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Abstract

The assumptions that anchor large clinical trials are rooted in smaller, Phase II studies. In
addition to specifying the target population, intervention delivery, and patient follow-up duration,
physician-scientists who design these Phase II studies must select the appropriate response
variables (endpoints). However, endpoint measures can be problematic. If the endpoint assesses
the change in a continuous measure over time, then the occurrence of an intervening significant
clinical event (SCE), such as death, can preclude the follow-up measurement. Finally, the ideal
continuous endpoint measurement may be contraindicated in a fraction of the study patients, a
change that requires a less precise substitution in this subset of participants.

A score function that is based on the U-statistic can address these issues of 1) intercurrent
SCE’s and 2) response variable ascertainments that use different measurements of different
precision. The scoring statistic is easy to apply, clinically relevant, and provides flexibility for the
investigators’ prospective design decisions. Sample size and power formulations for this statistic
are provided as functions of clinical event rates and effect size estimates that are easy for
investigators to identify and discuss. Examples are provided from current cardiovascular cell
therapy research.
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Introduction

This manuscript develops a U-statistic that incorporates two nettlesome but un-
avoidable features for collecting continuous endpoint measures in modern cardi-
ology clinical trials; 1) the occurrence of a clinical event (e.g., death) during the
trial that precludes the measurement of the endpoint at the end of the study, and 2)
the requirement through clinical circumstances that a less precise determination of
the endpoint (e.g., echocardiographic determination) be substituted for a most
precise determination (e.g., magnetic resonance imaging).

Endpoint selection is challenging in early human cardiovascular cell ther-
apy clinical trials. Possible choices for the endpoint are the size of the heart dam-
aged by a heart attack, known as the infarct region [Strauer BE, et al. (2002), Ab-
del-Latif A, et al. (2007)], or changes in the percent of blood ejected by the left
ventricle with each heart beat, or left ventricular ejection fraction (LVEF) [Ass-
mus B, et al. (2002)]. Recent attention has focused on other measures of left ven-
tricular dysfunction e.g., left ventricular end-diastolic volume (LVEDV) (how
large the left ventricle becomes at the peak of the cardiac cycle when it is full of
blood), and left ventricular end systolic volume (LVESV) (how small the ven-
tricle is after it has ejected its blood content [Penicka M, et al. (2007)]).

Continuous response variables (endpoints) provide necessary statistical
power in well designed clinical experiments. However, since continuous end-
points require measurements at both baseline and during the follow-up period,
clinical events can complicate the collection of these important measures. For ex-
ample, the occurrence of an intervening significant clinical event (SCE) (e.g.,
death) precludes the follow-up measurement, reducing the precision of the overall
measure of therapy effect by reducing the number of endpoint-evaluable subjects.
In addition, the observation that there may be a greater proportion of subjects with
an SCE in the control group than in the treatment group introduces a new infor-
mative censoring complication to the analysis. The informative censoring ap-
proach of Follmann, Wu, et. al. [Follmann D and Wu M. (1995)] provides a use-
ful tool for analyzing data in the presence of informative censoring; however,
there is no literature on trial design and sample size computations using the in-
formative censoring procedure.

In addition, the most precise measure of the continuous endpoint may not
be in the subject’s best interest. For example, while some believe that cardiac
magnetic resonance (cMR) is superior to echocardiographic measures of heart
function [Grothues (2002)] cMR measures cannot be obtained in everyone.
Subjects who have an implantable (metallic) device e.g., a pace maker, remain
contraindications to cardiac magnetic resonance imaging. If a substantial fraction
of the subjects who were recruited for the study had one of these devices
implanted during their follow-up procedure, they will be unable to undergo cMR
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at the end of the study. A statistical test that incorporates the most precise heart
function measure when available, but uses the less precise measure in its absence
would permit the study to use each of these subject’s data, regardless of the
measurement that is indicated by the subject’s condition.

This manuscript discusses the development of a U-statistic to permit 1) the
inclusion of a dichotomous endpoint (SCE) when its occurrence precludes
measuring the continuous endpoint measure, and 2) the use of the most precise
endpoint information when it is available and less precise information when it is
not. The statistic’s development and calibration are based on commonly used
clinical research measures that physician scientists understand. Examples are
provided from ongoing cardiovascular research.

1. Background

Coronary artery disease (CAD) remains the single largest killer of Americans,
producing myocardial infarctions and heart failure (HF).[Rosamond W, et al.
(2006)] Recent research has reduced coronary heart disease mortality [Ford ES,
et al.(2007)]. However CAD remains a leading cause of HF. Seven million heart
attack hospitalizations in the US have generated almost 5 million subjects living
with HF who face end-stage HF with its 5-year mortality of approximately
50%.[Levy D, et al.(2002), Roger VL, et al. (2004)] The large burden faced by
these subjects with limited options has spurred the investigation of alternative
treatments. One potential treatment strategy is the use of bone marrow—derived
mononuclear cells (BMMNCs), a source of stem cells that shows promise for the
treatment of these subjects.

Phase II clinical trials in cell therapy research are underway in the United
States. Studies in animal models have demonstrated that heart function can be
significantly improved with bone marrow-derived stem cells following experi-
mental heart attacks induced in animals [Orlic D, et al. (2001), Kocher AA, et al.
(2001), Jackson KA, et al. (2001), Yoon YS, et al. (2005)]. Although data sup-
porting significant heart regeneration in these preclinical studies has not been uni-
form [Murry CE, et al. (2004), Balsam LB, et al. (2004)], it has led to a number of
clinical trials testing the strategy that delivery of a subject’s own (or autologous)
bone marrow-derived mononuclear cells (BMMNCs) into the infarct region fol-
lowing AMI may improve heart function [Schéchinger V, et al. (2006), Janssens
S, et al. (2006), Wollert KC, et al. (2004), Lunde K, et al. (2006)].

In light of the relative paucity of mechanistic studies into important ques-
tions, such as timing of cell delivery, the National Heart, Lung, and Blood Insti-
tute (NHLBI) established the Cardiovascular Cell Therapy Research Network
(CCTRN) to accelerate research into the use of cell-based therapies for the man-
agement of cardiovascular diseases. The Network is simultaneously conducting

DOI: 10.2202/1557-4679.1286 2



Moyé et a.: Design and Sample Size Implications for Cell Therapy Research

two trials in the acute myocardial infarction environment, TIME [Traverse, et. al.
(2010)] LateTIME [Traverse, et. al. (2010)] and one trial in subjects with chronic
heart failure and ongoing ischemia, FOCUS [Willerson, et. al. (2010)]. Each of
these trials has the characteristics of 1) having continuous measure primary end-
points, 2) enrolling patients who can have SCE’s that preclude the final endpoint
measure, and 3) having the most precise of the primary endpoint unavailable in a
substantial fraction of the population, requiring the use of a less precise measure
available.

2. Methods

This method is based on the two-sample U-statistic [Kowalski J and Tu XM.]
(2007)], a well established, nonparametric measure of effect based on an
investigator-determined scoring mechanism. Our development is modeled after
the U-statistic’s implementation to score the occurrence of a combination of two
discrete endpoints in a cardiovascular clinical trial [Moy¢é LA, et al. (1992), Moy¢
LA, (1991), Penicka M, et al. (2007)]. A recent use of this statistic in medical
research has been its application to multivariate ordinal data [Wittkowski KM, et
al. (2004)].

In its simplest adaptation, the U-statistic “builds itself up” from a
prospectively selected scoring procedure. Let there be n observations in the
control group. Let each of the n subjects in the control group have a continuous
endpoint measure x;, i = 1, 2, 3, ..., n. Similarly, let the primary endpoint measure
for each of the m subjects in the active group be indexed by y;, j=1,2,3, ..., m.

The U-statistic requires a simple scoring mechanism, denoted by ¢, ;. This
is the assignment of a score designed in this paper based on comparing the i”
subject in the control group with the /™ subject in the active group. The score may
be as simple as ¢;; = 1 if x; > y;; ¢;; = 0 if x; = y;; or ¢;; = —1 if x; < y;. Since each
of the n control group subjects will be compared to each of the m active group
subjects, there are nm comparisons. The U-score statistic, W, is simply the

average of these nm scores,
1 n m
W,=— ?; 1
The normalized statistic based on these scores for a test of the null hypothesis
(Hyp) of no treatment effect versus the alternative hypothesis (H,) of a change in
the distribution of the y;’s based on the treatment is

_ We_E[We|H0]

(2)
1/Var[We|H0]

N
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Under mild regulatory conditions and adequate sample size, we assume that (2)
follows a standard normal distribution, then we can compute the sample size from
(assuming n = m)

N=2n=2 Zenfi_= 2, |

E[W.|H,]-EW, | ,]

3)

where v, =Var[W,|H,],v, =Var[W, | H,], a is the probability of a type I error,

is the probability of a type II error, and Z, is the ¢™ percentile value from the
standard normal distribution, Alternatively, power may be computed from

1-f=1-0, Zl—a/zm - (E[VK|HQ]—E[VV;|HO]) @

Var(We |Ha)

where @ ,(z) is the cumulative distribution function of the standard normal

distribution.

However, the adoption of this statistic requires a careful justification of the
scoring mechanism required for the response variables (endpoints). The setting
for our evaluations is that of a randomized clinical trial with both a control and an
active group. We will construct the score statistic in two cases:

Case 1. A dichotomous right censored measure combined with a single

continuous response variable.

Case 2. A dichotomous right censored measure combined with two
continuous response variables to be used in a hierarchy
determined by the precision of the two response variables.

The mathematics of Case 1 will be developed in detail, and then applied to

the Case 2 scenario, which is the scenario that we face in the CCTRN network
cell therapy studies.

Case 1: A dichotomous right censored measure combined with a single
continuous response variable.

The investigators’ goal is to compare the change in the measure of a single
continuous response variable over time in the control group to the change in that
same variable in the active group. Left ventricular ejection fraction (LVEF) is an
example of a commonly measured continuous endpoint. LVEF is the percent of
the blood in the left ventricle ejected at each beat (for subjects without heart
disease LVEEF is typically larger than 80%.). To assess changes over time in a
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variable such as LVEF, there should be a measurement at baseline and at the end
of the study. However, the investigators recognize that this goal may not be
achievable in all subjects because of the occurrence of death or another SCE. We
will assume that (as is the case with LVEF) an increase in the response variable
over time corresponds to improved health status.

Let r be this continuous endpoint variable. Then, for the i" subject in the
control group, i = 1, 2, 3, ..., n, let d,(x)=r,,(x)—r,(x) be the change in this
endpoint variable over the duration of the study. Assume that di(x) has mean
Hyr(X)and variance 0. Analogously, let d,(y)=r,,(»)—r,,(»)be the change in
the endpoint measure for the /™ subject in the active group, which mean M (V)
and known variance af,. Under the null hypothesis of the study, u,(x)=p,(). If
we assume that larger values of y,, correspond to improved health, then under
the alternative hypothesis, the researchers expect that £4,,(X) < 1, (V).

However, the occurrence of a significant event (SCE) (e.g., a death, a
recurrent myocardial infarction (MI), can affect the follow-up measurement of the
continuous variable. The hallmark of the SCE is that 1) its occurrence during the
trial either precludes the follow-up measurement (as in the case of death), or
perturbs the measurement to the point that the effect of therapy can be difficult to
assess (e.g., the occurrence of an intercurrent heart attack), and 2) the SCE event
rates in the randomized groups may themselves be related to the therapy effect.
The occurrence of an intervening SCE (itself an underpowered evaluation in a
small study) reduces the power of the LVEF measure by decreasing the number of
subjects who survive to have the follow-up measurement.

In this case we define the scoring mechanism ¢, ; as follows:

pi ;=1 if both the i subject if the control group and the j™ subject in the ac-
tive group experience an SCE during the study, and the time to event
for the control group subject is less than the time to event for the active
group subject.

pij=1 if the i™ subject in the control group experiences an SCE during the
study and the /" subject in the active group does not experience an
SCE during the study.

¢;;=-1  if both the i" subject in the control group and the /™ subject in the ac-
tive group experiences an SCE during the course of the study, but the
time to event for the control group subject is greater than the time to
event for the active group subject.

pi;=-1 if the i™ subject in the control group does not experience an SCE dur-
ing the study and the /™ subject in the active group does experience an
SCE during the study.
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@i j=cC if neither the /™ subject in the control group nor the j subject in the
active group experience an SCE during the study, and the change in
the continuous measure » for the control group subject is less than the
change in continuous measure for the active group subject.

@i j=cC If neither the /™ subject in the control group nor the /™ subject in the
active group experiences an SCE during the study, and the change in
the continuous measure 7; for the control group subject is greater than
the change in continuous measure for the active group subject, 7.

9;;=0  otherwise.

Under this mechanism, the occurrence of an early SCE (e.g., a death) in
one group is considered worse than a subject survival or a later occurring SCE in
the other treatment group. If both subjects in the comparison have no SCE, then
the change in the response variable is compared.

With some additional notation, the assignment of this scoring system per-
mits the computation of the mean and variance of W, under the null and alterna-
tive hypothesis.

Notation:

Define Cxj(E, R) as the endpoint status of the i™ subject in the control
group, and Cyg(E, R) as the endpoint status of the jth subject in the active group.
We will use this notation to allow us to capture either 1) the time to the occur-
rence of an SCE if one has occurred during the course of the trial, or 2) the change
in the continuous variable if an SCE has not occurred.

If an SCE has occurred for the i™ subject in the control group, then Cyy)(E,
R) = Cxp(+, R) , and its value is the time to the occurrence of the SCE. Since the
SCE has occurred during the course of the study, then 0 < Cy(+, R) < T where T
is the maximum time a subject is to be followed in the research protocol. If an
SCE has not occurred, then Cx;)(E, R) = Cx;(— R), and we set Cy;)(—, R) to equal
the change in the continuous measure. Identical notation applies to the /™ subject
in the active group, Cy;)(E, R).

For example, if in a 180 day clinical trial, the 4™ subject in the control
group died on day 117, then Cyy(E, R) = Cxu(+, R) = 117, the positive sign sig-
nifying that the SCE event occurred. Alternatively, if the 5™ subject in the active
group survived the trial and experienced a six unit increase in the continuous re-
sponse variable, then Cys)(E, R) = Cys)(— R) = 6, the minus sign in Cyg)(-, R)
indicating that no SCE occurred during the study.

Using this notation and letting 1,_, be the indicator function that takes the

value of 1 when x is a member of set A and 0 otherwise, we can write the score
function g, as
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= +
Pi; [Con[+:R] < €y [+:R]] I[Cx(w[E’R]:Cx(i)[ﬂR] A Co [ERI=Cy 5 [-R]]
_I[Cm)[*’R] > €, [+:R]] ) [Coy[ERI=Co[-R] N Co)[E,R]=C ) [+:R]] (5)
+c1 -cl

[Con[=R] < Cy[-R]] [Con[-R] > o [-R][

For this function we can compute its expected value under both the null (E[g;; |
Ho]) and alternative E[¢; ; | Hi] hypotheses (Appendix A).
Sample size computation
Assuming a normal distribution for ., we compute that,
W —E[W. | H,]

TS = (6)
JVvar[W,|H,]

And from consideration of the type II error, we may write,

Z - Z, o [Var W JH, ] -E[W, | H,] (7)

) JVar[wm,]

B

and

Z,Var[W,|H, |=Z_,,\[Var[W,|H,|-E[W,|H,]. (8)

The variance terms in (8), are computed (Appendix B) to be

Var[VVeWo]:%:%[i - 53} and Var[We\]—]a]:Va:%[Aa _ B;}

n n n n
Where the constants 4y By, and 4,, and B, are functions of expectations ¢; ;under
the null and alternative hypothesis. In this scenario, an exact solution for solution
for the sample size n is available. If we write m = kn, where k is known (for
example if there are an equal number of subjects in the active group as in the
control group, then £ = 1), then substituting for the variance term, we may write
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1[4 B 1[4 B
Zl_a/z\/p{f - n—S}—%J;[; - nz}:E[WJHa]- )

Squaring both sides, simplifying, and squaring again, with expansion and further
simplification produces the quartic equation

4 3 2
an’ +an’ +a,n” +an+a, =0 (10)
where

a, =k'E'[W,|H,]
a,==2(22 B [W,|H,]k4, + 2B’ [W,| H,]K4,)
ay=Z7' A +Z A+27° Z A A +27° E’[W,|H,]Kk’B,

+2Z°E* [W,|H,|k°B, —4Z Z 44, (11)
a=-2Z' AB,-2Z'4,B,-27’ Z,AB,-27Z’ Z,4,B,

+47° Z,A,B,+4Z’ Z;AB,

a, = ij B} + Z;Bj + 2211 sz,BOBa - 421:/2 Z;BOBa

Power can be more directly computed as

1-@,

12
A B @
K| n n’ |

An asymptotic solution is also available (Appendix C)

k+1
Var[We|HO]=WE[(pij | Hy
(13)

Var[We|Ha]:k—1n(E[(py.(pl.,j] +kE[ 9,0, | —(k+DE [%])
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Now substituting equations for the Var[g;;| Ho] and Var[g;;| H,] from (13) into
(8) to compute the sample size of the trial, we write

ZﬂJZ%(E[¢@@q|fh]'*kE[¢@ p 1 H,] =G0 g1, ] (14)

k+1
= Zla/Z\/EE[(pij¢ij' | Ho] _E[We |Ha]

Noting that the total number subjects in the study is z control group plus k7 in the
active group, we can write

[Zla/z\/kl;lE[%%'|Ho] —Z/,\/Zln (E[%@-'/ |Ha] +kE|:¢7ij it | Ha] —(k+DE’ .:(/7,, |Ha])J (15)

N=(k+1) SIALA
Power can be expressed as
k+1
Z\/,:E[cpcp [Hy] - E[W,|H,]
1-p=1-0, 1 L (16)
\/k(E[@,-,«pf,- |H,] +kE[ 9,0, H,] - (k+1)E*[g, | H,])

Case 2. Competing clinical measures of different precision

This second case adds one level of complexity to Case 1. The investigators’ goal
is to compare the change in a continuous measure over time in the control group
to that of the active group. However in this circumstance the investigators have
two competing assessments of the same endpoint continuous variable. For
example, in the TIME study, while cMR measure of LVEF is the most precise
measure, it will need to be substituted by echocardiographic determinations of
ejection fraction. The first, denoted by the continuous variable r, is the most
precise but is not available in all subjects. The second, denoted by s, is less
accurate, but is available for everyone.

For this case, we can modify the scoring function from Case 1 adding the
following conditions
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if neither the i/ subject in the control group nor the ;™ subject in the
active group experience an SCE during the study, the change in the va-
riable r is not available for both control and active group subjects and
the change in s in control group subject is less than the change in s in
the active group subject.

if neither the i subject in the control group nor the jth subject in the
active group experience an SCE during the study, the change in the va-
riable 7 is not available for both active and control group subjects and
the change in s in control group subject is greater than the change in s
in the active group subject.

The computations follow the development of Case 1. E[gp;; ¢;;] now
requires 22 terms (Appendix D).

3. Results

A series of evaluations of this U-statistic for clinical measures of event rates and
the effect of therapy on the continuous variable were carried out (Figures 1 and

2).
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Figure 1. Continuous endpoint weight ¢ influence on the relationship
between SCE prevalence and sample size
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Figure 2. Influence of efficacy on the relationship between the continuous
endpoint weight ¢ and trial size

Figure 1 identifies the relationship between the trial size (total number of
subjects in both the active and the placebo group) and the probability of a
significant clinical event as a function of the effect of cell therapy on the
significant clinical event rate as a function of ¢, the weight ascribed to the
continuous endpoint measure in the analysis. In this circumstance we assume that
the change in the response variable in the active group is five units greater than
the change in the control group (A = 5). We also assume the standard deviation of
this change is 7 for each group (90% power and a type I error rate a two sided
alpha of 0.05 is assumed for all analyses). In each of the curves in Figure 1,
curves, the trial size is larger for larger probabilities of an SCE. Larger
probabilities of an SCE increase the proportion of subjects who have no measure
of the continuous endpoint that is obtained at the conclusion of the study, and
larger sample sizes are required in order to main the power of the evaluation of
the therapy’s impact on the continuous measure.

We also note the sample size increases as the value of ¢ decreases. The
value of c is the relative weight in the scoring system. As ¢ decreases the impact
of a nonzero comparison between the active and control group measures has less
weight than that of the comparison of SCE timings. This diminished weight for
comparison generates the need for more continuous measure comparisons in the
cohort, thereby increasing the sample size. Figure 2 demonstrates the same effect

11
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of decreasing sample size for larger values of the continuous weighting function
c. Here e represents the effect of the therapy on the SCE rate (represented as the
percent reduction in the SCE control group rate experienced by the active group
subjects). Sample size decreased as e increased. Note that for all values of
efficacy evaluated, the sample size stabilized for values of ¢ greater than 3.

The well established relationship between sample size and treatment effect
(A) are demonstrated in Figure 3. In the paradigm of combining a continuous and
a dichotomous endpoint, the sample size decreases as the effect size increases,
and increases as the treatment standard deviation of the difference (0' A)

increases. Analogously, it is well accepted that when a dichotomous measure is
used as a response variable in a clinical trial, the trial size increases as the
prevalence of the dichotomous variable increases and decreases with increasing
efficacy of treatment against that response variable. This is demonstrated in
Figure 4. Thus, the score statistic is a function of the effect of the cell therapy on
the continuous measure, as reflected by A and o(A), and also by the efficacy of
the therapy on the SCE rate as well, e. Figure 4 demonstrates that, while larger
values of the probability of an SCE still produce larger trial sizes, the efficacy of
the therapy on the SCE rate moderates this relationship.

500 -
450
400 -
350
© 300 -
N
L9250 -
£ 200 | o8
-&c=7
150 o6
100 - —5=5
50 B 024
0
3 4 5 6 7
A

Figure 3. Trial size as a function of standard deviation (o) and
effect size (A) of the response variable.
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= ==¢=0.10
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360 e=0.20
340 -
320 -
300
0.01 0.025 0.05 0.075 0.1
Prevalence of SAE
Figure 4. Trial size as a function of the SCE prevalence (p) and
the intervention’s efficacy on prevalence (e)
Case 2.

In this research scenario there are two continuous measures, each with weights ¢
and d. As both ¢ and d increase, the weight of each continuous endpoint increases,
and the sample size decreases. However, the larger values of ¢ and d have dimi-
nishing impact on the sample size.

13
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200 ~
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4

Figure 5. Relationship between sample sizes and weighting factors ¢ and d.

Example. In a study in heart failure [Pfeffer MA, et. al. 1992] LVEF was expected
to increase slightly in the control group, and anticipated to increase to a greater
degree in the active group. However subjects with heart failure die or have clini-
cal events precluding the assessment of this measure. In addition LVEF was
measured in two ways. The premier measurement was through a radionuclide
ventriculogram (RVG). RVG-LVEF measures were the most accurate; however,
the requirement of radiation exposure limited the utility of this procedure. An al-
ternative was to use echocardiography to obtain the LVEF. Echo-based LVEEF,
new at the time, was safe but less precise. The presence of two continuous meas-
ures with one preferred over the other, in addition to the occurrence of SCE’s is a
circumstance in which the proposed sample size computation was designed.

From a sample of data from this study (Table 2), we use the percent of
significant clinical events, in concert with the data for expected changes in RVG-

LVEF and echo muscle mass to compute E [¢$U. |Ha] The terms for the variance
E[¢ij¢i,j |H0], E[¢ij¢i,j |Ha], and E[¢U¢U | Ha] are computed from the eighteen

terms in Table 1 each individual expression based on the data from Table 2 re-
flecting the expected changes in both continuous endpoint measures during the
course of the study in both the control and active groups. Using equations (10)
and (11) , an exact sample size of 540 (active plus control group subjects) was
identified. The quantiles or probabilities of a bivariate (or general k-variate) nor-

DOI: 10.2202/1557-4679.1286 14



Moyé et a.: Design and Sample Size Implications for Cell Therapy Research

mal distribution for under the null and alternative hypotheses are numerically
available, e.g in the R library multcomp [Hothorn T, et. al., 2011 ], mvtnorm
[Genz et. al., 2011] or as an add-in package in Excel. Using equation (15) the
asymptotic solution of 536 is identified with little difference seen between the
asymptotic and exact solutions.

Table 1. Values of ¢,¢,. used in computing E |:(p,/ } for Case 1.

y

Cxi(HR) | Cxi(HR) | Cxp(HR) | Cy(— Cxi(— | Cxiy(—
< < CYG)(_ > 5R)> ’R) ’R) >
Cyi(+R) | ,R) Cyi(+R) | Cyp(+tR) | Cyp(= | Cyg(=
,R) ,R)

Cx(i)(+,R) < 1 1 -1

Cy@(tR)

Cx(i)(+,R) < 1 1 -1

Cyi(=R)

Cx(i)(+,R) > | —1 -1 1

Cy@(tR)

Cxi(—R)> 1 —c c

CY(i)(+9R)

Cx(i)(—,R) < —C 02 —62

Cyp(=R)

Cx(i)(—,R) > c —6‘2 02

CY(i)(_aR)
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Table 2 LVEF Heart Failure Example

Null Alternative
Mean Change SD Mean Change SD
RVG-LVEF control 1.31 9.6 1.31 9.6
active 1.31 10.6 6 10.6
Echo-LVEF  control -1.5 7.3 -1.5 7.3
active -1.5 6.8 0 6.8
SCE % 0.24
% missing 0.07
Type | error (two sided) 0.05
Power 0.8
c 1
d 1
k (active to control) 1
Sample size (asymptotic) 536
Sample size (exact) 540

4. Discussion

This manuscript demonstrates a method to combine prospectively declared
mortality measures with continuous endpoints that maintain the clinical hierarchy
of the occurrence of events, using information from the continuous effect size. It
is based on work involving a less complex function in a clinical trial with two
dichotomous endpoints [Pfeffer MA et. al., 1992]. No imputation is required, and
the difficulties with worse rank assignments to missing continuous endpoint data
are avoided.

The score function used is very specific to the problems provided here and
all mathematical derivations are tied to the score function. Although the general
formulations for the mean and variance of W, will be the same for any score
function, these computations will reflect the score function used. As an example,
there is a common index used in research known as a heart failure index. It is
nonparametric composed of clinical assessments (medication changes) hospitali-
zations, and the occurrence of death. The U statistic procedure proposed here
would be of value in the heart failure score scenario; however, in that case, the
score function would be based on pair wise changing in heart function scores be-
tween active and control group patients.

The problem posed in this manuscript is distinct from the multiple end-
point scenario where investigators choose from among several different endpoint
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measures. This latter dilemma has been central to clinical trial interpretation, and
many important contributions to the literature have addressed this complex chal-
lenge.. Clinical trialists commonly face the issue of endpoint selection and cannot
resolve it in the favor of one or the other. Clinical trials can have endpoints with
no priority among their selection at all [Tilley BC, et al. (1996), National Institute
of Neurological Disorders and Stroke rt- PA Stroke Study Group. (1995)].
O’Brien examined the role of a rank sum test in 34 endpoint setting [O'Brien PC.
(1984)]. Lachin suggested the use of imputation, assigning a worst rank score to
those subjects who are missing the continuous endpoint measure due to a mortal
event [Lachin J. (1999)]. The use of Area Under the Curve (AUC) data has been
particularly helpful in tumor models [Wu J. (2010)]. In addition several workers
[Tan M., (2002)] proposed a heuristic test and a Bayesian procedure for the analy-
sis of two small-sample parametric inference procedures for incomplete longitu-
dinal data with truncation and informative censoring arising in cancer therapy de-
velopment. Other authors have proposed alternative solutions [O'Brien PC.
(1984), Tang DI, et al. (1989a), Tang DI, et al. (1989b), Tang DI, et al. (1993),
Tang DI and Getter NL. (1999)].

Of particular use are the weighting values ¢ and d. The investigator has
complete control over the values of these weights but must choose them carefully.
For example, in clinical trials in which the predominant response value is a
dichotomous random variable, weights in the range 0 < d < ¢ < 1 are attractive.
Since the dichotomous variable occurs so frequently (e.g., mortality) and is only
replaced by the continuous measures in the cases where vital status information is
not available, discounting the contribution of the continuous variables is
appropriate. However, in studies, such as smaller cell therapy studies where the
response variable is continuous, and relatively small numbers of subjects have
SCE’s, a greater weight for the continuous measure can be justified. In our cell
therapy studies, the value of ¢ = 4 is appropriate. We advocate selecting d such
that 0 < d < ¢ since the less precise measure should have less influence on the test
statistic than the more precise one. However, these values must be chosen before
any endpoint analysis takes place to avoid selections that are biased by the
investigators observations of the values of the final response variables. The U
statistic itself is close to normality for small samples [Mann, Whitney (1947)].

The analysis that we propose creates a new endpoint, and that new end-
point as defined by the score function is more complex. However that change
does not overly complicate the interpretation of the result. For example in this
case, the score function generates an analysis of either 1) an improvement in heart
function or 2) longer survival without a death or heart attack. We believe that this
new endpoint is understandable to a research, regulatory and clinical community
already comfortable with complex endpoints e.g., fatal and nonfatal heart attacks,
or fatal and nonfatal strokes. In addition, the fact that the score function never
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makes cross modality comparisons, comparing only MRI to MRI changes, or
echo to echo changes, helps to keep the interpretation clear.

Complications of the application of this procedure include the observation
that the event rates of the significant clinical event and the standard deviation of
the continuous measure differs from that assumed during the study’s design
phase. In addition, interim review of the statistics by Data Safety and Monitoring
Boards introduces new complexities. Neither of these is assessed specifically in
this manuscript.

Three clinical trials in the NHLBI sponsored Cardiovascular Cell Therapy
Research Network (CCTRN) are currently underway in which we will assess the
utility of this approach.

Appendix A. Computing E [(P i,j]

The notation from the previous section permits us to write the expected value of
@, ;, under the hypothesis H k= 0 for the null hypothesis, and k = a for the alter-

native hypothesis. We assume throughout this manuscript that the time to an SCE
and the continuous measure are independent. From equation (5), we may write

E[q)i/' ‘ Hk} = P[Cxu>[+’R] < Cy[+R]| H,{J 17
+ P[me [E.R]=C\, [+ R] N C, [E,R]=C, ;) [ R] H,(] a7)
—P[CM [+.R] > C,, [+’R]|HJ _P[me [E.R]=C,,[-R] nC,, [E,R]:CJ,(/)[+,R]\HJ

+CP[C«U[_’R] <G [_’R]‘Hk] _CP[CW) [-.R] > C, [—,R]\H,J.

This computation is straightforward when the probability distributions of
1) the occurrence of SCE’s and 2) the probability distribution of the continuous
response variable 7 are known. For example, assume the time to an SCE follows

an exponential distribution with parameter 4, in the control group and 4, in the ac-

tive group. Also assume that the change in the continuous measure » follows a
normal distribution with mean as before x,, (x)and standard deviation o, (x)

in the control group, and analogously mean x,,(y), and standard deviation
o « (») in the active group. The first term on the right hand side of equation (17)

1S

T y
P[Cx(i) [+.R] < Cy, [+,R]] = J‘X},e_%’yjkxe_kxxdxdy =1-e ™' - a (l—ef(x'%"’y)
0 0
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As another example, the last term on the right hand side of equation (17) is

P[Cx(z‘) [~ R] < Gy, [_’R]|H0] = e(MM))T(Dz[(/JAR(X)/JAR(y))] (18)

Jo2 () +02,(»)

Since the null hypothesis assumes no treatment effect, we let 4_= ly,and

Mo (X) = p,z(), to see that
E|¢,|H, |=0. (19)

Under the alternative hypothesis H, of a treatment effect, then either A ;t/iy,

and/or f,,(x) # t,,(y), permitting us to write,

E [(Pfj | Ha:| M )\4y (1 _ e*(lﬁrk).)T ) e (1 e, )

(20)

vt [—(#M(x)—ﬂM(y))] o e [1_ o, {(ﬂM(x)#AR(y))n

2 2 2 2
\/O-ARX t g, \/ Or, T Ou,

Appendix B. Variance Computation

The computation of the variance of W,, while somewhat more complicated than
the mean, is executable. Assume 7 subjects in the control group and m subjects in
the active group, then,

Var[We]:Var[iii%}:ﬁVa{in Z@} @)

wlpgol 3 [ Hgge ] @

19
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The last term on the right of the second line of (22) is easily evaluated.

2
2

]t

i=l j=1

= (nm)2 E’ [(py}

where the expected value of E|:(Py-_ has already been computed both under the
null (19) and alternative (20) hypotheses.

2
To evaluate E [(Z > (pij] from (22), we rewrite {

=

2
Z%j as

m
i=1 j=l i=l j=1

n

2
(ZZ%} = Z (Pizj + Z Z(ng(P,y + ZZ(Pif(pi'j + Z G;P:

i=l j=I i=l j=I i=l j=1 i=1 j=1 1 j=
' ii' i j#

3

~.

This helpful simplification is due to Gehan [Gehan EA. (1965)]. We may now
pass the expectation argument through the preceding equation to find

2
E[(ZZ%) }_E{ Z‘PIZ/} +E ZZZ(PU(PZ"./
=l j=l =1 =l i=1 =l =l
’ (23)
+E ZZ% y |+ E ZZ%‘PH

and evaluating term by term we see
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E anii%q’i'f =nm(n—1)(m—1)E[(py.(pi,j,}

E[(plj(pij ] is the expected value of the product of the scoring function between 1)
the i™ control group subject and the j active group subject, and 2) the same /"
control group subject but a different ;'™ active group subject where j # ;.
E[(pl.j(p,-. ]]is an analogous computation involving the i™ and i ™ in the control

group and the /™ subject in the active group. We may now rewrite (23) as

E [[Z i%)z} =(nm)’E [(Pl.‘zi ] +nm(n—1)E [(P;j(P,-v_,

i=1 j=I

24)

+nm(m—1)E[ ; ,./.J+ nm(m—l)(n—l)zEz[(piJ

Var[i" < (Pg} = (nm)zE[(pfj]+ nm(n—l)E[(p,.j(pi,j] - nm(m—l)E[(p[j U]
+ nm(m—l)(n—l)2 E’ [(pl.j]—(nm)2 E’ [(py}

Rather than solve for two unknowns, m and n ,we let n = kn and where & is known
(for example, if there are twice as many subjects in the active group than in the
control group then k= 2). We may then write
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Var{ii(pij} = kn2E|:(p;:|+ kn2(n—1)E[(pU(p”:| + kn’® (kn—1) E[(p“ ]

i=l j=1

+ kn® (kn—1)(n-1)" E [(p,.j]— k*n*E? [(py]

Further simplication reveals

Var [W

Va{iz%}

i=l j=1

(25)

Since the variance can be computed under both the null and alternative
hypothesis, we may write

Var[We|H0]:V0:L{ﬁ - &} and Var[We|Ha]:Va:%{Aa _ Ba}

2 2 2
k n n n

where Ay and B, are computed under the null hypothesis and A4, and B, are
computed under the alternative.

Appendix C. The Asymptotic approach for Var[W,] :

Working from equation (25)

Var[W,]= Var{ii@y}

i=l j=1

3
= % (E [(Pij(Pi'j]+kE|:(P[/(P[j']_(k + 1)E2 I:(py])

= (E[(PU@,J}E[%@U E[¢:]-E’ [(p]])
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Ignoring terms on the order of 7>, we have

Var[m]=$(E[cpij(pi,j] +kE| 0,0, | —(k+DE’ [@J) (26)

Equation (26) is the wvariance of W, under the alternative hypothesis,

Var[W,| H,]. Under the null hypothesis, we assume E[(Py(P,-v j:|=E[

E|:(Py-:|:0, producing Var[We|H0]:%E

write

i y":la and

[(py.(pl_,/,|H0J. We therefore may

k+1
Var[We|H0]:ﬁE[(py ij |H0]

(27)
Var[W, |H, | :é(EI:(pij(pi'j:l +kE[(pl.j(pl.j ] —(k+1)E? [(py])

Now substituting equations for the Var[W, | H ]| and Var[W, | H,]from (13) into
(8) to compute the sample size of the trial, we write

o Sl Wl T

(28)

k+1
=Zl—a/2\/ n E|:¢1/(01/|H0] _E[VVe |Ha]

Noting that the total number subjects in the study is # control group plus &7 in the
active group, we can write

2
{Zla 2\/%13[%%\ H, ] —Zﬁ\/i(E[w,,,w,., |H, ]+ ke[ 0,0, | H, ] - (k+DE g, HJ)] (29)
E[7H,]

N=(k+1)
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Power can be expressed as

k+1
Zla/Z\/k—;E[(Pij(Pij|H0j| - E[VVL|H(1]

\/kln(E[(Pijcpfj |H,] +KE[ 9,9, |H,] - (k+1)E*[o, |1, ])

1-p=1-D, (30)

Appendix D Structure for E[(py(py]

The structure for E[(py(py} can be identified and tabulated (Table 1) revealing 18

terms, each of which is evaluated under the null and alternative hypothesis. For
example one of the terms may be written as,

P[CXU) (+:R) <Gy, (HR)NC

YQj)

(E.R)=Cy,,(-R)] = P[U<V <T <W]. (31)

Here U follows an exponential distribution with parameter A, 7 is the duration of
the study, and V" and W are i.i.d. exponentially distributed random variables with
parameter A,. Note that the final expressions for the expectation are in terms of

the parameters A, A,, f,(x), typ (), Oar(x), and 03:(). These are available

from the clinical scientists. Thus (31) may be written as

P[CX(I') (+:R)<Cy(y (+,R)NCy;y (E,R)=Cy (_’R)]

=o' {(1 —e M ) — ﬁ;tTy/iy(l _ e—(/%%)T )} (32)

Which may be evaluated under the null hypothesis where A, =4, or the
alternative where A, # 4,.

However, terms that involve comparison of the continuous response
variable between three subjects must be handled differently. Consider the
circumstance where the i subject in the control group’s LVEF has increased by

more than the ;™ and the ;™ subject in the active group. Then one of the

expressions required for E[(Py(Py-lis
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P[me (=R) < Gy (- R)NCy( (= R) <CY(/')(_’R)]

4+ (33)
=" R[(d,<d )n(d, <d,)].
where d,is the change in the response variable for the i™ subject in the control
group over the duration of the study, and d;and d ;. are the response variable
changes for the jth and j’th subjects in the active group respectively. The

expression e_(l*+u“)ris the probability that all three subjects (one in the control
group and two in the active group) have no SCE throughout the course of the trial
and therefore have the continuous measure assessed at baseline and at the end of
the study.

To compute P[(dl.<dj)m(dl. <dj.)], recall that for the one control
group subject, d; follows a N ( e (X), o-jR(x)), and for the two active group
subjects, d, and d, are identically distributed as N ( (), o (y)) . If we

define the random variables U and V in the affine transformation
d.
U _1 -1 0 a’l ~ d,.—dj (34)
v) 1o -1 /| \d-d,
d.
J

We may then write, P[(dl. <d,)n(d, < dj,)] =P[U <0 N ¥V <0]. Since the joint

distribution of r,(x), r,(y), and r, (), is multivariate normal with mean vector

u and variance 2,

Mg (X) O-iR (x) 0 0
p=l M Z=| 0  on(» 0 (35)
M (¥) 0 0 o

we can apply the transformation of (34) we see that the joint distribution of U and
J is bivariate normal with mean and variance
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(Uj is MVN, (w(x)—w(y)} [a§R<x)2+a§R<y) o) ] 36)
4 Hiar () = Hyg () T (%) Opn(X) + 0 ()

Thus, the desired probability P[U <0 n ¥ <0] is simply the evaluation of this
region over the bivariate normal distribution defined in (36), and the probability
required by P [(di <d, ) m(di <d, )J is therefore available.

Each of the eighteen terms is computed similarly, and assembled in

accordance with Table 1 to construct E[%%J under the null and alternative

hypotheses. An analogous table can be constructed for computing E[goijgpl.,j].

Then E[%%f |H0] and E[%% |H0} can be substituted into equation (13) to
compute the Var[W, | H,]| and analogously, E[goijgo”, |Ha] and E[goijq)w |Ha]will

be used to compute Var[W,|H,]. Alternatively, E[gqi(qj, |HO},E[(plj(0ij |H0]
and E|: yom |HJ, E[%(P;y |Ha] can be substituted into equation (25) and (10)

to compute the sample size for the exact computation, or equation (15) in the case
of asymptotic solution. These two expectations can be used to compute the power
in equations (12) and (16) for the exact and asymptotic solutions respectively.
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