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Abstract: Principal Component Analysis (PCA) was used for the mapping of geochemical
data. A testing data matrix was prepared from the chemical and physical analyses of the coals
altered by thermal and oxidation effects. PCA based on Singular Value Decomposition (SVD)
of the standardized (centered and scaled by the standard deviation) data matrix revealed three
principal components explaining 85.2 % of the variance. Combining the scatter and components
weights plots with knowledge of the composition of tested samples, the coal samples were divided
into seven groups depending on the degree of their oxidation and thermal alteration.

The PCA findings were verified by other multivariate methods. The relationships among
geochemical variables were successfully confirmed by Factor Analysis (FA). The data structure
was also described by the Average Group dendrogram using Euclidean distance. The found
sample clusters were not defined so clearly as in the case of PCA. It can be explained by the
PCA filtration of the data noise.
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1 Introduction

Real chemical data contain not only important information but also confusing noise. They
are mostly far from normality with collinear and/or autocorrelated variables, containing
outliers and so forth. For extraction of this information with its minimal lost, there are
several chemometric methods for the reduction of data dimensionality, such as Principal
Component Analysis, Factor Analysis, Independent Component Analysis [1], Independent
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Factor Analysis [2], Generative Topographic Mapping [3], etc.

In PCA, we look for new abstract orthogonal components (eigenvectors) which explain
the most of data variation. PCA is based on the Eigenvalue Decomposition (EVD) [4,5] of
covariance/correlation matrixes and/or by the SVD of real data matrices. In comparison
with EVD, SVD is the more robust, reliable, and precise method with no need to compute
the input covariance/correlation matrix [6]. From a numerical point of view, SVD is well
known for its stability and convergence, even in cases of ill-conditioned problems.

SVD decomposes an arbitrary matrix A (nxp) into three matrices:

A=USsV? (1)

where U (nxn) and VT (pxp) are orthogonal and normalized matrices, i.e., U'U=I and
VIV=I. S (nxp) is a diagonal matrix with singular values in decreasing order. The
columns of U are the left singular vectors and the rows of the VI are the right singulars
vectors. Computing the SVD consists of finding the eigenvalues and eigenvectors of AA”
and ATA. The columns of U are eigenvectors of AAT and the rows VT are the eigenvectors
of ATA. The singular values are the square roots of the eigenvalues of AAT or ATA. The
powerful property of SVD is compressing the information contained in A into the first
singular vectors which are mutually orthogonal and their importance rapidly decreases
after the first columns/rows. The importance of each singular vector is given by the
squares of nonnegative singular values of the matrix S.

SVD has already found the wide range of various applications in molecular dynamic
and gene expression analysis [7], information retrieval, e.g., in the technique of Latent
Semantic Indexing [8], image processing [9], spectral analysis [10], etc.

The aim of this paper was to analyze geochemical data by the SVD-based PCA
(PCA/SVD). The testing data matrix summarises the results of chemical and physical
properties of the coal samples taken from the Upper Silesian Coal Basin in the Czech
Republic. There are Carboniferous red bed bodies in this area. Within the red beds and
their vicinity, coals were altered by the oxidation and thermal effects which are manifested
in their macroscopic and microscopic characteristics and various chemical composition.

2 Experimental

2.1 Geochemical data set

PCA/SVD was tested on the data matrix of the coal samples (n= 52) taken from the
region of red bed bodies of the Upper Silesian Coal Basin. This testing data set was
adopted from the work of Klika and Kraussova [11] with the authors courtesy. Coal
analyses, including sampling and preservation, were carried out according to the standard
methods. The parameters were selected in order to classify altered coals. The content of
ash (A, wt %), moisture (W%, wt %), volatile matter (V% wt %), humic acids (HA%/
wt %), combustion heat (Q%/, MJ/kg), mean reflectance of vitrinite (Rp), concentration
of elements (C*, H* O N%_ all in atom %). The sample summary statistics are given
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in Table 1. It is obvious that the data are not normally distributed and scaling effects
can be expected.

2.2 Multivariate computations

The data matrix for PCA /SVD was prepared and treated in Excel 97. SVD of this matrix
A was executed using the standard MATLAB command svds(A k) which computes the
k largest values and associated singular vectors of the matrix A. These data are typical
by various types and scales of measured variables. To avoid the scaling effects, the data
were standardized, i.e. centered the mean (average) and scaled the standard deviation of
the original measurement variables [12]. FA and HCA were performed by the software
packages NCSS 97 (Number Cruncher Statistical Systems, Utah).

3 Results and discussion

3.1 Determination of the principal components

Determination of the components number is given by the characteristics of singular values
and is demonstrated in a scree plot (see Fig. 1). The singular values sharply decrease
within three largest singular vectors and then slowly stabilize for remaining ones which
contain a great deal of noise and therefore are not useful. Regarding the SVD theory,
the singular values correspond to the square roots of the eigenvalues. That is why the
variance of the singular vectors (principal components, PCs) can be expressed according

to the equation

Sk

oF
1

where s;, is a singular value. The revealed PC1 to PC3 contain 46.2 %, 27.4 %, and 11.6 %,
i.e. 85.2 % of the total data variance. This is in close agreement with the conventional

var. =

(2)
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80% of the variance which should be explained by the principal components.

3.2 PCA of the relationships among geochemical variables

The components weights were calculated as the correlation coefficients of the original
variables with the principal components and their plot is displayed in Fig. 2. The strong
relations among R,, C*, and their reciprocity to H* are evident from their opposite
positions in the plot and well agree with the geochemical theory. The reduction of H*
is associated with the relative increase of C*. The high reflectance of vitrinite Rq is an
effect of the coal oxidation at higher temperatures. The chemical composition of thermally
altered coals without an influence of oxygen is characterized by the high concentrations
of hydrogen. Under these conditions, R,, C*, and H® can express the intensity of the
thermal changes in coals.



Parametr we Ad ydaf Qdf  HAdef R cot H Net o

(%) (%) (%) (MJ/kg) (%) (%) (%) (%) (%)
Count 52 52 52 52 52 52 52 52 52 52
Average 10.6 14.7 24.1 30.4 13.3  2.07 647 26.1 1.41  7.598
Variance 47.0 152 135 14.06 712 1.86  71.5 60.2  0.728  17.1
Stnd. dev. | 6.86 12.3 11.6 3.75 26.7  1.362  8.46 776 0.8529  4.14
Minimum | 1.07 2.83 2.28 23.44 0* 0.88 5547  9.34 0.71 1.72
Maximum | 24.65  55.51  45.70 35.50 8841 570  88.06  40.32 443 1527
Range 23.58  52.68  43.42 12.06  88.41  4.82 3259 3098  3.72  13.55
Skewness | 0.7214 5.3599 -1.3122 -1.0423 5.4920 4.1900 3.2678 0.4316 6.2286 0.7645
Kurtosis | -1.6016 4.2330 -1.2066 -1.7067 2.8191 1.2955 0.9257 -0.3927 6.1052 -1.8078

* Concentration bellow the detection limit;
Stnd. dev. = Standard deviation.

Table 1 Summary statistics of the tested geochemical data.
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Fig. 1 Scree plot of the singular values.
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Fig. 2 Principal components weights plot of the geochemical variables.

On the other hand, the variables W%, O%, HA%/ and A? are considered to indicate
the oxidation processes in coal. Their positions are similar to each other in Fig. 2. In
addition, the closest relation between HA/ and A¢ is exhibited. The high content of A¢
is likely caused by loses of the gaseous oxidation products, such as CO, CO,, and H5O.
Humic acids and water are the direct products of oxidation processes in altered coals.
The reciprocal relationships of W and O to Q?/ are obvious from Fig. 2 and can be
logically expected.
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3.2.1 Factor Analysis of the geochemical data

Factor Analysis was carried out to confirm the relations among the variables found by
PCA/SVD. The loading factors are given in Table 2. In factor 1, the content of H*
strongly, negatively correlates with R, and C*. As it was given above, these variables
can characterize the thermal coal alteration with zero or very low content of oxygen.
Factor 2 reveals the significant correlations among the content of W and O which are
negatively correlated with Q% and thus corresponds to the oxidation alteration of coals.
Factor 3 is mainly saturated by the content of A? and HA%/ as the products of coal
oxidation, as well. Their relation was clearly shown in Fig. 2.

Parameter | Factor 1 Factor 2 Factor 3
we -0.0538  0.9080  -0.2063
A 0.1657  0.0301  0.8205
ydaf 0.7771  0.4159  0.2427
Qdaf -0.0510 -0.8573  -0.4502
HAdaS 0.1948  0.1139  0.7430
R, -0.9364 -0.19130 -0.1503
Coat -0.9487 -0.0361  -0.2720
Het 0.8728  -0.4698  -0.0081
Nat 0.0734  0.5812  0.6348
oot 0.2857  0.8197  0.4268

Table 2 The factor loadings after Varimax rotation.

On the basis of these results, it can be concluded that the relationship among variables
within all three factors well agree with those discovered by PCA using the components

weights plot.

3.3 PCA clustering of the geochemical data

The principal component scatter plot of PC2 vs. PC1 was constructed (Figs. 3). The
seven clearly separated groups were found. The coal samples were divided into these
groups by means of hierarchical clustering of the two largest principal components scores.
A suitable clustering method was chosen according to the three clustering criteria, such as
Cophenetic correlation coefficient (CC), Delta(0.5), and Delta(1.0) [13]. Applying the Eu-
clidean distance metric, the highest CC and the lowest Delta(0.5) and Delta(1.0) were ob-
tained for the Simple Average method (CC=0.7113, Delta(0.5)=0.2855, and Delta(1.0)=
0.3369). The sample groups in Fig. 3 were created exactly according to the clusters of
the PC1 and PC2 dendrogram. By looking at this plot, the sample CM-2 seems to be an
outlier within the group I (see below). It is caused by its atypical content of V/ (19.98
%) and R, (2.80) which were proved by the Dean-Dixon test to be the outlying values.
On the basis of the diagnostic plots and the composition of the sample groups I to IV /2
(Table 3), it is evident that the groups are vertically and horizontally located with respect
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Fig. 3 Principal components scatter plot of the coal samples.

to the thermal and oxidation changes during coal alteration, respectively. The group of
samples with the highest concentrations of hydrogen, the lowest values of the vitrinite
reflectances and the lowest concentrations of water was denoted as I. These samples are
considered to be mainly thermally altered. Six other groups contain the samples altered
both thermally and by oxidation and therefore they can be divided into two subgroups
(1 and 2) according to the temperatures (lower and higher) of coal oxidation: II (1, 2),
IT (1, 2), and IV (1, 2). The samples II (1, 2) have the highest content of C* and Ry.
The magnitudes of the variables W2, O%, HA?/ indicating oxidation processes increase
in the order II/1, III/1, and IV /1. Moreover, the content of W* is always higher in the
subgroups 2 (at higher temperatures). The groups I11/1 and IV/1 are significant by the
high content of HA/. The lower content of HA%/ in I11/2 and 1V/2 is likely caused by
their thermal decomposition at the temperatures above 250 °C [14].

3.3.1 Hierarchical Clustering of the original geochemical data

For verification of the PCA /SVD mapping, hierarchical clustering of the original geochem-
ical data was carried out, as well. Applying the Euclidean and Manhattan distances, the
highest CC and the lowest Delta(0.5) and Delta(1.0) were obtained for the Group Average
method (Table 4). The final dendrogram (Fig. 4) was constructed utilizing the Group
Average method with the Euclidean distance. The clusters were denoted in consistency
with the group identification in Fig. 3. As it is obvious from this figure the data structure
is not so clearly organized as it was found by PCA, specially in the case of the mixed
clusters I+11I/1 and I4+1V/1. The better clustering results of PCA are likely caused by
the its noise filtration which is due to the data dimensionality reduction.



Coal I1/1 11/2 I11/1 I11/2 Iv/1 Iv/2
type X S X S X S X S X S X S X S
W 1.78 0.549 4.83 1.813 9.05 1.037 10.40 2.846 19.62 3.556 10.71 3.427 17.19 1.641
Ad 757 4.765 11.32 3.626 4.46 0.764 21.33 15.68 9.95 9.787 28.11 11.73 14.87 4.067
vdaf 26.20 9.141 7.01 1.851 5.67 3.429 30.93 5.067 21.05 3.182 31.98 14.38 34.09 3.997
Qdaf 34.40 1.282 3345 0.715 32.73 0.370 30.31 2.984 30.23 1.090 25.54 1.450 25.17 1.185
HA%S | 012 0.209 0.08 0.007 0.01 0.005 33.80 27.94 040 0.272 7470 7.341 0.73 0.389
R, 0.94 0.320 4.12 0.549 5.03 0.844 1.14 0.144 1.61 0.251 1.13 0.071 2.01 0.262
Cat 57.13 1.746 T74.82 2.321 83.52 5.548 58.99 1.257 67.22 2.238 57.86 0.928 63.80 3.444
H 38.11 2.340 20.80 1.976 12.84 4.742 29.98 1.320 24.11 1.502 26.55 2.065 20.01 1.954
Nat 0.90 0.095 0.86 0.080 0.86 0.050 1.22 0.202 1.17 0.104 296 1.180 2.35 0.674
o 3.78 0936 3.36 1.187 2.76 0.914 9.67 098 7.31 1.491 1231 1.088 13.52 1.552

x-average and s-standard deviation; their units are the same as in Table 1.

Table 3 Basic statistics of the selected coal groups.
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Clustering Method Distance Delta(0.5) Delta(1.0) CC

Single Linkage Euclidean 1.0961 1.2440 0.6306
Complete Linkage Euclidean 0.3931 0.69 0.6912
Group Average Euclidean 0.1959 0.2445  0.7682
Simple Average Euclidean 0.2342 0.2911 0.6916
Centroid Euclidean 0.6431 0.8526 0.6625
Median Euclidean 0.5672 0.5884 0.5254
Ward’s Min. Variance | FEuclidean 0.8983 0.9081 0.5789
Single Linkage Manhattan 1.4639 1.7252 0.5551
Complete Linkage Manhattan 0.4219 0.4816 0.6819
Group Average Manhattan  0.2476 0.2981 0.7109
Simple Average Manhattan 0.2636 0.3212 0.6760
Centroid Manhattan 0.8672 1.0136 0.6848
Median Manhattan 0.4905 0.5295 0.6058
Ward’s Min. Variance | Manhattan 0.8745 0.8905 0.6229

Table 4 Hierarchical clustering of the standardized geochemical data.
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Fig. 4 Average group dendrogram of the coal samples using the Euclidean distance.
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4 Conclusion

The SVD-based Principal Component Analysis of the standardized data has revealed the
three principal components which explain 85.2 % of the variance. The relations among the
geochemical variables were recognised by the components weights plot and also confirmed
by Factor Analysis. The samples were clustered into seven groups in accordance with the
intensity of thermal and oxidation changes in coal matter. The PCA clustering was
compared with the Average Group dendrogram of the same data. Due to the data noise
filtration properties PCA provides the better resolved cluster of the coal samples.
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