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Abstract: In this paper we present some MATLAB and GAP programs and use them to
find the automorphism group of the Euclidean graph of the Cgg fullerene with connectivity
and geometry of I, symmetry point group. It is proved that this group has order 120 and is
isomorphic to I, = Zs x Aj, where Zs is a cyclic group of order 2 and Aj is the alternating
group on five symbols.
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1 Introduction

Let G = (V,E) be a simple graph. G is called a weighted graph if each edge e is assigned
a non-negative number w(e), called the weight of e. An unweighted graph G can be
regarded as a weighted graph in which for all edges e € E(G), w(e) = 1. The Euclidean
graph of a molecule is a complete weighted graph in which each edge is weighted by the
Euclidean distance between its vertices.

An automorphism of a weighted graph G is a permutation g of the vertex set of G
with the property that, (i) for any vertices u and v, g(u) and g(v) are adjacent if and only
if u is adjacent to v; (ii) for every edge e, w(g(e)) = w(e). The set of all automorphisms of
a weighted graph G, with the operation of composition of permutations, is a permutation
group on V(G), denoted Aut(G).

By the symmetry of a system we mean the automorphism group symmetry of its
graph. The symmetry of its graph, also called a topological symmetry, accounts only
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for the bond relations between the atoms in a molecule, and does not fully determine
the molecular geometry. The symmetry of a graph does not need to be the same as
(i.e. isomorphic to) the molecular point group symmetry. However, it does represent the
maximal symmetry which the geometrical realization of a given topological structure may
possess.

In Refs. [1,2], it was shown by Randi¢ that a graph can be depicted in different ways
such that its point group symmetry or three dimensional perception may differ, but the
underlying connectivity symmetry is still the same as characterized by the automorphism
group of the graph. However, the molecular symmetry depends on the coordinates of the
various nuclei which relate directly to their three dimensional geometry. Although the
symmetry as perceived in graph theory by the automorphism group of the graph and the
molecular group are quite different, it was shown by Balasubramanian [3] that the two
symmetries are connected.

In this paper we consider only weighted graphs. The motivation for this study is
outlined in Refs [3-16] and the reader is encouraged to consult these papers for background
material as well as for basic computational techniques. Our notation is standard and taken
mainly from Refs. [17-19)].

2 Computational details

In this section we first describe some notation, which will be kept throughout. Let G be
a group and N be a subgroup of G. N is called a normal subgroup of G, if for any geG
and x€N, g~'xgeN. If H is another normal subgroup of G such that HON = {e} and G
= HN = {xy | x€H, yeN}, then we say that G is a direct product of H and N denoted by
H x N. A group with no proper non-trivial normal subgroup is called simple. Suppose
X is a set. The set of all permutations on X, denoted by Sy, is a group which is called
the symmetric group on X. In the case that, X = {1, 2,..., n}, we denote Sx by S,, or
Sym(n).

The last years have seen a rapid spread of interest in the understanding, design and
even implementation of group theoretical algorithms. These are gradually becoming
accepted both as standard tools for a working group theoretician, as implemented, for
example, in certain methods of proof, and as worthwhile objects of study, for example in
exploring connections between notions expressed in theorems.

Our computations of the symmetry properties of molecules were carried out with the
use of GAP [20]. GAP stands for Groups, Algorithms and Programming. The name was
chosen to reflect the aim of the system, which is a group theoretical software for solving
computational problems in computational group theory. This software was constructed
by GAP’s team in Aachen. GAP is a free and extendable software package. The term
extendable means that you can write your own programs in the GAP language, and use
them in just the same way as the programs which form part of the system (the “library”).
More information on the motivation and development of GAP to date can be found on
GAP web page on http://www.gap-system.org. GAP contains a large library of functions,
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which are important for the calculations of this paper.

GAP contains several functions for working with finite groups. For the sake of com-
pleteness, we describe some of these functions which are useful throughout. Let a;, as,
..., a, be permutations of {1,2,...,n}. The command “Group(ay,as,. . .,a,)” computes the
group generated by permutations aq, as, ..., a,. For two groups A and B, the commands
“Size(A)”, “GeneratorsOfGroup(A)” and “Intersection(A,B)” compute the cardinality of
the set A, a generator set for A and intersection of A and B, respectively. Finally the
command “IsSimple(A)” determines whether or not A has a non-trivial proper normal
subgroup. In this paper, we freely use these functions and the reader is encouraged to
consult the GAP manual[20] and Refs. [14-16, 21].

Consider the equation (P,)*AP, = A, where A is the adjacency matrix of the weighted
graph G. Suppose Aut(G) = {01, 02,..., 0, }. The matrix Sg = [s;;], where s;; = 0;(j)
is called a solution matrix for G. Clearly, for computing the automorphism group of G,
it is enough to calculate a solution matrix for G. In Ref. [16], one of us proved a result
that is useful for computing symmetry of molecules. Using this result, Lemma 1 and its
Corollary, we present a MATLAB program [22] for computing a solution matrix for the
automorphism group of Euclidean graphs.

2.1 A MATLAB program for computing the symmetries of molecules

Our program needs the Cartesian coordinates of the atoms to determine the Euclidean
distances in the molecule under consideration. If we calculate these distances using Hy-
perChem, Gaussian 98 or similar software, then for computing the symmetry of molecule
under consideration, the first eight lines of the program can be deleted and the distance
matrix of the molecule directly loaded. A set of Cartesian coordinates for the Cgq fullerene
with I, symmetry point group, calculated using Gaussian 98, are presented in Table 1.

n=length(a);
for i=1:n-1
for j=i+l:n
b(i,j)=norm(a(i,:)-a(j,:));
end
end
b(n,n)=0;
b=b+b’;

function y=halat(s,a)
t=1:1length(a);
m=1length(s);
t(s)=[1;
3=0;
for i=t
if min(min(a(l:m+1,1:m+1)==a([s,i], [s,i])))==
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J=3+1;
y(3)=1;
end
end

function s=hazf(s)
m=size(s);
for i=m(1):-1:1
if min(s(i,:))==0
s(i,)=[1;
end
end

function s=jaigasht(a)
m=length(a);
for i=1:m
s(i,1)=1i;
end
for j=2:m
n=size(s);
k=0;
for i=1:n(1)
y=[halat(s(i,:),a)];
for r=1:length(y)
b(r+k,1:n(2)+1)=[s(i,:),y(®)];
end
k=k+length(y);
end
s=b;
s=hazf (s);
end
b=0;
n=size(s);
for i=1:n(1)
for j=1:n(2)
b(i,s(i,j))=j;
end

s=b;
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3 Results and discussion

In this section, we apply our program to compute the automorphism group of the Eu-
clidean graph of the Cgg-I;, molecule. The Cartesian coordinates of Cgy were computed
using HyperChem and Gaussian 98. It is important to note that in our program the
accuracy is very important. Our calculations on the symmetry of some fullerenes show
that, if we change the accuracy then the automorphism group will be changed. Hence in
Table I, the Cartesian coordinates of Cgg, were calculated to six digit accuracy.

We now calculate the symmetry of fullerene Cgy. Fullerenes are molecules in the
form of polyhedral closed cages made up entirely of n three-coordinate carbon atoms
and having 12 pentagonal and (n/2 -10) hexagonal faces. Fullerene structures exist for
all even numbers greater than or equal to 20, with the exception of n=22. Hence, the
fullerene, Cgg, (n = 80) has just 12 pentagonal faces and 30 hexagonal faces. Let G be the
automorphism group of the Fuclidean graph of the Cgy fullerene with I;, symmetry point
group. This molecule, Figure 1, will be used as an example to illustrate the Euclidean
graphs and their automorphism group. It should be mentioned that one does not have
to work with exact Euclidean distances since a mapping of weights into a set of integers
suffices as long as different weights are identified with different integers. To illustrate
let us use a Euclidean edge weighting for fullerenes Cgg obtained from Table I and our
program. Suppose A is the 80 x 80 matrix defined by Euclidean distances.

Not all 80! permutations of the vertices Cgy belong to the automorphism group of
its weighted graph since the weights of all the edges are not the same. For example,
the permutation (1,2,3,4,5,6,7) does not belong to the automorphism group since the
resulting graph does not preserve connectivity. Let X denote the set of all solutions of
matrix equation PPAP = A. Set Y = {x€ Sgo| P € X }. Then Y is the automorphism
group of the Euclidean graph of Cgg. We now apply our MATLAB program to find
a solution matrix for this group. After running this program, we can see that G has
order 120. Using the solution matrix of Cgy and a simple GAP program, we can find the
structure of the automorphism group G of Euclidean graph of Cgy. We mention that this
program is very fast and its running time is less than 0.01 s. Our GAP program is as
follows:

3.1 A GAP Program for Computing the Structure of the Automorphism
Group of the Euclidean Graphs of Cg

G = Group(X); Size(G);

R := NormalSubgroups(G);
I := Intersection(R[2],R[3]);
GeneratorsOfGroup(R[2]
GeneratorsOfGroup(R|[3]
IsSimple(R[2]);

);
);

I

Using this GAP program two proper non-trivial normal subgroups N= R[2] and
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M = R[3] are obtained which intersect trivially. Therefore, G is isomorphic to the direct
product Zox Ajs, where Zs is a cyclic group of order 2 and Aj is the unique simple group
of order 60. We now consider the following permutations:

Ay = (2,3,4)(5,9,8)(6,10,7)(11,13,12)(14,19,17)(15,18,16)(20,26,23)
(21,27,24)(22,28,25)(29,37,33)(30,40,34)(31,39,35)(32,38,36)
(41,49,45)(42,52,46)(43,51,47) (44,50,48)(53,59,56) (54,60,57)
(55,61,58)(62,64,63)(65,70,68)(66,69,67)(71,75,74)(72,76,73)(77,78,79),

A, = (1,11,21,58,64,80,62,54,25,13)(2,20,30,70,75,77,53,42,19,9)
(3,5,29,48,76,78,71,41,36,10)(4,6,16,47,59,79,72,67,35,26)
(7,38,31,69,66,73,50,43,18,15)(8,14,17,46,49,74,65,68,34,37)
(12,28,22,57,60,63,61,55,24,27)(23,39,32,45,52,56,51,44,33,40),

By =(1,80)(2,77)(3,78)(4,79)(5,71)(6,72)(7,73)(8,74)(9,75)(10,76)(11,62)
(12,63)(13,64)(14,65)(15,66)(16,67)(17,68)(18,69)(19,70)(20,53)(21,54)
(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,41)(30,42)(31,43)
(32,44)(33,45)(34,46) (35,47)(36,48)(37,49)(38,50)(39,51) (40,52),

Cy =(1,80)(2,77)(3,79)(4,78)(5,73)(6,74)(7,71)(8,72)(9,76)(10,75)(11,63)
(12,62)(13,64)(14,69)(15,70)(16,68)(17,67)(18,65)(19,66)(20,56)(21,55)
(22,54)(23,53)(24,61)(25,60)(26,59)(27,58) (28,57)(29,44) (30,43) (31,42)
(32,41)(33,50)(34,51)(35,52)(36,49)(37,48)(38,45)(39,46) (40,47),

Cy =(1,60,54)(2,66,42)(3,49,67)(4,52,41)(5,75,43)(6,59,68)(7,65,36)
(8,51,35)(9,31,71)(10,32,53)(11,64,55)(12,61,25)(13,22,62)(14,48,73)
(15,30,77)(16,78,37)(17,72,26)(18,33,34)(19,23,50)(20,76,44)(21,80,27)
(28,58,63)(29,79,40)(38,70,56) (39,47,74)(45,46,69).

This program shows that {A;,As} is a generating set for G. Also, N = <B;> and
M = <C;,Cy> are normal subgroups of G. Since M is a simple group of order 60 and Aj
is the unique simple group of this order, M = A5. Therefore, the automorphism group of
the Euclidean graph of fullerene Cgg has order 120 and is isomorphic to Zgx As.

4 Conclusions

Suppose T is a complete weighted graph and Supp(T) = [{w(e) | e is an edge of T}|. If
Supp(T) is large enough, for example greater than |V(T)|, then our algorithm and also
our MATLAB program is very fast for computing the symmetry of the graph T. In par-
ticular, our program is suitable for computing the symmetry of fullerenes. We applied our
programs for computing the symmetries of all molecules in Fullerene Gallery presented by
Mitsuho Yoshida (for details see the web address http://www.cochem2.tutkie.tut.ac.jp/
Fuller /higher /higherE.html) with running time less than 0.01 s for the GAP program and
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less than 1 s for the MATLAB program running on parallel Pentium IV computers. The
maximum running times were obtained for the case of fullerenes with I, symmetry group.

We also mention that, our calculations with GAP and calculations done by Balasub-
ramanian [3-9], Hao-Xu [10], Ivanov [11] and Ivanov-Schiiiirmann [12], suggest that the
automorphism group of the Euclidean graph of every molecule is trivial or has an even
number of elements.
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Fig. 1 The Fullerene
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No. Cartesian Coordinates No. Cartesian Coordinates
C(1)  (-1.408246,-0.234747,3.734826) | C(34) (-3.497917,-1.579070,-1.174670)
C(2)  (-1.425582,1.154427,3.569457 ) | C(35) (-2.758644,-2.750313,-0.969673)
C(3) (-0.162489,-0.844639,3.919980 ) | C(36) (-1.174199,-3.809160,0.474310)
C(4)  (-2.393305,-0.973526,3.071041 ) | C(37)  (0.940530,-3.685950,1.279230)
C(5)  (-0.238983,1.897231,3.528427 ) | C(38)  (3.073480,1.004397,2.378416)
C(6)  (1.024065,-0.101706,3.879941 ) | C(39) (3.532814,-1.171676,1.502252)
C(7)  (-2.353758,1.774150,2.724498 ) | C(40) (2.965856,-2.418377,1.210244)
C(8) (-3.321435,-0.353931,2.225092 ) | C(41) (-1.875657,-2.898698,-2.046089)
C(9) (0.106700,-2.119051,3.406902 ) | C(42) (-0.292211,-3.957559,-0.602151)
C(10) (-2.124107,-2.248931,2.558092 ) | C(43) (1.015019,-3.882087,-0.105101)
C(11) ( 1.009633,1.278402,3.652287 ) | C(44) (3.040391,-2.614642,-0.175078)
C(12)  (-3.299504,1.028367,2.011964 ) | C(45) (3.957755,-0.597297,0.297962)
C(13) (-0.859299,-2.832393,2.689232 ) | C(46)  (3.498375,1.578905,1.175116)
C(14)  (2.026729,-0.917566,3.340570 ) | C(47)  (2.758149,2.750005,0.969084)
C(15)  (1.459771,-2.164267,3.048561 ) | C(48) (1.173704,3.808852,-0.474898)
C(16)  (-0.433729,2.975636,2.658166 ) | C(49) (-0.941033,3.686634,-1.279947)
C(17)  (-1.740913,2.900035,2.160125 ) | C(50) (-3.072976,-1.004690,-2.378961)
C(18) (-3.626000,-1.245263,1.188670 ) | C(51) (-3.533355,1.171497,-1.501851)
C(19) (-2.885774,-2.416364,1.394702 ) | C(52) (-2.966397,2.418198,-1.209842)
C(20)  (2.069816,1.820242,2.917743 ) | C(53) (-2.070365,-1.819430,-2.917470)
C(21) (0.613091,3.477989,1.876630 ) | C(54) (-0.613594,-3.477305,-1.877348)
C(22) (-2.050478,3.323037,0.862601 ) | C(55) (2.049983,-3.323345,-0.863189)
C(23) (-3.653731,1.488449,0.738862 ) | C(56) (3.654189,-1.488614,-0.738416)
C(24) (-3.919410,-0.787758,-0.100455 ) | C(57)  (3.919914,0.787464,0.099911)
C(25) (-2.411613,-3.174201,0.318601 ) | C(58) (2.411072,3.174021,-0.318199)
C(26) (-0.412541,-3.640735,1.637571 ) | C(59) (0.412038,3.641419,-1.638288)
C(27)  (1.897532,-2.925157,1.959053 ) | C(60) (-1.898073,2.924978,-1.958651)
C(28)  (3.053305,-0.383763,2.554027 ) | C(61) (-3.052847,0.383598,-2.553580)
C(29) (1.876115,2.898533,2.046535 ) | C(62) (-1.010174,-1.278581,-3.651885)
C(30)  ( 0.291670,3.957380,0.602553 ) | C(63) (3.299962,-1.028532,-2.011518)
C(31)  (-1.015560,3.881907,0.105503) | C(64) (0.859757,2.832228,-2.688785)
C(32) (-3.040886,2.614334,0.174489 ) | C(65) (-2.026272,0.917400,-3.340123)
C(33) (-3.958296,0.597117,-0.297560 ) | C(66) (-1.459313,2.164101,-3.048115)

Table 1 Cartesian coordinates of Cgp molecule (angstroms).
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No. Cartesian Coordinates No. Cartesian Coordinates
C(67) (0.434187,-2.975801,-2.657719) | C(74)  (3.321939,0.353638,-2.225636)
C(68)  (1.740418,-2.900343,-2.160714) | C(75) (-0.106251,2.119878,-3.406584)
C(69)  (3.625505,1.244956,-1.189259) | C(76) ( 2.124565,2.248765,-2.557646)
C(70)  (2.885233,2.416184,-1.394300) | C(77) (1.426086,-1.154720,-3.570001)
C(71)  (0.239478,-1.896533,-3.529100) | C(78)  (0.162993,0.844345,-3.920524)
C(72) (-1.023615,0.102533,-3.879624) | C(79) (2.393755,0.974353,-3.070724)
C(73)  (2.354216,-1.774315,-2.724052) | C(80)  (1.408742,0.235445,-3.735499)

Table 1 (continued): Cartesian coordinates of Cgy molecule (angstroms).



