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Abstract: In this paper we present some MATLAB and GAP programs and use them to

find the automorphism group of the Euclidean graph of the C80 fullerene with connectivity

and geometry of Ih symmetry point group. It is proved that this group has order 120 and is

isomorphic to Ih ∼= Z2 × A5, where Z2 is a cyclic group of order 2 and A5 is the alternating

group on five symbols.
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1 Introduction

Let G = (V,E) be a simple graph. G is called a weighted graph if each edge e is assigned

a non-negative number w(e), called the weight of e. An unweighted graph G can be

regarded as a weighted graph in which for all edges e ∈ E(G), w(e) = 1. The Euclidean

graph of a molecule is a complete weighted graph in which each edge is weighted by the

Euclidean distance between its vertices.

An automorphism of a weighted graph G is a permutation g of the vertex set of G

with the property that, (i) for any vertices u and v, g(u) and g(v) are adjacent if and only

if u is adjacent to v; (ii) for every edge e, w(g(e)) = w(e). The set of all automorphisms of

a weighted graph G, with the operation of composition of permutations, is a permutation

group on V(G), denoted Aut(G).

By the symmetry of a system we mean the automorphism group symmetry of its

graph. The symmetry of its graph, also called a topological symmetry, accounts only
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for the bond relations between the atoms in a molecule, and does not fully determine

the molecular geometry. The symmetry of a graph does not need to be the same as

(i.e. isomorphic to) the molecular point group symmetry. However, it does represent the

maximal symmetry which the geometrical realization of a given topological structure may

possess.

In Refs. [1,2], it was shown by Randić that a graph can be depicted in different ways

such that its point group symmetry or three dimensional perception may differ, but the

underlying connectivity symmetry is still the same as characterized by the automorphism

group of the graph. However, the molecular symmetry depends on the coordinates of the

various nuclei which relate directly to their three dimensional geometry. Although the

symmetry as perceived in graph theory by the automorphism group of the graph and the

molecular group are quite different, it was shown by Balasubramanian [3] that the two

symmetries are connected.

In this paper we consider only weighted graphs. The motivation for this study is

outlined in Refs [3-16] and the reader is encouraged to consult these papers for background

material as well as for basic computational techniques. Our notation is standard and taken

mainly from Refs. [17-19].

2 Computational details

In this section we first describe some notation, which will be kept throughout. Let G be

a group and N be a subgroup of G. N is called a normal subgroup of G, if for any g∈G

and x∈N, g−1xg∈N. If H is another normal subgroup of G such that H∩N = {e} and G

= HN = {xy | x∈H, y∈N}, then we say that G is a direct product of H and N denoted by

H × N. A group with no proper non-trivial normal subgroup is called simple. Suppose

X is a set. The set of all permutations on X, denoted by SX , is a group which is called

the symmetric group on X. In the case that, X = {1, 2,. . . , n}, we denote SX by Sn or

Sym(n).

The last years have seen a rapid spread of interest in the understanding, design and

even implementation of group theoretical algorithms. These are gradually becoming

accepted both as standard tools for a working group theoretician, as implemented, for

example, in certain methods of proof, and as worthwhile objects of study, for example in

exploring connections between notions expressed in theorems.

Our computations of the symmetry properties of molecules were carried out with the

use of GAP [20]. GAP stands for Groups, Algorithms and Programming. The name was

chosen to reflect the aim of the system, which is a group theoretical software for solving

computational problems in computational group theory. This software was constructed

by GAP’s team in Aachen. GAP is a free and extendable software package. The term

extendable means that you can write your own programs in the GAP language, and use

them in just the same way as the programs which form part of the system (the “library”).

More information on the motivation and development of GAP to date can be found on

GAP web page on http://www.gap-system.org. GAP contains a large library of functions,
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which are important for the calculations of this paper.

GAP contains several functions for working with finite groups. For the sake of com-

pleteness, we describe some of these functions which are useful throughout. Let a1, a2,

. . . , ar be permutations of {1,2,. . . ,n}. The command“Group(a1,a2,. . . ,ar)” computes the

group generated by permutations a1, a2, . . . , ar. For two groups A and B, the commands

“Size(A)”, “GeneratorsOfGroup(A)” and “Intersection(A,B)” compute the cardinality of

the set A, a generator set for A and intersection of A and B, respectively. Finally the

command “IsSimple(A)” determines whether or not A has a non-trivial proper normal

subgroup. In this paper, we freely use these functions and the reader is encouraged to

consult the GAP manual[20] and Refs. [14-16, 21].

Consider the equation (Pσ)tAPσ = A, where A is the adjacency matrix of the weighted

graph G. Suppose Aut(G) = {σ1, σ2,. . . , σm}. The matrix SG = [sij], where sij = σi(j)

is called a solution matrix for G. Clearly, for computing the automorphism group of G,

it is enough to calculate a solution matrix for G. In Ref. [16], one of us proved a result

that is useful for computing symmetry of molecules. Using this result, Lemma 1 and its

Corollary, we present a MATLAB program [22] for computing a solution matrix for the

automorphism group of Euclidean graphs.

2.1 A MATLAB program for computing the symmetries of molecules

Our program needs the Cartesian coordinates of the atoms to determine the Euclidean

distances in the molecule under consideration. If we calculate these distances using Hy-

perChem, Gaussian 98 or similar software, then for computing the symmetry of molecule

under consideration, the first eight lines of the program can be deleted and the distance

matrix of the molecule directly loaded. A set of Cartesian coordinates for the C80 fullerene

with Ih symmetry point group, calculated using Gaussian 98, are presented in Table 1.

n=length(a);

for i=1:n-1

for j=i+1:n

b(i,j)=norm(a(i,:)-a(j,:));

end

end

b(n,n)=0;

b=b+b’;

function y=halat(s,a)

t=1:length(a);

m=length(s);

t(s)=[ ];

j=0;

for i=t

if min(min(a(1:m+1,1:m+1)==a([s,i],[s,i])))==1
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j=j+1;

y(j)=i;

end

end

function s=hazf(s)

m=size(s);

for i=m(1):-1:1

if min(s(i,:))==0

s(i,:)=[ ];

end

end

function s=jaigasht(a)

m=length(a);

for i=1:m

s(i,1)=i;

end

for j=2:m

n=size(s);

k=0;

for i=1:n(1)

y=[halat(s(i,:),a)];

for r=1:length(y)

b(r+k,1:n(2)+1)=[s(i,:),y(r)];

end

k=k+length(y);

end

s=b;

s=hazf(s);

end

b=0;

n=size(s);

for i=1:n(1)

for j=1:n(2)

b(i,s(i,j))=j;

end

end

s=b;
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3 Results and discussion

In this section, we apply our program to compute the automorphism group of the Eu-

clidean graph of the C80-Ih molecule. The Cartesian coordinates of C80 were computed

using HyperChem and Gaussian 98. It is important to note that in our program the

accuracy is very important. Our calculations on the symmetry of some fullerenes show

that, if we change the accuracy then the automorphism group will be changed. Hence in

Table I, the Cartesian coordinates of C80, were calculated to six digit accuracy.

We now calculate the symmetry of fullerene C80. Fullerenes are molecules in the

form of polyhedral closed cages made up entirely of n three-coordinate carbon atoms

and having 12 pentagonal and (n/2 -10) hexagonal faces. Fullerene structures exist for

all even numbers greater than or equal to 20, with the exception of n=22. Hence, the

fullerene, C80, (n = 80) has just 12 pentagonal faces and 30 hexagonal faces. Let G be the

automorphism group of the Euclidean graph of the C80 fullerene with Ih symmetry point

group. This molecule, Figure 1, will be used as an example to illustrate the Euclidean

graphs and their automorphism group. It should be mentioned that one does not have

to work with exact Euclidean distances since a mapping of weights into a set of integers

suffices as long as different weights are identified with different integers. To illustrate

let us use a Euclidean edge weighting for fullerenes C80 obtained from Table I and our

program. Suppose A is the 80 × 80 matrix defined by Euclidean distances.

Not all 80! permutations of the vertices C80 belong to the automorphism group of

its weighted graph since the weights of all the edges are not the same. For example,

the permutation (1,2,3,4,5,6,7) does not belong to the automorphism group since the

resulting graph does not preserve connectivity. Let X denote the set of all solutions of

matrix equation PtAP = A. Set Y = {∝∈ S80| P∝ ∈ X }. Then Y is the automorphism

group of the Euclidean graph of C80. We now apply our MATLAB program to find

a solution matrix for this group. After running this program, we can see that G has

order 120. Using the solution matrix of C80 and a simple GAP program, we can find the

structure of the automorphism group G of Euclidean graph of C80. We mention that this

program is very fast and its running time is less than 0.01 s. Our GAP program is as

follows:

3.1 A GAP Program for Computing the Structure of the Automorphism

Group of the Euclidean Graphs of C80

G := Group(X); Size(G);

R := NormalSubgroups(G);

I := Intersection(R[2],R[3]);

GeneratorsOfGroup(R[2]);

GeneratorsOfGroup(R[3]);

IsSimple(R[2]);

Using this GAP program two proper non-trivial normal subgroups N= R[2] and
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M = R[3] are obtained which intersect trivially. Therefore, G is isomorphic to the direct

product Z2× A5, where Z2 is a cyclic group of order 2 and A5 is the unique simple group

of order 60. We now consider the following permutations:

A1 = (2,3,4)(5,9,8)(6,10,7)(11,13,12)(14,19,17)(15,18,16)(20,26,23)

(21,27,24)(22,28,25)(29,37,33)(30,40,34)(31,39,35)(32,38,36)

(41,49,45)(42,52,46)(43,51,47)(44,50,48)(53,59,56)(54,60,57)

(55,61,58)(62,64,63)(65,70,68)(66,69,67)(71,75,74)(72,76,73)(77,78,79),

A2 = (1,11,21,58,64,80,62,54,25,13)(2,20,30,70,75,77,53,42,19,9)

(3,5,29,48,76,78,71,41,36,10)(4,6,16,47,59,79,72,67,35,26)

(7,38,31,69,66,73,50,43,18,15)(8,14,17,46,49,74,65,68,34,37)

(12,28,22,57,60,63,61,55,24,27)(23,39,32,45,52,56,51,44,33,40),

B1 =(1,80)(2,77)(3,78)(4,79)(5,71)(6,72)(7,73)(8,74)(9,75)(10,76)(11,62)

(12,63)(13,64)(14,65)(15,66)(16,67)(17,68)(18,69)(19,70)(20,53)(21,54)

(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,41)(30,42)(31,43)

(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51)(40,52),

C1 =(1,80)(2,77)(3,79)(4,78)(5,73)(6,74)(7,71)(8,72)(9,76)(10,75)(11,63)

(12,62)(13,64)(14,69)(15,70)(16,68)(17,67)(18,65)(19,66)(20,56)(21,55)

(22,54)(23,53)(24,61)(25,60)(26,59)(27,58)(28,57)(29,44)(30,43)(31,42)

(32,41)(33,50)(34,51)(35,52)(36,49)(37,48)(38,45)(39,46)(40,47),

C2 =(1,60,54)(2,66,42)(3,49,67)(4,52,41)(5,75,43)(6,59,68)(7,65,36)

(8,51,35)(9,31,71)(10,32,53)(11,64,55)(12,61,25)(13,22,62)(14,48,73)

(15,30,77)(16,78,37)(17,72,26)(18,33,34)(19,23,50)(20,76,44)(21,80,27)

(28,58,63)(29,79,40)(38,70,56)(39,47,74)(45,46,69).

This program shows that {A1,A2} is a generating set for G. Also, N = <B1> and

M = <C1,C2> are normal subgroups of G. Since M is a simple group of order 60 and A5

is the unique simple group of this order, M ∼= A5. Therefore, the automorphism group of

the Euclidean graph of fullerene C80 has order 120 and is isomorphic to Z2× A5.

4 Conclusions

Suppose T is a complete weighted graph and Supp(T) = |{w(e) | e is an edge of T}|. If

Supp(T) is large enough, for example greater than |V(T)|, then our algorithm and also

our MATLAB program is very fast for computing the symmetry of the graph T. In par-

ticular, our program is suitable for computing the symmetry of fullerenes. We applied our

programs for computing the symmetries of all molecules in Fullerene Gallery presented by

Mitsuho Yoshida (for details see the web address http://www.cochem2.tutkie.tut.ac.jp/

Fuller/higher/higherE.html) with running time less than 0.01 s for the GAP program and
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less than 1 s for the MATLAB program running on parallel Pentium IV computers. The

maximum running times were obtained for the case of fullerenes with Ih symmetry group.

We also mention that, our calculations with GAP and calculations done by Balasub-

ramanian [3-9], Hao-Xu [10], Ivanov [11] and Ivanov-Schüürmann [12], suggest that the

automorphism group of the Euclidean graph of every molecule is trivial or has an even

number of elements.
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Fig. 1 The Fullerene C80-Ih.
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No. Cartesian Coordinates No. Cartesian Coordinates

C(1) (-1.408246,-0.234747,3.734826) C(34) (-3.497917,-1.579070,-1.174670)

C(2) (-1.425582,1.154427,3.569457 ) C(35) (-2.758644,-2.750313,-0.969673)

C(3) (-0.162489,-0.844639,3.919980 ) C(36) (-1.174199,-3.809160,0.474310)

C(4) (-2.393305,-0.973526,3.071041 ) C(37) (0.940530,-3.685950,1.279230)

C(5) (-0.238983,1.897231,3.528427 ) C(38) (3.073480,1.004397,2.378416)

C(6) (1.024065,-0.101706,3.879941 ) C(39) (3.532814,-1.171676,1.502252)

C(7) (-2.353758,1.774150,2.724498 ) C(40) (2.965856,-2.418377,1.210244)

C(8) (-3.321435,-0.353931,2.225092 ) C(41) (-1.875657,-2.898698,-2.046089)

C(9) ( 0.106700,-2.119051,3.406902 ) C(42) (-0.292211,-3.957559,-0.602151)

C(10) (-2.124107,-2.248931,2.558092 ) C(43) (1.015019,-3.882087,-0.105101)

C(11) ( 1.009633,1.278402,3.652287 ) C(44) (3.040391,-2.614642,-0.175078)

C(12) (-3.299504,1.028367,2.011964 ) C(45) (3.957755,-0.597297,0.297962)

C(13) (-0.859299,-2.832393,2.689232 ) C(46) (3.498375,1.578905,1.175116)

C(14) (2.026729,-0.917566,3.340570 ) C(47) (2.758149,2.750005,0.969084)

C(15) (1.459771,-2.164267,3.048561 ) C(48) (1.173704,3.808852,-0.474898)

C(16) (-0.433729,2.975636,2.658166 ) C(49) (-0.941033,3.686634,-1.279947)

C(17) (-1.740913,2.900035,2.160125 ) C(50) (-3.072976,-1.004690,-2.378961)

C(18) (-3.626000,-1.245263,1.188670 ) C(51) (-3.533355,1.171497,-1.501851)

C(19) (-2.885774,-2.416364,1.394702 ) C(52) (-2.966397,2.418198,-1.209842)

C(20) (2.069816,1.820242,2.917743 ) C(53) (-2.070365,-1.819430,-2.917470)

C(21) ( 0.613091,3.477989,1.876630 ) C(54) (-0.613594,-3.477305,-1.877348)

C(22) (-2.050478,3.323037,0.862601 ) C(55) (2.049983,-3.323345,-0.863189)

C(23) (-3.653731,1.488449,0.738862 ) C(56) (3.654189,-1.488614,-0.738416)

C(24) (-3.919410,-0.787758,-0.100455 ) C(57) (3.919914,0.787464,0.099911)

C(25) (-2.411613,-3.174201,0.318601 ) C(58) (2.411072,3.174021,-0.318199)

C(26) (-0.412541,-3.640735,1.637571 ) C(59) (0.412038,3.641419,-1.638288)

C(27) (1.897532,-2.925157,1.959053 ) C(60) (-1.898073,2.924978,-1.958651)

C(28) (3.053305,-0.383763,2.554027 ) C(61) (-3.052847,0.383598,-2.553580)

C(29) (1.876115,2.898533,2.046535 ) C(62) (-1.010174,-1.278581,-3.651885)

C(30) ( 0.291670,3.957380,0.602553 ) C(63) (3.299962,-1.028532,-2.011518)

C(31) (-1.015560,3.881907,0.105503) C(64) (0.859757,2.832228,-2.688785)

C(32) (-3.040886,2.614334,0.174489 ) C(65) (-2.026272,0.917400,-3.340123)

C(33) (-3.958296,0.597117,-0.297560 ) C(66) (-1.459313,2.164101,-3.048115)

Table 1 Cartesian coordinates of C80 molecule (angstroms).
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No. Cartesian Coordinates No. Cartesian Coordinates

C(67) (0.434187,-2.975801,-2.657719) C(74) (3.321939,0.353638,-2.225636)

C(68) (1.740418,-2.900343,-2.160714) C(75) (-0.106251,2.119878,-3.406584)

C(69) (3.625505,1.244956,-1.189259) C(76) ( 2.124565,2.248765,-2.557646)

C(70) (2.885233,2.416184,-1.394300) C(77) (1.426086,-1.154720,-3.570001)

C(71) (0.239478,-1.896533,-3.529100) C(78) (0.162993,0.844345,-3.920524)

C(72) (-1.023615,0.102533,-3.879624) C(79) (2.393755,0.974353,-3.070724)

C(73) (2.354216,-1.774315,-2.724052) C(80) (1.408742,0.235445,-3.735499)

Table 1 (continued): Cartesian coordinates of C80 molecule (angstroms).


