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Abstract
The instrumental variables framework is commonly used for the estimation of causal effects

from cohort samples. However, the combination of instrumental variables with more efficient
designs such as case-control sampling requires new methodological consideration. For example,
as the use of Mendelian randomization studies is increasing and the cost of genotyping and gene
expression data can be high, the analysis of data gathered from more cost-effective sampling
designs is of prime interest. We show that the standard instrumental variables analysis does not
appropriately estimate the causal effects of interest when the instrumental variables design is
combined with the case-control design. We also propose a method that can estimate the causal
effects in such combined designs. We illustrate the method with a study in oncology.
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1 Introduction

An increasingly common methodology in epidemiology that uses a genetic variable

to assess the effect of an exposure on an outcome is known as Mendelian random-

ization. Indeed, these techniques have been studied by a number of authors and

several extensive reviews and discussions are available in the medical and epidemi-

ological literature (Didelez and Sheehan, 2007, Davey Smith and Ebrahim, 2003,

Davey Smith and Ebrahim, 2004, Davey Smith et al., 2005, Davey Smith, 2006,

Davey Smith et al., 2008, and Lawlor et al., 2008). Whereas the relationship be-

tween the exposure E and outcome Y may be confounded, the mechanism by which

the genotype G is assigned is well-understood and stems from meiosis and fertil-

ization. This random process allows for the estimation of the causal effect of E on

Y through instrumental variable techniques (Angrist et al., 1996).

An example of such a design is involved in the CLUE II study (e.g., see

Erlinger et al. 2004), a prospective cohort follow-up of serological risk factors

for cancer and heart disease. The subjects were sampled as a large cohort from

communities in Maryland between 1989 and 2000. The scientific target here is

the effect that chronically elevated C-reactive protein levels (CRP) have on the risk

of colorectal cancer. CRP concentration was measured in archived baseline blood

samples. For cost reasons common to many such studies, the genetic variables were

measured only for a nested case-control sample of 172 colorectal cancer cases and

342 matched controls were selected based on age, sex, and date of blood draw.

For instrumental variables estimation using designs alternative to a cohort,

early work by Mauro (2007) in economics used a design that matched firms that

were exposed vs. unexposed to the treatment of interest. The work of Didelez

and Sheehan (2007) investigated Mendelian randomization in case-control studies.

They noted that external information is required in order to estimate bounds for

causal effects. They found that for testing the null hypothesis of no causal effect the

composite design does not pose a problem. Our interest is in local treatment effects

(Angrist et al.), and we consider the estimation of such effects from data arising

from a composite design.

We show that the methodology of standard instrumental variables is not

directly applicable to estimate general causal effects when instrumental variables

are combined with case-control designs. This is because (a) case-control data alone

do not include any information about the prevalence or incidence of disease in the

population (our points apply when either prevalence or incidence over a time period,

as in the colorectal cancer study, is involved); and (b) for estimation of effects

with instrumental variables using case-control data such incidence information is

important, in contrast to estimation of simple odds ratios of association, where such

incidence information is ancillary (Prentice and Pyke, 1979).
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We also show how to address this problem. First, as the incidence informa-

tion is not available from the case-control study alone, it must be obtained exter-

nally. Second, this information must be combined with the observed case-control

data in order to reconfigure an estimate of the cohort distribution of the full data.

In that reconfiguration, the instrumental variable analysis can be applied to yield

appropriate estimates of the effects.

Among instrumental variables applications, Mendelian randomization is a

special case. Mendelian randomization has limitations. We discuss the plausibility

of the assumptions in the methodology section. We also discuss the utility of our

methods for more general instrumental variables. Importantly, the design idea in

this paper is not just about Mendelian randomization, but about any physical set-

ting for which instrumental variables can be plausible. This includes many fields

such as, for example, using access to special hospitals as an instrument to study my-

ocardial infarction outcomes (Newhouse and McClellan, 1998), or using calendar

variation of hormone replacement therapy rates as instrument to study the effect of

its use on cardiovascular outcomes (Shetty et al, 2009); see also Hernan and Robins

(2006) for a review. We hope that our results on case-control designs with instru-

mental variables will stimulate and facilitate the use of instrumental variables when

more flexible designs other than simple cohorts are needed.

In the next section, we review the instrumental variables frameworks and

give notation to define the estimation target. We then describe the composite case-

control instrumental variables design in detail and suggest an approach for estima-

tion. In Section 2.4, we consider the assumptions necessary for the standard anal-

ysis of Angrist et al. (1996) and thus our analysis, and then we briefly review the

cohort analysis methodology. We then give the main result stating that the standard

cohort instrumental variables analysis is not appropriate for the analysis of compos-

ite designs. We note that our method provides a correct estimation procedure and

conclude with a discussion.

2 Methods

2.1 Frameworks of instrumental variables

Several frameworks are available through which estimation can be conducted using

instrumental variables. Vytlacil (2002) demonstrated that the structural equation

paradigm is equivalent to that of potential outcomes and the equivalence of graph-

ical causal models to these setups was shown by Pearl (2000). We proceed within

the potential outcome framework to show our points, noting that these equivalences

indicate that our results apply more generally to the other frameworks.
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2.2 Notation and estimation target

We wish to estimate the effect of chronically elevated CRP on colorectal cancer

using the SNP rs1205 as an instrumental variable (details on the choice of this SNP

and its relationship to the quantities of interest are published elsewhere, Tsilidis

et al., 2009)). The answer can inform about the existing question of whether C-

reactive protein has a causal role in cancer risk or if it is merely a surrogate of other

processes involved in inflammation that can have a causal role in cancer risk (Allin

et al., 2009). To do this, first consider a population of units i representable by the

original cohort sample (for example, the CLUE II cohort sample). For each indi-

vidual the genotype g takes its value at meiosis and fertilization (time 0 of Figure 1)

and can be either g = 0 (the rs1205 genotype (CT/TT) associated with less CRP) or

g = 1 (the genotype (CC) associated with more CRP). By this notation, we intend

that the observed locus g be either the locus of a causal agent for E or close enough

to such a causal agent that recombinations between the two loci are unlikely (see

Section 3, paragraph 3). Let Ei(g) be the level of CRP (1 for higher than the me-

dian; 0 for lower than the median; median=2.12 mg/L) that the i-th individual would

experience at a later time 1 if the genotype were g. Further, let Yi(g) denote the col-

orectal cancer status of the i-th individual at a later time 2 if the genotype were g.

These variables here are binary, but the main points of the paper are generalizable

to more complex types; see our Section 3.

In this population cohort we make the usual assumptions for using the geno-

type as an instrumental variable, in the sense of Angrist et al., and which are scien-

tifically plausible in our case (see section 2.2 for a discussion of these assumptions).

We wish to use the genetic variable to assess the effect that changing CRP

(E) has on colorectal cancer. If variations of the SNP (G) have no effect on cancer

other than when changing CRP (see also the exclusion restriction later), then the

effect that changing E has on cancer occurs only for those individuals for whom G
changes E. For this reason we set the target quantity of interest to be the effect that

G has on cancer for the individuals for whom G does increase E:

P(Yi(1) | Ei(1)−Ei(0) = 1) versus P(Yi(0) | Ei(1)−Ei(0) = 1) (1)

To see that formula (1) describes the effect spelled out above, note that the “subjects

for whom the genotype does increase CRP expression” are those for whom CRP

expression under genotype 0 would be low, namely Ei(0) = 0, but CRP expression

under genotype 1 would be high, namely Ei(1) = 1; combining these we get that

these are the subjects for whom Ei(1)−Ei(0) = 1. Note that this group of patients

is by nature not identifiable from the observed data, but nonetheless the target (1)

is estimable under assumptions described in Angrist et al. In the remainder of the
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paper, we focus on estimation of P(Yi(g) | Ei(1)−Ei(0) = 1) for g = 0,1, from

which the causal risk difference, odds ratio, and relative risk may be estimated.

2.3 Study design and estimation

The composite case-control instrumental variables design is summarized in Figure

1. For each participant, let Gi denote the actual value that the genotype takes at

meiosis and fertilization (time 0). Let Ei(= Ei(Gi)) denote the actual value that the

circulating C-reactive protein concentration takes at time 1. At this time, blood is

drawn from each participant and stored for possibly measuring these values, Ei and

Gi, depending on later information available at time 2.
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Figure 1: Summary of the design of case-control sampling in the context of instru-

mental variables.

Specifically, at time 2, the actual cancer status is measured and is denoted

by Yi(= Yi(Gi)). The past values of Gi (unchanged from time 0) and Ei (from time

1) are then measured in the stored blood for all cases (Yi = 1), and for 2 controls
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(Yi = 0) that match each case on covariates Xi. The observed data therefore are

{Xi,Gi,Ei} for all cases and an X− matched sample of controls.

To estimate the target (1) correctly from our composite study design, we

make two observations: The first is that under instrumental variables assumptions

(discussed in the next section) in the cohort, the standard instrumental variables

methodology (Angrist et al., and given in Appendix A) gives correct answers if

applied to the cohort joint distribution of the genotypes, expression and outcome,

P(Gi,Ei,Yi | Xi), conditionally on the covariates. It does not, however, generally

give correct answers if applied to the composite design as we show in Section 2.4.

The second observation is that the case-control design provides the part of the co-

hort distribution that is conditional on the outcome and matching covariates, namely

P(Gi,Ei | Yi,Xi). Thus, we propose to address the problem in the following two

stages:

1. Estimate a re-configuration of the cohort joint distribution of the genotypes,

expression and cancer outcome, P(Gi,Ei,Yi | Xi), conditionally on the covari-

ates. To re-configure P(Gi,Ei,Yi | Xi), note that

P(Gi,Ei,Yi | Xi) =P(Gi,Ei | Yi,Xi) ·P(Yi | Xi)

Thus, by the second observation above, to estimate the distribution

P(Gi,Ei,Yi | Xi) we may multiply an estimate of P(Gi,Ei | Yi,Xi) from the

observed case-control data with an external estimate of the disease incidence

in the population P(Yi | Xi).
2. Apply the instrumental variables methodology (Angrist et al.) to the re-

configured distribution P(Gi,Ei,Yi | Xi). The resulting formulae are given

in Appendix B.

The concept behind the above estimation scheme is more general. When

covariates can be measured in a cohort with instrumental variables, a number of

alternative designs is generally possible. The two-stage estimation used in this pa-

per suggests that there is a generalizable approach to use such designs: first, place

instrumental variables assumptions on a cohort when plausible; second, find what

extra information (e.g., the marginal incidence with the case-control design) is re-

quired to supplement to the design data in order to re-configure an estimate of the

cohort distribution of the data. Finally, apply the instrumental variables methodol-

ogy to the re-configured cohort distribution to estimate the causal effects of interest.

To our knowledge this more general fact has not been realized for Mendelian ran-

domization or other instrumental variables problems.
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In the next section, we examine the instrumental variable assumptions from

Angrist et al. carefully in the context of our Mendelian randomization study. We

then proceed with a brief review of the standard cohort instrumental variables before

giving the main result of this work, which states in more detail the properties of the

two-step estimator from this section.

2.4 Instrumental variables assumptions

We consider the study cohort at time 0 to be a simple random sample of the pop-

ulation cohort of interest (as in the above section defining the scientific target), so

that (Xi,Gi,Ei(g),Yi(g)) are independent and identically distributed from that pop-

ulation where Xi are pertinent covariates, including those used for matching. For

the population cohort, we make a set of assumptions that are important for using

the genotype as an instrumental variable in the sense of Angrist et al., and that are

scientifically plausible in our case. For brevity, we use the label of Si for the vector

(Ei(0),Ei(1)) and call Si the principal strata.

A first condition assumes that subjects with different genotypes are compa-

rable within levels of Xi in the sense of:

ASSUMPTION 1. Ignorability

Gi ⊥ (Yi(g = 0),Yi(g = 1),Si) | Xi

For Mendelian randomization, ignorability is supported by the random receipt of a

paternal vs. maternal allele at fertilization. Assumption 1 is typically violated if

one of the following two subconditions is violated: first, if there is no population

admixture; second, if the variation in G that is caused by the meiotic process is inde-

pendent on the variation in other causal agents that act on Y through pathways other

than changing E. To simplify notation and with no loss of generality, we suppose

that we are within a particular level of the covariates unless otherwise noted.

A second assumption is the absence of any effect of the rs1205 genotype on

colorectal cancer if the genotype has no effect on CRP; that is,

ASSUMPTION 2. Exclusion Restriction

if Ei(g = 0) = Ei(g = 1) then Yi(g = 0) = Yi(g = 1)

This is supported by scientific knowledge of the region of the genome in which the

SNP resides. Indeed, the region is known to be directly associated with inflamma-

tory processes and there is no evidence that it is responsible for other biological

mechanisms (Timpson et al., 2005). An important note is that in many scenarios,
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the coarsening or dichotomization of the exposure Ei may be problematic. In our

example, the assumption is supported by our scientific knowledge that CRP is a

measure which is noisy and relates to the patient’s health status on the particular

date of the blood draw (for example, CRP may be affected by a minor bruise). Se-

vere violations of any of the assumptions can sometimes be detected by negative

estimates of probabilities, but this did not happen in the CLUE study.

The final assumption is that there are no individuals in the study who would

suffer from high CRP under the genotype associated with lower CRP but from low

CRP under the alternate genotype. That is, there are no discordant individuals:

ASSUMPTION 3. Monotonicity

Ei(g = 0)≤ Ei(g = 1)

Monotonicity should be used only when the SNPs have a well understood effect

on the exposure of interest. This will be the case when the variant of the specific

SNP disrupts the usual transcription of the gene, and that disruption is for a rea-

son specific to that variant. For rs1205, violations of monotonicity here would be

inconsistent with the established biological mechanism by which the SNP g predis-

poses to CRP (as above for exclusion restriction). Under monotonicity, we relabel

Si = a for individuals with (Ei(0) = 1 and Ei(1) = 1)); Si = p for individuals with

(Ei(0) = 0 and Ei(1) = 1); and Si = n for individuals with (Ei(0) = 0 and Ei(1) =
0).

2.5 Review of instrumental variables in cohort studies

For our goal of combining this design with case-control sampling it is important to

summarize the implications that the above assumptions have on the cohort data as

these implications follow, for example, from Angrist et al.

Under the above assumptions of instrumental variables, Angrist et al. show

that the causal effect (1) is estimable using data arising from a cohort design. To

be more specific, suppose here we are already within cells of the covariates X .

Then Angrist et al.’s main result is that there is a bijection between the cohort data

P(G,E,Y ) and the potential outcomes (P(G),P(S),P(Y (g) | S)) of interest. More

details concerning this work are provided in Appendix A and a proof is included

for convenience.

If the true contrast (1) is null, this cohort instrumental variables method-

ology also gives no effect when applied naively to case-control data. In the next

section, however, we show that when a non-zero effect is present the design-naive

instrumental variables methodology does not yield correct results if applied to data
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arising from a composite case-control instrumental variables design. This is in con-

trast to the standard odds ratio estimation for association, which is known to be

invariant to case-control sampling.

2.6 Methodological implications of design on analysis

We now consider what happens when we have collected data from the above com-

posite design of case-control and instrumental variables. In Section 2.3, we suggest

a two-step procedure for estimating causal effects. The value of this procedure is

described in our main result:

Result 1. Suppose the instrumental variables assumptions 1-3 hold in the cohort.

1. If the cohort instrumental variables methodology is applied to even an in-

creasingly large sample of data from the composite study design described

above to estimate the causal effect (1), the results will generally differ from

the true value of (1). This discrepancy holds even if the effect is an odds ratio.

2. The true value of (1) is identifiable if one also has the marginal distribution

of Y given covariates in the cohort.

We prove Result 1.2 in Appendix B by deriving the target quantities (1)

adjusting for the marginal distribution of the outcome in the cohort. Result 1.1 is

shown through a counterexample below. The forms given in Appendix B are also

especially useful for applications, as they may be used directly for the analysis of

data arising from composite designs.

One way of understanding this result is the following. The case-control

sampling leaves invariant the usual odds ratio between the outcome variable and a

factor of interest, that is, one type of association between two observed variables.

However, the instrumental variables effect (1) is an effect describable within a sub-

set of individuals not directly observed. Specifically, to describe this effect in terms

of observed variables, one must decompose a mixture into components that are not

directly observed but that are derivable via Assumptions 1-3 (Lemma 1). Thus,

since this effect is not describable as an association between the outcome and an

observed variable, it is understandable that it does not share the invariance property

under case control sampling.

From the formulas derived in Appendix B and after some additional algebra

(omitted), it can be shown that the magnitude of the bias depends on two intuitive

factors. First, if the true target effect (1) is null, then the bias will be null, and the

bias generally increases with the magnitude of the true effect. The second factor

that influences bias in the odds ratio effect is the magnitude of confounding that is

addressed by the instrumental variable in comparison to a standard regression; the
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smaller the confounding, the smaller the bias. The reason for this is that under the

usual condition of no confounding, each of the causal odds ratio estimands in the

cohort and the composite designs are equal to their association counterparts, which

are the same by the invariance property of odds ratios in case-control studies.

The confounding mentioned above is the comparison of the outcome distri-

bution across different principal strata S in the cohort, for the same observed value

of instrument and exposure, and is assessed by an indirect argument. For example,

consider the comparison of P(Y | E = 0,G= 1) to P(Y | E = 0,G= 0) in the cohort.

The former is actually also equal to P(Y | S = n,E = 0,G = 0), and the latter is a

mixture between P(Y | S = n,E = 0,G = 0) and P(Y | S = p,E = 0,G = 0) (this fol-

lows from Appendix A). Thus an observed difference between P(Y | E = 0,G = 1)
to P(Y | E = 0,G = 0) implies that the non-directly observed strata S = n and S = p
have different outcomes when having the same instrument and exposure (0).

To demonstrate the second factor more clearly, we provide an illustration:

Table 1 shows both the correct effects and the answers produced by the cohort

instrumental variables methodology applied directly, which we call “design-naive”,

in a variety of settings.

The settings are chosen by setting values for the components of P(S) and

P(Y (g) | S), and then calculating the true effect (1) and the design-naive values

from ignoring the composite design. The values for P(S) are chosen to be 1
3 each for

simplicity. The values of P(Y (g) | S) are chosen so that there is an effect for S = p,

that there is no confounding of the relationship between G and Y by S = p and S = a
( P(Y = 1 | S = a) is set to equal P(Y (1) = 1 | S = p) ), but that there can be such

confounding by S = p and S = n depending on whether we choose P(Y = 1 | S = n)
to be different from or equal to P(Y (0) = 1 | S = p) (which is equal to P(Y = 1 | S =
p,E = 0,G = 0)). Table 1 confirms that increased confounding increases the bias

even for the odds ratio. In more extreme cases (not shown) when the confounding

is severe, ignoring the design even produces some probability estimates outside the

boundaries of [0,1].

2.7 Application: CLUE II cohort

We applied this estimation procedure to the CLUE II cohort that has been intro-

duced in the above sections. The data are summarized in Table 2. In order to

model the joint distribution of observables in the case-control study, first we fitted

the conditional models corresponding to P(Ei | Yi,Xi) and P(Gi | Ei,Yi,Xi) via lo-

gistic regression. We then multiplied these fitted distributions, as in Part (i) above,

to obtain the fitted distribution P(Gi,Ei | Yi,Xi). This distribution we multiplied

by the SEER (2009) incidence estimates for P(Y | X), to obtain the fitted distribu-

tion for P(Gi,Ei,Yi,Xi), also as in Part (i). Finally, for the quartile values of age
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for men and women (covariates X), we applied the cohort instrumental variables

methodology (from Angrist et al., given in Appendix A) onto the fitted distribution

P(Gi,Ei,Yi,Xi) and thus obtained estimates of the distribution P(Ei(0),Ei(1) | Xi)
and P(Yi(g) | Ei(0),Ei(1),Xi), and hence also for the effects (1). The standard errors

were estimated via the delta method on the resulting composite mapping from the

logistic models for P(Ei | Yi,Xi), P(Gi | Ei,Yi,Xi) and the SEER estimates P(Y | X)
to the distributions P(Ei(0),Ei(1) | Xi) and P(Yi(g) | Ei(0),Ei(1),Xi).

Table 1. An example demonstrating the range of discrepancies between
the true instrumental variables effects and their design-naive values after a case-
control design.

(i) Distribution of Target Quantities in Population:

g=0 g=1

P(S = a)(a) = 1/3 P(Y = 1|S = a) = 4‰ (=) P(Y = 1|S = a) = 4‰
P(S = p)(a) = 1/3 P(Y (g = 0) = 1|S = p) = 1‰ P(Y (g = 1) = 1|S = p) = 4‰
P(S = n)(a) = 1/3 P(Y = 1|S = n) (=) P(Y = 1|S = n)†

P(G = 0) = 50% P(G = 1) = 50%

(ii) True and design-naive values of causal effects after case-control design:
(comparing P(Y (g = 0) = 1|S = p) to P(Y (g = 1) = 1|S = p))

†when P(Y = 1|S = n) is 1‰ 2‰ 4‰

then the true Difference is 0.3‰ 0.3‰ 0.3‰
and the naive Difference is 33% (1.10×103)(b) 29% (9.95×102) 25% (8.49×102)

the true Odds Ratio is 4 4 4
and the naive Odds Ratio is 4 (1.00) 3.5 (0.88) 2.96 (0.74)

the true Relative Risk is 4 4 4
and the naive Relative Risk is 2.15 (0.54) 2.04 (0.51) 1.91 (0.48)

(a) We use the label of Si = a for individuals with (Ei(0) = 1 and Ei(1) = 1); the label of
Si = p individuals with (Ei(0) = 0 and Ei(1) = 1); and the label of Si = n for individuals with
(Ei(0) = 0 and Ei(1) = 0).

(b) The ratios of design-naive to true values are shown in bold face font in parentheses.

The estimation of the target quantities in the colorectal oncology study was

conducted with and without addressing the case-control design. As these data were

part of a pilot study and the sample size is relatively small, the estimated standard

errors were large (95% confidence intervals included the null values). Nevertheless,

the point estimates demonstrate the possible differences that are plausible between

the results of the two methods in a real problem.
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In this case, the odds ratios between the two methods are almost the same,

which is consistent with a scenario that there may be no considerable confounding

in the CRP measurement. On the other hand, the causal effects quantified by the

difference and by the relative risk are measurably different when addressing versus

not addressing the combined design.

3 Discussion

We addressed the combination of case-control and instrumental variables designs.

This is of interest in itself, but is especially important as the number of Mendelian

randomization studies grows. As genetic data is often expensive to measure on

a large cohort, more efficient nested case-control studies are appealing. We have

shown that this combination is not amenable to the standard instrumental variables

analyses and we have provided a method to address this problem. It can also be

seen that the methodology is applicable when combining instrumental variables

with the case-cohort design, which is the most common alternative to the nested

case-control.

Mendelian randomization has its limitations. For one, its assumptions may

be questionable, and their plausibility, as discussed in the paper, should be con-

templated. Also, the utility of Mendelian randomization more generally is directly

related to the strength by which a SNP is associated to the intermediate exposure

and, ultimately, to the clinical outcome. Here, the application to the CLUE study

gives a sense of the numerical discrepancies that can arise. Appropriate extensions

can then be used in larger and more challenging studies. An example is gout which

has been shown to be strongly related to a set of SNPs (Dehghan et al., 2008). These

extensions will be examined in future work.

It is important to note that when we refer to the effect of rs1205 on exposure

and outcome, we mean the effect of the meiotic process that leads to the variation

of rs1205. For the treatment of this paper, as also described by Joffe (2011), we

do not actually require that the SNP is the ultimate causal agent itself although we

do require that the SNP and causal agent locus are close enough that the chance

of recombination is negligible. In our problem, rs1205 is in the CRP gene and the

recombination rate in this region in approximately 2.2 cM/Mb (Kong et al., 2002).

In the 2kb region that encompasses the CRP gene, this corresponds to an estimated

recombination probability of less than 0.0001. If recombination is more likely,

however, then the observed SNP can be considered as a surrogate of the desired

instrument - the causal gene. Hernan and Robins (2006, Theorem 5) show that if, in

such a case, monotonicity still holds for the causal gene, then the difference causal

effect (i.e., the difference in averages of the distributions in (1) with the observed
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SNP replaced with the causal gene), can still be estimated by using the observed

SNP as if it were the causal gene. For non-linear estimands though, such as relative

risks or odds ratios, the problem appears to be more complex and needs additional

treatment.

Table 2. Description of the CLUE II data.

Mean in Mean in Cases Mean in Controls Difference
study (n=509) (171 subjects) (338 subjects) (SE)

Age (SD) 63.45 (11.3) 63.55 (11.3) 63.40 (11.3) 0.15 (1.06)

Sex (% Male) 0.44 0.44 0.44 0.00 (0.05)

RS1205 Genotype 0.46 0.47 0.45 0.02 (0.05)
(% with genotype CC)

CRP (% with CRP 0.50 0.55 0.48 0.07 (0.05)
larger than 2.115 mg/L)

Median CRP: in study in (CC/TT) in (CC) in Low CRP in High CRP
[25th %, 75th %] (n=509) Genotype Genotype Group Group
(in mg/L) Group Group (≤ 2.12 mg/L) (> 2.12 mg/L)

Men at:

Age 55 1.74 1.58 2.00 0.99 3.91
[0.88,3.45] [0.80,3.11] [1.02,3.95] [0.59,1.47] [2.81,6.16]

Age 66 2.05 1.86 2.37 1.06 4.14
[1.04,4.06] [0.95,3.67] [1.20,4.66] [0.65,1.52] [2.90,6.66]

Age 72 2.24 2.04 2.59 1.10 4.28
[1.13,4.44] [1.04,4.02] [1.32,5.11] [0.68,1.55] [2.69,6.98]

Women at:

Age 55 1.92 1.73 2.20 1.03 4.05
[0.98,3.82] [0.88,3.41] [1.12,4.33] [0.63,1.50] [2.78,6.46]

Age 66 1.96 1.75 2.22 1.04 4.07
[0.99,3.89] [0.89,3.43] [1.13,4.36] [0.64,1.51] [2.87,6.52]

Age 72 1.98 1.75 2.23 1.04 4.09
[1.00,3.93] [0.89,3.45] [1.13,4.38] [0.64,1.51] [2.88,6.56]

Abbreviations: SD, standard deviation; SE, standard error
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Table 3. Design-based and design-naive estimates of the causal effects
for median and quartile ages and each sex. 95% confidence intervals are based
on the bootstrap.

Men Women

Design-based Design-naive Design-based Design-naive

Age 55
P(Y(0)=1|S=p) 6.47 x 10−4 0.270 4.43 x 10−4 0.270

0, 4.46 x 10−3 0, 1 0, 3.38 x 10−3 0, 1

P(Y(1)=1|S=p) 11.90 x 10−4 0.403 8.08 x 10−4 0.402
0, 34.10 x 10−4 0, 0.968 0, 2.32 x 10−3 0, 1

Difference 5.46 x 10−4 0.133 3.66 x 10−4 0.132
-3.41 x 10−3, 4.46 x 10−3 -0.968, 1 -2.32 x 10−3, 3.38 x 10−3 -1, 1

Odds Ratio 1.85 1.83 1.83 1.82
0, ∞ 0, ∞ 0, ∞ 0, ∞

Relative Risk 1.84 1.49 1.83 1.49
0, ∞ 0, ∞ 0, ∞ 0, ∞

Age 66
P(Y(0)=1|S=p) 1.56 x 10−3 0.270 1.05 x 10−3 0.269

0, 1.38 x 10−2 0, 1 0, 6.62 x 10−3 0, 1

P(Y(1)=1|S=p) 2.84 x 10−3 0.402 1.92 x 10−3 0.401
0, 5.50 x 10−3 0, 0.731 0, 4.73 x 10−3 0, 0.814

Difference 1.28 x 10−3 0.132 8.70 x 10−4 0.132
-5.50 x 10−3, 1.38 x 10−2 -0.731, 1 -4.73 x 10−3, 6.62 x 10−3 -0.814, 1

Odds Ratio 1.82 1.82 1.83 1.82
0, ∞ 0, ∞ 0, ∞ 0, ∞

Relative Risk 1.82 1.49 1.83 1.49
0, ∞ 0, ∞ 0, ∞ 0, ∞

Age 72
P(Y(0)=1|S=p) 2.12 x 10−3 0.269 1.41 x 10−3 0.269

0, 1.99 x 10−2 0, 1 0, 9.15 x 10−3 0, 1

P(Y(1)=1|S=p) 3.85 x 10−3 0.403 2.58 x 10−3 0.400
0, 8.64 x 10−3 0, 0.823 0, 7.47 x 10−3 0, 1

Difference 1.73 x 10−3 0.134 1.17 x 10−3 0.132
-8.64 x 10−3, 1.99 x 10−2 -0.823, 1 -7.47 x 10−3, 9.15 x 10−3 -1, 1

Odds Ratio 1.82 1.83 1.83 1.82
0, ∞ 0, ∞ 0, ∞ 0, ∞

Relative Risk 1.82 1.5 1.83 1.49
0, ∞ 0, ∞ 0, ∞ 0, ∞

Our work is related to suggestions that certain causal effects of interest

are not identifiable from such combined designs, but that they can be identified

by supplementing the missing information about the incidence of the outcome (Li

and Frangakis, 2006, and Constantinou, 2009). These works, however, do not di-

rectly address our problem. Specifically, Constantinou conceptualizes causal effects

through outcomes that would have been observed if every person had been forced

to have high (and low) CRP. We do not consider such outcomes here because they

are not all potentially observable (Rubin, 1974) in the study: neither the instrument
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nor any other mechanism is known to fully control CRP. Moreover, Li and Fran-

gakis’s discussion merely suggested the theoretical possibility of using instrumental

variables with other designs, but did not specifically address the problem.

Some estimands of instrumental variables using other approaches require

that one conceptualizes certain other outcomes. For example, for a subject who

would have high expression under both genotypes (i.e., Ei(1) = Ei(0) = 1), the

approach of Bowden and Vansteelandt Bowden and Vansteelandt (2011) 1 relies on

contemplating the cancer outcome that this subject would have if in some way they

had had low CRP expression. The problem with these approaches is that in this

study, there is no such mechanism to obtain information about such outcomes, and

so they are ill defined: there could perhaps be even many ways to have low CRP

but none of which is acting as such for this subject in this study. It is for this reason

that we focus on estimating the goal in (1).

After a method is used to estimate the effects, the uncertainty can be esti-

mated by various approaches including the bootstrap or delta method. The bootstrap

for a method that adjusts for the matching covariates can sample with replacement

directly individuals from the case-control population, within levels of Y , to reflect

the uncertainty of estimating the parameters in the distributions P(G,E | Y,X) (this

follows from the ignorability results of Rubin, 1978). In our example, the estimate

of the population prevalence P(Y | X) is assumed known without sampling error,

but in other cases one should include uncertainty for that estimation as well.

If in relation to the sample size there are only few covariate levels to strat-

ify for matching and to make Assumptions 1-3 more plausible, then the estimation

can follow directly using saturated models. In most applications, though, as in our

example, analysis will need to adjust more parsimoniously for multilevel or con-

tinuous matching covariates and for covariates that make Assumptions 1-3 more

plausible. For these cases, a saturated approach may not be possible, and modeling

of P(E | Y,X) and P(G | E,Y,X) may be needed. One limitation of this is that re-

strictions of such modeling in the observed data distributions induce restrictions on

the effects (1) through the instrumental variables method described in Appendix A.

This issue is also related to the null paradox (see, for example, Robins et al., 1999).

This is the fact that a class of mispecified models for the components P(E | Y,X)
and P(G | E,Y,X) may not contain a distribution that satisfies the null hypothesis of

no causal effects. The extent to which this is a concern is dependent on the extent

to which the models are incorrect. Such a problem due to marked mispecification

can therefore be alleviated by model checking and model enriching for P(E | Y,X)
and P(G | E,Y,X).

1The earlier, technical report version of this present paper, made public in 2009 in the report

series of the authors’ institution and available on request, precedes chronologically the paper by

Bowden and Vansteelandt who cite that technical report.
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Our presentation focused on having dichotomized the instrument, exposure,

and outcome. The binary instrument is presented here because circulating CRP

level was similar between the groups with rs1205 genotypes (CT) and (TT), and

to simplify the analysis. For multilevel instruments, extensions can be based, for

example, on work developed in Frangakis et al. (2004) or Heckman et al. (2006),

where, in the latter paper, if the original instrument has no natural ordering in terms

of the likelihood of the exposure, a new instrumental variable is constructed that

has such ordering. Our design corrections may also be applicable to methods with

continuous exposure discussed by Vansteelandt and Goetghebeur (2003).

Under the assumptions we used, an alternative to the approach we took

could be to model the target probabilities directly and estimate them using inverse

probability weighting as has been used in other problems and models (Cole and

Hernan, 2008, Abadie, 2003, and Tan, 2006). For example, we could solve the

score equations that would have arisen if we had observed cohort data, the likeli-

hood of which is described in Imbens and Rubin (1997), but weighted by the inverse

of the probability of being selected into the case-control design. As solving the in-

strumental variables score equations directly is unstable even with cohort data, a

modified EM algorithm would be needed to accomplish this, and will be explored

in future work.

In conclusion, cost or efficiency considerations can suggest combining the

case-control design with the instrumental variables design. With such composite

designs, standard instrumental variables methods are not generally appropriate, and

we have provided methods to better estimate the causal effects.

4 Appendix A: Instrumental variables estimation from a cohort
design

The result of Angrist et al. may be summarized as:

Lemma 1. Under Assumptions 1-3

1. any given distribution of principal strata and potential outcomes in the cohort,

along with a distribution of genotypes, induces a distribution on the cohort

data P(G,E,Y ).
2. the mapping described in 1 is invertible; that is, we can use the distribution

P(G,E,Y ) of the cohort data to find one and only one distribution for the

principal strata and potential outcomes (P(G),P(S),P(Y (g) | S)) that gave

rise to P(G,E,Y ).
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Proof of Lemma 1 (as in Angrist et al.). We show the lemma by giving explicit

forms for P(G,E,Y ) from (P(G),P(S),P(Y (g) | S)) and vice versa. Let us start with the

function that maps a distribution (P(G),P(S),P(Y (g) | S)) to the distribution of the cohort

data P(G,E,Y ). For the first distribution, abbreviate P(S = s) by S(s), and P(Y (g) = 1 |
S = s) by Y (1)

G=g,S=s. For the second distribution, abbreviate P(E = e|G = g) by E(e)
G=g and

P(Y = 1|G = g,E = e) by Y (1)
G=g,E=e. Then, one may note with the help of Figure 1 and the

assumptions that

E(0)
G=0 = S(n) +S(p), E(1)

G=1 = S(a) +S(p), E(0)
G=1 = S(n), E(1)

G=0 = S(a), (A.1)

and so S(p) = 1−E(0)
G=1−E(1)

G=0.

Also with the help of the mixtures in Figure 1 and Assumptions 1-3, we have that

Y (1)
G=1,E=0 = Y (1)

G=1,S=n, Y (1)
G=1,E=1 =

S(p)

S(a) +S(p)
Y (1)

G=1,S=p +
S(a)

S(a) +S(p)
Y (1)

G=1,S=a, and

(A.2)

Y (1)
G=0,E=1 = Y (1)

G=0,S=a, Y (1)
G=0,E=0 =

S(p)

S(n) +S(p)
Y (1)

G=0,S=p +
S(n)

S(n) +S(p)
Y (1)

G=0,S=n (A.3)

By noting that, from the exclusion restriction, Y (1)
G=1,S=n = Y (1)

G=0,S=n, equal, say, Y (1)
S=n and

Y (1)
G=1,S=a = Y (1)

G=0,S=a, equal, say, Y (1)
S=a, the recovery of Y (1)

G=g,S=p for g = 0,1 follows from

the above two relations as

Y (1)
G=1,S=p =

(S(a) +S(p))Y (1)
G=1,E=1−S(a)Y (1)

S=a

S(p)
(A.4)

Y (1)
G=0,S=p =

(S(n) +S(p))Y (1)
G=0,E=0−S(n)Y (1)

S=n

S(p)
(A.5)

By using (A.1) and the left sides of (A.2) and (A.3) we thus obtain (A.4)-(A.5) in

terms of the cohort data distribution. Thus the above is the inverse mapping under Assump-

tions 1-3, that maps the cohort joint distribution of G, E, and Y back to the distribution

(P(G),P(S), P(Y (g) | S)) of interest.

Note that there are distributions P(G,E,Y ) that cannot arise from any dis-

tribution (P(G), P(S), P(Y (g) | S)) with Assumptions 1-3. For such a distribution

P(G,E,Y ), the falsity of Assumptions 1-3 is verifiable because the resulting values

of the above procedure to such a distribution P(G,E,Y ) are outside the probability

space (0,1).
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5 Appendix B: Consequences of the combined case-control in-
strumental variables design

For simplicity assume we are within levels of the matching covariates X . The tar-

get quantities in the form of the joint distribution (P(G),P(S),P(Y (g) | S)) can be

calculated using case-control data along with the external prevalence. Let P
case
control

denote the distribution in the nested case-control study. Consider first calculating

the probabilities S(n), S(a), and S(p):

S(n) = P(E = 0 | G = 1) (from A.1 of Appendix A)

=
∑y′ P(G = 1,E = 0|Y = y′)P(Y = y′)

∑y′,e′ P(G = 1,E = e′|Y = y′)P(Y = y′)

=
∑y′ P

case
control (G = 1,E = 0,Y = y′) · P(Y=y′)

P
case
control (Y=y′)

∑y′,e′ P
case
control (G = 1,E = e′,Y = y′) · P(Y=y′)

P
case
control (Y=y′)

=
∑y′Y

case
control (y

′)
G=1,E=0 ·E

case
control (0)
G=1 · P(Y=y′)

P
case
control (Y=y′)

∑y′,e′Y
case
control (y

′)
G=1,E=e′ ·E

case
control (e

′)
G=1 · P(Y=y′)

P
case
control (Y=y′)

,

S(a) = P(E = 1 | G = 0) (also from A.1 of Appendix A)

=
∑y′ P(G = 0,E = 1|Y = y′)P(Y = y′)

∑y′,e′ P(G = 0,E = e′|Y = y′)P(Y = y′)

=
∑y′Y

case
control (y

′)
G=0,E=1 ·E

case
control (1)
G=0 · P(Y=y′)

P
case
control (Y=y′)

∑y′,e′Y
case
control (y

′)
G=0,E=e′ ·E

case
control (e

′)
G=0 · P(Y=y′)

P
case
control (Y=y′)

, and S(p) = 1−S(a)−S(n)

Now, we can rewrite (A.4) to have that:

Y (1)
G=0,S=p =

{
P(G = 0,E = 0|Y = y)P(Y = y)

∑y′,e′ P(G = 0,E = e′|Y = y′)P(Y = y′)

− P(G = 1,E = 0|Y = y)P(Y = y)
∑y′,e′ P(G = 1,E = e′|Y = y′)P(Y = y′)

}
/S(p)

(A.6)
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=

⎧⎪⎨
⎪⎩

Y
case
control (1)

G=0,E=0 ·E
case
control (0)
G=0 · P(Y=y)

P
case
control (Y=y)

∑y′,e′Y
case
control (y

′)
G=0,E=e′ ·E

case
control (e

′)
G=0 · P(Y=y′)

P
case
control (Y=y′)

−
Y

case
control (1)

G=1,E=0 ·E
case
control (0)
G=1 · P(Y=y)

P
case
control (Y=y)

∑y′,e′Y
case
control (y

′)
G=1,E=e′ ·E

case
control (e

′)
G=1 · P(Y=y′)

P
case
control (Y=y′)

⎫⎪⎬
⎪⎭/S(p),

(A.7)

and

Y (1)
G=1,S=p =

{
P(G = 1,E = 1|Y = y)P(Y = y)

∑y′,e′ P(G = 1,E = e′|Y = y′)P(Y = y′)

− P(G = 0,E = 1|Y = y)P(Y = y)
∑y′,e′ Pr(G = 0,E = e′|Y = y′)P(Y = y′)

}
/S(p)

=

⎧⎪⎨
⎪⎩

Y
case
control (1)

G=1,E=1 ·E
case
control (1)
G=1 · P(Y=y)

P
case
control (Y=y)

∑y′,e′Y
case
control (y

′)
G=1,E=e′ ·E

case
control (e

′)
G=1 · P(Y=y′)

P
case
control (Y=y′)

−
Y

case
control (1)

G=0,E=1 ·E
case
control (1)
G=0 · P(Y=y)

P
case
control (Y=y)

∑y′,e′Y
case
control (y

′)
G=0,E=e′ ·E

case
control (e

′)
G=0 · P(Y=y′)

P
case
control (Y=y′)

⎫⎪⎬
⎪⎭/S(p)

where Y
case
control (y

′)
G=g′,E=e′ and E

case
control (e

′)
G=g′ denote the induced distributions P

case
control (Y = 1|G =

g,E = e) and P
case
control (E = e|G = g) in the case-control population. Note that the

above forms generally differ from those that result from the naive application of

(A.4) and (A.5) to case-control data when P(Y ) is not equal to P
case
control (Y ). This

also serves as a constructive proof that when using instrumental variables the case-

control design must be addressed.
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