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Targeted Maximum Likelihood Estimation of
Natural Direct Effects

Wenjing Zheng and Mark J. van der Laan

Abstract

In many causal inference problems, one is interested in the direct causal effect of an exposure
on an outcome of interest that is not mediated by certain intermediate variables. Robins and
Greenland (1992) and Pearl (2001) formalized the definition of two types of direct effects (natural
and controlled) under the counterfactual framework. The efficient scores (under a nonparametric
model) for the various natural effect parameters and their general robustness conditions, as well as
an estimating equation based estimator using the efficient score, are provided in Tchetgen Tchetgen
and Shpitser (2011b). In this article, we apply the targeted maximum likelihood framework of
van der Laan and Rubin (2006) and van der Laan and Rose (2011) to construct a semiparametric
efficient, multiply robust, substitution estimator for the natural direct effect which satisfies the
efficient score equation derived in Tchetgen Tchetgen and Shpitser (2011b). We note that the
robustness conditions in Tchetgen Tchetgen and Shpitser (2011b) may be weakened, thereby
placing less reliance on the estimation of the mediator density. More precisely, the proposed
estimator is asymptotically unbiased if either one of the following holds: i) the conditional mean
outcome given exposure, mediator, and confounders, and the mediated mean outcome difference
are consistently estimated; (ii) the exposure mechanism given confounders, and the conditional
mean outcome are consistently estimated; or (iii) the exposure mechanism and the mediator density,
or the exposure mechanism and the conditional distribution of the exposure given confounders
and mediator, are consistently estimated. If all three conditions hold, then the effect estimate is
asymptotically efficient. Extensions to the natural indirect effect are also discussed.

KEYWORDS: natural direct effects, natural indirect effects, mediation analysis, mediation
formula, mediator, direct effects, asymptotic efficiency, robust, double robust, asymptotic linearity,
canonical gradient, efficient influence curve, efficient score, loss-based learning, targeted
maximum likelihood estimator, targeted learning, parametric working submodels
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1 Introduction

The causal effect of an exposure (or treatment) on an outcome of interest is often
times mediated by intermediate variables (mediator). In many causal inference
problems, one is interested in the direct effect of such exposure on the outcome,
not mediated by the effect of the intermediate variables. Robins and Greenland
(1992) and Pearl (2001) defined two types of direct effects under the counterfactual
framework. The controlled direct effect refers to the effect of the exposure on the
outcome under an idealized experiment where the mediator is set to a given constant
value, whereas the natural (or pure) direct effect pertains to an experiment where
the mediator is set to its would-be value under a reference (null) exposure level.
The definition of these causal effects are based on counterfactual outcomes that
are not fully observed, therefore they are not always identifiable from the observed
data. Identifiability conditions are studied extensively in Robins and Greenland
(1992), Pearl (2001), Robins (2003), van der Laan and Petersen (2004), Petersen,
Sinisi, and van der Laan (2006), Hafeman and VanderWeele (2010), Imai, Keele,
and Yamamoto (2010), Robins and Richardson (2010), and Pearl (2011).

Prior to the formal frameworks developed by Robins and Greenland (1992)
and Pearl (2001), the social science literature had proposed the use of parametric
linear structural equations in mediation analysis (e.g. Baron and Kenny (1986)),
where the outcome response and mediator response are each modeled using lin-
ear main term regression on their parent nodes, and the direct and indirect effects
are defined and estimated in terms of the coefficients in these regression equations.
The limited causal validity of this parameter due to its dependence on model spec-
ification (e.g. no-interactions and linearity assumptions) is discussed in Kaufman,
Maclehose, and Kaufman (2004). The developments of Robins and Greenland
(1992) and Pearl (2001), and the identifiability studies that followed suit, address
definition and identification of direct and indirect effects in causal models that do
not put restrictions on the distribution of the observed data, allowing one to separate
the identification problem from the estimation problem.

Several approaches to the estimation problem are available in the current lit-
erature. A likelihood-based estimator approach (the g-computation formula) builds
upon the identifiability results using a substitution estimator plugging in maximum
likelihood based estimates of the relevant components of the data generating dis-
tribution. The natural direct effect can be identified as a function of the marginal
covariate distribution, the conditional mediator density, and the conditional mean
outcome (e.g. Robins and Greenland (1992), Pearl (2001), Robins (2003) and
van der Laan and Petersen (2004), Petersen et al. (2006)). When all of these compo-
nents of the data generating distribution are estimated consistently, the resulting g-
computation estimate is unbiased and efficient. However, if either of these compo-
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nents is inconsistent, the effect estimate will be biased. VanderWeele and Vanstee-
landt (2010) illustrated how this approach can be applied to the estimation of natural
direct effect odds ratio of rare outcomes. The use of (sequential) g-computation in
structural nested models for estimation of controlled direct effects is proposed in
Vansteelandt (2009). A second approach to causal effect estimation is based on the
estimating equation methodology developed by Robins (1999), Robins and Rot-
nitzky (2001) and van der Laan and Robins (2003). Under this approach, a score is
expressed as a function of the parameter of interest ¥ and a nuisance parameter 7
(whenever such representation is possible); if the resulting estimating equation, as
an equation in the variable y, has a unique solution, the parameter estimate is given
as the root to this equation. For most parameters arising from causal inference,
the efficient score under a nonparametric model is a robust estimating function (i.e.
unbiased against mis-specification of specific components of the likelihood), there-
fore the resulting effect estimate shares the same robustness properties. In van der
Laan and Petersen (2008), an application of this approach to a generalized class of
direct effects using marginal structural models was discussed. The parameter stud-
ied in that work is a population mean of a subject-specific average controlled direct
effect, averaged with respect to a user-supplied conditional mediator density given
null exposure and individual covariates. If the supplied conditional mediator den-
sity is the true conditional mediator density of the data generating process, then the
parameter of van der Laan and Petersen (2008) evaluates to the same value as the
natural direct effect parameter. However, even in such case, these two parameters
are not the same maps on the model since the former is a map indexed by the sup-
plied mediator density and therefore is a function of the outcome expectation and
marginal covariate distribution alone. As a consequence, the efficient score of the
parameter of van der Laan and Petersen (2008) is not the same as the efficient score
of the natural direct effect parameter. VanderWeele (2009) discussed more fully the
use of marginal structural models with inverse probability weighting for estimation
of the natural direct effect parameter. A third approach to causal effect estimation is
the targeted maximum likelihood framework of van der Laan and Rubin (2006) and
van der Laan and Rose (2011). For given estimators of relevant components of the
likelihood P, one iteratively maximizes the likelihood (or minimize a loss) along a
least favorable submodel through the initial estimators. The parameter estimate is
given by evaluating the parameter map at the final estimator of the likelihood, thus
providing a substitution estimator of the parameter of interest. By construction, the
final estimate of the likelihood satisfies the efficient score equation in the variable
P. Therefore, the effect estimate also shares the robustness properties of the effi-
cient score. In addition, the substitution principle incorporates global constraints
of the statistical model that do not affect the form of the efficient score; this allows
for potential improvement in finite sample performance. van der Laan and Petersen
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(2008) also applied the targeted MLE procedure to their generalized class of direct
effect parameters. Both the estimating equation approach and the targeted MLE
approach in van der Laan and Petersen (2008) are robust (with respect to its param-
eter of interest) against mis-specification of the conditional mean outcome or mis-
specification of the treatment mechanism. However, since its parameter of interest
is indexed by the user-supplied conditional mediator density, if one is interested in
the natural direct effect, then the user-supplied conditional mediator density in the
method of van der Laan and Petersen (2008) must be correct. The use of propen-
sity score matching in causal effect estimation was introduced in Rosenbaum and
Rubin (1983). Application of propensity score in mediation analysis has also been
proposed (e.g. Jo, Stuart, MacKinnon, and Vinokur (2011)).

Most recently, Tchetgen Tchetgen and Shpitser (2011b) derived the efficient
scores (under a nonparametric model) for the various natural effect parameters, and
established their general robustness properties and their implications on efficiency
bounds. They also proposed semiparametric efficient, multiply robust estimators
based on the estimating equation methodology using the efficient score equation.
We also refer the reader to that work for presentation of a sensitivity analysis frame-
work to assess the impact of the ignorability assumption of the mediator variable
on inference. In Tchetgen Tchetgen and Shpitser (2011a), the authors extended
the theory to the case where one specifies a parametric model for the natural direct
(indirect) effect conditional on a subset of baseline covariates.

In this article, we apply the targeted MLE framework of van der Laan and
Rubin (2006) and van der Laan and Rose (2011) to the estimation of the natural di-
rect effect of a binary exposure. The proposed estimator satisfies the efficient score
equation derived in Tchetgen Tchetgen and Shpitser (2011b). However, we note
that the robustness conditions in Tchetgen Tchetgen and Shpitser (2011b) may be
weakened (lemma 1), thereby placing less reliance on the estimation of the medi-
ator density. This weaker version of robustness conditions is of particular interest
when the mediator is high-dimensional, since it allows one to replace estimation of
the conditional mediator density with objects that are easier (or at least with more
available tools) to estimate. More precisely, the proposed estimator is asymptoti-
cally unbiased if either one of the following holds: 1) the conditional mean outcome
given exposure, mediator, and confounders, and the mediated mean outcome dif-
ference are consistently estimated; (ii) the exposure mechanism given confounders,
and the conditional mean outcome are consistently estimated; or (iii) the exposure
mechanism and the mediator density, or the exposure mechanism and the condi-
tional distribution of the exposure given confounders and mediator, are consistently
estimated. If all three conditions hold, then the effect estimate is asymptotically
efficient. We also extend the results to the estimation of natural indirect effects. In
addition, we discuss in detail conditions needed to ensure asymptotic linearity of
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the resulting estimator. These conditions should provide a guideline for situations
where an influence curve based variance estimate is realistic.

This article is organized as follows: In section 2 we define formally the
natural direct causal effect of a binary treatment on an outcome using the Non-
Parametric Structural Equations Model framework of Pearl (2009), and summarize
its identifiability conditions. Based on the identifiability result, one may consider
the natural direct effect parameter as a map from the model to the parameter space.
We study this map and its efficient score in greater detail in section 2.3. Section
3 describes how to construct a targeted MLE estimator for the natural direct effect
of a binary treatment. Asymptotic properties of this estimator are summarized in
section 3.2 and proved in the Appendix A. The estimation procedure in section 3
focuses on the targeted estimation of the conditional outcome expectation and the
mediated mean outcome difference. An alternative procedure focusing on the con-
ditional outcome expectation and the conditional mediator density is described in
Appendix B. This alternative estimator shares the same asymptotic properties as the
one proposed in section 3. Section 4 describes in greater detail two alternative es-
timation methodologies: the estimation equation framework of Robins (1999), and
the maximum likelihood based g-computation framework. In section 5, we illus-
trate with simulations the robustness of the targeted MLE estimator against model
mis-specifications. Section 6 extends analogously the discussions on identifiabil-
ity, robustness, and estimation to the case of natural indirect effect. This article
concludes with a summary and a few remarks.

2 Natural Direct Effect of a Binary Treatment

2.1 Causal Parameter

Consider 7 i.i.d observations of O = (W,A,Z,Y), where W represents baseline co-
variates, A a binary treatment, Z represents a mediator of interest between the treat-
ment and the outcome of interest Y. Let Py denote the distribution of O. We apply
here the Non-Parametric Structural Equations Model (NPSEM) of Pearl (2009) to
encode the causal relations under consideration. The NPSEM on a unit consists of
a set of exogenous random variables U which are determined by factors outside the
model, a set of endogenous variables X which are determined by variables inside the
system (U UX), and a set of unspecified deterministic functions { f; : x € X } which
encode for each x € X the variables that have direct influence on x. More specifi-
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cally, in the present situation the causal relations are described by the NPSEM

U = (Uw,Us,Uz,Uy) ~Py
W = fw(Uw)

A = fa(W,Uy)

zZ = fz<W,A,Uz)

Y = fy(W,A,Z, Uy),

where X = (W,A,Z,Y) is the endogenous variable, and U = (Uw,Us,Uz,Uy) is
the unobserved exogenous variable. This model defines a random variable (U,X)
on the unit of observation, we denote its distribution by Py x.

The counterfactual variables or potential outcomes in the Rubin Causal
Model (Rubin (1978), Rosenbaum and Rubin (1983) and Holland (1986)) can be
represented as restrictions on the input of the functions fy. For instance, the coun-
terfactual Z(a) is defined as the random variable Z(a) = fz(W,A = a,Uz), and
can be interpreted as the mediator variable that the unit would have had if the
exposure had been a. In particular, Z(a) is a random variable through Uy and
Uz. Similarly, Y (a’,Z(a)) is the counterfactual outcome that results from setting
Y(d',Z(a)) = fr(W,A=d,Z(a),Uy), and can be interpreted as the individual’s re-
sponse if the exposure had been a’ while the mediator variable had been identical
to the one under exposure a. Y (a’,Z(a)) is a random variable through Uy, Uz and
Uy.

Under the NPSEM, a causal parameter of interest is defined as a function of
the distribution Py x. More specifically, the natural direct causal effect is defined
as

Y(Pyx)=E[Y(1,2(0)) - Y(0,Z(0))].

This causal parameter can be interpreted from the following hypothetical exper-

iment: one randomly assigns each subject to treatment or control, while always
setting the subject’s mediator variable to its value under no treatment, and then
takes the difference in mean outcome between the treated and control cohort.

2.2 Identifiability

We will also use the notation Z(A) to denote the unintervened Z = fz(W,A,Uz),
which is random through Uy,Uy4,Uz. Similarly, the unintervened Y (A,Z(A)) =
fr(W,A,Z(A),Uy) is random through Uy ,Uys,Uz,Uy. Under experimental or ob-
servational studies, for each unit, the investigator only observes the outcome and
mediator response under the unit’s actual exposure. In other words, the observation
is in fact O = (W,A,Z(A),Y(A,Z(A)). Hence, the causal parameter W(Py x ) is not
always identifiable from the observed data.
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Conditions under which the natural direct effect (or natural effects in gen-
eral) will be identifiable were addressed extensively in Robins and Greenland (1992),
Pearl (2001), Robins (2003), Petersen et al. (2006), Hafeman and VanderWeele
(2010), Imai et al. (2010), Robins and Richardson (2010) and Pearl (2011). In par-
ticular, Pearl (2001) gave the following identifiability conditions: If randomization
assumptions

Al. For all values (a,z), Y (a,z) given W is identifiable,
A2. For all values of a, Z(a) given W is identifiable,

and the conditional independence assumption
A3. Foralla+#d,z,Y(d,z) is independent of Z(a) given W

are satisfied, then the causal effect W(Py x) can be expressed as a function of the
observed data generating distribution Fy:

ALA2A3
Y(Pyx) =""YHR)

= Ey {Z[E(Y|W,A =1,Z=2)—EY|W,A=0,Z=2)] p(z|W,A = 0)} )

Z

In the following sections, we will focus on the estimation of this statistical param-
eter.

Many of these previous authors have established that the randomization as-
sumptions Al and A2 can be satisfied by requiring that (A,Z) is independent of
Y(a,z), given W, and A is independent of Z(a), given W. These can be ensured by
measuring sufficient covariates to control for confounding of the effects of treat-
ment on outcome, treatment on mediator, and mediator on outcome. As a result,
the distributions of Y (a,z) and Z(a) will be identifiable within covariate stratum.

Petersen et al. (2006) showed that A3 can be weakened to a conditional
mean independence E (Y (1,z) —Y (0,z)|W) =E(Y(1,z) —Y(0,2)|W,Z(0) = z). Still,
it was recognized in Pearl (2001) that the conditional counterfactual independence
is in general difficult to interpret. Imai et al. (2010) offered a stronger version of as-
sumption A3 which is more interpretable: Y (¢, z) is independent of Z given W and
A = a. This new version implies assumption A3, but the converse is not necessarily
true. Robins and Richardson (2010) established that in general condition A3 cannot
be enforced by randomized experiments, which implies that the natural effects are
in general not identifiable by randomized experiments. In such cases, what kind
of causal interpretations can the statistical parameter in (1) still offer? Note that
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under the randomization assumptions Al and A2 alone, the statistical parameter (1)
equals (e.g. Pearl (2001), van der Laan and Petersen (2008)):

A1A2

¥Y(PR) = Ew (ZE Y(0,z)|W)P(Z(0 ):z|W)>.

The quantity in the right hand side is the population mean of an average of subject-
specific controlled direct effect E(Y (1,z) —Y (0,z)|W), weighted by P(Z(0) = z|W).
However, while this quantity serves to provide a causal interpretation for the statisti-
cal parameter (1) in the absence of condition A3, it is certainly not the natural direct
causal effect; therefore one should be cautious about putting it into the context of
the traditional total effect decomposition.

2.3 The Natural Direct Effect Parameter

Let .# denote a model containing the true data generating distribution Py. For any
P € ., the likelihood decomposes into

P(0) = Py (W)PA(A[W)PL(ZIW,A)Py (Y|W,A, Z).

For later convenience, we adopt the notations g(A|W) = P4s(A|W), Ow(W) =
Py (W), Qz(Z|W,A) = P;(Z|W,A), and Qy(W,A,Z) = E(Y|W,A,Z). Moreover,
let Q = (Qw, Qz, Qy) The notations Qg and gq are reserved for the corresponding
components of the true data generating distribution Py. For a function f(0O), we will
use Pf to denote the expectation of f(O) under the probability distribution P € .Z .

For instance, Pyf =Y. ,co f(0)dPy(0) denotes the expectation of f under the true
data generating distribution, while P, f = ' | f(o;) denotes the empirical mean

of f.

One may consider the natural direct effect parameter ¥ in (1) as a map

Y. #Z — R
P—¥(P)=Y¥(Q) =Ep, [Eg, (Or(W,1,Z) — Oy (W,0,Z)|W,A=0)] .

We refer to the inner expectation above as the (null level) mediated mean outcome
difference, and denote it by the map Q — yz(Q), where

vz(Q)(W) = yz(0z,0v)(W) = Eg, (Or (W, 1,Z) — Oy (W,0,Z)W,A=0).  (2)

This way, ¥(Q) =¥ (Ow, yz(Q)) = Eo,, (Wz(Q)(W)). The parameter of interest
(1) is this map evaluated at the true data generating distribution:

Wo =¥ (P) = Egy, [Egs, (Or0(W,1,Z) — Qv o(W,0,Z)[W,A=0)] .
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2.3.1 Effcient score

Under a nonparametric model .#, for any P € .#, the efficient score (efficient
influence curve, or canonical gradient) of ¥ at P, as derived in Tchetgen Tchetgen
and Shpitser (2011b), is given by:

. C[IA=1)Qz(ZW,0) I(A=0)) ., A
010,020 = { (55} Gy 1) oy J O~ O 42)
I;?OTW(;) {0y (W,1,Z) — 0y (W,0,Z) — Eg, (Oy (W,1,Z) — Oy (W,0,Z)|W,0) }
+Eg, (Or(W,1,Z) — Oy (W,0,Z)|W,0) — ¥(Q)
= D%+ D+ Di .

+

Note that the components Dy, D, Dy, are respectively the projection of D* onto
the tangent subspaces corresponding to the components P(Y|W,A,Z), P(Z|W,A),
P(W) of the likelihood.

This efficient score for a nonparametric model can also be derived by first
considering W(P) as a function of P = (Pf : f € %), where .7 is a class of indicator
functions . = {I(w,a,z,y),l(w,a,z),I(w,a),I(w):we W ,acd,z€ X yc¥}.
For any given "vector” h = (h(f) : f € %), one can consider a directional deriva-
tive 2 W(P + €h)|g—o. The efficient score is given by the directional derivative
applied to the direction of & = (f(O) — Pf : f € .#). In other words, it is given by
Yrea %TTSJCIJ)( f(O)—Pf). A more detailed exposition can be found in van der Laan
and Rose (2011).

2.3.2 Robustness of the efficient score

The general robustness conditions of the efficient score were given in Tchetgen Tch-
etgen and Shpitser (2011b): (i) the mediator density Qz(Z|W,A) and the conditional
mean outcome Qy (W, A, Z) are both correct; (ii) the conditional mean outcome and
the exposure mechanism g(A|W) are both correct; or (iii) the exposure mechanism
and the mediator density are both correct. We note below that conditions (i) and
(i11)) may be weakened to accommodate difficulties in estimation of the mediator
density. In fact, the estimation of Oz may be avoided with the use of data-adaptive
estimators. This is particularly appealing when Z is high dimensional. We sum-
marize these in the following lemma and its subsequent remarks. The proof of this
lemma is straightforward from the form of the efficient score, and we refer the in-
terested reader to appendix Appl.
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Lemma 1. Robustness of the efficient score

Suppose there exists constants 1 > 6,8’ > 0 such that g(A = 1|W) < 1— 6 and
0z(Z\W,1) <1—08" ae. over the support of W and Z. The efficient score is a
robust estimating function for the parameter at Py, in the sense that

POD* (Q7g7 WO) :0a

if either of the following holds:

(i) The conditional mean outcome Qy = E(Y|W,A,Z), and the mediated mean
outcome difference Wz(Q) = Eg,(Qy(W,1,Z) — Qy(W,0,Z)|W,0) are cor-
rect.

(ii) The exposure mechanism g(A|W ), and the conditional mean outcome are cor-
rect.

(iii) The exposure mechanism and conditional mediator density Qz(Z|W,A), or
the exposure mechanism and the conditional distribution of treatment given
mediator and covariates p(A|W,Z), are correct.

Condition (i) follows from the fact that, given Qy, we only need a con-
ditional expectation of Qy(W,1,Z) — Qy(W,0,Z) under Qz(Z|W,0). Therefore,
consistent estimation of Q7 o per se is not necessary to obtain consistent estimator
of yz(Qp), as long as one has a consistent estimator éy,n of QY70 and an optimal

procedure to regress the difference Qcyﬂ(W, 1,Z) — éy7n(W,O,Z) on W among the
control observations. Condition (iii) is a consequence of the fact when g is cor-

rect, dependence on consistent estimation of Qz is only through %m which
can be consistently estimated using either Q7 or combining ratios of g(A|W) and
P(AIW.Z).

When Z is high-dimensional, few tools are available to estimate the condi-
tional mediator density Qz(Z|W,A). On the other hand, there is abundant literature
addressing estimation of conditional means. This can be used to estimate yz(Q),
and conditional probabilities of a categorical A. Lemma 1 implies in particular that
estimation of Q7 o may be replaced by estimations of go(A|W), po(A|W,Z), and the
conditional expectation yz(Qy),

3 Targeted Maximum Likelihood Estimation for the
Natural Direct Effect of a Binary Treatment

In general, under the framework of van der Laan and Rubin (2006) the construction
of a targeted MLE (TMLE) estimator of a parameter of interest W(Py) = ¥(Qo)
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calls for two sets of ingredients. For each component Q;(P) of Q(P), one defines
a uniformly bounded (w.r.t. the supremum norm) loss function L; : 2; — £*(K)
satisfying

Qjo =arg min RL;(Q)),

where .Z°(K) is the class of functions of O with bounded supremum norm over

a set of K containing the support of O under Fy. Given the loss function L;, one
defines a one-dimensional parametric working submodel {Q;(P)(¢;) : €j} C M
passing through Q;(P) at €; = 0 with score D(P) at €; = 0 that satisfies

(L1, (0;(P)(&))) le—0) > (D(P)),

de ¥

where (k) denotes the linear span of a vector 4. These result in a least favorable
parametric submodel Q(¢) through Q. For given initial estimator (Q, 8) of (Qo, go)
the fluctuation parameter ¢ is fitted to minimize the empirical risk of Q(¢), provid-
ing an updated estimator Q(é) This updating process is repeated until € ~ 0. The
final estimator Q* of Qg is then used to obtain a substitution estimator ‘P(Q*) of
‘P(Qo).A By its construction, the estimator Q* satisfies the efficient score equation
PD*(0",3,%(0")) = 0.

To specialize to the natural direct effect, we first note that the parameter of
interest and the components D7, and Dy, of the efficient score depend on Q7 only
through the mediated mean outcome difference yz(Q) as defined in (2). Secondly,
the empirical marginal distribution QAWﬂ of W is a consistent estimator of Qy o that
readily solves the equation P, D}, (wz(Q), Ow..) = 0 for any wz(Q). Hence, the pro-
posed estimator will focus on targeted estimation of Qy,o(W, A, Z), and yz(Qo)(W).

An alternative targeted estimation to the one proposed above is to target-
edly estimate the conditional mediator density Q7 ¢ instead of the mediated mean
outcome difference yz(Qp). We refer the interested reader to Appendix B for this
alternative approach. The key difference between the proposed and the alternative
targeting procedures lies in that the former defines a loss function and paramet-
ric working submodel for the mediated mean outcome difference yz(Q), whereas
the latter defines a loss function and parametric working submodel for the condi-
tional mediator density Q7 and then estimates the mediated mean outcome differ-
ence Wz(Qp) by plugging in the targeted mediator density and the targeted Qy. We
note that the bias variance trade-off in the proposed targeting procedure is more
optimal over the alternative procedure for estimating the ultimate component of
interest, which is the mediated mean outcome difference.
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3.1 Construction of the Targeted MLE

3.1.1 Loss functions and parametric working submodels
Suppose for now that Y is binary or continuous and bounded. In the latter case,

without loss of generality we may assume that Y is bounded in (0, 1). We consider
the minus-loglikelihood loss function for Qy:

Ly (0r)(0) = —log Oy (W,4,2)" (1= Oy (W,4,2)) 1) 3)
Under this loss function, consider the logistic working submodel

Oy (&1) = expit (logit(Qy) + &1Cy (Qz,8)) ,

where Cy (Qz,2)(0) = {Ig ((";F};; gi g}%?i — {g(é)\:vé))) } Note that this submodel Qy (€] )

depends on the components Q7 and g, but we suppress that in the notation. This
submodel satisfies

d - ~
T&LY (QY(SI)) |ey=0= Dy (Qv,0z,8)- 4
For a given Qy, the difference Qy (W,Z) = Oy (W, 1,Z) — Qy(W,0,Z) is also
bounded. Without loss of generality, we may also assume it is bounded between
(0,1). Let the loss function for yz(Q) be

Lz(y2(Q))(0) =
—1(4 = 0)log (w2(Q) (W) 2 W2 (1 -y (Q) (W)~ ).

Under this loss function, the logistic working submodel

vz(Q)(&2) = expit (logit (yz(Q)) + €2Cz(g)) ,

with Cz(g)(0) = m, satisfies

L (W2(0)(82)) lero= D (y2(0). O 9). 5)

d82
The dependence of yz(Q)(&;) on g is again suppressed in our notation.

Note that linear transformations onto the unit interval may be needed in
order to use the loss functions Ly and Lz. However, since the parameter of interest
and the components of the efficient score are linear in Qy and yz(Q), the necessary
linear transformations and their inverse maps do not affect the properties of the
estimators.
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In settings where Y is not bounded, one may instead use the squared error
loss functions

Ly(Qr)(0) = (Y - 0r(W,A,2))’,

and
2

Lz(y2(2))(0) =I(A=0) (Qr (W, Z) — yz(Q)(W)) "
and corresponding parametric working submodels

Oy (&) = Oy +&Cy(0z,8)

and
vz(0)(&2) = yz(Q) +&Cz(8).

However, compared to the minus loglikelihood losses, this choice of loss functions
and the corresponding parametric working submodels may result in estimators that
are more sensitive to near positivity violations (Gruber and van der Laan (2010),
Gruber and van der Laan (2011)). Therefore, in such situations it would be more
sensible to bound Y by the range of the observed data, and apply the minus loglike-
lihood losses above.

3.1.2 Implementation

Let P, denote the empirical distribution of » i.d.d observations of O. Let g,, Q{/n
and Qz ,, be initial estimators of g, Qy,() and Qz , respectively. Let

& = argmginP,,LY (QYJZ(81)>

be the optimal € which minimizes the empirical risk. We are reminded that,
though not shown in the notation, the estimators (Qz »,$,) are used in constructing

Qéym(sl). The update

05 = Ov (&) (6)

is the targeted MLE estimator of Q_y7().
Next, let Yz(P,)(-) be an estimating procedure for yz(Qp). That is, for
given observations P,, ¥z, = Uz(P,) is a function which maps an estimator Qyﬂ

of Qy to an estimator Yz ,(Qy,,) of Wz(Qz0,0y0). This function Pz, depends
on the estimation procedure {7, and the observed data P,. This estimating pro-

cedure can be plug-in or regression-based. For a plug-in estimator, ¥z ,(Qy ) =
l//Z(QAz,n, Qy ). For a regression-based estimator, ¥z, (Qy.,) regresses the differ-
ence Oy ,(W,1,Z) — Qy.,(W,0,Z) on W among control observations. In this latter
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case, J/z , encodes what this regression procedure consists of, and the observed data
on which it is carried out. R .

Given the targeted MLE Q_f,n of the mean outcome, I,T/Zn(Ql*,n) is an initial
estimator of the mediated mean outcome difference yz(Qz0, Qo). The optimal &
is given by

& = argmin Lz (¥2(05.)(e2) )

We are reminded that, though not shown in the notation, the estimator g, is used in
constructing ¥z ,(Q5 ) (€2). The update

V5 0(05 ) = W2a(05,0)(83) (7

is the targeted MLE estimator of Wz(Qz0,Qo). The targeted MLE estimator of
Vo = Ew,0(yz(Qz0,00)(W)) is thus given by

1 n
;; 2(05) (Wi ®)

It follows from (4) that B,Dy (é}}n, QAZ7n, &,) = 0 and it follows from (5) that
P,D;, (ﬁ/}n(é;}n), é;‘,n, §n> = 0. Moreover, the empirical distribution Qy , of W

solves P,Djy (05 (0% ), Ow.n) = 0. Therefore the resulting targeted estimator
solves the efficient score equation.

Remarks on implementation: When Z is high-dimensional, and A is categorical,
consistent estimation of p(A|W,Z) may be more attainable than consistent estima-
tion of Qz(Z|W,A). In such case, instead of using an estimator of Qy to estimate the
ratio Qz(Z|W,0)/Qz(Z|W, 1) in the targeting step of Qy, one can use an estimator
ﬁn(AZO‘W-‘Z) §n(A:1 |W)

8n(A=0[W)  pn(A=1|W.Z)" R A
use QAZJ, and can be any procedure which regresses Q;n(W, 1,2)— Q,*,n (W,0,Z) on
W among control observations. Therefore, when Z is high dimensional, estimation
of Qz may be avoided if one has available optimal estimators &, and p,(A|W,Z),
and a regression-based estimator ¥z ,(-). From lemma 1, we see that this still al-
lows for robust estimation.

Similarly, the estimating procedure [z ,(-) does not need to

3.2 Asymptotic Properties of the Targeted MLE

Since the proposed targeted MLE estimator satisfies the efficient score equation,
lemma 1 implies in particular that the estimator is asymptotically unbiased if ei-
ther of the following is true: (i) The conditional outcome expectation Qy , and
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the mediated mean outcome difference ¥;(Q3 ) are consistent; (ii) the treatment

mechanism g, and the conditional outcome expectation Q5 , are consistent; (iii) the

treatment mechanism g, and the conditional mediator density Oz ,(Z|W,A), or the
treatment mechanism and p,(A|W,Z), are consistent. These properties are illus-
trated in the simulations section below.

Under certain empirical conditions, an estimator that satisfies a given esti-
mating equation will be asymptotically linear with influence curve given by the es-
timating function (e.g. Bickel, Klaassen, Ritov, and Wellner (1997), van der Vaart
(1998), van der Laan and Robins (2003), Tsiatis (2006), Kosorok (2008)). In this
case, the central limit theorem implies that one can obtain an asymptotic variance
estimate of the said estimator using the variance estimate of its influence curve.
Otherwise, bootstrap procedures can be used to obtain variance estimates for the
estimator. We detail conditions for asymptotic linearity of the targeted MLE estima-
tor in theorem 1 below. These conditions state that in general, asymptotic linearity
requires that: 1) estimators of the likelihood converge to their respective limits at a
reasonable speed (second-order conditions), and 2) if there is a component that is
not consistently estimated, the remaining consistent components must be estimated
in a specific asymptotically linear fashion (first-order conditions). These conditions
provide a guideline for situations where influence curve based variance estimates
are realistic. Note that these conditions stem from the properties of the efficient
score, and therefore can be easily modified to apply to any estimator which satisfy
the efficient score equation (e.g. Tchetgen Tchetgen and Shpitser (2011b)). We also
refer the readers to Zheng and van der Laan (2010) and Zheng and van der Laan
(2011) for an alternative targeted estimation procedure which weaken the empirical
process conditions through the use of cross-validation.

We use the following notations in the theorem: Let QAZJZ, &, be estimators of
07,0 and go; and let 05, ¥ ,(05.,,) be the TMLE estimators of Oy o and yz(Qy),
as defined in (6) and (7). The TMLE estimator Wy of yy is defined in (8). Let Oz, g,

03 be limits of Oz, &n, Ql*,n Note that these limits are not necessarily the true data
generating components. Similarly, for the procedure ¥, (-) which, for a given Q5
provides a targeted estimator J  (Qy ) of the conditional mean yz(Qz0,0y ), let
w5 () denote its limit. In other words, w(Q; ) estimates yz(Qz 0,0} ,) using an
infinite population. The limit of lf/}n(Q_l*,n) is given by v (05).
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Theorem 1. Firstly, the TMLE estimator J, defined in (8) satisfies

W = Y0 = (Ba = o)D" (O s Oz 8, W00 )

02, (ZIW.0)  Qzo(zIW, 0>>

"‘PW,O;QZ,O(Z‘Wa 1) (QY.,O(Wv 1>Z) - QY7n(W7 1,Z>> <QZ,n(Z|W7 1) QZ,O(Z’W; 1)
+ Py (Cy (80, Ozn) — Cy (80, 0zn)) (QY,O — é;n)

IA=0) I(A=0)
i (gn«)vv) 200 )

) (w020, G50 - W3.1G3.0). ©
Suppose the following assumption holds:

(Pn _PO) {D* (QA;,naQAZ,mgn’ lAllgn(é;n)) - D" (QfﬁQZ?g? W;(Q;))} = OP(l\/ﬁ) (10)

We proceed now under the assumption (10) and the following assumptions regard-
ing speed of convergence:

_ N 2
\/HV,OEQZTO <(Q’;,(W, 1,2) - 05,(W, 1,2)) W,A = 1> X

N 2
J _— <<gz,n<zww,o> QWO 1)

QZJI(Z‘W7 1) QZ(Z‘Wv 1)
~ on(1). an

\/Po (Cy(8n,0zn) _CY(gaQZ,n))z\/PO (Q; - é?_»z =op(1/v/n), (12)

and

IA=0) I(A=0)\" s NNt
¢P°<§n<0|w) - g(O\W)) \/P°<"’Z(QY7n)—‘Vz,n(an)) =op(1/v/n).  (13)

Ifg = g0. 0y = Ovo. 0z = Qz0 and W(-) = Wz(Qz0,"). then (10), (11),
(12) and (13) imply that ;, is asymptotically linear. Moreover, it also follows from
these conditions that y;(Q}) = wz(Qz.0,0v,0), therefore Wi is in fact asymptoti-
cally efficient.
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Suppose Qy = Ov,0, W;(-) = Wz(0z0,), but g # g, and Oz # Qz. If there
exist mean zero functions IC4(0) and ICy(O) such that

Py (Cy(g,07) — Cy(80:0z.)) (QY,O — Qéik/,,) = (P, —P)ICs+0p(1y/n) (14

and

HA=0) 14=0) o
PO < g(0’W> a 80(0]W)> (WZ(QZ’O’QYW) - WZ,n(QYm))

= (Py— Ry)ICy 4 0p(1v/n), (15)
and there exists a mean zero function ICg,(O) satisfying

_ N W,0 W,0
Rro ¥ 0z0(zW. 1) (Qro(W.1,2) = G, (W, 1,2)) <g§jw 1; - gigilw 1;)

= (Pn—Po)ICQZ+0p<1ﬁ>, (16)

then (10), (11), (12), (13), (14), (15) and (16) imply that W, is asymptotically
linear:

U — o = (P, — Py) {D* (Or.0, 02,8, Wz(0z,0,0r0)) +1C; +1Cy +1Cy, }
+op(1y/n).

If Oz = Qz 0, then the condition (16) is trivially true with 1Co, = 0.

On the other hand, consider the case of g = go and Qy = Qy o, but Y (-) #
vz(0z,0,-) and Oz # Qz 0. Suppose that there exists a mean zero function ICy,(O)
such that

I(A=0) I(A=0) NN
Py <§n(0|W) go(O\W)> (WZ(QZ,O,QY,n) lI/z(QY,n))
= (P, —Ry)ICy, +op(1y/n). (17)
Then (10), (11), (12), (13), (16), and (17) imply that [, is asymptotically linear:
Uy — Yo = (P, — ) {D" (Qr0,0z,80, ¥7(Qr0)) +1Cq, +ICy, } +0p(1\/n).

If Oz = Qz., then the condition (16) is trivially true with ICp, = 0. Similarly, if
‘V;(Q_I*/n) = vz(0z0, Q;n) then (17) is vacuously true with ICy,, = 0.
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Lastly, suppose g = go, Oz = Qz,0, but Oy, # Oy o and y;(-) # wz(0z0,")-
Suppose there exists mean zero functions ICy(O) and ICy, (O) such that

B} e Oz (z[W,0) Qz,o(Z\WaO)>
PWVO;QZ_’O(Z\W, 1) (Qro(W,1,2) = Oy (W, 1,2)) ( Ozn(@W, 1) Qzo(zW,1)

= (Pn—P())ICY +0P(1ﬁ), (18)

and

Py (Cy(8n,Qzn) — Cy(80,021)) (Or0— Q}) = (Pu— R)ICy +0p(1/+/n). (19)

Then (10), (11), (12), (13), (17), (18) and (19) imply that ¥, is asymptotically
linear:

Ui —wo = (P, — Py) {D" (0y,020,80, ¥z(0y)) +ICy, + ICy +ICy }
+ Op(l\/ﬁ).

lfl//}(é;n) = yz(Qz0, Qc;n), then (17) is vacuously true with ICy,, = 0.

We refer the reader to appendix App2 for the proof. We also note that condi-
0z (Z ‘ Wvo)

0, ZW 1)’ therefore

tions regarding convergence of Q7 in fact only involve the ratio
can be expressed in terms of g(A|W) and p(A|W,Z).

4 Some Existing Estimation Methodologies

In this section, we describe how the estimating equation and the g-computation
approaches can be applied to the natural direct effect of a binary exposure, and
contrast their theoretical properties with those of the proposed targeted estimator.

4.1 Estimating Equation Approach

Under the estimating equation (EE) based approach (Robins (1999), Robins and
Rotnitzky (2001), van der Laan and Robins (2003)), one may use the efficient score
D*(P) under a nonparametric model as an estimating function of y, if i) D*(P)
can be expressed as a function of y and some nuisance parameter 1, i.e. D*(P) =
D(y(P),n(P)), for some function D, and ii) the solution to the resulting equation
in the variable y is unique. When these requirements hold, an estimate of the
parameter is given by the root of the resulting estimating equation, i.e. { is defined
as the solution to the equation P,D* () (P,), ¥) = 0.

An estimator of the natural direct effect under this framework is provided in
Tchetgen Tchetgen and Shpitser (2011b). For given estimators QAyﬂ, QAZ_‘n, &n, and
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an estimating procedure iz ,(-) for yz(Qo), the EE estimator for the natural direct
effect is given by

b= 12{ (I(A,- =1) 0z.(Z|W;,0)  I(A; = 0)) (Y,- B Q°y,n(Wz-,A,»,Zi))

n S\ &(1Wi) Oz, (ZWi, 1) &a(0|W;)
I(Al - 0) 2 2 N 2
+ 2.(0lW) (QY,n(VVia 1,Z;) — Qy »(W;,0,Z;) — WZJz(QY,n))
+ lrfz,n@y,n)}

A

We remind the reader again that in the present paper, ¥z ,(Qy,,) may not need to

use QZJ,, but will surely make use of Q_YJ,.
By definition, this EE estimator solves the efficient score equation

PaD" (Orn Oz Wzn(Or.n): s Ve ) = 0.

Therefore, the {,, estimator and the proposed TMLE estimator share the same
asymptotic properties that are inherited from the efficient score. By the same token,
they are both sensitive to extreme values of the treatment model, such as in the
case of near positivity violations. This was demonstrated in Kang and Schafer
(2007). Indeed, in the case of natural direct effect, when g,(A;|W;) is small for
some observations, the estimated Dy component of the efficient score will be large;
this problem is exacerbated if A; = 0, in which case the estimated D7 is also large.

When near positivity violation is present, the EE estimator may yield esti-
mates that are out of the bounds of the parameter, since constraints such as bounds
of the parameter are not reflected in the functional form of the efficient score. For
instance, in the case of binary outcome, ¥ is the mean difference of two proba-
bilities and hence bounded between -1 and 1. But under extreme values of PnlA);;
and PnD}, the root ., may yield estimates that are out of these bounds. The pro-
posed targeted estimator using a logistic working submodel (introduced in Gruber
and van der Laan (2010)) aims to provide more stable estimates through the com-
bination of a unit linear transformation, which implicitly estimates the boundary of
the parameter domain, and the virtue of the substitution principle.

4.2 G-computation Approach
The sensitivity to near positivity violation of the TMLE estimator and the {,, esti-

mator stems from the use of inverse probability weightings in the efficient score. A
g-computation approach based on the identifiability result in (1) avoids this inverse
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weighting. More specifically, for Qy , and QAZ’n likelihood based estimators of the
outcome expectation and mediator density, respectively, consider a g-computation
estimator given by:

n

R 1 2 2 ~
lI/gcomp = ; Zl (QY,n(VVia 17Zi) - QY,n(VViaOaZi)> QZ,n (Z1|VVHO)

This estimator can be similarly defined using a regression-based l/A/Z’n(Qiyjn) which
does not use Qz. Unlike the robust TMLE and V,, estimators, the consistency of
the g-computation estimator relies on correct specification of both the outcome ex-
pectation, and mediator density (or the regression procedure for the mediated mean
outcome difference). In the case of these likelihood-based estimates being correct,
the resulting ycomp is more efficient than the two robust estimators. However,
even though this g-computation estimator does not use inverse probability weight-
ing explicitly, it can still be affected by data sparsity, since the quality of the mean
outcome estimate (even under the correct specification) is sensitive to the overlap
between the empirical covariate distribution of the treated cohort and the empirical
covariate distribution of the control cohort.

5 Simulation Study

In this section we evaluate the performance of the targeted estimator, the ., es-
timator, and the g-computation estimator under model mis-specification and data
sparsity. From lemma 1, one expects to see that, in the absence of positivity viola-
tions, the TMLE and V,, are robust against model mis-specifications.

5.1 Simulation Schemes

The following three data generating schemes are used. The mediator variable Z
is discrete with three categories: Z € {0,1,2}. Each scheme has a version with a
binary outcome Y and a version with a continuous and bounded outcome Y. Sim-
ulations 2 and 3 differ from simulation 1 in their mediator density and treatment
mechanism, respectively.
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1. Simulation 1: no positivity violations.

W ~U(0,2)

A ~ Bern (expit(—1+2W —0.08W?))

Z ~ Multinom(p(Z = 0) = expit(—0.2+0.5A + 0.34 x W +0.7W — 1.5W?),
p(Z=1Z #0) = expit(—0.2+ 0.4A + .84 x W +0.4W — 2.5W?))

version a:

1% ~Bern<expit(—2 FA-WAW2HZ+0.8AXW —Ax W2

—0.54 x Z+0.7A x ZZ))

version b:
Y ~ —0.14+0.54 —0.2W +0.1W? +0.2Z +0.4A x W —0.54 x W>
—0.34x Z+0.5Ax Z> +N(0,1)

The treatment probability g4(A = 1|w), is bounded in (0.26,0.94). The
conditional density Qz(z|A = 1,w) is bounded between (0.0005,0.9753) for
any z and w, whereas the ratio Qz(z|A = 0,w)/Qz(z]A = 1,w) is bounded
in (0.13,2.02). In version b with continuous outcome, the expected value
E(Y|W,A,Z) is bounded in (—0.8,2.25).

The parameters of interest are Yy = 0.2585079 for the binary version, and

Yo = 1.158052 for the continuous version. The semiparametric efficiency
bounds are var(D*(Py)) = 1.157 for the binary version, and var(D*(Py)) ~
7.967 for the continuous version.

2. Simulation 2: larger effect of treatment on the distribution of mediator.
7 ~ Multinom (p(z —0) = expit(—2 — 24 — 0.5A x W +3W — W2),
p(Z=1|Z #0) = expit(1 — 44 — A x W+W+W2)>.

Conditional distributions for W,A,Y are the same as simulation 1. The con-
ditional mediator density Qz(z|w,A = 1) ranges in (0.017,0.081) for Z = 0,
ranges in (0.046,0.697) for Z = 1 and ranges in (0.256,0.936) for Z =2. The

ratio S44*A=0) ranges in (6.583,10.543) for Z = 0, ranges in (0.717, 13.826)
for Z = 1 and ranges in (0.0018,0.253) for Z = 2.

The parameters of interest are Yy = 0.12556476 for the binary version, and
Yo = 0.4183004 for the continuous version. The semiparametric efficiency
bounds are var(D*(Py)) ~ 3.721905 for the binary version, and var(D*(F)) ~

17.53054 for the continuous version.
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3. Simulation 3: near positivity violation the treatment mechanism.
A~ Bern(expit(—2—3W + 5W2)) .

Conditional distributions for W,Z,Y are the same as simulation 1, therefore

the values of the parameters of interest also remain the same. The treat-
ment mechanism is bounded in g4(A = 1|W) € (0.0794,0.999994). More-
over, g4(A=1|W) > 0.99 for W > 1.5.

5.2 Estimators

For each data generating distribution, initial maximum likelihood based estimators
of the outcome expectation QY70, treatment mechanism g, o and mediator density
0z o will be obtained according to each of the three cases of model mis-specification
in lemma 1, as well as the case where all models are correct. The model mis-
specifications considered are as follows:

e Mis-specified outcome modelis Y ~A+W +Z+4A x Z, with gaussian family
for continuous outcome, and binomial family (with logit link) for binary Y.

e Mis-specified mediator density is multinomial with p(Z = 0|A,W) ~ A and
p(Z=1|A,W,Z #0) ~ A, both from a binomial family with logit link.

e Mis-specified treatment mechanism is A ~ W?2 for simulations 1 and 2, and
A ~ W for simulation 3, both from a binomial family with logit link.

The estimators Wyeomp and Y, will be implemented using these likelihood-
based estimators as described in section 4.

The TMLE estimator y* will be constructed using these initial estimators
under logistic working submodels. Firstly, in the case of continuous outcome, linear

transformation 77 is performed on Y and the initial estimator Q_yﬂ, using bounds
given by the range of the observed outcomes and the predicted outcomes under Qy .

After obtaining the targeted estimator Q;ﬁn on unit scale using logistic working
submodel, we perform a second linear transformation 75 to bound the difference

QA”Y‘JZ(W, 1,Z)— Q_;n(W,O,Z) in the unit interval, and obtain the targeted estimator
V70 (Qél*,n) using logistic working submodel. Finally, we apply the inverse map Tz_l
to lf/;n(Qc;}n) and then 7, ! to the final effect estimate.

We will consider two implementations of TMLE which differ in their initial
estimator of the mediated mean outcome difference yz(Qz0,0y,0). In TMLE 1,

the initial estimator is given by a plug-in estimator li/Zn(Q_}}n) = V/Z(QAz,n,QA;,n)’
using Q7 , and the updated Qil*,n In TMLE 2, the initial estimator lffzﬂ(é;n)(W) is
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obtained by performing a main term regression (é;n(W, 1,Z)— Q£§ L(W.0,Z)) ~W
among the observations with A = 0. With the data generating distributions under
considerazion, this initial estimator in TMLE 2 is incorrect regardless of the consis-
tency of Qym. However, from lemma 1, we expect TMLE 2 to be consistent in the
cases (ii) and (iii) of lemma 1, in the absence of positivity violation.

5.3 Results

For each data generating distribution, 1000 samples of each size n = 500 and n =
5000 are generated. Bias, variance and mse for each sample size are estimated over
the 1000 samples. In the tables below, notations for model specifications are as
follows:

notation model specifications

qy.c, qz.c, ga.c | correct Qy, correct Qz, correct g

qgy.c, qz.c, ga.m | correct Qy, correct Qz, mis-specified g
qgy.c, qz.m, ga.c | correct Qy, mis-specified Q, correct g
qy.m, qz.c, ga.c | mis-specified Qy, correct Qz, correct g
qy.c, qz.c, ga.tr | correct Qy, correct Q, truncated g

qy.c, qz.m, ga.tr | correct Qy, mis-specified Q, truncated g
qy.m, gz.c, ga.tr | mis-specified Oy, correct Oz, truncated g

5.3.1 Simulation 1: No positivity violation

Recall that the parameters of interest are Yy = 0.2585079 for the binary version,
and yp = 1.158052 for the continuous version, and the semiparametric efficiency
bounds are var(D*(Py)) ~ 1.157 for the binary version, and var(D*(Py)) ~ 7.967
for the continuous version. Therefore, var(D*(Py))/n ~ 2.314e — 03 and 2.314¢ —
04 for n = 500 and 5000, respectively, in the case of the binary outcome, and
var(D*(Py))/n ~ 1.593¢ — 02 and 1.593e¢ — 03 in the case of continuous Y. The
results are detailed in tables 1 and 2. When the outcome expectation and the me-
diator density are correctly specified, the robust estimators TMLE and {,, provide
little advantage over the g-computation estimator in terms of bias or efficiency.
However, when either the outcome expectation or the mediator density are mis-
specified, TMLE and {,, using a correct treatment mechanism provide substantial
bias correction so that MSE is reducing at rate 1/n. The two robust estimators
behave similarly. Moreover, as predicted by lemma 1, TMLE 2, which utilizes a
mis-specified initial estimator of the mediated mean outcome difference, behaves
as well as TMLE 1 when the treatment mechanism is correct.

DOI: 10.2202/1557-4679.1361 22



Zheng and van der Laan: Targeted Maximum Likelihood Estimation of Natural Direct Effects

Table 1: Simulation 1: Binary outcome, no positivity violations

Bias Var MSE

n 500 5000 500 5000 500 5000

Oy correct, Q7 correct

gcomp: qy.c, qz.c 6.350e-04 5.837e-04 | 2.452e-03 2.261e-04 | 2.452e-03 2.264e-04
tmle 1: qy.c, qz.c, ga.c | 2.394e-04 5.223e-04 | 2.499e-03 2.287e-04 | 2.499e-03 2.290e-04
tmle 2: qy.c, qz.c, ga.c | 3.104e-04 5.647e-04 | 2.525e-03 2.295e-04 | 2.525e-03 2.298e-04
ee: qy.c, qz.c, ga.c 2.005e-04 5.227e-04 | 2.501e-03 2.287e-04 | 2.501e-03 2.289¢-04
tmle: qy.c, qz.c, gam | 4.453e-04 4.694e-04 | 2.627e-03 2.373e-04 | 2.627e-03 2.375e-04
ee: qy.c, qz.c, ga.m 7.288e-04 4.583e-04 | 2.754e-03 2.447e-04 | 2.754e-03 2.449e-04
Qy correct, g4 correct

gcomp: qy.c, qz.m 4.260e-02 4.075e-02 | 3.017e-03 2.771e-04 | 4.832e-03 1.937e-03
tmle 1: qy.c, qz.m, ga.c | 2.221e-04 5.691e-04 | 2.478e-03 2.279e-04 | 2.478e-03 2.282e-04
tmle 2: qy.c, qz.m, ga.c | 2.004e-04 6.232e-04 | 2.495e-03 2.286e-04 | 2.495e-03 2.289e-04
ee: qy.c, qz.m, ga.c 2.714e-04 5.474e-04 | 2.494e-03 2.289e-04 | 2.494e-03 2.292e-04
Q7 correct, g4 correct

gcomp: qy.m, qz.c 2.834e-02 2.825e-02 | 2.434e-03 2.258e-04 | 3.238e-03 1.024e-03
tmle 1: qy.m, gz.c, ga.c | 2.072e-04 5.450e-04 | 2.530e-03 2.288e-04 | 2.530e-03 2.291e-04
tmle 2: qy.m, gz.c, ga.c | 4.050e-04 5.664e-04 | 2.543e-03 2.296e-04 | 2.543e-03 2.299e-04
ee: qy.m, qz.c, ga.c 3.716e-04 5.493e-04 | 2.532e-03 2.292e-04 | 2.532e-03 2.295e-04

Table 2: Simulation 1: Continuous outcome, no positivity violations

Bias Var MSE

n 500 5000 500 5000 500 5000

Qy correct, Q7 correct

gcomp: qy.c, qz.c 4.786e-04 5.049e-04 | 1.597e-02 1.663e-03 | 1.597e-02 1.663e-03
tmle 1: qy.c, qz.c, ga.c | 5.390e-04 4.571e-04 | 1.654e-02 1.704e-03 | 1.654e-02 1.704e-03
tmle 2: qy.c, qz.c, ga.c | 2.140e-03 4.496e-04 | 1.686e-02 1.719e-03 | 1.686e-02 1.720e-03
ee: qy.c, qz.c, ga.c 4.788e-04 4.569e-04 | 1.653e-02 1.703e-03 | 1.653e-02 1.704e-03
tmle: qy.c, qz.c, gam | 7.706e-04 8.787e-04 | 1.737e-02 1.797e-03 | 1.737e-02 1.797e-03
ee: qy.c, qz.c, ga.m 1.142e-03 9.824e-04 | 1.844e-02 1.886e-03 | 1.844e-02 1.887e-03
Oy correct, g4 correct

gcomp: qy.c, qz.m 2.150e-01 2.143e-01 | 1.778e-02 1.759e-03 | 6.402e-02 4.767e-02
tmle 1: qy.c, qz.m, ga.c | 9.824e-04 5.641e-04 | 1.666e-02 1.692e-03 | 1.666e-02 1.692e-03
tmle 2: qy.c, qz.m, ga.c | 1.334e-03 5.689e-04 | 1.679e-02 1.706e-03 | 1.679e-02 1.706e-03
ee: qy.c, qz.m, ga.c 6.694e-04 5.908e-04 | 1.652e-02 1.695e-03 | 1.652e-02 1.696e-03
Q7 correct, g4 correct

gcomp: qy.m, qz.c 7.574e-02 7.435e-02 | 1.364e-02 1.457e-03 | 1.938e-02 6.984e-03
tmle 1: qy.m, qz.c, ga.c | 7.186e-04 4.839e-04 | 1.656e-02 1.705e-03 | 1.656e-02 1.706e-03
tmle 2: qy.m, qz.c, ga.c | 1.272e-03 4.591e-04 | 1.675e-02 1.710e-03 | 1.675e-02 1.710e-03
ee: qy.m, qz.c, ga.c 6.413e-04 4.597e-04 | 1.673e-02 1.707e-03 | 1.673e-02 1.707e-03
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5.3.2 Simulation 2: Larger effect of treatment on mediator

Under this simulation scheme, the parameters of interest are Yy = 0.12556476 for
the binary version, and yy = 0.4183004 for the continuous version. The efficiency
bounds are var(D*(Py)) ~ 3.721905 for the binary version, and var(D*(Py)) ~
17.53054 for the continuous version. Therefore, var(D*(Py)/n are approximately
7.444¢ — 03 and 7.444e — 04 for n = 500 and 5000, respectively, in the case of
the binary outcome, and var(D*(Py))/n ~ 3.506e¢ — 02 and 3.506e — 03 in the case
of continuous Y. In this simulation, the treatment has a moderately larger effect
on the mediator distribution. Compared to simulation 1, this simulation scheme
has a larger ratio of Qz(z|0,w)/Qz(z|1,w) for categories of Z = 0,1 over a region
of the sample space of W (details are explained previously). We see that in this
case all estimators behave as expected as in the previous simulation. When imple-
mented using the correct treatment mechanism, they provide bias reduction over
g-computation estimator in the cases when either the mediator density or the out-
come model are mis-specified. When the outcome model and mediator density are
both correct, then g-computation is consistent. In this case the TMLE and {,, are
also consistent but less efficient. In all cases, TMLE and {,, behave similarly.
We observe again that when the treatment mechanism is correct, TMLE 2, which
utilizes a mis-specified initial estimator of the mediated mean outcome difference,
behaves as well as TMLE 1.

Table 3: Simulation 2: Binary outcome, larger effect of treatment on mediator

Bias Var MSE
n 500 5000 500 5000 500 5000
Oy correct, Q7 correct
gcomp: qy.c, qz.c 1.993e-03 3.457e-04 | 6.090e-03 5.743e-04 | 6.094e-03 5.744e-04

tmlel : qy.c, qz.c, ga.c | 5.457e-03 5.824e-04 | 8.710e-03 7.873e-04 | 8.740e-03 7.877e-04
tmle 2: qy.c, qz.c, ga.c | 5.226e-03 5.029e-04 | 8.733e-03 7.889e-04 | 8.761e-03 7.892e-04
ee: qy.c, qz.c, ga.c 6.046e-03 5.692e-04 | 8.973e-03 7.862e-04 | 9.009¢-03 7.865e-04
tmle: qy.c, gz.c, gam | 5.124e-03 6.550e-04 | 8.076e-03 7.339e-04 | 8.102e-03 7.343e-04
ee: qy.c, qz.c, ga.m 5.140e-03 6.736e-04 | 8.330e-03 7.693e-04 | 8.357e-03 7.697e-04

Qy correct, g4 correct
gcomp: qy.c, qz.m 1.200e-02 1.308e-02 | 5.907e-03 5.674e-04 | 6.050e-03 7.384e-04
tmle 1: qy.c, qz.m, ga.c | 3.042e-03 4.958e-04 | 6.233e-03 5.812e-04 | 6.242e-03 5.814e-04
tmle 2: qy.c, qz.m, ga.c | 2.854e-03 4.200e-04 | 6.245e-03 5.833e-04 | 6.253e-03 5.835e-04
ee: qy.c, qz.m, ga.c 2.891e-03 4.714e-04 | 6.194e-03 5.788e-04 | 6.203e-03 5.791e-04

Q7 correct, g4 correct
gcomp: qy.m, qz.c 8.807e-03 1.350e-02 | 5.736e-03 5.824e-04 | 5.813e-03 7.648e-04
tmle 1: qy.m, qz.c, ga.c | 7.602e-03 5.844e-04 | 8.903e-03 7.961e-04 | 8.961e-03 7.964e-04
tmle 2: qy.m, gz.c, ga.c | 7.810e-03 6.202e-04 | 8.902e-03 7.947e-04 | 8.963e-03 7.951e-04
ee: qy.m, gqz.c, ga.c 6.843e-03 5.093e-04 | 8.931e-03 7.918e-04 | 8.978e-03 7.921e-04
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Table 4: Simulation 2: Continuous outcome, larger effect of treatment on mediator

Bias Var MSE
n 500 5000 500 5000 500 5000
Oy correct, Qz correct
gcomp: qy.c, qz.c 1.090e-02 4.189e-04 | 2.494e-02 2.392e-03 | 2.506e-02 2.392e-03

tmle 1: qy.c, qz.c, ga.c | 1.203e-02 2.325e-03 | 4.245e-02 3.498e-03 | 4.260e-02 3.504e-03
tmle 2: qy.c, qz.c, ga.c | 1.105e-02 2.488e-03 | 4.236e-02 3.507e-03 | 4.248e-02 3.513e-03
ee: qy.c, qz.c, ga.c 1.023e-02 2.373e-03 | 4.295e-02 3.493e-03 | 4.305e-02 3.499e-03
tmle: qy.c, qz.c, gam | 1.244e-02 1.670e-03 | 3.908e-02 3.094e-03 | 3.924e-02 3.096e-03
ee: qy.c, gz.c, ga.m 1.134e-02 1.834e-03 | 3.991e-02 3.253e-03 | 4.004e-02 3.257e-03

Qy correct, g4 correct
gcomp: qy.c, qz.m 5.763e-02 6.780e-02 | 2.317e-02 2.244e-03 | 2.649e-02 6.841e-03
tmle 1: qy.c, qz.m, ga.c | 1.276e-02 2.737e-04 | 2.624e-02 2.418e-03 | 2.640e-02 2.418e-03
tmle 2: qy.c, qz.m, ga.c | 1.149e-02 4.602e-04 | 2.626e-02 2.426e-03 | 2.639e-02 2.426e-03
ee: qy.c, qz.m, ga.c 1.219e-02 3.249e-04 | 2.598e-02 2.405e-03 | 2.613e-02 2.405e-03

Qg correct, g4 correct
gcomp: qy.m, qz.c 2.742e-02 4.450e-02 | 2.947e-02 2.816e-03 | 3.022e-02 4.796e-03
tmle 1: qy.m, qz.c, ga.c | 1.134e-02 2.905e-03 | 4.632¢-02 3.546e-03 | 4.645e-02 3.555e-03
tmle 2: qy.m, qz.c, ga.c | 1.217e-02 2.793e-03 | 4.613e-02 3.529e-03 | 4.628e-02 3.537e-03
ee: qy.m, gz.c, ga.c 5.395e-03 2.925e-03 | 4.125e-02 3.552e-03 | 4.128e-02 3.561e-03

5.3.3 Simulation 3: Near positivity violation

The parameters of interest are the same as in simulation 1: yp = 0.2585079 for the
binary version, and Yy = 1.158052 for the continuous version. Probability of treat-
ment given covariate W is bounded between (0.0794,0.999994), with treatment
probability > 0.99 for W > 1.5. Estimators using a truncated version of the correct
treatment mechanism with an a-priori specified bound of (0.025, 0.975) were also
considered (’ga.tr’).

When the treatment model values are extreme, the robustness results of
lemma 1 no longer apply. We observe here that the MSE of TMLE and V,, in
the case of mis-specification of outcome model or mediator density cease to reduce
at a rate proportional to sample size. However, when both of the outcome model and
mediator density are correct, TMLE and ., with an incorrect treatment mechanism
(either through truncation or incorrect modeling) yield MSE that are proportional
to sample size. This last result is predicted by the robustness result (i) of lemma 1
since the mis-specified treatment models is bounded away from 1. We observe also
that in this simulation scheme, TMLE 2 is less favorable than TMLE 1 across all
cases. This may suggest that under data sparsity, the use of plug-in estimator for
the mediated mean outcome difference is more beneficial than considerations such
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as the rate at which it is estimated. Interestingly, in table 5, which pertains to a bi-
nary outcome, we observe an increase in MSE (driven by the increase in variance)
as one moves away from the use of substitution principle (with TMLE 1 being the
one which uses substitution estimators in all its steps, TMLE 2 which does not use
substitution estimator in the initial estimate of the mediated mean outcome differ-
ence but uses substitution in the final effect estimate, and {J,, which does not use
substitution at all). This may suggest that in the case of positivity violation, when
strict bounds exist on the parameter, the degree at which each step of the estima-
tion procedure respects the bounds affects the stability of the resulting estimate.
Nonetheless, rigorous analysis is needed to provide more valid insights.

In this simulation, we observe that TMLE and {,, behave differently in
some cases. We first consider the version with binary outcome. Since the param-
eter is an average of probability differences, for a given dataset one would like the
effect estimates to be bounded between —1 and 1. However, when using a correctly
specified treatment mechanism, the . estimator exhibits estimates that are out of
bound (of magnitude larger than 3 in some cases, and of magnitude 11 and 14 in
one dataset). The bias, variance and mse of each estimator are detailed in table 5.
When outcome model and mediator density are correct, the g-computation is still
consistent despite the positivity violation. Nonetheless, the effect of data-sparsity
on g-comp is apparent when comparing this g-comp estimator with its counterpart
in the case of no positivity violation (table 1, line 1). On the other hand, under cor-
rect outcome model and mediator density, TMLE and {,, have poor variance when
implemented with an untruncated correct treatment mechanism (’qy.c, gz.c, ga.c’).
However, their performances are improved when implemented with a truncated or
mis-specified treatment (’qy.c, qz.c, ga.tr’ and ’qy.c, qz.c, ga.m’). We also observe
that in the case of all models correct (’qy.c, gz.c, ga.c’), TMLE and {,, have a dif-
ferent bias-variance trade-off, with TMLE having smaller variance but larger bias,
with respect to . (which has a larger variance but smaller bias). This difference in
relative bias and variance is also present in the case of mis-specified mediator den-
sity but correct outcome and treatment (’qy.c, qz.m, ga.c’): we observe that using
the untruncated correct treatment, TMLE has larger bias and smaller variance than
W,e; but when the truncated treatment mechanism is used, the two robust estima-
tors behave similarly and provide bias reduction over the g-computation estimator.
When the outcome model is mis-specified, TMLE and {,, provide similar bias re-
duction over g-computation estimator; but TMLE has a smaller variance than ,,
when the untruncated treatment mechanism is used, while the opposite is true with
the truncated treatment mechanism.

In the case of continuous outcome (table 6), when the outcome model and
mediator density are correct, the g-computation is consistent, though converging
at a slower rate than its counterpart in the no-sparsity case (table 2, line 1) due to
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Table 5: Simulation 3: Binary outcome, positivity violations in p(A|W)

Bias Var MSE
n 500 5000 500 5000 500 5000
Oy correct, Q7 correct
gcomp: qy.c, qz.c 2.352e-02 2.019e-03 | 1.092e-02 1.145e-03 | 1.147e-02 1.149e-03

tmle 1: qy.c, qz.c, ga.c | 5.681e-02 3.592e-02 | 3.450e-02 1.556e-02 | 3.773e-02 1.685e-02
tmle 2: qy.c, qz.c, ga.c | 4.660e-02 7.505e-02 | 5.915e-02 2.513e-02 | 6.132e-02 3.076e-02

ee: qy.c, qz.c, ga.c 1.846e-02 3.097e-04 | 4.691e-02 4.824e-02 | 4.725e-02 4.824e-02
tmle 1: qy.c, gz.c, ga.tr | 2.586e-02 2.088e-03 | 1.555e-02 1.591e-03 | 1.622e-02 1.596e-03
ee: qy.c, gz.c, ga.tr 2.393e-02 1.815e-03 | 1.235e-02 1.248e-03 | 1.292e-02 1.252e-03

tmle 1: qy.c, qz.c, ga.m | 2.324e-02 2.792e-03 | 1.338e-02 1.381e-03 | 1.392e-02 1.388e-03
ee: qy.c, qz.c, ga.m 2.635e-02 2.223e-03 | 1.837e-02 1.570e-03 | 1.907e-02 1.575e-03

Oy correct, g4 correct
gcomp: qy.c, qz.m 5.017e-02 5.847e-02 | 1.063e-02 1.355e-03 | 1.315e-02 4.773e-03
tmle 1: qy.c, qz.m, ga.c | 1.434e-01 1.129e-01 | 1.770e-02 6.660e-03 | 3.825e-02 1.940e-02
tmle 2: qy.c, qz.m, ga.c | 4.655e-02 7.698e-02 | 5.442e-02 2.105e-02 | 5.658e-02 2.697e-02
ee: qy.c, qz.m, ga.c 5.417e-03 7.108e-03 | 1.768e-01 5.231e-02 | 1.768e-01 5.236e-02
tmle 1: qy.c, gz.m, ga.tr | 3.359e-02 1.655e-02 | 1.526e-02 1.798e-03 | 1.638e-02 2.072e-03
ee: qy.c, gz.m, ga.tr 2.893e-02 3.711e-02 | 1.391e-02 1.605e-03 | 1.475e-02 2.982e-03

Q7 correct, g4 correct
gcomp: qy.m, qz.c 8.195e-02 8.263e-02 | 4.271e-03 4.561e-04 | 1.099¢e-02 7.284e-03
tmle 1: qy.m, qz.c, ga.c | 4.855e-02 9.406e-03 | 3.555e-02 1.585e-02 | 3.791e-02 1.594e-02
tmle 2: qy.m, qz.c, ga.c | 1.087e-03 6.615e-02 | 6.191e-02 2.847e-02 | 6.191e-02 3.285e-02
ee: qy.m, gz.c, ga.c 3.791e-02 1.157e-02 | 2.738e-01 1.149e-01 | 2.753e-01 1.151e-01
tmle 1: qy.m, gz.c, ga.tr | 6.252e-02 5.530e-02 | 1.367e-02 1.342e-03 | 1.758e-02 4.401e-03
ee: qy.m, gz.c, ga.tr 7.356e-02 7.080e-02 | 6.202e-03 6.226e-04 | 1.161e-02 5.635e-03

the larger variances. We also observe that in smaller sample size, when using an
untruncated correct treatment mechanism, the TMLE 1 has a larger bias but sub-
stantially smaller variance than the {J,.. This is likely due to some large effect esti-
mates in . in the dataset with smaller sample size. The variance of {J,, decreases
substantially when sample size increases. On the other hand, under the truncated
treatment mechanism, {,, has now a smaller variance but larger bias than TMLE
1. When a mis-specified treatment mechanism is used, the two robust estimators
behave similarly, but still have larger variance than the g-computation estimator. In
the case of incorrect mediator density, under untruncated treatment mechanism, we
observe again that . has much smaller bias than TMLE 1, but substantially larger
variance in finite sample (for the same reason mentioned above). This difference
largely disappears when sample size increases. But when the treatment is truncated,
we observe again that TMLE has smaller bias but larger variance than .. If the
outcome model is incorrect: when the treatment is not truncated, TMLE 1 has larger
bias and smaller variance than ., and that relation is reversed under truncation.

Published by De Gruyter, 2012 27



The International Journal of Biostatistics, Vol. 8[2012], Iss. 1, Art. 3

Table 6: Simulation 3: Continuous outcome, positivity violations in p(A|W)

Bias Var MSE
n 500 5000 500 5000 500 5000
Oy correct, Q7 correct
gcomp: qy.c, qz.c 2.390e-03 3.603e-03 | 7.999¢e-02 8.030e-03 | 8.000e-02 8.043e-03

tmle 1: qy.c, qz.c, ga.c | 6.235e-02 4.228e-02 | 7.509¢-01 4.091e-01 | 7.548e-01 4.109e-01
tmle 2: qy.c, qz.c, ga.c | 2.556e-01 4.214e-01 | 1.080e+00 6.355e-01 | 1.145e+00 8.130e-01

ee: qy.c, qz.c, ga.c 1.847e-02 2.185e-02 | 1.836e+00 2.474e-01 | 1.836e+00 2.479e-01
tmle 1: qy.c, gz.c, ga.tr | 2.895e-03 1.652e-03 | 1.227e-01 1.087e-02 | 1.227e-01  1.087e-02
ee: qy.c, gz.c, ga.tr 2.733e-03 2.608e-03 | 8.762e-02 8.473e-03 | 8.763e-02 8.479e-03

tmle 1: qy.c, qz.c, ga.m | 3.104e-04 4.806e-03 | 1.231e-01 1.209e-02 | 1.231e-01 1.212e-02
ee: qy.c, gz.c, ga.m 6.349¢-03 4.447¢-03 | 1.497e-01 1.228e-02 | 1.497e-01 1.230e-02

Oy correct, g4 correct

gcomp: qy.c, z.m 2.927e-01 2.996e-01 | 8.383e-02 8.112e-03 | 1.695e-01 9.787e-02

tmle 1: qy.c, qz.m, ga.c | 5.792e-01 4.894e-01 | 2.332e-01 1.429e-01 | 5.687e-01 3.824e-01
tmle 2: qy.c, qz.m, ga.c | 2.114e-01 4.413e-01 | 9.927e-01 5.920e-01 | 1.037e+00 7.867e-01
ee: qy.c, qz.m, ga.c 4.033e-02 6.585e-02 | 8.779¢+00 1.899e-01 | 8.781e+00 1.943e-01

tmle 1: qy.c, gz.m, ga.tr | 1.077e-01 8.515e-02 | 1.030e-01 1.046e-02 | 1.147e-01 1.771e-02
ee: qy.c, gz.m, ga.tr 1.795e-01 1.873e-01 | 9.681e-02 9.235e-03 | 1.290e-01 4.433e-02

Q7 correct, g4 correct

gcomp: qy.m, qz.c 1.553e-01 1.616e-01 | 2.087e-02 2.142e-03 | 4.499¢e-02 2.825e-02

tmle 1: qy.m, qz.c, ga.c | 2.451e-02 2.284e-01 | 7.689e-01 4.513e-01 | 7.695e-01 5.035e-01
tmle 2: qy.m, qz.c, ga.c | 7.633e-02 2.932e-01 | 1.051e+00 6.325e-01 | 1.057e+00 7.185e-01
ee: qy.m, qz.c, ga.c 4.949e-02 9.666e-03 | 8.180e-01 7.365e-01 | 8.205e-01 7.366e-01

tmle 1: qy.m, gz.c, ga.tr | 1.017e-01 1.108e-01 | 8.538e-02 6.351e-03 | 9.573e-02 1.862e-02
ee: qy.m, gz.c, ga.tr 1.323e-01 1.361e-01 | 3.437e-02 3.049e-03 | 5.189e-02 2.157e-02

6 Extension to Natural Indirect Effect

In this section, we extend the above discussions in an analogous fashion to address
the natural indirect effect.

In the context of natural effects, the total effect of A on Y can be decomposed
into natural indirect and direct effects (Robins and Greenland (1992), Pearl (2001),
Robins (2003)):

E(Y(1)-Y(0))
= [E(r(1,Z(1)) - E(Y(1,Z(0))] + [E(Y (1,2(0)) — E(Y (0,Z(0))],

where Y (a) represents the restriction to set Y (a) = fy(W,A = a,Z =Z(a),Uy) on
the NPSEM. This decomposition formalizes the concept that the total effect of the
exposure on the outcome is a combination of its indirect effect through a mediator
Z, and its direct effect not mediated by Z. The quantity E(Y (1,Z(1))—E(Y(1,Z(0))
is referred to as the additive natural indirect effect. Its identification is studied in
the same body of literature ( Robins and Greenland (1992), Pearl (2001), Robins
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(2003), Petersen et al. (2006), Hafeman and VanderWeele (2010), Imai et al. (2010),
Robins and Richardson (2010) and Pearl (2011)). More specifically, under the same
conditions as those in section 2.2, the natural indirect effect can be identified as

E(Y(1,2(1) — E((1,Z(0)) "= Wyp ()

= Pwyo {ZQ_KO(W,A =1,2)[0z0(zlW, A= 1) — Qz0(z|W,A = 0)]} : (20)

The results of Robins and Richardson (2010) thus have the same implications on
the difficulty of identifying the natural indirect effect in real experiments, due to the
conditional counterfactual independence assumption A3. In such cases, what kind
of causal interpretation can the statistical parameter (20) still offer? If assumption
A3 fails but randomization assumptions Al and A2 hold, the statistical parameter
in (20) equals

Wi (Po) "2 Ey {ZE(Y(LZ)IW) [p(Z(1) = 2|W) — p(2(0) = ZW)]} :

The interpretation of the right hand side is not as intuitive as in the natural direct
effect case. But since p(Z(1) = z|W) — p(Z(0) = z|]W) measures the effect of A on
Z, at its face value this alternative effect parameter can be viewed as weighting the
different outcomes E (Y (1,z)|W) under z by these effect measures. However, we
remind the reader again that this alternative causal parameter only serves to provide
a causal interpretation for the statistical parameter (20) and one should be cautious
about putting it into the context of the traditional total effect decomposition.

The parameter Wy (P) is also a function of Q alone. To extend the dis-
cussions above to the natural indirect effect parameter (20), we now consider the
mediated mean outcome map Q — Ynie z(Q), where Ynig z(Q) 1 &/ X W — R is
given by

(w,a) — Wnie z(Q)(w,a) = Eg, (Oy (W =w,A=1,Z)|W =w,A=aq).

This way, the parameter can be regarded as Wi (Q) = Wnie (Qw, Wnie z(Q)).
The efficient score for this parameter (derived inTchetgen Tchetgen and Sh-
pitser (2011b)) is given by
Dyip(Q,8,¥nie(Q))
1A= 1){ 0z(Z|W,0)
= Y — W,1)— =22
g(l|W) IIINIE,Z(Q)( ) QZ(Z‘Wal)
1(A=0) , -
- W (QY(Wa 1,Z) — yvie z(Q)(W, 0))
+ Wniez(Q)(W, 1) — Wnie z(Q)(W,0) — P (Q). (21)

(Y—QY(W,I,Z))}
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The general robustness conditions of Tchetgen Tchetgen and Shpitser (2011b) ap-
ply to both natural direct and indirect effects. By the same reasoning (and anal-
ogous proof) as that of lemma 1, we note again that conditions (i) and (iii) may
be weakened to: (i) the conditional mean outcome Qy(W,A,Z) and the medi-
ated outcome map WYnse z(Q)(W,A) are both correct; (iii) the exposure mechanism
and mediator density, or the exposure mechanism and the conditional distribution
P(A|W,Z), are correct. Therefore, in situations where Z is high dimensional, sim-
ilar practical implications as those discussed in remarks following lemma 1 apply.
However, note that a regression-based estimation procedure for Wyr z(Qop) now
regresses Qy (W,1,Z) on W among treated observations to obtain the conditional
mean Yysz z(Q)(W, 1), and among control observations to obtain Yyzg z(Q)(W,0).
Since the parameter (20) is given by

‘PNIE(Q) = EQW (WNIE,Z(Q) (W7 1) - lI/NIE,Z(Q) (W70)) ) (22)

the targeted MLE only needs to focus on estimation of the components Qyw o, Q}{/O
and l//NIE’Z(QO) of the likelihood. We first rewrite the efficient score in (21) as

Dy (0,8, ¥nie(Q))
L= () oz

) (Y —0Oy(W,A,2))

- og(1w) 0z(Z|W.1)
2A—1 | -
+ A7) {Ovy(W,1,2)) — wnie 2(Q)(W,A) }

+ynie z(Q)(W, 1) — wnie 2(Q)(W,0) — Py (Q)
=Djyigy +Dnigz +Diew-

The reader may have readily noted the parallel between Dy, 7 + Dy g y and the
efficient score for the familiar additive marginal treatment effect; this is because
the indirect effect can viewed as an additive marginal effect of the treatment on
Qy(W,A = 1,Z) through its effect on Z, as seen in (22). In fact, as we will see
shortly, the second part of the implementation of TMLE is very similar to the well-
known case of additive marginal effects.

Without loss of generality, we assume that ¥ is bounded in the unit inter-
val. Under the log-likelihood loss function of A(3), the least favorable submodel for

Qy(W,A,Z) through a given initial estimator Qy ,, is now given by

éy,n(&‘l) = expit (logif(éY,n) +81CY(QZ,n7§n)> :

where Cy(QAZﬂ, 8,)(0) = (QI,E/({lTv%/)) (1 — gi:g:&?i) Note that the dependence of

Qeyyn(el) on QAZJ, and g, are suppressed in the notation. The targeted MLE of Qy70
is Oy, = Oy (&[) and is similarly defined as in section 3.1.
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Next, consider an estimating procedure Yy;£ z (P,)(-) for Wyie z(Qop), and
let Yvie 7.0 = Unie z(P,). We are reminded that the function Yy;g 7, depends on
the estimating procedure Wy;z z(-) and the observed data P,, and it can be plug-in
or regressed-based. I,T/NIEZ,Z(Q_;”) is an initial estimator of Wk z(Qo). We define
the log-likelihood loss for yyig z(Q)(W,A) as

Lz(wnie z(Q))(0)
= —tog { ywnre Q) (W.A)2 W2 (1= iz £(Q)(W,4)) & W1

The least favorable submodel through the initial estimator I/A/NIEZ,,(QQ;H) is given
by

WniE.za(05 ) (€2) = expit (lOgit (‘f’NIE.,Z,n(QA?n)) + 82Cz(§n)> ,

where Cz(8,) = %. The dependence of the submodel on g, is also suppressed

in the note}tion. Ina similaAr fashion as section 3.1, we obtain the targeted MLE
Unie.zn(Oy.n) = WNiEZa(Qy,)(&). Finally, the targeted MLE of the parameter
Wnie(Qo) is given by
1 R .
Wi = oy 1o (W2 (i) (W) = Vi 205, (910))
i=

We remind the reader again that the role of the ratio of Oz in Cy may be replaced
by ratios of g(A|W) and p(A|W,Z).

The resulting estimator satisfies the efficient score equation, and therefore
is asymptotically unbiased if (i) the conditional mean outcome Qy and the medi-
ated outcome map Yysg z(Q) are both correct; (ii) the conditional mean outcome
and the exposure mechanism g(A|W) are correct; (iii) the exposure mechanism and
mediator density Qz(Z|W,A), or the exposure mechanism and the conditional dis-
tribution p(A|W,Z), are correct. An estimating equation estimator {57, is also
discussed in Tchetgen Tchetgen and Shpitser (2011b). As mentioned in section 4,
Uy g and Px5 will inherit the same robustness properties from the efficient score,
since both satisfy the efficient score equation. Conditions for asymptotic linearity
are analogous to those of theorem 1, we omit their derivations here.

7 Summary and Concluding Remarks

In this article, we applied the targeted maximum likelihood framework of van der
Laan and Rubin (2006) and van der Laan and Rose (2011) to construct a semi-
parametric efficient, multiply robust, plug-in estimator for the natural direct effect
of a binary treatment. This estimator has the property that it satisfies the efficient
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score equation (derived in Tchetgen Tchetgen and Shpitser (2011b)), and hence
also inherits its robustness properties. We noted that the robustness conditions in
Tchetgen Tchetgen and Shpitser (2011b) may be weakened (lemma 1), thereby
placing less reliance on the estimation of the mediator density. More precisely, the
proposed estimator is asymptotically unbiased if either one of the following holds:
1) the conditional mean outcome given exposure, mediator, and confounders, and
the mediated mean outcome difference are consistently estimated; (ii) the exposure
mechanism given confounders, and the conditional mean outcome are consistently
estimated; or (iii) the exposure mechanism and the mediator density, or the expo-
sure mechanism and the conditional distribution of the exposure given confounders
and mediator, are consistently estimated. If all three conditions hold, then the effect
estimate is asymptotically efficient. We also extended our results analogously to the
case of natural indirect effect.

In applications, the components that are difficult to estimate are often times
the conditional mean outcome and/or the mediator density. For a high-dimensional
Z, few tools are available to estimate the conditional mediator density Qz. On the
other hand, there is abundant literature addressing estimation of conditional means.
This can be used to estimate the mediated mean outcome difference yz(Q) =
Eo,(Qy(W,1,Z) — Qy(W,0,Z)|W,A = 0), and the conditional distributions of a
categorical A. Lemma 1 implies that estimation of the mediator density may be
replaced by estimations of g(A|W), p(A|W,Z), and the conditional expectation
vz(Q).

We have also described general conditions for the estimator to be asymptot-
ically linear. More specifically, 1) estimators of each component must converge to
their respective limits at a reasonable speed, and 2) if there is a component that is not
consistently estimated, the consistent estimators of the remaining components must
meet stricter asymptotic linearity conditions. These conditions provide a guideline
for situations where influence curve based variance estimates are realistic.

Estimators that use of the efficient score are robust, but are generally sensi-
tive to practical positivity violations. We refer to Petersen, Porter, S.Gruber, Wang,
and van der Laan (2010) for methods of diagnosing and responding to violations of
the positivity assumption. The substitution principle and the logistic working sub-
models in the targeted estimation procedure aim to provide more stable estimates in
such situations. However, identification of the parameter depends ultimately on the
information available in a given finite sample. A way to improve finite sample ro-
bustness is the Collaborative TMLE (C-TMLE) of van der Laan and Gruber (2010),
where, instead of estimating the true treatment mechanism, for a given initial esti-
mator of the Q component one estimates a conditional distribution of the treatment,
conditioned only on confounders that explain the residual bias of the estimator of
Q. We aim to investigate applications of C-TMLE to the effect mediation problem.
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Appendix A

Appl. Proof of lemma 1

Let {z be a map Q > Jiz(Q), where §z(Q) is a function from % to R. Note that
z(Q) may or may not make use of the density Qz, but it surely uses Qy. Then

POD*(Q7g> li’Z(Q)a lI/O)

- PW.,O{ L L 0zolelw. ) S5 (@ra(W.1.) = 0y (W.1.2) } 3)
—Pw.o{gg i L0z W.0) (0ro(.0.5)~ Qy<w,o,z>)} o9
+Pw,o{gg i L0z (cw.0)(0r(.1.5)~ Qy<w,o,z>)} 05)
- P& (@) 0) 26)
+ o 9@ W)} - vo )

Suppose (i) holds, i.e. Qy = Qyo and Pz(Q)(W) = wz(Qo)(W). Then (23)
and (24) are each exactly 0; the expectation in (25) and (26) are the same; and

Py oWz(Q)(W) = Py oyz(Qo)(W) = yp. Notice that in this case, it was not neces-
sary that Oz = Q7. But rather, any function {/z(Q) that equals the true mediated
mean difference yz(Qp) will yield the desired result.

Suppose now that (i1) holds. Then (23) and (24) are each exactly 0. The
expression in (26) equals Py oPz(Q)(W), and the expression in (25) equals yp.
Therefore the mean is zero.

Suppose that (iii) holds. Then, rearranging (23) and (24) we rewrite the
above expectation as

PD*(Q,8,¥0) = PW,O{ZQZ,O(Z‘W7 0) (Oro(W,1,2) — Oy(W,0,2)) }
- PW,O{ZQZ,O(Z\W,O) (QY(W,l,z)—QY(W,O,Z))}
+ PW,O{ZQZ,O(Z|W,O) (QY(W, 1,2) — QY<W70;Z)>}

— PwoWz(Q)(W)+PvoWz(Q)(W) — v
=0
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App2. Proof of theorem 1
To see (9) we note firstly that for any Q and y

PD* (Qy, 07,80, V) = EwoWz(0r0,020) — ¥

Ao E (@ralW,1.9) - 0y(W.1,9) Qsofciw. 1) ( S4TE - S0 )

=YV

R )

On the other hand, P,D* (Qél*/n, O7n:&n, WE,,(Q:*,,Q) = 0 by design of the
estimator. Combining these two results, we can express

W = Y0 = (Ba = ) D" (O3 Oz b, W00 )

A N 5« QZ,n(Z‘W70) . QZ,O(Z’W70))
+PW,OZZ: <QY,0(W7 17Z> QY,n(Wu I,Z)) QZ,O(Z‘W7 1) (QZ7n(Z|W, 1) QZ7O<Z|W7 1)

+ R D" (G5 Oz W20 03) ) — D" (O 1s 080, W2.(05) ) |
where the last summand can be rewritten as
Ro{D" (G5 s Ozins 8 W51 Oy.) ) = D (B3 s Oz 80 95.1( 05 ) | =

Py (Cy(8n,07.1) —Cr(20,02.)) (QY,O - é;n)

I(A=0) I(A=0) s
+ PR <gAn(O‘W) - g0(0|W)> (WZ(QZ,OyQY,n) - lI’Z,rz(QY,n)) :

Result (9) thus follows. Moreover, the Donsker class condition in (10) yields

vy — W = (P, —Py) D" (05, 02,8, v7(05))

_ A QZ,n(Z‘W70) _ QZ,O(Z’WﬂO))
+PW,OZZ: <QY,0(W7 17Z> QY,n(Wu I,Z)) QZ,O(Z‘W7 1) (QZ,n(Z|W> 1) QZ7O<Z|W7 1)

+ Py (Cy (8n, 0z.) — Cr (g0, QZn)) (QY,O - él*/n)

H(A=0) I(A=0) s
+P <§n(OW) - g0(0|W)> (WZ(QZ,O:QYJ;) - ‘Vz,n(QY,n))

+op(1v/n)
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The conditions for asymptotic linearity can be ascertained from the second
order terms by a straightforward expansion:

Oza(z[W,0) Qz,o(z\Wﬁ))

H/V,OZZ: (QY,O(W7 17Z) - QY7n(W7 17Z>> QZ,O(Z‘Wa 1) <QAZ,n(Z|W, 1) QZ,O(Z‘Wy 1)
+ Py (Cy (81, 0zn) — Cr(80,07,)) (QY,O — Qé;n>

o1 (N~ o) (20,850 15,65,

8n(0[W)  go(0[W)
= R L (@19~ G5 W,1,9) Qsofew, 1) (LM QeoldW0))

+ Py (Cy(8,0z.0) — Cr(80,0z)) (Ovo— Oy)

[(A=0) I(A=0) -
+Py < 2(OW) go(OW)> <WZ(QZOaQYn) v (Oy, ))

+PW.,OZ(Q_;(W11>Z)_QA;,H(W7LZ QZO Z|M/ 1

Z|W 0 QZ(Z’W70)> 28
2(ZW, 1) 0z(z|W,1) %)

+ Ry (Cy (8, Oz.n) ~ Cr (8,02.0)) (05 — 07 ) 29)
IA=0) IA=0)\ (0 sbe y_ v (O

+h <§n(0!W) — 2(0[W) > (‘I’Z(Qm) - ‘I’Z,n(QYJ;)) (30)

. W,0 W,0
B0 (G5 (W.1.2) = 5, (W:1.9)) Qzo(@W.1) (g EE:W 13 - g;gg:w 13) 3D
5 - Oz.1(e|W,0) Qz(Z\W,0)>

+PWOZ Oro(W,1,2) = 0y (W, 1,2)) Qz0(z|W, 1) <Q AW 1) 0z T) (32)

+ R (Cr(8,02.0) ~ Cr (90, 02.0)) (05 — 05, (33)

+ Py (Cy gn,QZn —Cy(8.02.)) (Oro—0y) (34)
IA A O) A -

R[5 0|W SO ) (v2(0z0.G3.) — w35, (35)
IA=0 A=0 2 ~ ko Ak

(- g(o(ow))) (365~ 5,83, 66)

In this theorem we study situations pertaining to the cases (i) Q;‘, = Qyp, and
v7(0y.,) = vwz(Qz0,0y,); (i) g = go and Oy = QO o; or (iil) g = g0, Oz = Qzp0-
Under either of these cases, the first three unlabeled summands after the equal sign
are exactly zero. Therefore, we only need to focus on the first order ((31), (32),(33),
(34), (35), (36)) and second order ((28), (29), (30)) remainders. The rate conditions
(11), (12) and (13) ensure that the second order terms (28), (29) and (30) are all
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op(1/+/n). The remaining case by case asymptotic linearity conditions ensure that
the first order remainders are asymptotically linear.

Appendix B

In this section, we describe an alternative targeted estimator for the natural direct
effect by targeting on the conditional outcome expectation and the mediator density.
The key difference between the estimator proposed in the main section and the
estimator in this appendix lies in that the latter defines a loss function and parametric
working submodel for the conditional mediator density Q7 and then estimates the
mediated mean outcome difference plugging in the targeted mediator density and
the targeted Qy.

The loss function Ly for Qy remains the same as in the main section. That is,
we consider the loglikelihood loss when Y is binary or bounded in the unit interval,
or the squared error loss otherwise. Consequently, the parametric submodels for Qy
remain the same as in the main section.

We make the assumption that the mediator Z is discrete with K + 1 lev-
els, ie. Z € {0,1,...,K}. Let the variable Z; denote the indicator I(Z = k),
and Qz, = P(Z|2o,...,Zx—1,W,A), for k =0,...,K — 1. Then, Z has a binary
representation Z = (Z;:k=0,...,K—1), and Q7 = Hf;ol Qz,. For notational
convenience, we will sometimes write Qz (1|W,A) for the conditional probabil-
ity P(Zy = 1|Zo,...,Z;_1,W,A), and Zx_1 for the vector (Zp,...,Z;_1). Define for
Q7 the loglikelihood loss function

K—1
Lz(Qz) = — Y Zilog Q7 (1|W,A) + (1 — Z) log Oz, (0|W,A).
k=0

We wish to find a logistic parametric working submodel Qz(€) satisfying

d _
%LZ(QZ((?) le=o=Dz(Qz,8, Q) 37

For that purpose, we first decompose Dz orthogonally as Dz = ZkK;Ol Dz, , where

1(A=0)
D, zi{E Dz\Zy = 1,2x1,W,A) — E (Dz|Zy = 0,Zx_1,W,A }
$= o) 1P JmE )

X (Zkx — Q7 (1|W,A)).

A parametric working submodel for Q7 = HkK;OI Qz, is defined in terms of each
component:

logitQz,(g,0y)(€)(1|W,A) = logitQz (1|W,A) + €Cz, (g, 0y)(W,A),
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where we define

Cz.(8:Or)(W,A)

= Ig(?orwo)) {E (Oy(W,2)|Zx = 1,Zx_1,W,A) —E (Qy (W, Z)|Z; :0,Zk,1,W,A)}
_I(A=0) -1
= OW) {QY (W, k) E;CQY (W,1) {mngzm(o‘WA)}QZI(HW’A)}’

if Zx_1 =0, and Cz (g,0y)(W,A) = O if Zx_1 # 0. This way, the parametric

working submodel Oz (g, Oy)(€) = [T}, 0z (g, Or)(€) satisfies (37).
Given initial estimators of Qy 0, QZ 0, and go, a targeted MLE estimator for

QY for Qy  is constructed as in (6). Using this updated Qy, the optimal € for the
submodel of Q7 is given by

&= argmginPan (QAZ@,Q;)(&')) )

and the targeted estimator of the mediator density is given by Oz(g, Qéf,)(é*) we

denote this by Q} for convenience. Finally, the targeted MLE estimator of y is the
substitution estimator plugging in these two updated components:

1
nl:1

It follows from (4) that P,,D;;(é;‘/, 0z.8) = 0, and it follows from (37) that
P,D> <QA’§, Qz,g> = (0. Moreover, the empirical distribution QAwm of W solves the

score equation P,Dy;, (05, QA}, QWn) = 0. Therefore the resulting targeted estimator
also solves the efficient score equation.
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