -1.0423 5.4920 4.1900 3.2678 0.4316 6.2286 0.7645

Kurtosis -1.6016 4.2330 -1.2066 -1.7067 2.8191 1.2955 0.9257 -0.3927 6.1052 -1.8078

∗ Concentration bellow the detection limit;
Stnd. dev. = Standard deviation.

Table 1 Summary statistics of the tested geochemical data.
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Fig. 1 Scree plot of the singular values.

Fig. 2 Principal components weights plot of the geochemical variables.

On the other hand, the variables Wa, Oat, HAdaf , and Ad are considered to indicate

the oxidation processes in coal. Their positions are similar to each other in Fig. 2. In

addition, the closest relation between HAdaf and Ad is exhibited. The high content of Ad

is likely caused by loses of the gaseous oxidation products, such as CO, CO2, and H2O.

Humic acids and water are the direct products of oxidation processes in altered coals.

The reciprocal relationships of Wa and Oat to Qdaf are obvious from Fig. 2 and can be

logically expected.
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3.2.1 Factor Analysis of the geochemical data

Factor Analysis was carried out to confirm the relations among the variables found by

PCA/SVD. The loading factors are given in Table 2. In factor 1, the content of Hat

strongly, negatively correlates with Ro and Cat. As it was given above, these variables

can characterize the thermal coal alteration with zero or very low content of oxygen.

Factor 2 reveals the significant correlations among the content of Wa and Oat which are

negatively correlated with Qdaf and thus corresponds to the oxidation alteration of coals.

Factor 3 is mainly saturated by the content of Ad and HAdaf as the products of coal

oxidation, as well. Their relation was clearly shown in Fig. 2.

Parameter Factor 1 Factor 2 Factor 3

Wa -0.0538 0.9080 -0.2063

Ad 0.1657 0.0301 0.8205

Vdaf 0.7771 0.4159 0.2427

Qdaf -0.0510 -0.8573 -0.4502

HAdaf 0.1948 0.1139 0.7430

Ro -0.9364 -0.19130 -0.1503

Cat -0.9487 -0.0361 -0.2720

Hat 0.8728 -0.4698 -0.0081

Nat 0.0734 0.5812 0.6348

Oat 0.2857 0.8197 0.4268

Table 2 The factor loadings after Varimax rotation.

On the basis of these results, it can be concluded that the relationship among variables

within all three factors well agree with those discovered by PCA using the components

weights plot.

3.3 PCA clustering of the geochemical data

The principal component scatter plot of PC2 vs. PC1 was constructed (Figs. 3). The

seven clearly separated groups were found. The coal samples were divided into these

groups by means of hierarchical clustering of the two largest principal components scores.

A suitable clustering method was chosen according to the three clustering criteria, such as

Cophenetic correlation coefficient (CC), Delta(0.5), and Delta(1.0) [13]. Applying the Eu-

clidean distance metric, the highest CC and the lowest Delta(0.5) and Delta(1.0) were ob-

tained for the Simple Average method (CC=0.7113, Delta(0.5)=0.2855, and Delta(1.0)=

0.3369). The sample groups in Fig. 3 were created exactly according to the clusters of

the PC1 and PC2 dendrogram. By looking at this plot, the sample CM-2 seems to be an

outlier within the group I (see below). It is caused by its atypical content of Vdaf (19.98

%) and Ro (2.80) which were proved by the Dean-Dixon test to be the outlying values.

On the basis of the diagnostic plots and the composition of the sample groups I to IV/2

(Table 3), it is evident that the groups are vertically and horizontally located with respect
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Fig. 3 Principal components scatter plot of the coal samples.

to the thermal and oxidation changes during coal alteration, respectively. The group of

samples with the highest concentrations of hydrogen, the lowest values of the vitrinite

reflectances and the lowest concentrations of water was denoted as I. These samples are

considered to be mainly thermally altered. Six other groups contain the samples altered

both thermally and by oxidation and therefore they can be divided into two subgroups

(1 and 2) according to the temperatures (lower and higher) of coal oxidation: II (1, 2),

III (1, 2), and IV (1, 2). The samples II (1, 2) have the highest content of Cat and R0.

The magnitudes of the variables Wa, Oat, HAdaf indicating oxidation processes increase

in the order II/1, III/1, and IV/1. Moreover, the content of Wa is always higher in the

subgroups 2 (at higher temperatures). The groups III/1 and IV/1 are significant by the

high content of HAdaf . The lower content of HAdaf in III/2 and IV/2 is likely caused by

their thermal decomposition at the temperatures above 250 ◦C [14].

3.3.1 Hierarchical Clustering of the original geochemical data

For verification of the PCA/SVD mapping, hierarchical clustering of the original geochem-

ical data was carried out, as well. Applying the Euclidean and Manhattan distances, the

highest CC and the lowest Delta(0.5) and Delta(1.0) were obtained for the Group Average

method (Table 4). The final dendrogram (Fig. 4) was constructed utilizing the Group

Average method with the Euclidean distance. The clusters were denoted in consistency

with the group identification in Fig. 3. As it is obvious from this figure the data structure

is not so clearly organized as it was found by PCA, specially in the case of the mixed

clusters I+III/1 and I+IV/1. The better clustering results of PCA are likely caused by

the its noise filtration which is due to the data dimensionality reduction.
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Coal I II/1 II/2 III/1 III/2 IV/1 IV/2
type x s x s x s x s x s x s x s

Wa 1.78 0.549 4.83 1.813 9.05 1.037 10.40 2.846 19.62 3.556 10.71 3.427 17.19 1.641

Ad 7.57 4.765 11.32 3.626 4.46 0.764 21.33 15.68 9.95 9.787 28.11 11.73 14.87 4.067

Vdaf 26.20 9.141 7.01 1.851 5.67 3.429 30.93 5.067 21.05 3.182 31.98 14.38 34.09 3.997

Qdaf 34.40 1.282 33.45 0.715 32.73 0.370 30.31 2.984 30.23 1.090 25.54 1.450 25.17 1.185

HAdaf 0.12 0.209 0.08 0.007 0.01 0.005 33.80 27.94 0.40 0.272 74.70 7.341 0.73 0.389

Ro 0.94 0.320 4.12 0.549 5.03 0.844 1.14 0.144 1.61 0.251 1.13 0.071 2.01 0.262

Cat 57.13 1.746 74.82 2.321 83.52 5.548 58.99 1.257 67.22 2.238 57.86 0.928 63.80 3.444

Hat 38.11 2.340 20.80 1.976 12.84 4.742 29.98 1.320 24.11 1.502 26.55 2.065 20.01 1.954

Nat 0.90 0.095 0.86 0.080 0.86 0.050 1.22 0.202 1.17 0.104 2.96 1.180 2.35 0.674

Oat 3.78 0.936 3.36 1.187 2.76 0.914 9.67 0.986 7.31 1.491 12.31 1.088 13.52 1.552

x-average and s-standard deviation; their units are the same as in Table 1.

Table 3 Basic statistics of the selected coal groups.
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Clustering Method Distance Delta(0.5) Delta(1.0) CC

Single Linkage Euclidean 1.0961 1.2440 0.6306

Complete Linkage Euclidean 0.3931 0.69 0.6912

Group Average Euclidean 0.1959 0.2445 0.7682

Simple Average Euclidean 0.2342 0.2911 0.6916

Centroid Euclidean 0.6431 0.8526 0.6625

Median Euclidean 0.5672 0.5884 0.5254

Ward’s Min. Variance Euclidean 0.8983 0.9081 0.5789

Single Linkage Manhattan 1.4639 1.7252 0.5551

Complete Linkage Manhattan 0.4219 0.4816 0.6819

Group Average Manhattan 0.2476 0.2981 0.7109

Simple Average Manhattan 0.2636 0.3212 0.6760

Centroid Manhattan 0.8672 1.0136 0.6848

Median Manhattan 0.4905 0.5295 0.6058

Ward’s Min. Variance Manhattan 0.8745 0.8905 0.6229

Table 4 Hierarchical clustering of the standardized geochemical data.

Fig. 4 Average group dendrogram of the coal samples using the Euclidean distance.
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4 Conclusion

The SVD-based Principal Component Analysis of the standardized data has revealed the

three principal components which explain 85.2 % of the variance. The relations among the

geochemical variables were recognised by the components weights plot and also confirmed

by Factor Analysis. The samples were clustered into seven groups in accordance with the

intensity of thermal and oxidation changes in coal matter. The PCA clustering was

compared with the Average Group dendrogram of the same data. Due to the data noise

filtration properties PCA provides the better resolved cluster of the coal samples.

Acknowledgment

Author kindly thanks to Pavel Praks for the programming of SVD in MATLAB and to
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