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Targeted Maximum Likelihood Estimation of
Natural Direct Effects

Wenjing Zheng and Mark J. van der Laan

Abstract
In many causal inference problems, one is interested in the direct causal effect of an exposure

on an outcome of interest that is not mediated by certain intermediate variables. Robins and
Greenland (1992) and Pearl (2001) formalized the definition of two types of direct effects (natural
and controlled) under the counterfactual framework. The efficient scores (under a nonparametric
model) for the various natural effect parameters and their general robustness conditions, as well as
an estimating equation based estimator using the efficient score, are provided in Tchetgen Tchetgen
and Shpitser (2011b). In this article, we apply the targeted maximum likelihood framework of
van der Laan and Rubin (2006) and van der Laan and Rose (2011) to construct a semiparametric
efficient, multiply robust, substitution estimator for the natural direct effect which satisfies the
efficient score equation derived in Tchetgen Tchetgen and Shpitser (2011b). We note that the
robustness conditions in Tchetgen Tchetgen and Shpitser (2011b) may be weakened, thereby
placing less reliance on the estimation of the mediator density. More precisely, the proposed
estimator is asymptotically unbiased if either one of the following holds: i) the conditional mean
outcome given exposure, mediator, and confounders, and the mediated mean outcome difference
are consistently estimated; (ii) the exposure mechanism given confounders, and the conditional
mean outcome are consistently estimated; or (iii) the exposure mechanism and the mediator density,
or the exposure mechanism and the conditional distribution of the exposure given confounders
and mediator, are consistently estimated. If all three conditions hold, then the effect estimate is
asymptotically efficient. Extensions to the natural indirect effect are also discussed.

KEYWORDS: natural direct effects, natural indirect effects, mediation analysis, mediation
formula, mediator, direct effects, asymptotic efficiency, robust, double robust, asymptotic linearity,
canonical gradient, efficient influence curve, efficient score, loss-based learning, targeted
maximum likelihood estimator, targeted learning, parametric working submodels
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1 Introduction
The causal effect of an exposure (or treatment) on an outcome of interest is often

times mediated by intermediate variables (mediator). In many causal inference

problems, one is interested in the direct effect of such exposure on the outcome,

not mediated by the effect of the intermediate variables. Robins and Greenland

(1992) and Pearl (2001) defined two types of direct effects under the counterfactual

framework. The controlled direct effect refers to the effect of the exposure on the

outcome under an idealized experiment where the mediator is set to a given constant

value, whereas the natural (or pure) direct effect pertains to an experiment where

the mediator is set to its would-be value under a reference (null) exposure level.

The definition of these causal effects are based on counterfactual outcomes that

are not fully observed, therefore they are not always identifiable from the observed

data. Identifiability conditions are studied extensively in Robins and Greenland

(1992), Pearl (2001), Robins (2003), van der Laan and Petersen (2004), Petersen,

Sinisi, and van der Laan (2006), Hafeman and VanderWeele (2010), Imai, Keele,

and Yamamoto (2010), Robins and Richardson (2010), and Pearl (2011).

Prior to the formal frameworks developed by Robins and Greenland (1992)

and Pearl (2001), the social science literature had proposed the use of parametric

linear structural equations in mediation analysis (e.g. Baron and Kenny (1986)),

where the outcome response and mediator response are each modeled using lin-

ear main term regression on their parent nodes, and the direct and indirect effects

are defined and estimated in terms of the coefficients in these regression equations.

The limited causal validity of this parameter due to its dependence on model spec-

ification (e.g. no-interactions and linearity assumptions) is discussed in Kaufman,

Maclehose, and Kaufman (2004). The developments of Robins and Greenland

(1992) and Pearl (2001), and the identifiability studies that followed suit, address

definition and identification of direct and indirect effects in causal models that do

not put restrictions on the distribution of the observed data, allowing one to separate

the identification problem from the estimation problem.

Several approaches to the estimation problem are available in the current lit-

erature. A likelihood-based estimator approach (the g-computation formula) builds

upon the identifiability results using a substitution estimator plugging in maximum

likelihood based estimates of the relevant components of the data generating dis-

tribution. The natural direct effect can be identified as a function of the marginal

covariate distribution, the conditional mediator density, and the conditional mean

outcome (e.g. Robins and Greenland (1992), Pearl (2001), Robins (2003) and

van der Laan and Petersen (2004), Petersen et al. (2006)). When all of these compo-

nents of the data generating distribution are estimated consistently, the resulting g-

computation estimate is unbiased and efficient. However, if either of these compo-
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nents is inconsistent, the effect estimate will be biased. VanderWeele and Vanstee-

landt (2010) illustrated how this approach can be applied to the estimation of natural

direct effect odds ratio of rare outcomes. The use of (sequential) g-computation in

structural nested models for estimation of controlled direct effects is proposed in

Vansteelandt (2009). A second approach to causal effect estimation is based on the

estimating equation methodology developed by Robins (1999), Robins and Rot-

nitzky (2001) and van der Laan and Robins (2003). Under this approach, a score is

expressed as a function of the parameter of interest ψ and a nuisance parameter η
(whenever such representation is possible); if the resulting estimating equation, as

an equation in the variable ψ , has a unique solution, the parameter estimate is given

as the root to this equation. For most parameters arising from causal inference,

the efficient score under a nonparametric model is a robust estimating function (i.e.

unbiased against mis-specification of specific components of the likelihood), there-

fore the resulting effect estimate shares the same robustness properties. In van der

Laan and Petersen (2008), an application of this approach to a generalized class of

direct effects using marginal structural models was discussed. The parameter stud-

ied in that work is a population mean of a subject-specific average controlled direct

effect, averaged with respect to a user-supplied conditional mediator density given

null exposure and individual covariates. If the supplied conditional mediator den-

sity is the true conditional mediator density of the data generating process, then the

parameter of van der Laan and Petersen (2008) evaluates to the same value as the

natural direct effect parameter. However, even in such case, these two parameters

are not the same maps on the model since the former is a map indexed by the sup-

plied mediator density and therefore is a function of the outcome expectation and

marginal covariate distribution alone. As a consequence, the efficient score of the

parameter of van der Laan and Petersen (2008) is not the same as the efficient score

of the natural direct effect parameter. VanderWeele (2009) discussed more fully the

use of marginal structural models with inverse probability weighting for estimation

of the natural direct effect parameter. A third approach to causal effect estimation is

the targeted maximum likelihood framework of van der Laan and Rubin (2006) and

van der Laan and Rose (2011). For given estimators of relevant components of the

likelihood P, one iteratively maximizes the likelihood (or minimize a loss) along a

least favorable submodel through the initial estimators. The parameter estimate is

given by evaluating the parameter map at the final estimator of the likelihood, thus

providing a substitution estimator of the parameter of interest. By construction, the

final estimate of the likelihood satisfies the efficient score equation in the variable

P. Therefore, the effect estimate also shares the robustness properties of the effi-

cient score. In addition, the substitution principle incorporates global constraints

of the statistical model that do not affect the form of the efficient score; this allows

for potential improvement in finite sample performance. van der Laan and Petersen
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(2008) also applied the targeted MLE procedure to their generalized class of direct

effect parameters. Both the estimating equation approach and the targeted MLE

approach in van der Laan and Petersen (2008) are robust (with respect to its param-

eter of interest) against mis-specification of the conditional mean outcome or mis-

specification of the treatment mechanism. However, since its parameter of interest

is indexed by the user-supplied conditional mediator density, if one is interested in

the natural direct effect, then the user-supplied conditional mediator density in the

method of van der Laan and Petersen (2008) must be correct. The use of propen-

sity score matching in causal effect estimation was introduced in Rosenbaum and

Rubin (1983). Application of propensity score in mediation analysis has also been

proposed (e.g. Jo, Stuart, MacKinnon, and Vinokur (2011)).

Most recently, Tchetgen Tchetgen and Shpitser (2011b) derived the efficient

scores (under a nonparametric model) for the various natural effect parameters, and

established their general robustness properties and their implications on efficiency

bounds. They also proposed semiparametric efficient, multiply robust estimators

based on the estimating equation methodology using the efficient score equation.

We also refer the reader to that work for presentation of a sensitivity analysis frame-

work to assess the impact of the ignorability assumption of the mediator variable

on inference. In Tchetgen Tchetgen and Shpitser (2011a), the authors extended

the theory to the case where one specifies a parametric model for the natural direct

(indirect) effect conditional on a subset of baseline covariates.

In this article, we apply the targeted MLE framework of van der Laan and

Rubin (2006) and van der Laan and Rose (2011) to the estimation of the natural di-

rect effect of a binary exposure. The proposed estimator satisfies the efficient score

equation derived in Tchetgen Tchetgen and Shpitser (2011b). However, we note

that the robustness conditions in Tchetgen Tchetgen and Shpitser (2011b) may be

weakened (lemma 1), thereby placing less reliance on the estimation of the medi-

ator density. This weaker version of robustness conditions is of particular interest

when the mediator is high-dimensional, since it allows one to replace estimation of

the conditional mediator density with objects that are easier (or at least with more

available tools) to estimate. More precisely, the proposed estimator is asymptoti-

cally unbiased if either one of the following holds: i) the conditional mean outcome

given exposure, mediator, and confounders, and the mediated mean outcome dif-

ference are consistently estimated; (ii) the exposure mechanism given confounders,

and the conditional mean outcome are consistently estimated; or (iii) the exposure

mechanism and the mediator density, or the exposure mechanism and the condi-

tional distribution of the exposure given confounders and mediator, are consistently

estimated. If all three conditions hold, then the effect estimate is asymptotically

efficient. We also extend the results to the estimation of natural indirect effects. In

addition, we discuss in detail conditions needed to ensure asymptotic linearity of
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the resulting estimator. These conditions should provide a guideline for situations

where an influence curve based variance estimate is realistic.

This article is organized as follows: In section 2 we define formally the

natural direct causal effect of a binary treatment on an outcome using the Non-

Parametric Structural Equations Model framework of Pearl (2009), and summarize

its identifiability conditions. Based on the identifiability result, one may consider

the natural direct effect parameter as a map from the model to the parameter space.

We study this map and its efficient score in greater detail in section 2.3. Section

3 describes how to construct a targeted MLE estimator for the natural direct effect

of a binary treatment. Asymptotic properties of this estimator are summarized in

section 3.2 and proved in the Appendix A. The estimation procedure in section 3

focuses on the targeted estimation of the conditional outcome expectation and the

mediated mean outcome difference. An alternative procedure focusing on the con-

ditional outcome expectation and the conditional mediator density is described in

Appendix B. This alternative estimator shares the same asymptotic properties as the

one proposed in section 3. Section 4 describes in greater detail two alternative es-

timation methodologies: the estimation equation framework of Robins (1999), and

the maximum likelihood based g-computation framework. In section 5, we illus-

trate with simulations the robustness of the targeted MLE estimator against model

mis-specifications. Section 6 extends analogously the discussions on identifiabil-

ity, robustness, and estimation to the case of natural indirect effect. This article

concludes with a summary and a few remarks.

2 Natural Direct Effect of a Binary Treatment

2.1 Causal Parameter

Consider n i.i.d observations of O = (W,A,Z,Y ), where W represents baseline co-
variates, A a binary treatment, Z represents a mediator of interest between the treat-
ment and the outcome of interest Y . Let P0 denote the distribution of O. We apply
here the Non-Parametric Structural Equations Model (NPSEM) of Pearl (2009) to
encode the causal relations under consideration. The NPSEM on a unit consists of
a set of exogenous random variables U which are determined by factors outside the
model, a set of endogenous variables X which are determined by variables inside the
system (U ∪X), and a set of unspecified deterministic functions { fx : x ∈ X} which
encode for each x ∈ X the variables that have direct influence on x. More specifi-
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cally, in the present situation the causal relations are described by the NPSEM

U = (UW ,UA,UZ,UY )∼ PU

W = fW (UW )

A = fA(W,UA)

Z = fZ(W,A,UZ)

Y = fY (W,A,Z,UY ),

where X = (W,A,Z,Y ) is the endogenous variable, and U = (UW ,UA,UZ,UY ) is

the unobserved exogenous variable. This model defines a random variable (U,X)
on the unit of observation, we denote its distribution by PU,X .

The counterfactual variables or potential outcomes in the Rubin Causal

Model (Rubin (1978), Rosenbaum and Rubin (1983) and Holland (1986)) can be

represented as restrictions on the input of the functions fx. For instance, the coun-

terfactual Z(a) is defined as the random variable Z(a) ≡ fZ(W,A = a,UZ), and

can be interpreted as the mediator variable that the unit would have had if the

exposure had been a. In particular, Z(a) is a random variable through UW and

UZ . Similarly, Y (a′,Z(a)) is the counterfactual outcome that results from setting

Y (a′,Z(a))≡ fY (W,A = a′,Z(a),UY ), and can be interpreted as the individual’s re-

sponse if the exposure had been a′ while the mediator variable had been identical

to the one under exposure a. Y (a′,Z(a)) is a random variable through UW , UZ and

UY .
Under the NPSEM, a causal parameter of interest is defined as a function of

the distribution PU,X . More specifically, the natural direct causal effect is defined
as

Ψ(PU,X) = E [Y (1,Z(0))−Y (0,Z(0))] .

This causal parameter can be interpreted from the following hypothetical exper-

iment: one randomly assigns each subject to treatment or control, while always

setting the subject’s mediator variable to its value under no treatment, and then

takes the difference in mean outcome between the treated and control cohort.

2.2 Identifiability

We will also use the notation Z(A) to denote the unintervened Z = fZ(W,A,UZ),
which is random through UW ,UA,UZ . Similarly, the unintervened Y (A,Z(A)) ≡
fY (W,A,Z(A),UY ) is random through UW ,UA,UZ,UY . Under experimental or ob-

servational studies, for each unit, the investigator only observes the outcome and

mediator response under the unit’s actual exposure. In other words, the observation

is in fact O = (W,A,Z(A),Y (A,Z(A)). Hence, the causal parameter Ψ(PU,X) is not

always identifiable from the observed data.
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Conditions under which the natural direct effect (or natural effects in gen-

eral) will be identifiable were addressed extensively in Robins and Greenland (1992),

Pearl (2001), Robins (2003), Petersen et al. (2006), Hafeman and VanderWeele

(2010), Imai et al. (2010), Robins and Richardson (2010) and Pearl (2011). In par-

ticular, Pearl (2001) gave the following identifiability conditions: If randomization

assumptions

A1. For all values (a,z), Y (a,z) given W is identifiable,

A2. For all values of a, Z(a) given W is identifiable,

and the conditional independence assumption

A3. For all a �= a′,z, Y (a′,z) is independent of Z(a) given W

are satisfied, then the causal effect Ψ(PU,X) can be expressed as a function of the
observed data generating distribution P0:

Ψ(PU,X)
A1,A2,A3

= Ψ(P0)

≡ EW

{
∑

z
[E(Y |W,A = 1,Z = z)−E(Y |W,A = 0,Z = z)] p(z|W,A = 0)

}
. (1)

In the following sections, we will focus on the estimation of this statistical param-

eter.

Many of these previous authors have established that the randomization as-

sumptions A1 and A2 can be satisfied by requiring that (A,Z) is independent of

Y (a,z), given W , and A is independent of Z(a), given W . These can be ensured by

measuring sufficient covariates to control for confounding of the effects of treat-

ment on outcome, treatment on mediator, and mediator on outcome. As a result,

the distributions of Y (a,z) and Z(a) will be identifiable within covariate stratum.
Petersen et al. (2006) showed that A3 can be weakened to a conditional

mean independence E(Y (1,z)−Y (0,z)|W )=E(Y (1,z)−Y (0,z)|W,Z(0)= z). Still,
it was recognized in Pearl (2001) that the conditional counterfactual independence
is in general difficult to interpret. Imai et al. (2010) offered a stronger version of as-
sumption A3 which is more interpretable: Y (a′,z) is independent of Z given W and
A = a. This new version implies assumption A3, but the converse is not necessarily
true. Robins and Richardson (2010) established that in general condition A3 cannot
be enforced by randomized experiments, which implies that the natural effects are
in general not identifiable by randomized experiments. In such cases, what kind
of causal interpretations can the statistical parameter in (1) still offer? Note that
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under the randomization assumptions A1 and A2 alone, the statistical parameter (1)
equals (e.g. Pearl (2001), van der Laan and Petersen (2008)):

Ψ(P0)
A1,A2
= EW

(
∑

z
E(Y (1,z)−Y (0,z)|W )P(Z(0) = z|W )

)
.

The quantity in the right hand side is the population mean of an average of subject-

specific controlled direct effect E(Y (1,z)−Y (0,z)|W ), weighted by P(Z(0)= z|W ).
However, while this quantity serves to provide a causal interpretation for the statisti-

cal parameter (1) in the absence of condition A3, it is certainly not the natural direct

causal effect; therefore one should be cautious about putting it into the context of

the traditional total effect decomposition.

2.3 The Natural Direct Effect Parameter

Let M denote a model containing the true data generating distribution P0. For any
P ∈M , the likelihood decomposes into

P(O) = PW (W )PA(A|W )PZ(Z|W,A)PY (Y |W,A,Z).

For later convenience, we adopt the notations g(A|W ) ≡ PA(A|W ), QW (W ) ≡
PW (W ), QZ(Z|W,A) ≡ PZ(Z|W,A), and Q̄Y (W,A,Z) ≡ E(Y |W,A,Z). Moreover,

let Q≡ (QW ,QZ, Q̄Y ). The notations Q0 and g0 are reserved for the corresponding

components of the true data generating distribution P0. For a function f (O), we will

use P f to denote the expectation of f (O) under the probability distribution P ∈M .

For instance, P0 f ≡ ∑o∈O f (o)dP0(o) denotes the expectation of f under the true

data generating distribution, while Pn f ≡ 1
n ∑n

i=1 f (oi) denotes the empirical mean

of f .
One may consider the natural direct effect parameter Ψ in (1) as a map

Ψ :M → R

P 	→Ψ(P) = Ψ(Q)≡ EQW

[
EQZ

(
Q̄Y (W,1,Z)− Q̄Y (W,0,Z)|W,A = 0

)]
.

We refer to the inner expectation above as the (null level) mediated mean outcome
difference, and denote it by the map Q 	→ ψZ(Q), where

ψZ(Q)(W )≡ ψZ(QZ, Q̄Y )(W )≡ EQZ

(
Q̄Y (W,1,Z)− Q̄Y (W,0,Z)|W,A = 0

)
. (2)

This way, Ψ(Q) = Ψ(QW ,ψZ(Q)) = EQW (ψZ(Q)(W )). The parameter of interest
(1) is this map evaluated at the true data generating distribution:

ψ0 ≡Ψ(P0) = EQW,0

[
EQZ,0

(
Q̄Y,0(W,1,Z)− Q̄Y,0(W,0,Z)|W,A = 0

)]
.
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2.3.1 Effcient score

Under a nonparametric model M , for any P ∈ M , the efficient score (efficient
influence curve, or canonical gradient) of Ψ at P, as derived in Tchetgen Tchetgen
and Shpitser (2011b), is given by:

D∗(Q,g,Ψ(Q)) =

{
I(A = 1)

g(1|W )

QZ(Z|W,0)

QZ(Z|W,1)
− I(A = 0)

g(0|W )

}(
Y − Q̄Y (W,A,Z)

)
+

I(A = 0)

g(0|W )

{
Q̄Y (W,1,Z)− Q̄Y (W,0,Z)−EQZ

(
Q̄Y (W,1,Z)− Q̄Y (W,0,Z)|W,0

)}
+EQZ

(
Q̄Y (W,1,Z)− Q̄Y (W,0,Z)|W,0

)−Ψ(Q)

= D∗Y +D∗Z +D∗W .

Note that the components D∗Y , D∗Z , D∗W are respectively the projection of D∗ onto

the tangent subspaces corresponding to the components P(Y |W,A,Z), P(Z|W,A),
P(W ) of the likelihood.

This efficient score for a nonparametric model can also be derived by first

considering Ψ(P) as a function of P= (P f : f ∈F ), where F is a class of indicator

functions F = {I(w,a,z,y), I(w,a,z), I(w,a), I(w) : w ∈W ,a ∈A ,z ∈Z ,y ∈Y }.
For any given ”vector” h = (h( f ) : f ∈F ), one can consider a directional deriva-

tive d
dε Ψ(P + εh)|ε=0. The efficient score is given by the directional derivative

applied to the direction of h = ( f (O)−P f : f ∈F ). In other words, it is given by

∑ f∈F
∂Ψ(P)
∂P f ( f (O)−P f ). A more detailed exposition can be found in van der Laan

and Rose (2011).

2.3.2 Robustness of the efficient score

The general robustness conditions of the efficient score were given in Tchetgen Tch-

etgen and Shpitser (2011b): (i) the mediator density QZ(Z|W,A) and the conditional

mean outcome Q̄Y (W,A,Z) are both correct; (ii) the conditional mean outcome and

the exposure mechanism g(A|W ) are both correct; or (iii) the exposure mechanism

and the mediator density are both correct. We note below that conditions (i) and

(iii) may be weakened to accommodate difficulties in estimation of the mediator

density. In fact, the estimation of QZ may be avoided with the use of data-adaptive

estimators. This is particularly appealing when Z is high dimensional. We sum-

marize these in the following lemma and its subsequent remarks. The proof of this

lemma is straightforward from the form of the efficient score, and we refer the in-

terested reader to appendix App1.
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Lemma 1. Robustness of the efficient score
Suppose there exists constants 1 > δ ,δ ′ > 0 such that g(A = 1|W ) < 1− δ and
QZ(Z|W,1) < 1− δ ′ a.e. over the support of W and Z. The efficient score is a
robust estimating function for the parameter at P0, in the sense that

P0D∗ (Q,g,ψ0) = 0,

if either of the following holds:

(i) The conditional mean outcome Q̄Y = E(Y |W,A,Z), and the mediated mean
outcome difference ψZ(Q) = EQZ(Q̄Y (W,1,Z)− Q̄Y (W,0,Z)|W,0) are cor-
rect.

(ii) The exposure mechanism g(A|W ), and the conditional mean outcome are cor-
rect.

(iii) The exposure mechanism and conditional mediator density QZ(Z|W,A), or
the exposure mechanism and the conditional distribution of treatment given
mediator and covariates p(A|W,Z), are correct.

Condition (i) follows from the fact that, given Q̄Y , we only need a con-

ditional expectation of Q̄Y (W,1,Z)− Q̄Y (W,0,Z) under QZ(Z|W,0). Therefore,

consistent estimation of QZ,0 per se is not necessary to obtain consistent estimator

of ψZ(Q0), as long as one has a consistent estimator ˆ̄QY,n of Q̄Y,0 and an optimal

procedure to regress the difference ˆ̄QY,n(W,1,Z)− ˆ̄QY,n(W,0,Z) on W among the

control observations. Condition (iii) is a consequence of the fact when g is cor-

rect, dependence on consistent estimation of QZ is only through
QZ(Z|W,0)
QZ(Z|W,1) , which

can be consistently estimated using either QZ or combining ratios of g(A|W ) and

p(A|W,Z).
When Z is high-dimensional, few tools are available to estimate the condi-

tional mediator density QZ(Z|W,A). On the other hand, there is abundant literature

addressing estimation of conditional means. This can be used to estimate ψZ(Q),
and conditional probabilities of a categorical A. Lemma 1 implies in particular that

estimation of QZ,0 may be replaced by estimations of g0(A|W ), p0(A|W,Z), and the

conditional expectation ψZ(Q0),

3 Targeted Maximum Likelihood Estimation for the
Natural Direct Effect of a Binary Treatment

In general, under the framework of van der Laan and Rubin (2006) the construction
of a targeted MLE (TMLE) estimator of a parameter of interest Ψ(P0) = Ψ(Q0)
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calls for two sets of ingredients. For each component Q j(P) of Q(P), one defines
a uniformly bounded (w.r.t. the supremum norm) loss function L j : Q j →L ∞(K)
satisfying

Q j,0 = arg min
Q j∈Q j

P0L j(Q j),

where L ∞(K) is the class of functions of O with bounded supremum norm over
a set of K containing the support of O under P0. Given the loss function L j, one
defines a one-dimensional parametric working submodel {Q j(P)(ε j) : ε j} ⊂ M
passing through Q j(P) at ε j = 0 with score D∗j(P) at ε j = 0 that satisfies

〈 d
dε j

L

ˆ

ˆ

j (Q j(P)(ε j)) |ε j=0〉 ⊃ 〈D∗j(P)〉,

where 〈h〉 denotes the linear span of a vector h. These result in a least favorable

parametric submodel Q(ε) through Q. For given initial estimator (Q̂,g) of (Q0,g0),
the fluctuation parameter ε is fitted to minimize the empirical risk of Q̂(ε), provid-

ing an updated estimator Q̂(ε̂). This updating process is repeated until ε̂ ≈ 0. The

final estimator Q̂∗ of Q0 is then used to obtain a substitution estimator Ψ(Q̂∗) of

Ψ(Q0). By its construction, the estimator Q̂∗ satisfies the efficient score equation

PnD∗(Q̂∗,g,Ψ(Q̂∗)) = 0.

To specialize to the natural direct effect, we first note that the parameter of

interest and the components D∗Z and D∗W of the efficient score depend on QZ only

through the mediated mean outcome difference ψZ(Q) as defined in (2). Secondly,

the empirical marginal distribution Q̂W,n of W is a consistent estimator of QW,0 that

readily solves the equation PnD∗W (ψZ(Q), Q̂W,n) = 0 for any ψZ(Q). Hence, the pro-

posed estimator will focus on targeted estimation of Q̄Y,0(W,A,Z), and ψZ(Q0)(W ).
An alternative targeted estimation to the one proposed above is to target-

edly estimate the conditional mediator density QZ,0 instead of the mediated mean

outcome difference ψZ(Q0). We refer the interested reader to Appendix B for this

alternative approach. The key difference between the proposed and the alternative

targeting procedures lies in that the former defines a loss function and paramet-

ric working submodel for the mediated mean outcome difference ψZ(Q), whereas

the latter defines a loss function and parametric working submodel for the condi-

tional mediator density QZ and then estimates the mediated mean outcome differ-

ence ψZ(Q0) by plugging in the targeted mediator density and the targeted Q̄Y . We

note that the bias variance trade-off in the proposed targeting procedure is more

optimal over the alternative procedure for estimating the ultimate component of

interest, which is the mediated mean outcome difference.
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3.1 Construction of the Targeted MLE

3.1.1 Loss functions and parametric working submodels

Suppose for now that Y is binary or continuous and bounded. In the latter case,
without loss of generality we may assume that Y is bounded in (0,1). We consider
the minus-loglikelihood loss function for Q̄Y :

LY (Q̄Y )(O) =− log
(

Q̄Y (W,A,Z)Y (1− Q̄Y (W,A,Z))(1−Y )
)
. (3)

Under this loss function, consider the logistic working submodel

Q̄Y (ε1)≡ expit
(
logit(Q̄Y )+ ε1CY (QZ,g)

)
,

where CY (QZ,g)(O)=
{

I(A=1)
g(1|W )

QZ(Z|W,0)
QZ(Z|W,1) −

I(A=0)
g(0|W )

}
. Note that this submodel Q̄Y (ε1)

depends on the components QZ and g, but we suppress that in the notation. This
submodel satisfies

d
dε1

LY
(
Q̄Y (ε1)

) |ε1=0= D∗Y (Q̄Y ,QZ,g). (4)

For a given Q̄Y , the difference Q̄Y (W,Z)≡ Q̄Y (W,1,Z)−Q̄Y (W,0,Z) is also
bounded. Without loss of generality, we may also assume it is bounded between
(0,1). Let the loss function for ψZ(Q) be

LZ(ψZ(Q))(O) =

− I(A = 0) log
(
(ψZ(Q)(W ))Q̄Y (W,Z)(1−ψZ(Q)(W ))1−Q̄Y (W,Z)

)
.

Under this loss function, the logistic working submodel

ψZ(Q)(ε2)≡ expit (logit (ψZ(Q))+ ε2CZ(g)) ,

with CZ(g)(O) = 1
g(0|W ) , satisfies

d
dε2

LZ (ψZ(Q)(ε2)) |ε2=0= D∗Z(ψZ(Q), Q̄Y ,g). (5)

The dependence of ψZ(Q)(ε2) on g is again suppressed in our notation.

Note that linear transformations onto the unit interval may be needed in

order to use the loss functions LY and LZ . However, since the parameter of interest

and the components of the efficient score are linear in Q̄Y and ψZ(Q), the necessary

linear transformations and their inverse maps do not affect the properties of the

estimators.
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In settings where Y is not bounded, one may instead use the squared error
loss functions

LY (Q̄Y )(O) =
(
Y − Q̄Y (W,A,Z)

)2
,

and
LZ(ψZ(Q))(O) = I(A = 0)

(
Q̄Y (W,Z)−ψZ(Q)(W )

)2
;

and corresponding parametric working submodels

Q̄Y (ε1) = Q̄Y + ε1CY (QZ,g)

and
ψZ(Q)(ε2) = ψZ(Q)+ ε2CZ(g).

However, compared to the minus loglikelihood losses, this choice of loss functions

and the corresponding parametric working submodels may result in estimators that

are more sensitive to near positivity violations (Gruber and van der Laan (2010),

Gruber and van der Laan (2011)). Therefore, in such situations it would be more

sensible to bound Y by the range of the observed data, and apply the minus loglike-

lihood losses above.

3.1.2 Implementation

Let Pn denote the empirical distribution of n i.d.d observations of O. Let ĝn, ˆ̄QY,n

and Q̂Z,n, be initial estimators of g0, Q̄Y,0 and QZ,0, respectively. Let

ε̂∗1 = argmin
ε

PnLY

(
ˆ̄QY,n(ε1)

)

ˆ
be the optimal ε1 which minimizes the empirical risk. We are reminded that,

though not shown in the notation, the estimators (Q̂Z,n,gn) are used in constructing
ˆ̄QY,n(ε1). The update

ˆ̄Q∗Y,n ≡ ˆ̄QY,n(ε̂∗1 ) (6)

is the targeted MLE estimator of Q̄Y,0.

Next, let ψ̂Z(Pn)(·) be an estimating procedure for ψZ(Q0). That is, for

given observations Pn, ψ̂Z,n ≡ ψ̂Z(Pn) is a function which maps an estimator ˆ̄QY,n

of Q̄Y,0 to an estimator ψ̂Z,n(
ˆ̄QY,n) of ψZ(QZ,0, Q̄Y,0). This function ψ̂Z,n depends

on the estimation procedure ψ̂Z , and the observed data Pn. This estimating pro-

cedure can be plug-in or regression-based. For a plug-in estimator, ψ̂Z,n(
ˆ̄QY,n) ≡

ψZ(Q̂Z,n,
ˆ̄QY,n). For a regression-based estimator, ψ̂Z,n(

ˆ̄QY,n) regresses the differ-

ence ˆ̄QY,n(W,1,Z)− ˆ̄QY,n(W,0,Z) on W among control observations. In this latter
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case, ψ̂Z,n encodes what this regression procedure consists of, and the observed data

on which it is carried out.
Given the targeted MLE ˆ̄Q∗Y,n of the mean outcome, ψ̂Z,n(

ˆ̄Q∗Y,n) is an initial

estimator of the mediated mean outcome difference ψZ(QZ,0,Q0). The optimal ε2

is given by

ε̂∗2 = argmin
ε

PnLZ

(
ψ̂Z,n(

ˆ̄Q∗Y,n)(ε2)
)
.

We are reminded that, though not shown in the notation, the estimator ĝn is used in

constructing ψ̂Z,n(
ˆ̄Q∗Y,n)(ε2). The update

ψ̂∗Z,n( ˆ̄Q∗Y,n)≡ ψ̂Z,n(
ˆ̄Q∗Y,n)(ε̂

∗
2 ) (7)

is the targeted MLE estimator of ψZ(QZ,0,Q0). The targeted MLE estimator of
ψ0 = EW,0(ψZ(QZ,0,Q0)(W )) is thus given by

ψ̂∗n =
1

n

n

∑
i=1

ψ̂∗Z,n( ˆ̄Q∗Y,n)(Wi). (8)

It follows from (4) that PnD∗Y (
ˆ̄Q∗Y,n, Q̂Z,n, ĝn) = 0 and it follows from (5) that

PnD∗Z
(

ψ̂∗Z,n(
ˆ̄Q∗Y,n),

ˆ̄Q∗Y,n, ĝn

)
= 0. Moreover, the empirical distribution Q̂W,n of W

solves PnD∗W (ψ̂∗Z,n(
ˆ̄Q∗Y,n), Q̂W,n) = 0. Therefore the resulting targeted estimator ψ̂∗n

solves the efficient score equation.

Remarks on implementation: When Z is high-dimensional, and A is categorical,
consistent estimation of p(A|W,Z) may be more attainable than consistent estima-
tion of QZ(Z|W,A). In such case, instead of using an estimator of QZ to estimate the
ratio QZ(Z|W,0)/QZ(Z|W,1) in the targeting step of Q̄Y , one can use an estimator
p̂n(A=0|W,Z)
ĝn(A=0|W )

ĝn(A=1|W )
p̂n(A=1|W,Z) . Similarly, the estimating procedure ψ̂Z,n(·) does not need to

use Q̂Z,n and can be any procedure which regresses ˆ̄Q∗Y,n(W,1,Z)− ˆ̄Q∗Y,n(W,0,Z) on
W among control observations. Therefore, when Z is high dimensional, estimation
of QZ may be avoided if one has available optimal estimators ĝn and p̂n(A|W,Z),
and a regression-based estimator ψ̂Z,n(·). From lemma 1, we see that this still al-
lows for robust estimation.

3.2 Asymptotic Properties of the Targeted MLE

Since the proposed targeted MLE estimator satisfies the efficient score equation,

lemma 1 implies in particular that the estimator is asymptotically unbiased if ei-

ther of the following is true: (i) The conditional outcome expectation Q̂∗Y,n and
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the mediated mean outcome difference ψ̂∗Z(
ˆ̄Q∗Y,n) are consistent; (ii) the treatment

mechanism ĝn and the conditional outcome expectation ˆ̄Q∗Y,n are consistent; (iii) the

treatment mechanism ĝn and the conditional mediator density Q̂Z,n(Z|W,A), or the

treatment mechanism and p̂n(A|W,Z), are consistent. These properties are illus-

trated in the simulations section below.

Under certain empirical conditions, an estimator that satisfies a given esti-

mating equation will be asymptotically linear with influence curve given by the es-

timating function (e.g. Bickel, Klaassen, Ritov, and Wellner (1997), van der Vaart

(1998), van der Laan and Robins (2003), Tsiatis (2006), Kosorok (2008)). In this

case, the central limit theorem implies that one can obtain an asymptotic variance

estimate of the said estimator using the variance estimate of its influence curve.

Otherwise, bootstrap procedures can be used to obtain variance estimates for the

estimator. We detail conditions for asymptotic linearity of the targeted MLE estima-

tor in theorem 1 below. These conditions state that in general, asymptotic linearity

requires that: 1) estimators of the likelihood converge to their respective limits at a

reasonable speed (second-order conditions), and 2) if there is a component that is

not consistently estimated, the remaining consistent components must be estimated

in a specific asymptotically linear fashion (first-order conditions). These conditions

provide a guideline for situations where influence curve based variance estimates

are realistic. Note that these conditions stem from the properties of the efficient

score, and therefore can be easily modified to apply to any estimator which satisfy

the efficient score equation (e.g. Tchetgen Tchetgen and Shpitser (2011b)). We also

refer the readers to Zheng and van der Laan (2010) and Zheng and van der Laan

(2011) for an alternative targeted estimation procedure which weaken the empirical

process conditions through the use of cross-validation.

We use the following notations in the theorem: Let Q̂Z,n, ĝn be estimators of

QZ,0 and g0; and let ˆ̄Q∗Y,n, ψ̂∗Z,n(
ˆ̄Q∗Y,n) be the TMLE estimators of Q̄Y,0 and ψZ(Q0),

as defined in (6) and (7). The TMLE estimator ψ̂∗n of ψ0 is defined in (8). Let QZ , g,

Q̄∗Y be limits of Q̂Z,n, ĝn, ˆ̄Q∗Y,n. Note that these limits are not necessarily the true data

generating components. Similarly, for the procedure ψ̂∗Z,n(·) which, for a given ˆ̄Q∗Y,n,

provides a targeted estimator ψ̂∗Z,n(
ˆ̄Q∗Y,n) of the conditional mean ψZ(QZ,0,

ˆ̄Q∗Y,n), let

ψ∗Z(·) denote its limit. In other words, ψ∗Z(
ˆ̄Q∗Y,n) estimates ψZ(QZ,0,

ˆ̄Q∗Y,n) using an

infinite population. The limit of ψ̂∗Z,n(
ˆ̄Q∗Y,n) is given by ψ∗Z(Q̄∗Y ).
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Theorem 1. Firstly, the TMLE estimator ψ̂∗n defined in (8) satisfies

ψ̂∗n −ψ0 = (Pn−P0)D∗
(

ˆ̄Q∗Y,n, Q̂Z,n, ĝn, ψ̂∗Z,n( ˆ̄Q∗Y,n)
)

+PW,0 ∑
z

QZ,0(z|W,1)
(

Q̄Y,0(W,1,z)− ˆ̄Q∗Y,n(W,1,z)
)( Q̂Z,n(z|W,0)

Q̂Z,n(z|W,1)
− QZ,0(z|W,0)

QZ,0(z|W,1)

)

+P0

(
CY (ĝn, Q̂Z,n)−CY (g0, Q̂Z,n)

)(
Q̄Y,0− ˆ̄Q∗Y,n

)
+P0

(
I(A = 0)

ĝn(0|W )
− I(A = 0)

g0(0|W )

)(
ψZ(QZ,0,

ˆ̄Q∗Y,n)− ψ̂∗Z,n( ˆ̄Q∗Y,n)
)
. (9)

Suppose the following assumption holds:

(Pn−P0)

{
D∗
(

ˆ̄Q∗Y,n, Q̂Z,n, ĝn, ψ̂∗Z,n( ˆ̄Q∗Y,n)
)
−D∗

(
Q̄∗Y ,QZ,g,ψ∗Z(Q̄

∗
Y )
)}

= oP(1
√

n). (10)

We proceed now under the assumption (10) and the following assumptions regard-
ing speed of convergence:√

PW,0EQZ,0

((
Q̄∗Y (W,1,Z)− ˆ̄Q∗Y,n(W,1,Z)

)2

|W,A = 1

)
×

√√√√PW,0EQZ,0

((
Q̂Z,n(z|W,0)

Q̂Z,n(z|W,1)
− QZ(z|W,0)

QZ(z|W,1)

)2

|W,A = 1

)

= oP(1
√

n), (11)

√
P0

(
CY (ĝn, Q̂Z,n)−CY (g, Q̂Z,n)

)2

√
P0

(
Q̄∗Y − ˆ̄Q∗Y,n

)2

= oP(1/
√

n), (12)

and√
P0

(
I(A = 0)

ĝn(0|W )
− I(A = 0)

g(0|W )

)2
√

P0

(
ψ∗Z(

ˆ̄Q∗Y,n)− ψ̂∗Z,n(
ˆ̄Q∗Y,n)

)2

= oP(1/
√

n). (13)

If g = g0, Q̄∗Y = Q̄Y,0, QZ = QZ,0 and ψ∗Z(·) = ψZ(QZ,0, ·), then (10), (11),
(12) and (13) imply that ψ̂∗n is asymptotically linear. Moreover, it also follows from
these conditions that ψ∗Z(Q̄∗Y ) = ψZ(QZ,0, Q̄Y,0), therefore ψ̂∗n is in fact asymptoti-
cally efficient.
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Suppose Q̄∗Y = Q̄Y,0, ψ∗Z(·) =ψZ(QZ,0, ·), but g �= g0, and QZ �=QZ,0. If there
exist mean zero functions ICg(O) and IC′g(O) such that

P0

(
CY (g, Q̂Z,n)−CY (g0, Q̂Z,n)

)(
Q̄Y,0− ˆ̄Q∗Y,n

)
= (Pn−P0)ICg +oP(1

√
n) (14)

and

P0

(
I(A = 0)

g(0|W )
− I(A = 0)

g0(0|W )

)(
ψZ(QZ,0,

ˆ̄Q∗Y,n)− ψ̂∗Z,n( ˆ̄Q∗Y,n)
)

= (Pn−P0)IC′g +oP(1
√

n), (15)

and there exists a mean zero function ICQZ(O) satisfying

PW,0 ∑
z

QZ,0(z|W,1)
(

Q̄Y,0(W,1,z)− ˆ̄Q∗Y,n(W,1,z)
)(QZ(z|W,0)

QZ(z|W,1)
− QZ,0(z|W,0)

QZ,0(z|W,1)

)

= (Pn−P0)ICQZ +oP(1
√

n), (16)

then (10), (11), (12), (13), (14), (15) and (16) imply that ψ̂∗n is asymptotically
linear:

ψ̂∗n −ψ0 = (Pn−P0)
{

D∗
(
Q̄Y,0,QZ,g,ψZ(QZ,0, Q̄Y,0)

)
+ ICg + IC′g + ICQZ

}
+oP(1

√
n).

If QZ = QZ,0, then the condition (16) is trivially true with ICQZ ≡ 0.
On the other hand, consider the case of g = g0 and Q̄∗Y = Q̄Y,0, but ψ∗Z(·) �=

ψZ(QZ,0, ·) and QZ �= QZ,0. Suppose that there exists a mean zero function ICψZ(O)
such that

P0

(
ˆ

I(A = 0)

gn(0|W )
− I(A = 0)

g0(0|W )

)(
ψZ(QZ,0,

ˆ̄Q∗Y,n)−ψ∗Z( ˆ̄Q∗Y,n)
)

= (Pn−P0)ICψZ +oP(1
√

n). (17)

Then (10), (11), (12), (13), (16), and (17) imply that ψ̂∗n is asymptotically linear:

ψ̂∗n −ψ0 = (Pn−P0)
{

D∗
(
Q̄Y,0,QZ,g0,ψ∗Z(Q̄Y,0)

)
+ ICQZ + ICψZ

}
+oP(1

√
n).

If QZ = QZ,0, then the condition (16) is trivially true with ICQZ ≡ 0. Similarly, if
ψ∗Z(

ˆ̄Q∗Y,n) = ψZ(QZ,0,
ˆ̄Q∗Y,n), then (17) is vacuously true with ICψZ ≡ 0.
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Lastly, suppose g = g0, QZ = QZ,0, but Q̄∗Y �= Q̄Y,0 and ψ∗Z(·) �= ψZ(QZ,0, ·).
Suppose there exists mean zero functions ICY (O) and IC′Y (O) such that

PW,0 ∑
z

QZ,0(z|W,1)
(
Q̄Y,0(W,1,z)− Q̄∗Y (W,1,z)

)( Q̂Z,n(z|W,0)

Q̂Z,n(z|W,1)
− QZ,0(z|W,0)

QZ,0(z|W,1)

)

= (Pn−P0)ICY +oP(1
√

n), (18)

and

P0

(
CY (ĝn, Q̂Z,n)−CY (g0, Q̂Z,n)

)(
Q̄Y,0− Q̄∗Y

)
= (Pn−P0)IC′Y +oP(1/

√
n). (19)

Then (10), (11), (12), (13), (17), (18) and (19) imply that ψ̂∗n is asymptotically
linear:

ψ̂∗n −ψ0 = (Pn−P0)
{

D∗
(
Q̄∗Y ,QZ,0,g0,ψ∗Z(Q̄

∗
Y )
)
+ ICψZ + ICY + IC′Y

}
+oP(1

√
n).

If ψ∗Z(
ˆ̄Q∗Y,n) = ψZ(QZ,0,

ˆ̄Q∗Y,n), then (17) is vacuously true with ICψZ ≡ 0.

We refer the reader to appendix App2 for the proof. We also note that condi-

tions regarding convergence of QZ in fact only involve the ratio
QZ(Z|W,0)
QZ(Z|W,1) , therefore

can be expressed in terms of g(A|W ) and p(A|W,Z).

4 Some Existing Estimation Methodologies
In this section, we describe how the estimating equation and the g-computation

approaches can be applied to the natural direct effect of a binary exposure, and

contrast their theoretical properties with those of the proposed targeted estimator.

4.1 Estimating Equation Approach

Under the estimating equation (EE) based approach (Robins (1999), Robins and

Rotnitzky (2001), van der Laan and Robins (2003)), one may use the efficient score

D∗(P) under a nonparametric model as an estimating function of ψ , if i) D∗(P)
can be expressed as a function of ψ and some nuisance parameter η , i.e. D∗(P) =
D(ψ(P),η(P)), for some function D, and ii) the solution to the resulting equation

in the variable ψ is unique. When these requirements hold, an estimate of the

parameter is given by the root of the resulting estimating equation, i.e. ψ̂ is defined

as the solution to the equation PnD∗(η̂(Pn), ψ̂) = 0.
An estimator of the natural direct effect under this framework is provided in

Tchetgen Tchetgen and Shpitser (2011b). For given estimators Q̂Y,n, Q̂Z,n, ĝn, and
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an estimating procedure ψ̂Z,n(·) for ψZ(Q0), the EE estimator for the natural direct
effect is given by

ψ̂ee ≡ 1

n

n

∑
i=1

{(
ˆ

I(Ai = 1)

gn(1|Wi)

Q̂Z,n(Zi|Wi,0)

Q̂Z,n(Zi|Wi,1)
−

ˆ

I(Ai = 0)

gn(0|Wi)

)(
Yi− ˆ̄QY,n(Wi,Ai,Zi)

)

ˆ
+

I(Ai = 0)

gn(0|Wi)

(
ˆ̄QY,n(Wi,1,Zi)− ˆ̄QY,n(Wi,0,Zi)− ψ̂Z,n(

ˆ̄QY,n)
)

+ ψ̂Z,n(
ˆ̄QY,n)

}

We remind the reader again that in the present paper, ψ̂Z,n(
ˆ̄QY,n) may not need to

use Q̂Z,n, but will surely make use of ˆ̄QY,n.
By definition, this EE estimator solves the efficient score equation

PnD∗
(

ˆˆ̄QY,n, Q̂Z,n, ψ̂Z,n(
ˆ̄QY,n),gn, ψ̂ee

)
= 0.

Therefore, the ψ̂ee estimator and the proposed TMLE estimator share the same

asymptotic properties that are inherited from the efficient score. By the same token,

they are both sensitive to extreme values of the treatment model, such as in the

case of near positivity violations. This was demonstrated in Kang and Schafer

(2007). Indeed, in the case of natural direct effect, when ĝn(Ai|Wi) is small for

some observations, the estimated D∗Y component of the efficient score will be large;

this problem is exacerbated if Ai = 0, in which case the estimated D∗Z is also large.

When near positivity violation is present, the EE estimator may yield esti-

mates that are out of the bounds of the parameter, since constraints such as bounds

of the parameter are not reflected in the functional form of the efficient score. For

instance, in the case of binary outcome, Ψ is the mean difference of two proba-

bilities and hence bounded between -1 and 1. But under extreme values of PnD̂∗Y
and PnD̂∗Z , the root ψ̂ee may yield estimates that are out of these bounds. The pro-

posed targeted estimator using a logistic working submodel (introduced in Gruber

and van der Laan (2010)) aims to provide more stable estimates through the com-

bination of a unit linear transformation, which implicitly estimates the boundary of

the parameter domain, and the virtue of the substitution principle.

4.2 G-computation Approach

The sensitivity to near positivity violation of the TMLE estimator and the ψ̂ee esti-
mator stems from the use of inverse probability weightings in the efficient score. A
g-computation approach based on the identifiability result in (1) avoids this inverse

18

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 3

DOI: 10.2202/1557-4679.1361



weighting. More specifically, for ˆ̄QY,n and Q̂Z,n likelihood based estimators of the
outcome expectation and mediator density, respectively, consider a g-computation
estimator given by:

ψ̂gcomp =
1

n

n

∑
i=1

(
ˆ̄QY,n(Wi,1,Zi)− ˆ̄QY,n(Wi,0,Zi)

)
Q̂Z,n(Zi|Wi,0).

This estimator can be similarly defined using a regression-based ψ̂Z,n(
ˆ̄QY,n) which

does not use QZ . Unlike the robust TMLE and ψ̂ee estimators, the consistency of

the g-computation estimator relies on correct specification of both the outcome ex-

pectation, and mediator density (or the regression procedure for the mediated mean

outcome difference). In the case of these likelihood-based estimates being correct,

the resulting ψ̂gcomp is more efficient than the two robust estimators. However,

even though this g-computation estimator does not use inverse probability weight-

ing explicitly, it can still be affected by data sparsity, since the quality of the mean

outcome estimate (even under the correct specification) is sensitive to the overlap

between the empirical covariate distribution of the treated cohort and the empirical

covariate distribution of the control cohort.

5 Simulation Study
In this section we evaluate the performance of the targeted estimator, the ψ̂ee es-

timator, and the g-computation estimator under model mis-specification and data

sparsity. From lemma 1, one expects to see that, in the absence of positivity viola-

tions, the TMLE and ψ̂ee are robust against model mis-specifications.

5.1 Simulation Schemes

The following three data generating schemes are used. The mediator variable Z
is discrete with three categories: Z ∈ {0,1,2}. Each scheme has a version with a

binary outcome Y and a version with a continuous and bounded outcome Y . Sim-

ulations 2 and 3 differ from simulation 1 in their mediator density and treatment

mechanism, respectively.
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1. Simulation 1: no positivity violations.

W ∼U(0,2)

A∼ Bern
(
expit(−1+2W −0.08W 2)

)
Z ∼Multinom

(
p(Z = 0) = expit(−0.2+0.5A+0.3A×W +0.7W −1.5W 2),

p(Z = 1|Z �= 0) = expit(−0.2+0.4A+ .8A×W +0.4W −2.5W 2)
)

version a:

Y ∼ Bern
(

expit(−2+A−W +W 2 +Z +0.8A×W −A×W 2

−0.5A×Z +0.7A×Z2)
)

version b:

Y ∼−0.1+0.5A−0.2W +0.1W 2 +0.2Z +0.4A×W −0.5A×W 2

−0.3A×Z +0.5A×Z2 +N(0,1)

The treatment probability gA(A = 1|w), is bounded in (0.26,0.94). The

conditional density QZ(z|A = 1,w) is bounded between (0.0005,0.9753) for

any z and w, whereas the ratio QZ(z|A = 0,w)/QZ(z|A = 1,w) is bounded

in (0.13,2.02). In version b with continuous outcome, the expected value

E(Y |W,A,Z) is bounded in (−0.8,2.25).
The parameters of interest are ψ0 = 0.2585079 for the binary version, and

ψ0 = 1.158052 for the continuous version. The semiparametric efficiency

bounds are var(D∗(P0)) ≈ 1.157 for the binary version, and var(D∗(P0)) ≈
7.967 for the continuous version.

2. Simulation 2: larger effect of treatment on the distribution of mediator.

Z ∼Multinom
(

p(Z = 0) = expit(−2−2A−0.5A×W +3W −W 2),

p(Z = 1|Z �= 0) = expit(1−4A−A×W +W +W 2)
)
.

Conditional distributions for W,A,Y are the same as simulation 1. The con-

ditional mediator density QZ(z|w,A = 1) ranges in (0.017,0.081) for Z = 0,

ranges in (0.046,0.697) for Z = 1 and ranges in (0.256,0.936) for Z = 2. The

ratio
QZ(z|w,A=0)
QZ(z|w,A=1) ranges in (6.583,10.543) for Z = 0, ranges in (0.717,13.826)

for Z = 1 and ranges in (0.0018,0.253) for Z = 2.

The parameters of interest are ψ0 = 0.12556476 for the binary version, and

ψ0 = 0.4183004 for the continuous version. The semiparametric efficiency

bounds are var(D∗(P0))≈ 3.721905 for the binary version, and var(D∗(P0))≈
17.53054 for the continuous version.
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3. Simulation 3: near positivity violation the treatment mechanism.

A ∼ Bern
(
expit(−2−3W +5W 2)

)
.

Conditional distributions for W,Z,Y are the same as simulation 1, therefore

the values of the parameters of interest also remain the same. The treat-

ment mechanism is bounded in gA(A = 1|W ) ∈ (0.0794,0.999994). More-

over, gA(A = 1|W )> 0.99 for W > 1.5.

5.2 Estimators

For each data generating distribution, initial maximum likelihood based estimators

of the outcome expectation Q̄Y,0, treatment mechanism gA,0 and mediator density

QZ,0 will be obtained according to each of the three cases of model mis-specification

in lemma 1, as well as the case where all models are correct. The model mis-

specifications considered are as follows:

• Mis-specified outcome model is Y ∼ A+W +Z+A×Z, with gaussian family

for continuous outcome, and binomial family (with logit link) for binary Y .

• Mis-specified mediator density is multinomial with p(Z = 0|A,W ) ∼ A and

p(Z = 1|A,W,Z �= 0)∼ A, both from a binomial family with logit link.

• Mis-specified treatment mechanism is A ∼W 2 for simulations 1 and 2, and

A∼W for simulation 3, both from a binomial family with logit link.

The estimators ψ̂gcomp and ψ̂ee will be implemented using these likelihood-

based estimators as described in section 4.

The TMLE estimator ψ̂∗ will be constructed using these initial estimators

under logistic working submodels. Firstly, in the case of continuous outcome, linear

transformation T1 is performed on Y and the initial estimator ˆ̄QY,n, using bounds

given by the range of the observed outcomes and the predicted outcomes under ˆ̄QY,n.

After obtaining the targeted estimator ˆ̄Q∗Y,n on unit scale using logistic working

submodel, we perform a second linear transformation T2 to bound the difference
ˆ̄Q∗Y,n(W,1,Z)− ˆ̄Q∗Y,n(W,0,Z) in the unit interval, and obtain the targeted estimator

ψ̂∗Z,n(
ˆ̄Q∗Y,n) using logistic working submodel. Finally, we apply the inverse map T−1

2

to ψ̂∗Z,n(
ˆ̄Q∗Y,n) and then T−1

1 to the final effect estimate.

We will consider two implementations of TMLE which differ in their initial

estimator of the mediated mean outcome difference ψZ(QZ,0, Q̄Y,0). In TMLE 1,

the initial estimator is given by a plug-in estimator ψ̂Z,n(
ˆ̄Q∗Y,n) ≡ ψZ(Q̂Z,n,

ˆ̄Q∗Y,n),
using Q̂Z,n and the updated ˆ̄Q∗Y,n. In TMLE 2, the initial estimator ψ̂Z,n(

ˆ̄Q∗Y,n)(W ) is
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obtained by performing a main term regression ( ˆ̄Q∗Y,n(W,1,Z)− ˆ̄Q∗Y,n(W,0,Z))∼W
among the observations with A = 0. With the data generating distributions under

consideration, this initial estimator in TMLE 2 is incorrect regardless of the consis-

tency of ˆ̄QY,n. However, from lemma 1, we expect TMLE 2 to be consistent in the

cases (ii) and (iii) of lemma 1, in the absence of positivity violation.

5.3 Results

For each data generating distribution, 1000 samples of each size n = 500 and n =
5000 are generated. Bias, variance and mse for each sample size are estimated over

the 1000 samples. In the tables below, notations for model specifications are as

follows:

notation model specifications

qy.c, qz.c, ga.c correct Q̄Y , correct QZ , correct g
qy.c, qz.c, ga.m correct Q̄Y , correct QZ , mis-specified g
qy.c, qz.m, ga.c correct Q̄Y , mis-specified QZ , correct g
qy.m, qz.c, ga.c mis-specified Q̄Y , correct QZ , correct g
qy.c, qz.c, ga.tr correct Q̄Y , correct QZ , truncated g
qy.c, qz.m, ga.tr correct Q̄Y , mis-specified QZ , truncated g
qy.m, qz.c, ga.tr mis-specified Q̄Y , correct QZ , truncated g

5.3.1 Simulation 1: No positivity violation

Recall that the parameters of interest are ψ0 = 0.2585079 for the binary version,

and ψ0 = 1.158052 for the continuous version, and the semiparametric efficiency

bounds are var(D∗(P0)) ≈ 1.157 for the binary version, and var(D∗(P0)) ≈ 7.967

for the continuous version. Therefore, var(D∗(P0))/n≈ 2.314e−03 and 2.314e−
04 for n = 500 and 5000, respectively, in the case of the binary outcome, and

var(D∗(P0))/n ≈ 1.593e− 02 and 1.593e− 03 in the case of continuous Y . The

results are detailed in tables 1 and 2. When the outcome expectation and the me-

diator density are correctly specified, the robust estimators TMLE and ψ̂ee provide

little advantage over the g-computation estimator in terms of bias or efficiency.

However, when either the outcome expectation or the mediator density are mis-

specified, TMLE and ψ̂ee using a correct treatment mechanism provide substantial

bias correction so that MSE is reducing at rate 1/n. The two robust estimators

behave similarly. Moreover, as predicted by lemma 1, TMLE 2, which utilizes a

mis-specified initial estimator of the mediated mean outcome difference, behaves

as well as TMLE 1 when the treatment mechanism is correct.
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Table 1: Simulation 1: Binary outcome, no positivity violations

Bias Var MSE

n 500 5000 500 5000 500 5000

Q̄Y correct, QZ correct

gcomp: qy.c, qz.c 6.350e-04 5.837e-04 2.452e-03 2.261e-04 2.452e-03 2.264e-04

tmle 1: qy.c, qz.c, ga.c 2.394e-04 5.223e-04 2.499e-03 2.287e-04 2.499e-03 2.290e-04

tmle 2: qy.c, qz.c, ga.c 3.104e-04 5.647e-04 2.525e-03 2.295e-04 2.525e-03 2.298e-04

ee: qy.c, qz.c, ga.c 2.005e-04 5.227e-04 2.501e-03 2.287e-04 2.501e-03 2.289e-04

tmle: qy.c, qz.c, ga.m 4.453e-04 4.694e-04 2.627e-03 2.373e-04 2.627e-03 2.375e-04

ee: qy.c, qz.c, ga.m 7.288e-04 4.583e-04 2.754e-03 2.447e-04 2.754e-03 2.449e-04

Q̄Y correct, gA correct

gcomp: qy.c, qz.m 4.260e-02 4.075e-02 3.017e-03 2.771e-04 4.832e-03 1.937e-03

tmle 1: qy.c, qz.m, ga.c 2.221e-04 5.691e-04 2.478e-03 2.279e-04 2.478e-03 2.282e-04

tmle 2: qy.c, qz.m, ga.c 2.004e-04 6.232e-04 2.495e-03 2.286e-04 2.495e-03 2.289e-04

ee: qy.c, qz.m, ga.c 2.714e-04 5.474e-04 2.494e-03 2.289e-04 2.494e-03 2.292e-04

QZ correct, gA correct

gcomp: qy.m, qz.c 2.834e-02 2.825e-02 2.434e-03 2.258e-04 3.238e-03 1.024e-03

tmle 1: qy.m, qz.c, ga.c 2.072e-04 5.450e-04 2.530e-03 2.288e-04 2.530e-03 2.291e-04

tmle 2: qy.m, qz.c, ga.c 4.050e-04 5.664e-04 2.543e-03 2.296e-04 2.543e-03 2.299e-04

ee: qy.m, qz.c, ga.c 3.716e-04 5.493e-04 2.532e-03 2.292e-04 2.532e-03 2.295e-04

Table 2: Simulation 1: Continuous outcome, no positivity violations

Bias Var MSE

n 500 5000 500 5000 500 5000

Q̄Y correct, QZ correct

gcomp: qy.c, qz.c 4.786e-04 5.049e-04 1.597e-02 1.663e-03 1.597e-02 1.663e-03

tmle 1: qy.c, qz.c, ga.c 5.390e-04 4.571e-04 1.654e-02 1.704e-03 1.654e-02 1.704e-03

tmle 2: qy.c, qz.c, ga.c 2.140e-03 4.496e-04 1.686e-02 1.719e-03 1.686e-02 1.720e-03

ee: qy.c, qz.c, ga.c 4.788e-04 4.569e-04 1.653e-02 1.703e-03 1.653e-02 1.704e-03

tmle: qy.c, qz.c, ga.m 7.706e-04 8.787e-04 1.737e-02 1.797e-03 1.737e-02 1.797e-03

ee: qy.c, qz.c, ga.m 1.142e-03 9.824e-04 1.844e-02 1.886e-03 1.844e-02 1.887e-03

Q̄Y correct, gA correct

gcomp: qy.c, qz.m 2.150e-01 2.143e-01 1.778e-02 1.759e-03 6.402e-02 4.767e-02

tmle 1: qy.c, qz.m, ga.c 9.824e-04 5.641e-04 1.666e-02 1.692e-03 1.666e-02 1.692e-03

tmle 2: qy.c, qz.m, ga.c 1.334e-03 5.689e-04 1.679e-02 1.706e-03 1.679e-02 1.706e-03

ee: qy.c, qz.m, ga.c 6.694e-04 5.908e-04 1.652e-02 1.695e-03 1.652e-02 1.696e-03

QZ correct, gA correct

gcomp: qy.m, qz.c 7.574e-02 7.435e-02 1.364e-02 1.457e-03 1.938e-02 6.984e-03

tmle 1: qy.m, qz.c, ga.c 7.186e-04 4.839e-04 1.656e-02 1.705e-03 1.656e-02 1.706e-03

tmle 2: qy.m, qz.c, ga.c 1.272e-03 4.591e-04 1.675e-02 1.710e-03 1.675e-02 1.710e-03

ee: qy.m, qz.c, ga.c 6.413e-04 4.597e-04 1.673e-02 1.707e-03 1.673e-02 1.707e-03
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5.3.2 Simulation 2: Larger effect of treatment on mediator

Under this simulation scheme, the parameters of interest are ψ0 = 0.12556476 for

the binary version, and ψ0 = 0.4183004 for the continuous version. The efficiency

bounds are var(D∗(P0)) ≈ 3.721905 for the binary version, and var(D∗(P0)) ≈
17.53054 for the continuous version. Therefore, var(D∗(P0)/n are approximately

7.444e− 03 and 7.444e− 04 for n = 500 and 5000, respectively, in the case of

the binary outcome, and var(D∗(P0))/n≈ 3.506e−02 and 3.506e−03 in the case

of continuous Y . In this simulation, the treatment has a moderately larger effect

on the mediator distribution. Compared to simulation 1, this simulation scheme

has a larger ratio of QZ(z|0,w)/QZ(z|1,w) for categories of Z = 0,1 over a region

of the sample space of W (details are explained previously). We see that in this

case all estimators behave as expected as in the previous simulation. When imple-

mented using the correct treatment mechanism, they provide bias reduction over

g-computation estimator in the cases when either the mediator density or the out-

come model are mis-specified. When the outcome model and mediator density are

both correct, then g-computation is consistent. In this case the TMLE and ψ̂ee are

also consistent but less efficient. In all cases, TMLE and ψ̂ee behave similarly.

We observe again that when the treatment mechanism is correct, TMLE 2, which

utilizes a mis-specified initial estimator of the mediated mean outcome difference,

behaves as well as TMLE 1.

Table 3: Simulation 2: Binary outcome, larger effect of treatment on mediator

Bias Var MSE

n 500 5000 500 5000 500 5000

Q̄Y correct, QZ correct

gcomp: qy.c, qz.c 1.993e-03 3.457e-04 6.090e-03 5.743e-04 6.094e-03 5.744e-04

tmle1 : qy.c, qz.c, ga.c 5.457e-03 5.824e-04 8.710e-03 7.873e-04 8.740e-03 7.877e-04

tmle 2: qy.c, qz.c, ga.c 5.226e-03 5.029e-04 8.733e-03 7.889e-04 8.761e-03 7.892e-04

ee: qy.c, qz.c, ga.c 6.046e-03 5.692e-04 8.973e-03 7.862e-04 9.009e-03 7.865e-04

tmle: qy.c, qz.c, ga.m 5.124e-03 6.550e-04 8.076e-03 7.339e-04 8.102e-03 7.343e-04

ee: qy.c, qz.c, ga.m 5.140e-03 6.736e-04 8.330e-03 7.693e-04 8.357e-03 7.697e-04

Q̄Y correct, gA correct

gcomp: qy.c, qz.m 1.200e-02 1.308e-02 5.907e-03 5.674e-04 6.050e-03 7.384e-04

tmle 1: qy.c, qz.m, ga.c 3.042e-03 4.958e-04 6.233e-03 5.812e-04 6.242e-03 5.814e-04

tmle 2: qy.c, qz.m, ga.c 2.854e-03 4.200e-04 6.245e-03 5.833e-04 6.253e-03 5.835e-04

ee: qy.c, qz.m, ga.c 2.891e-03 4.714e-04 6.194e-03 5.788e-04 6.203e-03 5.791e-04

QZ correct, gA correct

gcomp: qy.m, qz.c 8.807e-03 1.350e-02 5.736e-03 5.824e-04 5.813e-03 7.648e-04

tmle 1: qy.m, qz.c, ga.c 7.602e-03 5.844e-04 8.903e-03 7.961e-04 8.961e-03 7.964e-04

tmle 2: qy.m, qz.c, ga.c 7.810e-03 6.202e-04 8.902e-03 7.947e-04 8.963e-03 7.951e-04

ee: qy.m, qz.c, ga.c 6.843e-03 5.093e-04 8.931e-03 7.918e-04 8.978e-03 7.921e-04
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Table 4: Simulation 2: Continuous outcome, larger effect of treatment on mediator

Bias Var MSE

n 500 5000 500 5000 500 5000

Q̄Y correct, QZ correct

gcomp: qy.c, qz.c 1.090e-02 4.189e-04 2.494e-02 2.392e-03 2.506e-02 2.392e-03

tmle 1: qy.c, qz.c, ga.c 1.203e-02 2.325e-03 4.245e-02 3.498e-03 4.260e-02 3.504e-03

tmle 2: qy.c, qz.c, ga.c 1.105e-02 2.488e-03 4.236e-02 3.507e-03 4.248e-02 3.513e-03

ee: qy.c, qz.c, ga.c 1.023e-02 2.373e-03 4.295e-02 3.493e-03 4.305e-02 3.499e-03

tmle: qy.c, qz.c, ga.m 1.244e-02 1.670e-03 3.908e-02 3.094e-03 3.924e-02 3.096e-03

ee: qy.c, qz.c, ga.m 1.134e-02 1.834e-03 3.991e-02 3.253e-03 4.004e-02 3.257e-03

Q̄Y correct, gA correct

gcomp: qy.c, qz.m 5.763e-02 6.780e-02 2.317e-02 2.244e-03 2.649e-02 6.841e-03

tmle 1: qy.c, qz.m, ga.c 1.276e-02 2.737e-04 2.624e-02 2.418e-03 2.640e-02 2.418e-03

tmle 2: qy.c, qz.m, ga.c 1.149e-02 4.602e-04 2.626e-02 2.426e-03 2.639e-02 2.426e-03

ee: qy.c, qz.m, ga.c 1.219e-02 3.249e-04 2.598e-02 2.405e-03 2.613e-02 2.405e-03

QZ correct, gA correct

gcomp: qy.m, qz.c 2.742e-02 4.450e-02 2.947e-02 2.816e-03 3.022e-02 4.796e-03

tmle 1: qy.m, qz.c, ga.c 1.134e-02 2.905e-03 4.632e-02 3.546e-03 4.645e-02 3.555e-03

tmle 2: qy.m, qz.c, ga.c 1.217e-02 2.793e-03 4.613e-02 3.529e-03 4.628e-02 3.537e-03

ee: qy.m, qz.c, ga.c 5.395e-03 2.925e-03 4.125e-02 3.552e-03 4.128e-02 3.561e-03

5.3.3 Simulation 3: Near positivity violation

The parameters of interest are the same as in simulation 1: ψ0 = 0.2585079 for the

binary version, and ψ0 = 1.158052 for the continuous version. Probability of treat-

ment given covariate W is bounded between (0.0794,0.999994), with treatment

probability > 0.99 for W > 1.5. Estimators using a truncated version of the correct

treatment mechanism with an a-priori specified bound of (0.025, 0.975) were also

considered (’ga.tr’).

When the treatment model values are extreme, the robustness results of

lemma 1 no longer apply. We observe here that the MSE of TMLE and ψ̂ee in

the case of mis-specification of outcome model or mediator density cease to reduce

at a rate proportional to sample size. However, when both of the outcome model and

mediator density are correct, TMLE and ψ̂ee with an incorrect treatment mechanism

(either through truncation or incorrect modeling) yield MSE that are proportional

to sample size. This last result is predicted by the robustness result (i) of lemma 1

since the mis-specified treatment models is bounded away from 1. We observe also

that in this simulation scheme, TMLE 2 is less favorable than TMLE 1 across all

cases. This may suggest that under data sparsity, the use of plug-in estimator for

the mediated mean outcome difference is more beneficial than considerations such
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as the rate at which it is estimated. Interestingly, in table 5, which pertains to a bi-

nary outcome, we observe an increase in MSE (driven by the increase in variance)

as one moves away from the use of substitution principle (with TMLE 1 being the

one which uses substitution estimators in all its steps, TMLE 2 which does not use

substitution estimator in the initial estimate of the mediated mean outcome differ-

ence but uses substitution in the final effect estimate, and ψ̂ee which does not use

substitution at all). This may suggest that in the case of positivity violation, when

strict bounds exist on the parameter, the degree at which each step of the estima-

tion procedure respects the bounds affects the stability of the resulting estimate.

Nonetheless, rigorous analysis is needed to provide more valid insights.

In this simulation, we observe that TMLE and ψ̂ee behave differently in

some cases. We first consider the version with binary outcome. Since the param-

eter is an average of probability differences, for a given dataset one would like the

effect estimates to be bounded between−1 and 1. However, when using a correctly

specified treatment mechanism, the ψ̂ee estimator exhibits estimates that are out of

bound (of magnitude larger than 3 in some cases, and of magnitude 11 and 14 in

one dataset). The bias, variance and mse of each estimator are detailed in table 5.

When outcome model and mediator density are correct, the g-computation is still

consistent despite the positivity violation. Nonetheless, the effect of data-sparsity

on g-comp is apparent when comparing this g-comp estimator with its counterpart

in the case of no positivity violation (table 1, line 1). On the other hand, under cor-

rect outcome model and mediator density, TMLE and ψ̂ee have poor variance when

implemented with an untruncated correct treatment mechanism (’qy.c, qz.c, ga.c’).

However, their performances are improved when implemented with a truncated or

mis-specified treatment (’qy.c, qz.c, ga.tr’ and ’qy.c, qz.c, ga.m’). We also observe

that in the case of all models correct (’qy.c, qz.c, ga.c’), TMLE and ψ̂ee have a dif-

ferent bias-variance trade-off, with TMLE having smaller variance but larger bias,

with respect to ψ̂ee (which has a larger variance but smaller bias). This difference in

relative bias and variance is also present in the case of mis-specified mediator den-

sity but correct outcome and treatment (’qy.c, qz.m, ga.c’): we observe that using

the untruncated correct treatment, TMLE has larger bias and smaller variance than

ψ̂ee; but when the truncated treatment mechanism is used, the two robust estima-

tors behave similarly and provide bias reduction over the g-computation estimator.

When the outcome model is mis-specified, TMLE and ψ̂ee provide similar bias re-

duction over g-computation estimator; but TMLE has a smaller variance than ψ̂ee
when the untruncated treatment mechanism is used, while the opposite is true with

the truncated treatment mechanism.

In the case of continuous outcome (table 6), when the outcome model and

mediator density are correct, the g-computation is consistent, though converging

at a slower rate than its counterpart in the no-sparsity case (table 2, line 1) due to
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Table 5: Simulation 3: Binary outcome, positivity violations in p(A|W )

Bias Var MSE

n 500 5000 500 5000 500 5000

Q̄Y correct, QZ correct

gcomp: qy.c, qz.c 2.352e-02 2.019e-03 1.092e-02 1.145e-03 1.147e-02 1.149e-03

tmle 1: qy.c, qz.c, ga.c 5.681e-02 3.592e-02 3.450e-02 1.556e-02 3.773e-02 1.685e-02

tmle 2: qy.c, qz.c, ga.c 4.660e-02 7.505e-02 5.915e-02 2.513e-02 6.132e-02 3.076e-02

ee: qy.c, qz.c, ga.c 1.846e-02 3.097e-04 4.691e-02 4.824e-02 4.725e-02 4.824e-02

tmle 1: qy.c, gz.c, ga.tr 2.586e-02 2.088e-03 1.555e-02 1.591e-03 1.622e-02 1.596e-03

ee: qy.c, gz.c, ga.tr 2.393e-02 1.815e-03 1.235e-02 1.248e-03 1.292e-02 1.252e-03

tmle 1: qy.c, qz.c, ga.m 2.324e-02 2.792e-03 1.338e-02 1.381e-03 1.392e-02 1.388e-03

ee: qy.c, qz.c, ga.m 2.635e-02 2.223e-03 1.837e-02 1.570e-03 1.907e-02 1.575e-03

Q̄Y correct, gA correct

gcomp: qy.c, qz.m 5.017e-02 5.847e-02 1.063e-02 1.355e-03 1.315e-02 4.773e-03

tmle 1: qy.c, qz.m, ga.c 1.434e-01 1.129e-01 1.770e-02 6.660e-03 3.825e-02 1.940e-02

tmle 2: qy.c, qz.m, ga.c 4.655e-02 7.698e-02 5.442e-02 2.105e-02 5.658e-02 2.697e-02

ee: qy.c, qz.m, ga.c 5.417e-03 7.108e-03 1.768e-01 5.231e-02 1.768e-01 5.236e-02

tmle 1: qy.c, gz.m, ga.tr 3.359e-02 1.655e-02 1.526e-02 1.798e-03 1.638e-02 2.072e-03

ee: qy.c, gz.m, ga.tr 2.893e-02 3.711e-02 1.391e-02 1.605e-03 1.475e-02 2.982e-03

QZ correct, gA correct

gcomp: qy.m, qz.c 8.195e-02 8.263e-02 4.271e-03 4.561e-04 1.099e-02 7.284e-03

tmle 1: qy.m, qz.c, ga.c 4.855e-02 9.406e-03 3.555e-02 1.585e-02 3.791e-02 1.594e-02

tmle 2: qy.m, qz.c, ga.c 1.087e-03 6.615e-02 6.191e-02 2.847e-02 6.191e-02 3.285e-02

ee: qy.m, qz.c, ga.c 3.791e-02 1.157e-02 2.738e-01 1.149e-01 2.753e-01 1.151e-01

tmle 1: qy.m, gz.c, ga.tr 6.252e-02 5.530e-02 1.367e-02 1.342e-03 1.758e-02 4.401e-03

ee: qy.m, gz.c, ga.tr 7.356e-02 7.080e-02 6.202e-03 6.226e-04 1.161e-02 5.635e-03

the larger variances. We also observe that in smaller sample size, when using an

untruncated correct treatment mechanism, the TMLE 1 has a larger bias but sub-

stantially smaller variance than the ψ̂ee. This is likely due to some large effect esti-

mates in ψ̂ee in the dataset with smaller sample size. The variance of ψ̂ee decreases

substantially when sample size increases. On the other hand, under the truncated

treatment mechanism, ψ̂ee has now a smaller variance but larger bias than TMLE

1. When a mis-specified treatment mechanism is used, the two robust estimators

behave similarly, but still have larger variance than the g-computation estimator. In

the case of incorrect mediator density, under untruncated treatment mechanism, we

observe again that ψ̂ee has much smaller bias than TMLE 1, but substantially larger

variance in finite sample (for the same reason mentioned above). This difference

largely disappears when sample size increases. But when the treatment is truncated,

we observe again that TMLE has smaller bias but larger variance than ψ̂ee. If the

outcome model is incorrect: when the treatment is not truncated, TMLE 1 has larger

bias and smaller variance than ψ̂ee, and that relation is reversed under truncation.
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Table 6: Simulation 3: Continuous outcome, positivity violations in p(A|W )

Bias Var MSE

n 500 5000 500 5000 500 5000

Q̄Y correct, QZ correct

gcomp: qy.c, qz.c 2.390e-03 3.603e-03 7.999e-02 8.030e-03 8.000e-02 8.043e-03

tmle 1: qy.c, qz.c, ga.c 6.235e-02 4.228e-02 7.509e-01 4.091e-01 7.548e-01 4.109e-01

tmle 2: qy.c, qz.c, ga.c 2.556e-01 4.214e-01 1.080e+00 6.355e-01 1.145e+00 8.130e-01

ee: qy.c, qz.c, ga.c 1.847e-02 2.185e-02 1.836e+00 2.474e-01 1.836e+00 2.479e-01

tmle 1: qy.c, gz.c, ga.tr 2.895e-03 1.652e-03 1.227e-01 1.087e-02 1.227e-01 1.087e-02

ee: qy.c, gz.c, ga.tr 2.733e-03 2.608e-03 8.762e-02 8.473e-03 8.763e-02 8.479e-03

tmle 1: qy.c, qz.c, ga.m 3.104e-04 4.806e-03 1.231e-01 1.209e-02 1.231e-01 1.212e-02

ee: qy.c, qz.c, ga.m 6.349e-03 4.447e-03 1.497e-01 1.228e-02 1.497e-01 1.230e-02

Q̄Y correct, gA correct

gcomp: qy.c, qz.m 2.927e-01 2.996e-01 8.383e-02 8.112e-03 1.695e-01 9.787e-02

tmle 1: qy.c, qz.m, ga.c 5.792e-01 4.894e-01 2.332e-01 1.429e-01 5.687e-01 3.824e-01

tmle 2: qy.c, qz.m, ga.c 2.114e-01 4.413e-01 9.927e-01 5.920e-01 1.037e+00 7.867e-01

ee: qy.c, qz.m, ga.c 4.033e-02 6.585e-02 8.779e+00 1.899e-01 8.781e+00 1.943e-01

tmle 1: qy.c, gz.m, ga.tr 1.077e-01 8.515e-02 1.030e-01 1.046e-02 1.147e-01 1.771e-02

ee: qy.c, gz.m, ga.tr 1.795e-01 1.873e-01 9.681e-02 9.235e-03 1.290e-01 4.433e-02

QZ correct, gA correct

gcomp: qy.m, qz.c 1.553e-01 1.616e-01 2.087e-02 2.142e-03 4.499e-02 2.825e-02

tmle 1: qy.m, qz.c, ga.c 2.451e-02 2.284e-01 7.689e-01 4.513e-01 7.695e-01 5.035e-01

tmle 2: qy.m, qz.c, ga.c 7.633e-02 2.932e-01 1.051e+00 6.325e-01 1.057e+00 7.185e-01

ee: qy.m, qz.c, ga.c 4.949e-02 9.666e-03 8.180e-01 7.365e-01 8.205e-01 7.366e-01

tmle 1: qy.m, gz.c, ga.tr 1.017e-01 1.108e-01 8.538e-02 6.351e-03 9.573e-02 1.862e-02

ee: qy.m, gz.c, ga.tr 1.323e-01 1.361e-01 3.437e-02 3.049e-03 5.189e-02 2.157e-02

6 Extension to Natural Indirect Effect
In this section, we extend the above discussions in an analogous fashion to address

the natural indirect effect.
In the context of natural effects, the total effect of A on Y can be decomposed

into natural indirect and direct effects (Robins and Greenland (1992), Pearl (2001),
Robins (2003)):

E(Y (1)−Y (0))

= [E(Y (1,Z(1))−E(Y (1,Z(0))]+ [E(Y (1,Z(0))−E(Y (0,Z(0))],

where Y (a) represents the restriction to set Y (a) ≡ fY (W,A = a,Z = Z(a),UY ) on
the NPSEM. This decomposition formalizes the concept that the total effect of the
exposure on the outcome is a combination of its indirect effect through a mediator
Z, and its direct effect not mediated by Z. The quantity E(Y (1,Z(1))−E(Y (1,Z(0))
is referred to as the additive natural indirect effect. Its identification is studied in
the same body of literature ( Robins and Greenland (1992), Pearl (2001), Robins
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(2003), Petersen et al. (2006), Hafeman and VanderWeele (2010), Imai et al. (2010),
Robins and Richardson (2010) and Pearl (2011)). More specifically, under the same
conditions as those in section 2.2, the natural indirect effect can be identified as

E(Y (1,Z(1))−E(Y (1,Z(0))
A1,A2,A3

= ΨNIE(P0)

≡ PW,0

{
∑

z
Q̄Y,0(W,A = 1,z) [QZ,0(z|W,A = 1)−QZ,0(z|W,A = 0)]

}
. (20)

The results of Robins and Richardson (2010) thus have the same implications on
the difficulty of identifying the natural indirect effect in real experiments, due to the
conditional counterfactual independence assumption A3. In such cases, what kind
of causal interpretation can the statistical parameter (20) still offer? If assumption
A3 fails but randomization assumptions A1 and A2 hold, the statistical parameter
in (20) equals

ΨNIE(P0)
A1,A2
= EW

{
∑

z
E(Y (1,z)|W ) [p(Z(1) = z|W )− p(Z(0) = z|W )]

}
.

The interpretation of the right hand side is not as intuitive as in the natural direct

effect case. But since p(Z(1) = z|W )− p(Z(0) = z|W ) measures the effect of A on

Z, at its face value this alternative effect parameter can be viewed as weighting the

different outcomes E(Y (1,z)|W ) under z by these effect measures. However, we

remind the reader again that this alternative causal parameter only serves to provide

a causal interpretation for the statistical parameter (20) and one should be cautious

about putting it into the context of the traditional total effect decomposition.
The parameter ΨNIE(P) is also a function of Q alone. To extend the dis-

cussions above to the natural indirect effect parameter (20), we now consider the
mediated mean outcome map Q 	→ ψNIE,Z(Q), where ψNIE,Z(Q) : A ×W → R is
given by

(w,a) 	→ ψNIE,Z(Q)(w,a)≡ EQZ

(
Q̄Y (W = w,A = 1,Z)|W = w,A = a

)
.

This way, the parameter can be regarded as ΨNIE(Q) = ΨNIE (QW ,ψNIE,Z(Q)).
The efficient score for this parameter (derived inTchetgen Tchetgen and Sh-

pitser (2011b)) is given by

D∗NIE(Q,g,ΨNIE(Q))

=
I(A = 1)

g(1|W )

{
Y −ψNIE,Z(Q)(W,1)− QZ(Z|W,0)

QZ(Z|W,1)

(
Y − Q̄Y (W,1,Z)

)}

− I(A = 0)

g(0|W )

(
Q̄Y (W,1,Z)−ψNIE,Z(Q)(W,0)

)
+ψNIE,Z(Q)(W,1)−ψNIE,Z(Q)(W,0)−ΨNIE(Q). (21)
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The general robustness conditions of Tchetgen Tchetgen and Shpitser (2011b) ap-

ply to both natural direct and indirect effects. By the same reasoning (and anal-

ogous proof) as that of lemma 1, we note again that conditions (i) and (iii) may

be weakened to: (i) the conditional mean outcome Q̄Y (W,A,Z) and the medi-

ated outcome map ψNIE,Z(Q)(W,A) are both correct; (iii) the exposure mechanism

and mediator density, or the exposure mechanism and the conditional distribution

p(A|W,Z), are correct. Therefore, in situations where Z is high dimensional, sim-

ilar practical implications as those discussed in remarks following lemma 1 apply.

However, note that a regression-based estimation procedure for ψNIE,Z(Q0) now

regresses Q̄Y (W,1,Z) on W among treated observations to obtain the conditional

mean ψNIE,Z(Q)(W,1), and among control observations to obtain ψNIE,Z(Q)(W,0).
Since the parameter (20) is given by

ΨNIE(Q) = EQW

(
ψNIE,Z(Q)(W,1)−ψNIE,Z(Q)(W,0)

)
, (22)

the targeted MLE only needs to focus on estimation of the components QW,0, Q̄Y,0
and ψNIE,Z(Q0) of the likelihood. We first rewrite the efficient score in (21) as

D∗NIE(Q,g,ΨNIE(Q))

=
I(A = 1)

g(1|W )

(
1− QZ(Z|W,0)

QZ(Z|W,1)

)(
Y − Q̄Y (W,A,Z)

)
+

2A−1

g(A|W )

{
Q̄Y (W,1,Z))−ψNIE,Z(Q)(W,A)

}
+ψNIE,Z(Q)(W,1)−ψNIE,Z(Q)(W,0)−ΨNIE(Q)

≡ D∗NIE,Y +D∗NIE,Z +D∗NIE,W .

The reader may have readily noted the parallel between D∗NIE,Z +D∗NIE,W and the

efficient score for the familiar additive marginal treatment effect; this is because

the indirect effect can viewed as an additive marginal effect of the treatment on

Q̄Y (W,A = 1,Z) through its effect on Z, as seen in (22). In fact, as we will see

shortly, the second part of the implementation of TMLE is very similar to the well-

known case of additive marginal effects.
Without loss of generality, we assume that Y is bounded in the unit inter-

val. Under the log-likelihood loss function of (3), the least favorable submodel for

Q̄Y (W,A,Z) through a given initial estimator ˆ̄QY,n is now given by

ˆ̄QY,n(ε1)≡ expit
(

ˆlogit( ˆ̄QY,n)+ ε1CY (Q̂Z,n,gn)
)
,

ˆ
ˆ

where CY (Q̂Z,n,gn)(O) = I(A=1)
gn(1|W )

(
1− Q̂Z,n(Z|W,0)

Q̂Z,n(Z|W,1)

)
. Note that the dependence of

ˆ̄QY,n(ε1) on Q̂Z,n and ĝn are suppressed in the notation. The targeted MLE of Q̄Y,0

is ˆ̄Q∗Y,n ≡ ˆ̄QY,n(ε̂∗1 ) and is similarly defined as in section 3.1.
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Next, consider an estimating procedure ψ̂NIE,Z,n(Pn)(·) for ψNIE,Z(Q0), and
let ψ̂NIE,Z,n ≡ ψ̂NIE,Z(Pn). We are reminded that the function ψ̂NIE,Z,n depends on
the estimating procedure ψ̂NIE,Z(·) and the observed data Pn, and it can be plug-in

or regressed-based. ψ̂NIE,Z,n(
ˆ̄Q∗Y,n) is an initial estimator of ψNIE,Z(Q0). We define

the log-likelihood loss for ψNIE,Z(Q)(W,A) as

LZ(ψNIE,Z(Q))(O)

=− log
{

ψNIE,Z(Q)(W,A)Q̄Y (W,1,Z) (1−ψNIE,Z(Q)(W,A))1−Q̄Y (W,1,Z)
}
.

The least favorable submodel through the initial estimator ψ̂NIE,Z,n(
ˆ̄Q∗Y,n) is given

by

ψ̂NIE,Z,n(
ˆ̄Q∗Y,n)(ε2) = expit

(
logit

(
ψ̂NIE,Z,n(

ˆ̄Q∗Y,n)
)
+ ε2CZ(ĝn)

)
,

where CZ(ĝn) =
2A−1

ĝn(A|W ) . The dependence of the submodel on ĝn is also suppressed

in the notation. In a similar fashion as section 3.1, we obtain the targeted MLE

ψ̂∗NIE,Z,n(
ˆ̄Q∗Y,n) ≡ ψ̂NIE,Z,n(

ˆ̄Q∗Y,n)(ε̂∗2 ). Finally, the targeted MLE of the parameter

ΨNIE(Q0) is given by

ψ̂∗NIE,n ≡
1

n

n

∑
i=1

(
ψ̂∗NIE,Z,n(

ˆ̄Q∗Y,n)(Wi,1)− ψ̂∗NIE,Z,n(
ˆ̄Q∗Y,n)(Wi,0)

)
.

We remind the reader again that the role of the ratio of QZ in CY may be replaced

by ratios of g(A|W ) and p(A|W,Z).
The resulting estimator satisfies the efficient score equation, and therefore

is asymptotically unbiased if (i) the conditional mean outcome Q̄Y and the medi-

ated outcome map ψNIE,Z(Q) are both correct; (ii) the conditional mean outcome

and the exposure mechanism g(A|W ) are correct; (iii) the exposure mechanism and

mediator density QZ(Z|W,A), or the exposure mechanism and the conditional dis-

tribution p(A|W,Z), are correct. An estimating equation estimator ψ̂ee
NIE is also

discussed in Tchetgen Tchetgen and Shpitser (2011b). As mentioned in section 4,

ψ̂∗NIE and ψ̂ee
NIE will inherit the same robustness properties from the efficient score,

since both satisfy the efficient score equation. Conditions for asymptotic linearity

are analogous to those of theorem 1, we omit their derivations here.

7 Summary and Concluding Remarks
In this article, we applied the targeted maximum likelihood framework of van der

Laan and Rubin (2006) and van der Laan and Rose (2011) to construct a semi-

parametric efficient, multiply robust, plug-in estimator for the natural direct effect

of a binary treatment. This estimator has the property that it satisfies the efficient
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score equation (derived in Tchetgen Tchetgen and Shpitser (2011b)), and hence

also inherits its robustness properties. We noted that the robustness conditions in

Tchetgen Tchetgen and Shpitser (2011b) may be weakened (lemma 1), thereby

placing less reliance on the estimation of the mediator density. More precisely, the

proposed estimator is asymptotically unbiased if either one of the following holds:

i) the conditional mean outcome given exposure, mediator, and confounders, and

the mediated mean outcome difference are consistently estimated; (ii) the exposure

mechanism given confounders, and the conditional mean outcome are consistently

estimated; or (iii) the exposure mechanism and the mediator density, or the expo-

sure mechanism and the conditional distribution of the exposure given confounders

and mediator, are consistently estimated. If all three conditions hold, then the effect

estimate is asymptotically efficient. We also extended our results analogously to the

case of natural indirect effect.

In applications, the components that are difficult to estimate are often times

the conditional mean outcome and/or the mediator density. For a high-dimensional

Z, few tools are available to estimate the conditional mediator density QZ . On the

other hand, there is abundant literature addressing estimation of conditional means.

This can be used to estimate the mediated mean outcome difference ψZ(Q) ≡
EQZ(Q̄Y (W,1,Z)− Q̄Y (W,0,Z)|W,A = 0), and the conditional distributions of a

categorical A. Lemma 1 implies that estimation of the mediator density may be

replaced by estimations of g(A|W ), p(A|W,Z), and the conditional expectation

ψZ(Q).
We have also described general conditions for the estimator to be asymptot-

ically linear. More specifically, 1) estimators of each component must converge to

their respective limits at a reasonable speed, and 2) if there is a component that is not

consistently estimated, the consistent estimators of the remaining components must

meet stricter asymptotic linearity conditions. These conditions provide a guideline

for situations where influence curve based variance estimates are realistic.

Estimators that use of the efficient score are robust, but are generally sensi-

tive to practical positivity violations. We refer to Petersen, Porter, S.Gruber, Wang,

and van der Laan (2010) for methods of diagnosing and responding to violations of

the positivity assumption. The substitution principle and the logistic working sub-

models in the targeted estimation procedure aim to provide more stable estimates in

such situations. However, identification of the parameter depends ultimately on the

information available in a given finite sample. A way to improve finite sample ro-

bustness is the Collaborative TMLE (C-TMLE) of van der Laan and Gruber (2010),

where, instead of estimating the true treatment mechanism, for a given initial esti-

mator of the Q component one estimates a conditional distribution of the treatment,

conditioned only on confounders that explain the residual bias of the estimator of

Q. We aim to investigate applications of C-TMLE to the effect mediation problem.

32

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 3

DOI: 10.2202/1557-4679.1361



Appendix A

App1. Proof of lemma 1

Let ψ̃Z be a map Q 	→ ψ̃Z(Q), where ψ̃Z(Q) is a function from W to R. Note that
ψ̃Z(Q) may or may not make use of the density QZ , but it surely uses Q̄Y . Then

P0D∗(Q,g, ψ̃Z(Q),ψ0)

= PW,0

{
g0(1|W )

g(1|W ) ∑
z

QZ,0(z|W,1)
QZ(z|W,0)

QZ(z|W,1)

(
Q̄Y,0(W,1,z)− Q̄Y (W,1,z)

)}
(23)

−PW,0

{
g0(0|W )

g(0|W ) ∑
z

QZ,0(z|W,0)
(
Q̄Y,0(W,0,z)− Q̄Y (W,0,z)

)}
(24)

+PW,0

{
g0(0|W )

g(0|W ) ∑
z

QZ,0(z|W,0)
(

Q̄Y (W,1,z)− Q̄Y (W,0,z)
)}

(25)

−PW,0

{g0(0|W )

g(0|W )
ψ̃Z(Q)(W )

}
(26)

+PW,0

{
ψ̃Z(Q)(W )

}
−ψ0 (27)

Suppose (i) holds, i.e. Q̄Y = Q̄Y,0 and ψ̃Z(Q)(W ) = ψZ(Q0)(W ). Then (23)

and (24) are each exactly 0; the expectation in (25) and (26) are the same; and

PW,0ψ̃Z(Q)(W ) = PW,0ψZ(Q0)(W ) = ψ0. Notice that in this case, it was not neces-

sary that QZ = QZ,0. But rather, any function ψ̃Z(Q) that equals the true mediated

mean difference ψZ(Q0) will yield the desired result.

Suppose now that (ii) holds. Then (23) and (24) are each exactly 0. The

expression in (26) equals PW,0ψ̃Z(Q)(W ), and the expression in (25) equals ψ0.

Therefore the mean is zero.
Suppose that (iii) holds. Then, rearranging (23) and (24) we rewrite the

above expectation as

P0D∗(Q,g,ψ0) = PW,0

{
∑

z
QZ,0(z|W,0)

(
Q̄Y,0(W,1,z)− Q̄Y,0(W,0,z)

)}

− PW,0

{
∑

z
QZ,0(z|W,0)

(
Q̄Y (W,1,z)− Q̄Y (W,0,z)

)}

+ PW,0

{
∑

z
QZ,0(z|W,0)

(
Q̄Y (W,1,z)− Q̄Y (W,0,z)

)}

− PW,0ψ̃Z(Q)(W )+PW,0ψ̃Z(Q)(W )−ψ0

= 0
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App2. Proof of theorem 1

To see (9) we note firstly that for any Q and ψ

P0D∗
(
Q̄Y ,QZ,g0,ψ

)
= EW,0ψZ(Q̄Y,0,QZ,0)−ψ

+PW,0 ∑
z

(
Q̄Y,0(W,1,z)− Q̄Y (W,1,z)

)
QZ,0(z|W,1)

(
QZ(z|W,0)

QZ(z|W,1)
− QZ,0(z|W,0)

QZ,0(z|W,1)

)

= ψ0−ψ

+PW,0 ∑
z

(
Q̄Y,0(W,1,z)− Q̄Y (W,1,z)

)
QZ,0(z|W,1)

(
QZ(z|W,0)

QZ(z|W,1)
− QZ,0(z|W,0)

QZ,0(z|W,1)

)

On the other hand, PnD∗
(

ˆˆ̄Q∗Y,n, Q̂Z,n,gn, ψ̂∗Z,n(
ˆ̄Q∗Y,n)

)
= 0 by design of the

estimator. Combining these two results, we can express

ψ̂∗n −ψ0 = (Pn−P0)D∗
(

ˆˆ̄Q∗Y,n, Q̂Z,n,gn, ψ̂∗Z,n( ˆ̄Q∗Y,n)
)

+PW,0 ∑
z

(
Q̄Y,0(W,1,z)− ˆ̄Q∗Y,n(W,1,z)

)
QZ,0(z|W,1)

(
Q̂Z,n(z|W,0)

Q̂Z,n(z|W,1)
− QZ,0(z|W,0)

QZ,0(z|W,1)

)

+P0

{
D∗
(

ˆˆ̄Q∗Y,n, Q̂Z,n,gn, ψ̂∗Z,n( ˆ̄Q∗Y,n)
)
−D∗

(
ˆ̄Q∗Y,n, Q̂Z,n,g0, ψ̂∗Z,n( ˆ̄Q∗Y,n)

)}
,

where the last summand can be rewritten as

P0

{
D∗
(

ˆˆ̄Q∗Y,n, Q̂Z,n,gn, ψ̂∗Z,n( ˆ̄Q∗Y,n)
)
−D∗

(
ˆ̄Q∗Y,n, Q̂Z,n,g0, ψ̂∗Z,n( ˆ̄Q∗Y,n)

)}
=

P0

(
C ˆY (gn, Q̂Z,n)−CY (g0, Q̂Z,n)

)(
Q̄Y,0− ˆ̄Q∗Y,n

)
+P0

(
ˆ

I(A = 0)

gn(0|W )
− I(A = 0)

g0(0|W )

)(
ψZ(QZ,0,

ˆ̄Q∗Y,n)− ψ̂∗Z,n( ˆ̄Q∗Y,n)
)
.

Result (9) thus follows. Moreover, the Donsker class condition in (10) yields

ψ∗n −ψ0 = (Pn−P0)D∗
(
Q̄∗Y ,QZ,g,ψ∗Z(Q̄

∗
Y )
)

+PW,0 ∑
z

(
Q̄Y,0(W,1,z)− ˆ̄Q∗Y,n(W,1,z)

)
QZ,0(z|W,1)

(
Q̂Z,n(z|W,0)

Q̂Z,n(z|W,1)
− QZ,0(z|W,0)

QZ,0(z|W,1)

)

+P0

(
C ˆY (gn, Q̂Z,n)−CY (g0, Q̂Z,n)

)(
Q̄Y,0− ˆ̄Q∗Y,n

)
+P0

(
ˆ

I(A = 0)

gn(0|W )
− I(A = 0)

g0(0|W )

)(
ψZ(QZ,0,

ˆ̄Q∗Y,n)− ψ̂∗Z,n( ˆ̄Q∗Y,n)
)

+oP(1
√

n)
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The conditions for asymptotic linearity can be ascertained from the second
order terms by a straightforward expansion:

PW,0 ∑
z

(
Q̄Y,0(W,1,z)− ˆ̄Q∗Y,n(W,1,z)

)
QZ,0(z|W,1)

(
Q̂Z,n(z|W,0)

Q̂Z,n(z|W,1)
− QZ,0(z|W,0)

QZ,0(z|W,1)

)

+P0

(
CY (ĝn, Q̂Z,n)−CY (g0, Q̂Z,n)

)(
Q̄Y,0− ˆ̄Q∗Y,n

)
+P0

(
I(A = 0)

ĝn(0|W )
− I(A = 0)

g0(0|W )

)(
ψZ(QZ,0,

ˆ̄Q∗Y,n)− ψ̂∗Z,n( ˆ̄Q∗Y,n)
)

= PW,0 ∑
z

(
Q̄Y,0(W,1,z)− Q̄∗Y (W,1,z)

)
QZ,0(z|W,1)

(
QZ(z|W,0)

QZ(z|W,1)
− QZ,0(z|W,0)

QZ,0(z|W,1)

)

+P0

(
CY (g, Q̂Z,n)−CY (g0, Q̂Z,n)

)(
Q̄Y,0− Q̄∗Y

)
+P0

(
I(A = 0)

g(0|W )
− I(A = 0)

g0(0|W )

)(
ψZ(QZ,0,

ˆ̄Q∗Y,n)−ψ∗Z( ˆ̄Q∗Y,n)
)

+PW,0 ∑
z

(
Q̄∗Y (W,1,z)− ˆ̄Q∗Y,n(W,1,z)

)
QZ,0(z|W,1)

(
Q̂Z,n(z|W,0)

Q̂Z,n(z|W,1)
− QZ(z|W,0)

QZ(z|W,1)

)
(28)

+P0

(
CY (ĝn, Q̂Z,n)−CY (g, Q̂Z,n)

)(
Q̄∗Y − ˆ̄Q∗Y,n

)
(29)

+P0

(
I(A = 0)

ĝn(0|W )
− I(A = 0)

g(0|W )

)(
ψ∗Z( ˆ̄Q∗Y,n)− ψ̂∗Z,n( ˆ̄Q∗Y,n)

)
(30)

+PW,0 ∑
z

(
Q̄∗Y (W,1,z)− ˆ̄Q∗Y,n(W,1,z)

)
QZ,0(z|W,1)

(
QZ(z|W,0)

QZ(z|W,1)
− QZ,0(z|W,0)

QZ,0(z|W,1)

)
(31)

+PW,0 ∑
z

(
Q̄Y,0(W,1,z)− Q̄∗Y (W,1,z)

)
QZ,0(z|W,1)

(
Q̂Z,n(z|W,0)

Q̂Z,n(z|W,1)
− QZ(z|W,0)

QZ(z|W,1)

)
(32)

+P0

(
CY (g, Q̂Z,n)−CY (g0, Q̂Z,n)

)(
Q̄∗Y − ˆ̄Q∗Y,n

)
(33)

+P0

(
CY (ĝn, Q̂Z,n)−CY (g, Q̂Z,n)

)(
Q̄Y,0− Q̄∗Y

)
(34)

+P0

(
I(A = 0)

ĝn(0|W )
− I(A = 0)

g(0|W )

)(
ψZ(QZ,0,

ˆ̄Q∗Y,n)−ψ∗Z( ˆ̄Q∗Y,n)
)

(35)

+P0

(
I(A = 0)

g(0|W )
− I(A = 0)

g0(0|W )

)(
ψ∗Z( ˆ̄Q∗Y,n)− ψ̂∗Z,n( ˆ̄Q∗Y,n)

)
. (36)

In this theorem we study situations pertaining to the cases (i) Q̄∗Y = Q̄Y,0, and

ψ∗Z(
ˆ̄Q∗Y,n) = ψZ(QZ,0,

ˆ̄Q∗Y,n); (ii) g = g0 and Q̄∗Y = Q̄Y,0; or (iii) g = g0, QZ = QZ,0.

Under either of these cases, the first three unlabeled summands after the equal sign

are exactly zero. Therefore, we only need to focus on the first order ((31), (32),(33),

(34), (35), (36)) and second order ((28), (29), (30)) remainders. The rate conditions

(11), (12) and (13) ensure that the second order terms (28), (29) and (30) are all
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oP(1/
√

n). The remaining case by case asymptotic linearity conditions ensure that

the first order remainders are asymptotically linear.

Appendix B
In this section, we describe an alternative targeted estimator for the natural direct

effect by targeting on the conditional outcome expectation and the mediator density.

The key difference between the estimator proposed in the main section and the

estimator in this appendix lies in that the latter defines a loss function and parametric

working submodel for the conditional mediator density QZ and then estimates the

mediated mean outcome difference plugging in the targeted mediator density and

the targeted Q̄Y .

The loss function LY for Q̄Y remains the same as in the main section. That is,

we consider the loglikelihood loss when Y is binary or bounded in the unit interval,

or the squared error loss otherwise. Consequently, the parametric submodels for Q̄Y
remain the same as in the main section.

We make the assumption that the mediator Z is discrete with K + 1 lev-
els, i.e. Z ∈ {0,1, . . . ,K}. Let the variable Zk denote the indicator I(Z = k),
and QZk ≡ P(Zk|Z0, . . . ,Zk−1,W,A), for k = 0, . . . ,K − 1. Then, Z has a binary

representation Z = (Zk : k = 0, . . . ,K−1), and QZ = ∏K−1
k=0 QZk . For notational

convenience, we will sometimes write QZk(1|W,A) for the conditional probabil-
ity P(Zk = 1|Z0, . . . ,Zk−1,W,A), and Zk−1 for the vector (Z0, . . . ,Zk−1). Define for
QZ the loglikelihood loss function

LZ(QZ) =−
K−1

∑
k=0

Zk logQZk(1|W,A)+(1−Zk) logQZk(0|W,A).

We wish to find a logistic parametric working submodel QZ(ε) satisfying

d
dε

LZ (QZ(ε) |ε=0= DZ(QZ,g, Q̄Y ). (37)

For that purpose, we first decompose DZ orthogonally as DZ = ∑K−1
k=0 DZk , where

DZk =
I(A = 0)

g(0|W )

{
E (DZ|Zk = 1,Zk−1,W,A)−E (DZ|Zk = 0,Zk−1,W,A)

}
× (Zk−QZk(1|W,A)) .

A parametric working submodel for QZ = ∏K−1
k=0 QZk is defined in terms of each

component:

logitQZk(g, Q̄Y )(ε)(1|W,A) = logitQZk(1|W,A)+ εCZk(g, Q̄Y )(W,A),
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where we define

CZk(g, Q̄Y )(W,A)

≡ I(A = 0)

g(0|W )

{
E
(
Q̄Y (W,Z)|Zk = 1,Zk−1,W,A

)−E
(
Q̄Y (W,Z)|Zk = 0,Zk−1,W,A

)}

=
I(A = 0)

g(0|W )

{
Q̄Y (W,k)−∑

l>k
Q̄Y (W, l)

{
l−1

∏
m=k+1

QZm(0|W,A)

}
QZl (1|W,A)

}
,

if Zk−1 = 0, and CZk(g, Q̄Y )(W,A) ≡ 0 if Zk−1 �= 0. This way, the parametric

working submodel QZ(g, Q̄Y )(ε) = ∏K−1
k=0 QZk(g, Q̄Y )(ε) satisfies (37).

Given initial estimators of Q̄Y,0, QZ,0, and g0, a targeted MLE estimator for
ˆ̄Q∗Y for QY,0 is constructed as in (6). Using this updated ˆ̄Q∗Y , the optimal ε for the

submodel of QZ is given by

ε̂∗ = argmin
ε

PnLZ

(
Q̂Z(ĝ, ˆ̄Q∗Y )(ε)

)
,

and the targeted estimator of the mediator density is given by Q̂Z(ĝ, ˆ̄Q∗Y )(ε̂∗), we

denote this by Q̂∗Z for convenience. Finally, the targeted MLE estimator of ψ0 is the
substitution estimator plugging in these two updated components:

ψ̂∗ =
1

n

n

∑
i=1

{
ˆ̄Q∗Y (Wi,1,Zi)− ˆ̄Q∗Y (Wi,0,Zi)

}
Q̂∗Z(Z = Zi|Wi,A = 0).

It follows from (4) that PnD∗Y (
ˆ̄Q∗Y , Q̂Z, ĝ) = 0, and it follows from (37) that

PnD∗Z
(

ˆ̄Q∗Y , Q̂∗Z, ĝ
)
= 0. Moreover, the empirical distribution Q̂W,n of W solves the

score equation PnD∗W ( ˆ̄Q∗Y , Q̂∗Z, Q̂W,n) = 0. Therefore the resulting targeted estimator

also solves the efficient score equation.
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