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Abstract

A meta-analysis that uses individual-level data instead of study-level data is widely
considered to be a gold standard approach, in part because it allows a time-to-event analysis.
Unfortunately, with the common practice of presenting Kaplan-Meier survival curves after pooling
subjects across randomized trials, using individual-level data can actually be a step backwards; a
Simpson's paradox can occur in which pooling incorrectly reverses the direction of an association.
We introduce a nonparametric procedure for synthesizing survival curves across studies that is
designed to avoid this difficulty and preserve the integrity of randomization. The technique is
based on a counterfactual formulation in which we ask what pooled survival curves would look
like if all subjects in all studies had been assigned treatment, or if all subjects had been assigned to
control arms. The method is related to a Kaplan-Meier adjustment proposed in 2005 by Xie and
Liu to correct for confounding in nonrandomized studies, but is formulated for the meta-analysis
setting. The procedure is discussed in the context of examining rosiglitazone and cardiovascular
adverse events.
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1 Introduction

A common disclaimer when publishing a meta-analysis is that the investiga-
tion is limited because a time-to-event analysis cannot be performed without
individual-level data. However, even with access to these data it is not al-
ways clear how studies should be combined; pooling subjects across trials
can lead to biased conclusions, and hazard ratio modeling does not always
describe how risk changes over time. Hence, we believe that time-to-event
meta-analysis can benefit from new methodology.

1.1 Pooling Can Be Problematic

Simpson’s paradox (Simpson, 1951) is the phenomenon in which within sev-
eral studies or subgroups there can be an apparent association (e.g., treat-
ment is harmful), but when data are pooled over all studies or subgroups the
direction of association appears to reverse (e.g., treatment is helpful). The
most common examples are observational studies where the paradox can be
explained by confounding, but it is well-known that the phenomenon can
also occur in a meta-analysis of randomized trials.

For example, Nissen and Wolski (2007) compared myocardial infarction
rates of subjects randomized to diabetes drug rosiglitazone (Avandia) or
comparator drugs in a meta-analysis of approximately 28,000 subjects in 42
trials. Using study-level data and a fixed effects model they estimated an
odds ratio for myocardial infarction of 1.43 and found this to be statistically
significant. However, Bracken (2007) pointed that when the 42 studies were
pooled there was a Simpson’s paradox in which the direction of association
reversed. Event rates in pooled rosiglitazone and control arms were 5.5/1000
and 5.9/1000, and using pooled rates gave odds ratio estimate 0.94 < 1.

Riicker and Schumacher (2008) summarize why this paradox can occur,
and note that a meta-analysis can be susceptible when treatment assignment
probabilities differ between trials. Unequal assignment probabilities are not
typically part of trial designs, but can appear when combining studies in a
meta-analysis because is common to collapse all dose or comparator arms
within a study into one treatment group and one control group.

This fact may raise questions about a common practice in meta-analysis
with time-to-event data that has been used to assess cardiovascular risks for
rosiglitazone and a drug in the same class: pooling treatment and control
groups across studies and computing Kaplan-Meier curves (Lincoff et al.,
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2007; FDA, 2007; Cobitz et al., 2008). Key questions arising in 2007 and
2010 FDA advisory committee meetings on rosiglitazone were whether the
signal was driven by events in the first six months after treatment assignment,
and whether any excess risk disappeared or reversed direction upon long-term
follow-up. Answering such questions clearly requires time-to-event analysis.

In recognition of the problems associated with pooling survival data over
studies and the lack of alternative methodologies, the Cochrane Collaboration
(Higgins and Green, 2009) has stated that

Kaplan Meier plots for all pooled participants across trials in a
meta-analysis have previously been presented in medical journals.
This practice breaks with the principle of comparing like with
like. For this reason, until further discussions have taken place
the Statistical Methods Group is unable to recommend inclusion
of such plots in Cochrane reviews.

As a hypothetical example illustrating the problem of pooling, suppose
two studies are conducted, each with 1,000 total patients. In the first study,
subjects assigned to control survive for three years on average, following an
exponential distribution. The treatment is inferior to the control drug and
cuts survival in half. In this first study 750 subjects are randomly assigned
treatment, and the other 250 to the control. Subjects are followed for up to
two years before being censored.

Subjects enrolled in the second hypothetical study are much sicker, and
patients assigned to control only survive for six months on average, with
survival again following an exponential distribution. The treatment again
halves the survival time, so treated subjects live on average for three months
according to the exponential distribution. Subjects are again followed for up
to two years but assignment probabilities are now reversed, so only 250 of
the 1,000 subjects are given the treatment.

After simulating the two trials, Figure 1 shows estimated survival curves
after pooling studies. Even though treatment is always harmful, pooling
leads to the incorrect conclusion that it increases survival. Simpson’s paradox
occurs because the pooled treatment arm has more of the healthier subjects
from the first study. The finding was not due to simulation error: over 200
simulated meta-analyses the estimated six month survival rate in the control
arm averaged 0.49 +/- 0.01 SD, while the estimated treatment survival rate
at six months averaged a larger 0.57 +/- 0.01 SD.
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Figure 1: Estimated survival rates at every month between 0-2 years when
pooling subjects across the two simulated studies. Even though treatment is
always harmful and the studies are randomized, there is a Simpson’s paradox
in which pooling makes the treatment appear beneficial.
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A possible counterargument to this example is that there is heterogeneity
in the two studies, so they are not inherently combinable. In general we
agree that studies in a meta-analysis should examine similar interventions
in similar patient populations. However, heterogeneity can be difficult to
detect, particularly with rare events, although it could probably be found in
this example. Nevertheless, if diagnostics do not preclude meta-analysis then
the example shows that pooling can be perilous.

1.2 Hazard Ratios Might Not Tell the Whole Story

Another approach to meta-analysis with survival data is to model hazard
ratios. For instance, with individual-level data one could fit a proportional
hazards model and stratify by study, which allows baseline hazard functions
to differ between trials. Additionally, one could combine estimated hazard
ratios across studies. The combination would typically involve a weighted
average using a fixed effects model or a random effects model. While we do
not dispute that hazard ratios can often be very informative, survival proba-
bilities at different times can have a clearer interpretation in some contexts.
For instance, a clinician or patient might be interested in the overall event
rate at six months under treatment and control. Likewise, traditional haz-
ard ratio modeling cannot describe “the time course of risks” that has been
sought in the case of rosiglitazone (Psaty and Furberg, 2007), because a pro-
portional hazards model assumes the hazard ratio is constant over time, and
estimation only depends on failure and censoring times through their rank
order.

2 Counterfactual View of Randomized Trials

We approach randomized clinical trials through the lens of Neyman’s (1923)
potential outcome framework for experiments. To clarify our conceptual
view of the problem we start by considering trials with binary outcomes
before moving to time-to-event data. In this setting our procedure reduces
to the “SS-based method” [study size-based method] of analysis discussed
by Chuang-Stein and Beltangady (2010). The point is not to promote this
method over more traditional fixed effects models or random effects models,
but to introduce it because it more naturally generalizes to synthesizing
survival curves.
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For the binary outcome problem, we consider the ideal but unavailable
full data for k& two-arm studies in a meta-analysis to be

c
{wi, v v Y
e Each (w;,y!,yS) represents data for a single subject. These are con-
sidered fixed and deterministic, and are subject-level parameters.

e w; € {1,...,k} represents which of the k studies contains individual i.

e yI' € {0,1} is a counterfactual outcome for individual i. If the subject
is assigned to treatment, this is the binary outcome that will be seen.

e y© € {0,1} is another counterfactual outcome for individual 7. If sub-
ject 1 is assigned to control, this will be the outcome.

The full data are unavailable because counterfactual outcomes y! and y¢
can never both be observed, since each subject can only be assigned to one
of the two treatment arms. If subject ¢ is assigned to treatment then only
yI' will be observed, while under assignment to control only y¢ will be seen.
Thus, the individual-level meta-analysis observable data are

e Random variable X; is an binary indicator of treatment assignment
for individual 7, where X; = 1 represents assignment to treatment and
X; = 0 represents assignment to control.

e Random variable Y; is the observed outcome for subject i, which is y!
under assignment to treatment and y¢ under assignment to control.

In randomized trials, treatment indicator X; is randomly set to zero or one.
Treatment assignment probabilities can differ across studies, but we assume
that assignments made in different studies are independent of each other.
Letting nq, ..., n; denote the total number of subjects in each study, we as-
sume a fixed number my, ..., my of subjects are assigned treatment in each
one, with 0 < m; < n;. Thus, {X;}", are not necessarily independent or
identically distributed. For each individual we can also define the probability
of assignment to treatment as

=1
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In this statistical model, the only randomness is due to the random as-
signment of each subject to one of two arms (Freedman, 2008). The approach
recognizes that subjects in clinical trials (and the trials themselves) are not
usually randomly sampled from any well-defined population or superpopula-
tion, but instead constitute convenience samples. Generalization to subjects
outside the studies is not incorporated into the statistical modeling.

2.1 Parameters of Interest with Binary Outcomes

If sponsors of the clinical trials had only been interested in studying subjects
given the treatment, then all subjects in all studies could have been assigned
to treatment. In that case, the observed data would be {w;,y! }* ;. Unless
some of the recruited subjects were considered more representative of a hy-
pothetical target population than others, a natural summary measure of the
event rate for subjects assigned treatment would be the empirical rate

y'=n"" zn: vi -
1=1

Similarly, if sponsors were only interested in studying subjects given con-
trols, all subjects in all studies could have been assigned to the control arm.
With observed data {w;,y“}" ,, a natural summary measure for outcomes
of controls would be the empirical rate

y©=n"t zn: vi -
=1

In clinical trials, neither y” or y© will be available from the observed
data, because treatment assignment probabilities are not set to zero or one.
Thus, we consider these as summary parameters that would only be known
to an oracle. To summarize the differential effect of treatment we could also,
for example, attempt to estimate differences or ratios between y” and y°.

DOI: 10.2202/1557-4679.1289 6



Rubin: An Alternative to Pooling Kaplan-Meier Curvesin Meta-Anaysis

2.2 Estimation

Recalling that m; = P(X; = 1), the unavailable summary parameters can be
estimated as follows:

i=1
n
—1

1— X,
y¢ =nt 'y;.

)

As mentioned earlier, these reduce to the SS estimators discussed by Chuang-
Stein and Beltangady (2010). The estimators are based on the inverse prob-
ability of treatment weighting approach (Robins et al., 1994), which gener-
alizes a weighting scheme in survey sampling due to Horvitz and Thompson
(1951). The idea in estimating the response rate y? is to average responses
of those who received treatment but give more weight to those with a lower
probability of being treated, because they are more representative of the un-
observed counterfactual responses for subjects in the control arm. It is simple
to check that the estimators are unbiased.

Lemma 1. E[YT] = y7 and E[Y“] = y©.

Proof. Note that X;V; = X,y because V; = y!' X; + v (1 — X;) and
X;(1 — X;) = 0. Similarly, (1 — X;)Y; = (1 — X;)y¢. Hence, term i in the
two respective estimators is (X;/m;)yl and (1 — X;)/(1 — m;)y", which are
unbiased for 3! and y¢. O

2.3 Avoiding Simpson’s Paradox

Note that the SS estimators Y7 and Y¢ can be computed without access
to individual-level data. Let PT and PS denote observed event rates for
treatment and control subjects in study [. It is easy to verify that these
are unbiased for p] and p{, the event rates in study / under counterfactual
assignment of all subjects to treatment or control. Recalling that n is the
total number of subjects and n; is the total number of subjects in study [,
the estimators can be written as Y7 = 37 Pl and Y = Y} | “PF.

These are weighted averages of study-level event rates for treatment and
control, where the trial weight is simply the total number of subjects in the
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trial, over both arms. Similarly, the desired parameters y? = Zle %plT and

y© = Zle %plc are weighted averages of study-level parameters.

With this representation, it becomes clear why the SS method is immune
to bias caused by unequal treatment assignment probabilities across studies.
If treatment leads to higher event rates than the control in study [ then risk
difference p!" — p& should be positive. If this is true for all studies, then
yT — y© should also be positive as it is a weighted average of these terms.
Consequently, if y” and y© are well-estimated then we will avoid any biased

Simpson’s paradox conclusions suggested by pooling.

2.4 Generalizing the Fixed Effects Model

A fixed effects model allows the study-level event rates (p/, p¢’) to differ from
trial to trial, but assumes they live on a level set where a treatment effect
such as a risk difference, risk ratio, or odds ratio is constant. If there is a
constant study-level risk difference u = p!' —p{ then the SS method estimates

this, as y” —y© = S, “pl —pf) = " "Ly = p. Similarly, if there is

a constant risk ratio u = pJ /pf then the SS method estimates it because
k k k k -

ytyC = 0 el o Tl = 2o b/ 2oL, e = i The main

drawback of using SS method for estimation is a loss of efficiency relative to
using Mantel-Haenszel weights. Unlike the risk difference or ratio, if there is
a constant trial-level odds ratio then it may not equal the odds ratio formed
from y? and y©, because the odds ratio is not “collapsible” (Ducharme and
Lepage, 1986). However, for rare events as with rosiglitazone, the odds ratio
will roughly equal the relative risk, so the SS method will still estimate the
same parameter as a well-posed fixed effects model.

2.5 Application to Rosiglitazone

The safety of rosiglitazone is beyond our scope, so results mentioned here are
to illustrate methodology. We do not mean to endorse any position on the
safety profile of the drug or the combinability of the studies.

When applying the SS method to the aforementioned meta-analysis data
for myocardial infarctions given by Nissen and Wolski (2007), which can be
done with study-level data, we obtain Y7 = 0.0067 and Y¢ = 0.0048. That
is, we estimate that if all 28,000 subjects in all 42 studies had been assigned
rosiglitazone we would have seen event rate 6.7/1000, and analogously, event
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rate 4.8/1000 if all subjects had been assigned to controls. The estimated
odds ratio from (unrounded) Y7 and Y¢ is 1.41. This is almost identical
to the published fixed effects result of 1.43. We also tested the strong null
hypothesis of no treatment effect (i.e., yI = y°) by randomly permuting
treatment assignment labels in all trials 100,000 times and recomputing the
SS odds ratio estimator in each permuted meta-analysis dataset to form a null
distribution (Rosenbaum, 2002). This gave a two-sided p = 0.02, similar to
Nissen and Wolski’s p = 0.03. Nissen and Wolski also examined rates of death
from cardiovascular causes. Their fixed effect model gave odds ratio estimate
1.64 (p = 0.06). The SS method yields Y7 = 2.6/1000 and Y¢ = 1.5/1000
when estimating what the cardiovascular death rates would have been if all
subjects had respectively been assigned to treatment or control, and odds
ratio estimate 1.73 (p = 0.02).

An interesting difference between the SS method and standard fixed effect
models is that the former does not exclude studies with zero events, which
was controversial in the rosiglitazone meta-analysis (Diamond et al., 2007).

In summary, we find that the SS method avoids the Simpson’s paradox in-
duced by pooling and replicates a well-known result, which gives reassurance
before generalizing to survival analysis.

3 Time-to-Event Meta-Analysis

Taking a similar counterfactual view as in the previous section, with time-
to-event outcomes that are possibly right censored we define the unavailable
full potential outcome data as

T T C Cn
{wi7 5@'7 Y 52' y Yi fi=1-

e w; € {1,...,k} again indicates the study containing individual i. The
full data (w;, 07, y!, 6%, y¢) for subject i are again considered deter-

ministic subject-level parameters.

e 0! is a counterfactual indicator of censoring. §7 = 0 indicates that the
subject will be lost to follow-up if assigned treatment, while §7 = 1
indicates that failure will be observed under assignment to treatment.

e If subject 7 is assigned to treatment, y! > 0 will be the time to either
failure or loss to follow-up.
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e 0¢ € {0,1} is a counterfactual indicator of censoring when subject i is
assigned to control.

° Z/z’C > 0 is a counterfactual time to either failure or loss to follow-up
when subject ¢ is assigned to control.

If subject 7 is assigned to treatment then (4], y!) will be observed, and under

assignment to control we will instead see (6, 3¢). As each subject can only

be assigned to one of two arms, the observable individual-level data are
{wi, Xiy Ni=6X;+67(1-X,), Vi=vy!l Xi+yS(1— X)L,

e Random variable X; is again an indicator of treatment assignment for
individual 7, where X; = 1 represents assignment to treatment and
X; = 0 represents assignment to control. As in the previous section,
we can define m; = P(X; = 1), determined from the number of subjects
my, ..., my assigned treatment in each study and the total number of
subjects nq, ..., nk in each study.

e Random variable A; indicates whether the failure time for subject 7 is
observed (A; = 1) or is censored (A; = 0).

e Random variable Y; is the time to either failure or loss to follow-up for
subject 7.

Like our statistical model of meta-analysis with binary outcomes, the only
stochastic component is the randomness induced by random assignment of
subjects to treatment arms.

3.1 Survival Curves of Interest

In summarizing the survival distribution of subjects assigned to treatment,
consider what would be done by an oracle who could redo all studies and

assign all subjects to treatment. With time-to-event data {67,y }",, a

(2
natural way to summarize survival would be through the Kaplan-Meier curve.
Likewise, when interested in the survival distribution of subjects assigned
to control, an oracle could repeat all studies and assign every subject to
the control arm. With time-to-event data {5¢, 5}, for all subjects under
control, the survival distribution could also be summarized through a Kaplan-

Meier curve. Thus, we define our desired parameters as follows:
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e 7 is the cumulative distribution function resulting from applying the

Kaplan-Meier estimator to unavailable counterfactual data {57, y! }7,.

e f¢ is the cumulative distribution function resulting from applying the
C n

Kaplan-Meier estimator to unavailable counterfactual data {5¢, y<}7_,.
Note that the two unknown curves are considered parameters, not estimators,
even though the Kaplan-Meier method is an estimation technique. This
is similar to our approach with binary outcomes, in that we consider each
subject to have deterministic data after assignment to treatment or control,
and then define two parameters of interest as summary statistics that could
be computed by an oracle when (a) all subjects in all studies are assigned
to treatment; (b) all subjects in all studies are assigned to control. Because
we work in a finite population urn model, another atypical feature of our
formulation is that the curves of interest f7 and f¢ can depend on the
number of subjects and the number of studies.

3.2 Simpson’s Paradox and Estimator Motivation

Of course, even an oracle’s synthesized Kaplan-Meier curves might not al-
ways be easy to interpret. Consider the counterfactual time y! for sub-
ject 7 to be the minimum of a failure time 7! and follow-up time z!. Tt
is the distribution of failure times {7}, that should truly be of interest
rather than a curve involving the censoring mechanism. The oracle curve f7
will only approximate the distribution function s — n™'Y " 1(rl < s)
of failure times if censoring is not very informative for failure, meaning
Tt 10T < wuyzl <wv) =t 10T < w)l(zl < v). For exam-
ple, the survival curves could be misleading if trials with shorter follow-up
times have healthier subjects than trials with longer follow-up periods.

Another potential censoring issue in the meta-analyses of rosiglitazone
was that safety endpoints such as myocardial infarction did not always in-
clude death as a failure event. To illustrate the potential problem, note that
if a hypothetical drug reduces fatal stroke then it might appear to increase
the risk of myocardial infarction because sicker subjects are living longer and
being followed longer. The simplest way to ensure that a treatment effect
reflects a clinically meaningful signal rather than a drug-induced difference
in follow-up times is to use composite failure events that include mortality,
such as {myocardial infarction or death}.

11
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Additionally, to interpret the oracle Kaplan-Meier curves the combined
studies should ideally have similar endpoints, patient populations, and com-
parators, reflective of trials measuring similar interventions in similar target
populations. In homogeneous trials we would expect the study-level fail-
ure time distributions s — n; ' > | 1(w; = [,7]" < s) to be approximately
equal for studies [ = 1,...,k, and likewise for counterfactual failure times
corresponding to the control arm.

Because we only recommend combining homogeneous trials with little in-
formative censoring, it is natural to ask why we are concerned about pooling.
After all, pooling may be valid under such conditions. Our response is that
we desire a method that is robust in the sense that it (i) gives the appropriate
survival curves if failure time distributions are indeed constant over trials;
(ii) preserves randomization protection even if there is heterogeneity, so that
relative to simple pooling the resulting curves may be better (albeit crude)
reflections of the time course of risk.

Estimators of the desired curves f7 and f€ are immune to the usual cause
of such confounding-by-trial bias and the consequent Simpson’s paradox:
unequal treatment assignment probabilities over the different studies. In
our counterfactual model the desired curves f7 and f¢ do not depend on
the assignment probabilities. Even if some trials have much lower event
rates than others, our method will attempt to estimate the same curves
whether subjects in these trials are disproportionately assigned to treatment
or whether all studies use 1:1 randomization.

In well-designed studies there will be no ascertainment bias, so the follow-
up time for any subject will be the same under assignment to treatment or
control (i.e., zI' = 2¢). In this case any separation between survival curves f7
and f¢ can be causally attributed to an effect of the treatment intervention
on failure times {r7 }%, and {r¢}®,, and Simpson’s paradox will be avoided
in the sense that f7 — f¢ will be nonnegative if rI’ < r¢ for all subjects.

3.3 Re-Expressing the Desired Survival Curves

We will express the desired curves in a way that facilitates estimation. We
begin with four initial functions. At time s, they are determined by the
number of subjects who (counterfactually) are no longer in the risk set and

the number who (counterfactually) have already had failure events:
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and

Next, use these functions to define AT and \® as the Nelson-Aalen cumulative
hazard functions applied to the unavailable counterfactual time-to-event data
{67, yT}n | and {6Y, S}, in the treatment and control arms:

T - de(“)
N (s) = /[ Ty

Clg) — dbc(u)
M )‘/M T (")

These integrals here reduce to finite sums. To be explicit, let {u] }]_, denote
the distinct sorted values of {y/}? , such that 67 = 1, and likewise let
{u§}1_, denote the distinct sorted values of {y{'}7, such that 67 = 1. As
bookkeeping, define ul = u§ = —oo and b7 (ul) = b (u§) = 0. Noting that
a’(u—) and a®(u—) are n ™1 Y7  1(yF < w) and n~ ' 37 1(y¢ < u), the

cumulative hazard functions are

u b (ul) — T (u?,
0= 30107 < 9

g b (us) — b7 (uf
A (s) = Z l(ujc s) (1 ]—)ac(uc(—]) )

Finally, the Kaplan-Meier CDFs f7 and f¢ can be defined through ap-
plying the product integral operator 7T to the cumulative hazard functions
to obtain

13
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S

fH(s)=1-7T (1 = d\"(u)),

0

FO(s) =1 — 77 (1 — dxC(u)) .
0
We refer to Gill and Johansen (1990) for details on why this gives the Kaplan-
Meier curves and for a summary of the product integral. Product integra-
tion is a generalization of ordinary multiplication that can be applied to
continuous or discrete time, just as a regular integration is a generalization
of summation. We will not formally define the general operator, because
the product integrals needed to define the two desired Kaplan-Meier curves
reduce to ordinary products with our discrete counterfactual data. To be
explicit, consider the times {U]T}];:l and {ujc}?:l previously defined, and as
bookkeeping define AT (ul) = \¢(u§) = 0. The desired cumulative distribu-

tion functions can then be written as

) =1 =TT (0= ) = X7 (] ) =7,
[y =1 ﬁ (1= (ACS) = AC(uC )=

1

[
Il

3.4 Estimation

Starting with (a”,bT) and (a%,b%) defined from the unavailable full counter-
factual data, we mapped these to the desired f7 and f°. Intuitively, if we
could estimate the initial (a”, 7)) and (a®, b°), we could estimate f7 and f¢
by applying the same mapping. This is the route we take. We begin with
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and

Following the reasoning in Lemma 1, it is simple to check that all four of
these random functions are unbiased at any time s.

The next step is estimating cumulative hazard functions for each arm.
Replacing the four unknown functions with the estimated functions we just

defined, we obtain
dBT (u)
A (s) = _
0= ], T Ay

C dBC(U)
A (S):/[o,s [~ A(u")

As before when defining the Nelson-Aalen cumulative hazards on the un-
available full data, these integrals become finite sums. Let {U]}!”, denote
the distinct sorted values of times {Y;}", such that X; = 1 and A;
and likewise let {U] C} denote the distinct sorted values of {Yi}?:l such
that X; = 0 and A = 1 As bookkeeping, define Ul = U§ = —oo and
BT(UL) = BC(UY) = 0. Noting that AT (u—) and A°(u—) can be evaluated
as n 'Y (Xi/m)1(Y; < w) and nt Y0 (1 - X;)/(1 — m)1(Y; < w), the
estimated cumulative hazard functions are
- BT(UJ) - B(UL)
T T j j
A (s) = Z L(U; <s) [ ATOT)

9 BC(US) - BT(US,

The last step is mapping the estimated cumulative hazard functions
into estimated CDFs. Following the last section, estimators can be formed
through applying product integrals to obtain

FT(s)=1— 7T (1 — dAT(u))

0

FO(s) =1 — 7 (1 — dA(u)) .

0

15
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To be explicit, first evaluate A” and A“ at the times {U]}1_, and {U]-C}?:l,

and as bookkeeping define AT(UT) = AY(U§) = 0. Then the estimated
CDFs are the finite products

FT(s) =1 - [[ (1 = (A7) = AT(WF 1)) 7=,

C
L(UF<s) '

Q
FOs)=1-J] (1= (A°(UF) — A9 (UL )

Thus, we can estimate f7 with 7 by applying the same mapping to func-
tions (AT, BT) that was applied to (a”,b”) in defining the curve of interest,
and likewise for f¢. The hope is that F7 and F© will be good approximations
because in large samples (AT, BT, AY BY) will be close to (aT,b”,a, b%),
and we will formalize this notion through asymptotics.

3.5 Large Sample Consistency

In the lemma below we show that our method is consistent, in that the es-
timated survival curves will approximate the oracle curves in large samples.
That is, we define “consistency” with respect to an oracle, and not in an
absolute sense. We consider a sequence of meta-analyses, and to be technical
these should be arranged in a triangular array. Meta-analysis 7 in the se-
quence should have k; studies and n; total subjects, the full data should be
written as {w;, 6], yi;, 5%,_1;% 2., and the observable data should be writ-
ten as {w; j, Xij, Aij, Yi;+2;. The number of subjects in each study should
be denoted by nqj,...,ng,; and the number assigned to treatment should
be denoted my j,...,my, ;. However, we suppress notation for convenience
and omit double-indexing of the array in the statement below. The proof is

deferred to the appendix.

Lemma 2. Consider a sequence of meta-analyses such that

(a”(5),0"(5)) = (a5 (s), b2s(5)) and (a” (s—),b" (s—)) = (as(s—), ba(s—))

o

T
oo

for each s € [0, 7], where a’ (T—) < 1. Suppose also that

(a(5),0(s)) = (ag (), b5 () and (a®(s=),0%(s=)) — (as(s—), b5 (s-))
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for each s € [0,7], where aS (t—) < 1. Recalling that k and n represent

the number of studies and number of subjects, and letting w; = n;/n and
v = my/n represent the proportion of subjects in study | and the treatment
assignment probability in study [, assume that

nt Zwﬂm) — 0, (1)

DI w) 0. )

Then the estimated cumulative distribution functions are uniformly consistent
for their target parameters on [0, 7], in that

T T

supscio, | F7() = £7(5)] = 0,

c c

Supgefo, 7|F7(s) = f7(s)] =5 0.
The restriction to estimation of survival on [0, 7] is standard, as a survival
curve cannot be approximated after times at which all subjects are censored.
For (1) and (2) to be small, as is needed for the lemma, assignment
probabilities should be kept away from zero and one, because otherwise either
the treatment distribution or control distribution could not be estimated in
some studies. Note that the two terms are made small if either there are a

fixed number of studies and the total number of subjects is large, or if there
are many studies and none contain a large proportion of total subjects.

3.6 Simulated Example

We return to the two simulated studies considered in Section 1.1. Recall that
treatment halved survival in both studies, and that there was a Simpson’s
paradox in which Kaplan-Meier curves from subjects pooled over two stud-
ies incorrectly suggested that treatment was beneficial. Figure 2 shows our
newly-defined survival estimators 1 — F7 and 1 — F¢ applied to the previ-
ously generated time-to-event data. The important thing to notice is that
we now at least avoid Simpson’s paradox; unlike ordinary pooling the curves
identify that treatment is harmful at every follow-up time before two years.
This correct finding is not due to simulation error. For example, over 200
simulated meta-analyses the estimated six month survival rate in the con-
trol arm averaged 0.61 +/- 0.01 SD and the estimated six month treatment
survival rate averaged a smaller 0.43 +/- 0.01 SD.
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Figure 2: Estimated survival rates at every month from 0-2 years under
treatment and control, using our method in the two simulated studies. We
estimate the survival curves that would have resulted if all subjects in all
studies had been assigned to treatment and then pooled, or if all subjects had
been assigned control and then pooled. Unlike the pooling method previously
discussed there is no longer a Simpson’s paradox, because the curves correctly
identify that treatment is harmful.
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3.7 Correspondence to AKME

Xie and Liu (2005) introduced an Adjusted Kaplan-Meier Estimator (AKME)
for comparing survival distributions between groups in nonrandomized or
observational studies, which attempts to adjust for confounding by using co-
variates for propensity score modeling. The context is very different from
synthesizing randomized clinical trials, but estimated survival curves can re-
duce to those derived here if each subject’s covariate is a categorical variable
identifying trial membership. In spite of this reduction we have seen that
our counterfactual contrast approach to meta-analysis is quite nonstandard
even in the binary outcome setting. For related methods of adjusting for con-
founders with matching or stratification we refer to Nieto and Coresh (1996),
Amato (1998), Galimberti et al. (2002), or Winnett and Sasieni (2002).

3.8 Relaying Uncertainty

We have not presented confidence bands or pointwise confidence intervals
for our method, because the standard approach in meta-analysis has been
to instead plot Kaplan-Meier curves by treatment group (as in Figures 1
and 2) and also compute a p-value from a logrank test stratified by study
(Lincoff et al., 2007; FDA, 2007). Our procedure suffices for allowing such
a visual comparison of risk over time. If the follow-up time for a subject
does not depend on treatment assignment (i.e., zI' = 2¢), then analogous to
our permutation approach with rosiglitazone in Section 2.5, we can form a
null distribution for a test statistic such as a difference in estimated survival
rates FT(s) — FY(s) or a logrank statistic. By permuting treatment labels
within each study and recomputing the statistic we can test the global null

hypothesis of no treatment effect on failure times (i.e., vl = r?).

4 Summary

It is well-known that pooling subjects across randomized trials can bias
conclusions, yet this procedure is often used when presenting Kaplan-Meier
curves in systematic reviews, in part because there are few alternative meth-
ods for examining the time course of risk. To partially address this problem
we have introduced a counterfactual model for time-to-event meta-analysis.
Our method attempts to synthesize how risk changes over time for subjects
assigned to treatment or control arms, and is immune to biases that can be
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induced by unequal treatment assignment probabilities across trials. In spite
of this robustness we generally only recommend combining trials in a time-
to-event meta-analysis if they are relatively homogeneous and assess similar
interventions in similar patient populations.

Appendix: Proof of Lemma 2

We prove the consistency result only for F'7, because the argument for F'¢ is
identical. The proof is broken into seven steps. The heavy lifting is offloaded
in Step 6 to a known result about the mapping we defined that takes (a”, b7)
to fT. Before beginning the proof we note that step functions a”, b”, a®
and b° are all nondecreasing, right continuous, and have left limits.

b

Step 1. We claim that (a”,b") converges uniformly to (a’ , b)) on [0, 7].

We prove the result for a, with the analysis for bL being the same.
The argument replicates several steps often used when proving the Glivenko-
Cantelli theorem (Durrett, 2005).

Fix integer p. For 1 < j < p, let s; = inf{s : al (s) > o’ (7)j/p},
and let sp = 0 and s, = 7. The pointwise convergence given in the lemma
assumptions implies we can choose a point in the sequence of meta-analyses
after which

|a”(s;) — age(s;)| < 1/p and |a’(s;—) — ag,(s;—)] < 1/p

for 0 <5< p If s € (sj-1,55) Wlth 1 < 7 < p, then using the monotonicity
of a” and @l , and the fact that a’ (s;—) — a’ (sj-1) < al (7)/p < 1/p, we
have that

: L)+ Salls) <% a2
a azo(sj 1) —p~ L> T (s —)—2p*12azo(s)—2p*1.

Therefore, we can choose a point in the sequence of meta-analyses after which
SUP,epo.a’ (s) —al (s)] < 2p~'. Because p is arbitrary, this gives the desired
uniform convergence. [
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Step 2. We claim that (aL, %) is right continuous on [0, 7].

OO’OO

We prove the result only for al as the argument for b2, does not change.

Fix time s and arbitrary ¢ > 0. As a’ converges uniformly to a, by
Step 1 on [0, 7], we can choose a point in the sequence of meta-analyses such
that |a” — a’ | < €/3 on this interval. By the right continuity of distribution
function a’ at this point in the meta-analysis sequence, we can choose &
such that 0 < § < &y implies a’ (s+6) —a’(s) < €/3. Thus, for all 0 < § < &
we have that

5 (5 + 8) — az.(s)

= ag,(s+0) —a’ (s +8) +a" (s +0) —a’(s) +a’(s) — az(s)

< lad(s +0) —a (s + )| + [a" (s + ) — a’ (s)| + |a" () — az(s)]
<e€/3+€/3+¢/3 =k,

which proves the desired right continuity. [

Step 3. We claim (A% (s), BY(s)) and (AT (s—), B(s—)) converge point-
wise in probability to (al (s), bl (s)) and (al (s—),bL (s—)) for s € [0, 7].

We prove the result for AT, with the argument for B” being identical.

First, note that A7 (s) is unbiased for a” (s), by the same reasoning as used
in Lemma 1. By similar reasoning, A" (s—) =n"1Y "  (X;/m)1(V;" < s) is
unbiased for a’(s—) =n"1> " 1(yl < s).

We next turn to the variance of A”(s). Note that Cov(X;, X;) < 0 for
i # j; if subjects ¢ and j are in different studies then the covariance by
assumption is zero, and if they are both in study [ it is simple to compute as
Z—;(ff—:ll —b) < 0. Thus,

Var(A”(s)) = Var n™* Z &1(le < s)>

7'['4
i=1

Sn*QZwl(yT<s )=n" Z 1_7” 1(y] <s)

< nzz ;nl (Zwﬂw) .

By the lemma assumptions this tends to zero in our sequence of meta-
analyses. An identical argument shows that Var(A”(s—)) tends to zero.
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Therefore, AT (s) —a”(s) and AT(s—)—a’(s—) have mean zero and vari-
ance tending to zero, so Chebyshev’s inequality implies that they converge
to zero in probability. As a”(s) and a”(s—) converge to a’ (s) and a’ (s—)
by the lemma assumptions, this implies the desired result of pointwise con-
vergence in probability. [

Step 4. We claim that (AT, BT) converges uniformly in probability to
(al ;b)) on [0, 7].

The argument in Step 1 shows that pointwise convergence on [0, 7] of
bounded nondecreasing functions with left limits at s and s— implies uni-
form convergence. Due to the pointwise convergence in Step 3 the argument
can be repeated for AT and B”, only now with the uniform convergence re-
sult being in probability. [J

Step 5. We set up probability spaces for random functions AT, BT, FT,

Let © be a sample space for meta-analysis data {w;, X;, A;, V;},. We
claim that in defining a probability model, we can use as a sigma field the col-
lection 2% of all subsets of 2. Why? A probability measure P is indexed by
the deterministic full counterfactual data {w;, 07, yX, 0, y“1" , and the joint
distribution of treatment indicators {X;}! ;. Once this probability measure
is fixed the observed data can only take finitely many values corresponding
to the < 2" possibilities of treatment assignment. Hence, the probability
measure reduces to one defined on a finite sample space, and for any E C 2
we have that P(FE) reduces to a finite sum over some of these < 2" ele-
ments w € {2 with nonzero probability. Countable additivity likewise follows,
meaning that (£2,29, P) is a valid probability triple.

Now, let D[0, 7] denote the space of functions on [0, 7] that are right con-
tinuous with left limits. Define norm ||g|| = supsepo, [9(s)|, metric d(g1, g2) =
lg1 — g2||, and consider the Borel sigma-field containing all open sets.

We will view random functions A7 BT, and FT as random elements in
D[0,7]. Considering a random function G as a map G : Q — D|0, 7], the
measurability of G easily follows, because for any H C D|0, 7] we have that
{w:G(w) € H} is a subset of Q, and hence is trivially in our sigma-field 2.

Thus, AT BT, and F7 are measurable when viewed as random func-
tions taking values in DI[0, 7], and probabilistic convergence in DI0, 7] is
well-defined. For instance, because we endowed D[0, 7] with the supremum
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norm, the uniform convergence of (AT, BT) in Step 4 can be expressed as
(AT, BT) —, (aL,0L) in D[0,7]%. O

[ ekinde e}

Step 6. We note (a’, b’ ) is in the domain of a continuous mapping ¢.

Let ¢T(s) = 1 — a’(s—), and consider the way in which we mapped the
original functions (a”,b”) to the desired parameter f7. This procedure can
be viewed as a mapping ¢ : D[0, 7]> — D[0, 7] defined by

é: (a,b)eA:/%ef:l—ﬂ'(l—d)\).

Section 3.9.4 of van der Vaart and Wellner (1996) shows that this map-
ping is defined and continuous (in fact Hadamard-differentiable) on a do-
main of type {(a,b) : ¢ > €, [|db] < M} for given M and ¢ > 0, at
every point (a,b) such that function 1/c is of bounded variation. Restrict-
ing the functions to interval [0, 7], the lemma assumption that a’ (7—) < 1
gives that (aL,b1) is in this domain for M > 1 and sufficiently small e.
Also, as the sequence of meta-analyses increases, note that the convergence
(AT, BT) —, (al,bL) in D|0,7]? implies (AT, BT) is in this domain with
probability tending to one: as B is a subdistribution function we have
[ 1dBT| = [dB™ <1 with probability one, and as function A” is monotone

we have infyep {1 — AT(s—)} =1—-AT(7—) —», 1 —al (7—) > 0. O
Step 7. We complete the proof using the continuous mapping theorem.

Because Step 4 shows that (AT, BT) —, (aL,bL) in D[0,7]? and ¢ is a
continuous mapping, it follows from the continuous mapping theorem that
FT = ¢(AT, BT) =, ¢(ag,, b)) in D[0, 7].

Because of the convergence (a”,b") — (a’, b)) in D[0,7]? from Step 1,

continuity of ¢ also implies fT = ¢(a”,b?") — ¢(al ,bl) in D|0, 7].

The last two statements together give that FT — fI' —, 0 in D[0, 7],
implying the lemma. [
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