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Abstract

The relative risk is a clinically important measure of the effect of treatment on binary
outcomes in randomized controlled trials (RCTs). An adjusted relative risk can be estimated using
log binomial regression; however, convergence problems are common with this model. While
alternative methods have been proposed for estimating relative risks, comparisons between
methods have been limited, particularly in the context of RCTs. We compare ten different methods
for estimating relative risks under a variety of scenarios relevant to RCTs with independent
observations. Results of a large simulation study show that some methods may fail to overcome
the convergence problems of log binomial regression, while others may substantially overestimate
the treatment effect or produce inaccurate confidence intervals. Further, conclusions about the
effectiveness of treatment may differ depending on the method used. We give recommendations
for choosing a method for estimating relative risks in the context of RCTs with independent
observations.
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1 Introduction 

Binary outcomes are common in randomized controlled trials (RCTs) and may 
relate to efficacy (for example, presence or absence of disease) or safety (for 
example, presence or absence of side effects). Such outcomes have traditionally 
been analyzed using logistic regression, which provides an estimate of the effect 
of treatment on the outcome expressed as an odds ratio. Rather than estimating 
odds ratios, recent literature suggests a growing preference for estimating relative 
risks; the odds ratio has been described as incomprehensible (Lee, 1994) and 
lacking clinical meaning (Sinclair and Bracken, 1994), whereas the relative risk is 
considered easier to interpret (Walter, 2000; Schechtman, 2002). As a result, the 
relative risk is now the effect measure of choice for many RCTs; see Ahmad et al. 
(2009) for a recent example. 

To estimate relative risks, log binomial regression has been recommended 
(Skov et al., 1998). Like logistic regression, log binomial regression can be used 
to estimate the effect of treatment on a binary outcome while controlling for both 
categorical and continuous baseline covariates, however convergence problems 
are common (Zou, 2004). This poses a problem in RCTs, since the analysis 
method should be pre-specified (ICH E9 Expert Working Group, 1999) before it 
is known whether the model will converge. Alternative methods for estimating 
relative risks have been proposed (Wacholder, 1986; Flanders and Rhodes, 1987; 
Schouten et al., 1993; Deddens et al., 2003; Zou, 2004; Lumley et al., 2006; 
Localio et al., 2007) but comparisons between methods have been limited, 
particularly in the context of RCTs, and it is currently unclear which method 
should be preferred. As a result, a variety of methods are being used in RCTs in 
practice (see e.g. Boardman et al., 2004; Green et al., 2008; Ahmad et al., 2009; 
van der Meer et al., 2009). 

The aims of this study were: (i) to compare the relative performance of 
methods for estimating relative risks in the context of RCTs with independent 
observations; and (ii) to make recommendations about which method(s) should be 
used in practice. The methods for estimating relative risks are described in 
Section 2, compared by simulation in Section 3, and applied to an example dataset 
in Section 4. We conclude with a discussion in Section 5 and recommendations in 
Section 6. 

2 Methods 

2.1 Setting and notation 

Consider a two-group parallel RCT comparing a new treatment to a standard or 
control treatment. Let there be N  independent subjects recruited and allocated to 
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the ‘treatment’ or ‘control’ group. Let iY  be a binary outcome for subject i  

( 1, , )i N  , where 1iY   if the outcome is a ‘success’, however this is defined, 

and 0iY   otherwise. We assume that the probability of success for subject i

( )i  depends on a vector of known covariates 0 1 2( , , , , )i i i KiX X X XX  , where 

0X 1 , 1iX  is a binary indicator for treatment group, coded as 1 1iX   for 

treatment and 1 0iX   for control, and 2 , ,i KiX X  are 1K   possible baseline 

covariates. The aim of the analysis is to estimate the relative risk of success 
comparing treatment to control and to obtain a confidence interval, while 
potentially adjusting for pre-specified categorical and/or continuous baseline 
covariates.  

We consider ten different methods for analyzing such data: log binomial 
regression, constrained log binomial regression, the COPY 1000 method, 
expanded logistic regression, log Poisson regression, log normal regression and 
four methods based on logistic regression (conditional standardization or marginal 
standardization for estimating the relative risk, combined with either the delta 
method or bootstrapping for obtaining a confidence interval). Each method will 
now be described. 

2.2 Log binomial regression 

The log binomial regression model is a generalized linear model (GLM) with a 
log link, written as 

 log( )i i  X β , (1) 

where β  is a column vector of model parameters and the errors are assumed to 

follow a binomial distribution. Given the model parameter estimates β̂ , obtained 
by the method of maximum likelihood, the relative risk comparing treatment to 

control can be estimated simply by 1̂exp( ) , where 1  is the coefficient of the 

treatment indicator 1iX . This model will fail to provide an estimate of the relative 

risk if there are convergence problems during the estimation process as a result of 
restrictions placed on the parameter space. These restrictions relate to the 

requirement that the predicted probabilities ˆˆ exp( )i i  X β  must satisfy ˆ0 1i  , 

implying that ˆ
iX β  must not exceed zero for any iX , 1, ,i N  . If convergence 

problems occur, choosing different starting values for the parameter estimates 
may help. However, if the maximum likelihood estimate is on the boundary of the 
parameter space then convergence will not occur (Barros and Hirakata, 2003; 
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Deddens et al., 2003). This has prompted the development of alternative methods 
for estimating relative risks. 

2.3 Alternative methods 

Wacholder (1986) proposed a constrained iterative estimation procedure to 
estimate relative risks, referred to hereafter as constrained log binomial 
regression. This procedure involves checking whether any predicted probabilities 
exceed some maximum allowable value, such as 0.99, at each iteration. Any 
predicted probabilities exceeding this maximum are set to the maximum before 
parameter estimates are updated and the process iterates until convergence. 

Deddens et al. (2003) suggested performing log binomial regression on a 
modified dataset containing 1c   copies of the original dataset and one copy of 
the original dataset with the outcomes reversed (i.e. successes become failures 
and vice versa). The authors suggested using 1000c   in practice and called this 
the ‘COPY 1000 method’. The maximum likelihood parameter estimates in the 
new dataset approximate those in the original dataset but lie in the interior of the 
parameter space, rather than possibly lying on the boundary. The standard errors 
of the parameter estimates need to be multiplied by the square root of c  to correct 
for the additional data. Rather than making physical copies of the data, 
appropriate weights can be applied to a single copy of the original dataset 
combined with a single copy of this dataset where the outcomes are reversed 
(Lumley et al., 2006; Petersen and Deddens, 2008; Yu and Wang, 2008). 

Schouten et al. (1993) recognized that by manipulating the data, logistic 
regression can be used to estimate relative risks directly. An expanded dataset is 
created, where successes are duplicated and the outcome is changed to a failure 
for these duplicates. The probability of success in the original dataset then equals 
the odds of success in the expanded dataset. Fitting a logistic regression model to 
the expanded dataset results in consistent estimates of the parameters in the log 
binomial regression model, apart from possibly the intercept, however the 
standard errors will be incorrect and robust variance estimates are therefore 
recommended. A potential disadvantage of this expanded logistic regression 
approach is that it allows invalid predicted probabilities (i.e. ˆ 1i  ) to occur.  

McNutt et al. (2003) suggested estimating relative risks using log Poisson 
regression. Like log binomial regression, this involves fitting a GLM with a log 
link and hence has the same form as (1), however the errors are assumed to follow 
a Poisson distribution. As a result, this method tends to overestimate the standard 
errors when applied to binary data (McNutt et al., 2003) which can be corrected 
using robust variance estimation (Barros and Hirakata, 2003; Zou, 2004; Carter et 
al., 2005). This method has the advantage of avoiding the convergence problems 
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of log binomial regression (Zou, 2004) but invalid predicted probabilities can 
occur (Blizzard and Hosmer, 2006) 

Lumley et al. (2006) noted that a log normal regression model could be 
used to estimate relative risks, which corresponds to fitting model (1) and 
assuming a normal error distribution. As for expanded logistic regression and log 
Poisson regression, invalid predicted probabilities are possible. This method will 
produce consistent estimates of relative risk but standard errors may be over- or 
underestimated and hence robust variance estimation was suggested. 

The logistic regression model is a GLM with a logit link and a binomial 
error distribution, commonly described as log{ / (1 )}i i i   X β . The predicted 

probability of success for subject i , given by ˆˆ 1/{1 exp( )}i i   X β , will lie 

between 0 and 1 for any iX  and hence there are no restrictions on the parameter 

space for this model (Wacholder, 1986). As a result, logistic regression does not 
suffer from the same convergence problems as log binomial regression. The 
calculation of relative risks from logistic regression is more complex however, 
since logistic regression models assume a constant odds ratio, rather than a 
constant relative risk. Flanders and Rhodes (1987) presented formulae for 
calculating standardized relative risks using parameter estimates obtained from 
fitting a logistic regression model. If conditional standardization (CS) is used, the 
estimated relative risk comparing treatment to control is given by the ratio of the 
predicted probabilities for treatment and control, calculated conditional on user-
specified reference values * *

2 , , KX X  for the baseline covariates, i.e. 

* *
0 1 2 2

* *
0 2 2

ˆ ˆ ˆ ˆ1/ [1 exp{ ( )}]
ˆ ˆ ˆ1/ [1 exp{ ( )}]

K K

K K

X X

X X

   
  

     
    




. 

Alternatively, if marginal standardization (MS) is used, the estimated relative risk 
is the ratio of the average predicted probability over a standard population 
assigning all N  subjects to the treatment group, to the average predicted 
probability over the same population treating all N  subjects as controls, i.e.  

0 1 2 2
1

0 2 2
1

1 ˆ ˆ ˆ ˆ1/ [1 exp{ ( )}]

1 ˆ ˆ ˆ1/ [1 exp{ ( )}]
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. 

Although CS and MS both produce estimates of relative risk, it is 
important to note that they estimate different relative risks with different 
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interpretations. CS estimates the relative risk conditional on the chosen reference 
values which may not apply to other covariate patterns. MS estimates the average 
relative risk in the standard population which may differ for other populations. In 
practice, the choice between CS and MS depends on the question of interest 
(Localio et al., 2007).  

Once the relative risk has been estimated using CS or MS, confidence 
intervals can be obtained using the delta method or bootstrapping (Localio et al., 
2007; Kleinman and Norton, 2009). This results in four methods based on fitting a 
logistic regression model, referred to hereafter as CS + delta method, CS + 
bootstrap, MS + delta method and MS + bootstrap. 

2.4 Simulations 

The relative performance of the ten methods for estimating relative risks was 
studied by simulation. We considered a single binary (144 scenarios), a single 
continuous (144 scenarios) or both a binary and continuous baseline covariate 
(108 scenarios). For each scenario, 1000 datasets were generated containing 200 
or 500 subjects. Treatment allocation was performed using blocked 
randomization, either overall or within strata defined by a baseline covariate. Four 
strata defined by three cut points (  ,  and   ) were used in the case of 
stratification based on a continuous covariate with mean   and standard 
deviation  . In the two covariate simulations, stratification was based on either 
the binary or continuous covariate but not both simultaneously. Subjects were 
randomly assigned an outcome with probability exp( )i i  X β , where 1iX , 2iX

and 3iX  (where applicable) were the treatment group indicator and the baseline 

covariate(s) respectively. If i  exceeded 1 for given values of the treatment 

indicator and baseline covariate(s), a new value was generated for the continuous 
covariate until 1i  , effectively truncating the distribution of the continuous 

covariate. New values rarely had to be generated in practice and, in the most 
extreme case, the covariate was truncated at approximately two standard 
deviations above the mean. 

For the single covariate scenarios, the prevalence of the binary covariate 
was 0.5 or 0.75 and the continuous covariate was normally distributed with mean 
0.5 and variance 0.05 or 0.25. This choice of mean combined with the larger 
variance allows direct comparison with results obtained using a binary covariate 
with prevalence 0.5, since the mean and variance of the binary covariate are also 
0.5 and 0.25 respectively in this case. The baseline risk was 0.1 ( 0 2.30   ) and 

the following combinations of treatment and covariate effects were considered: a 
treatment relative risk of 1 ( 1 0  ) with a covariate relative risk of 1 or 2 ( 2 0   
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or 0.69); a treatment relative risk of 1.25 ( 1 0.22  ) with a covariate relative risk 

of 1, 1.25 or 2 ( 2 0  , 0.22 or 0.69); and a treatment relative risk of 2 

1( 0.69)   with a covariate relative risk of 1, 1.25, 2 or 3 ( 2 0  , 0.22, 0.69 or 

1.10).  
For the two covariate scenarios, the prevalence of the binary covariate was 

0.5 and the continuous covariate was normally distributed with mean 0.5 and 
variance 0.25. The baseline risk was 0.1 ( 0 2.30   ) and the treatment and 

covariate relative risks were all 1 or 2 (i.e. 0k   or 0.69 for 1,2,3k  ), with at 

least one of the covariates having an effect for all scenarios.  
For each simulated dataset, analyses were performed using each of the ten 

methods described in Sections 2.2 and 2.3. For the single covariate simulations, 
both unadjusted and adjusted analyses were performed. For the two covariate 
simulations, adjustment was made for one or both of the covariates. All analyses 
were performed using SAS (Cary, NC, USA) version 9.1.3 or later. Log binomial 
regression, the COPY 1000 method, expanded logistic regression, log Poisson 
regression, log normal regression and logistic regression were performed using 
PROC GENMOD. Robust variance estimates were obtained for expanded logistic 
regression, log Poisson regression and log normal regression using the 
REPEATED statement (Zou, 2004; Spiegelman and Hertzmark, 2005). 
Constrained log binomial regression was performed using a SAS macro referred 
to in Carter et al. (2005) and obtained from the first author. Sample means of the 
baseline covariate(s) were used as reference values for CS and the simulated 
dataset was used as the standard population for MS. The delta method was 
implemented using PROC IML and confidence limits were based on a logarithmic 
transformation (Flanders and Rhodes, 1987). Bootstrap confidence intervals were 
obtained using the bias corrected and accelerated method which allows 
asymmetric confidence intervals (Carpenter and Bithell, 2000). This approach 
used SAS macros contained in the file jack-boot.sas (available from 
http://support.sas.com/kb/24/982.html) with 2000 bootstrap samples. 

The methods for estimating relative risks were compared based on the 
following properties, determined for each simulation scenario: convergence rate, 
calculated as the percentage of simulated datasets where the model converged; 
type I error rate, calculated as the percentage of Wald tests which resulted in a 
rejection of the null hypothesis of no treatment effect at the 5% level when the 
null hypothesis was true; power, calculated as the percentage of Wald tests which 
resulted in a rejection of the null hypothesis of no treatment effect at the 5% level 
when the null hypothesis was false; median percent relative bias in the estimated 
relative risk, where relative bias was calculated as the estimated relative risk 
minus the true relative risk, divided by the true relative risk; median width of the 
95% confidence interval for the relative risk as a measure of precision; coverage 
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rate, calculated as the percentage of 95% confidence intervals containing the true 
relative risk; the percentage of simulated datasets where the conclusion about 
whether treatment had an effect on the outcome (based on whether the p-value 
from a Wald test was less than 0.05) differed across methods; and the maximum 
prevalence of invalid predicted probabilities (expanded logistic regression, log 
Poisson regression and log normal regression only). Changes in these properties 
resulting from adjusting for an irrelevant covariate (relative risk=1) or failing to 
adjust for an important covariate (relative risk>1) were compared between 
methods. Differences in these properties for a binary and continuous covariate 
were also compared between methods in the subset of simulation scenarios 
involving a single binary covariate with prevalence 0.5, or a single continuous 
covariate with mean 0.5 and variance 0.25. Where a method failed to converge for 
a particular dataset, results from that dataset were excluded for that method when 
making comparisons.  

Given the large number of simulation scenarios considered (396 in total), 
it is not possible to present the full results of the simulation study in this article 
(full results are available from the first author on request). Instead, we summarize 
results across all simulation scenarios by calculating the percentage of scenarios 
where convergence problems and invalid predicted probabilities occurred, where 
the (equal) minimum and maximum power and confidence interval width were 
attained, and where the type I error and coverage rates differed significantly from 
the nominal level. For 1000 simulated datasets, type I error rates less than 3.6% or 
greater than 6.4% differ significantly (p<0.05) from the nominal level of 5% 
based on a normal approximation test for a proportion. Similarly, coverage rates 
less than 93.6% or greater than 96.4% differ significantly from the nominal level 
of 95%. To quantify the magnitude of any problems that were observed, the 
median and range were calculated for the type I error rate, median percent relative 
bias and coverage rate across all scenarios. The median and range were also 
calculated for the convergence rate across scenarios where convergence problems 
occurred, and for the maximum prevalence of invalid predicted probabilities 
across scenarios where invalid predicted probabilities occurred. To determine 
whether differences between methods were important or negligible, the difference 
between the best and worst method was calculated for power, median percent 
relative bias and median confidence interval width for each scenario; the median 
and range of these differences was then determined across all scenarios. Results 
are presented both overall and in two subsets defined by whether log binomial 
regression converged. In the former subset, all simulation scenarios were included 
but results from any simulated dataset where log binomial regression failed to 
converge were excluded. In the latter subset, only scenarios where log binomial 
regression failed to converge for a minimum of 50 simulated datasets were 
included to avoid conclusions being drawn based on very small samples. 
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2.5 Sensitivity analyses 

Limited additional simulations were conducted to determine the sensitivity of the 
simulation results to the particular scenarios considered. Firstly, the number of 
covariates was increased, since consideration of more than one or two covariates 
is common in practice. Secondly, the simulation model was changed to determine 
how the methods perform when the true link function is the logit, probit or 
complementary log-log link, rather than the log link. Additional simulations were 
based on 500 subjects with treatment allocation performed using blocked 
randomization. Adjusted analyses were performed with adjustment for all 
covariates and for each covariate individually.   

For simulations with an increased number of covariates, datasets were 
generated with four covariates: a binary covariate with prevalence 0.5, a binary 
covariate with prevalence 0.75, a normally distributed covariate with mean 0.5 
and variance 0.25, and a normally distributed covariate with mean 0.5 and 
variance 0.05. The baseline risk was 0.1 ( 0 2.30   ), the treatment relative risk 

was 1 or 2 ( 1 0   or 0.69), and the relative risk was 1.25 for three covariates and 

2 for the remaining covariate (i.e. 0.22k   or 0.69 for 2, ,5k   ).  

For simulation models with a non-log link, both CS and MS were used to 
determine the true relative risk for comparison with the estimated relative risks. 
The reference values for CS were the population means of the baseline covariates. 
The standard population for MS was based on the covariate values for all 
simulated datasets combined. This approach produced a standard population 
containing 500,000 subjects for each simulation scenario. The covariate 
distributions in such a large dataset are expected to agree closely with the 
covariate distributions used to generate each simulated dataset. Datasets were 
generated with a binary covariate with prevalence 0.5 and/or a normally 
distributed covariate with mean 0.5 and variance 0.25, with at least one of the 
covariates having an effect for the two covariate scenarios.  

For simulations based on the logit link, subjects were randomly assigned 
an outcome with probability 1/{1 exp( )}i i   X β , where 1exp( ) is the true 

odds ratio. The baseline risk was 0.1 ( 0 2.20   ) and the treatment and covariate 

odds ratios were all 1 or 2 (i.e. 0k   or 0.69 for 1,2,3k  ).  

For simulations based on the probit link, outcomes were generated with 
probability ( )i i   X β , where   is the cumulative distribution function for the 

standard normal distribution. The baseline risk was 0.1 ( 0 1.28   ), the risk in 

the treatment group when the covariate(s) were 0 was 0.1 or 0.2 ( 1 0   or 0.44), 
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and the risk in the control group at the covariate mean was 0.1 or 0.2 (i.e. 0k   

or 0.88 for 2,3k  ).  
For simulations based on the complementary log-log link, outcomes were 

generated with probability 1 exp{ exp( )}i i    X β . The baseline risk was 0.1 

0( 2.25)   , the risk in the treatment group when the covariate(s) were 0 was 0.1 

or 0.2 ( 1 0   or 0.75), and the risk in the control group at the covariate mean was 

0.1 or 0.2 (i.e. 0k   or 1.50 for 2,3k  ). 

3 Simulation Results 

3.1 Convergence 

There were no convergence problems when unadjusted analyses were performed. 
When adjustment was made for the baseline covariate(s), convergence problems 
were observed for log binomial regression, constrained log binomial regression, 
the COPY 1000 method and log normal regression but not for other methods. Log 
binomial regression performed poorly, with convergence problems occurring for 
33.3% of scenarios and convergence rates as low as 48.4% for a given scenario 
(Table 1). Performance was also quite poor for constrained log binomial 
regression and the COPY 1000 method, with convergence problems occurring in 
16.7% and 30.1% of scenarios respectively, although convergence rates did not 
fall below 88.5% and 85.9% respectively for any scenario. In contrast, log normal 
regression converged for 99.8% of simulated datasets in two scenarios where the 
sample size was 200, and for 100% of simulated datasets otherwise. When log 
binomial regression converged, the COPY 1000 method always converged but 
constrained log binomial regression and log normal regression sometimes failed 
to converge. 

Table 1: Number (%) of simulation scenarios where convergence problems 
occurred and median (minimum) convergence rate for these scenarios. 

Analysis method a) N (%) Median (minimum)  
Log binomial regression 132 (33.3) 95.9 (48.4) 
Constrained log binomial regression 66 (16.7) 98.9 (88.5) 
COPY 1000 method 119 (30.1) 98.3 (85.9) 
Log normal regression 2 (0.5) 99.8 (99.8) 

a) Methods that are not listed had convergence rates of 100% for all 396 simulation scenarios. 
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3.2 Type I error 

All methods produced some type I error rates which differed significantly from 
the nominal level. This mostly occurred when the sample size was 200 and/or the 
continuous covariate had an effect. Type I error problems were not severe, 
however, as the smallest overall type I error rate observed was 2.7% and the 
largest was 8.6% across all methods (Table 2). Larger type I error rates did occur 
in the subset of simulations where log binomial regression failed to converge, 
although these results were generally based on relatively few simulated datasets 
per scenario. Overall, log normal regression showed the best performance, with 
type I error rates only differing significantly from the nominal level in 11.9% of 
the 118 scenarios considered where the treatment did not have an effect. Other 
methods had type I error problems in 14.4% to 18.6% of scenarios. When log 
binomial regression converged, the type I error rate differed significantly from the 
nominal level in 17.8% of scenarios and only log normal regression achieved a 
better result (10.2%). When log binomial regression failed to converge, log 
Poisson regression had the fewest problems with type I error (26.1%). In contrast, 
constrained log binomial regression performed poorly, producing type I error 
problems in 65.2% of scenarios. 

3.3 Power 

Logistic regression methods performed best in terms of power overall, achieving 
the (equal) highest power in 69.4% of the 278 scenarios considered where the 
treatment had an effect (Table 3). The worst performing method was the COPY 
1000 method which had (equal) minimum power for 65.1% of scenarios. 
Differences in power between methods were typically small however; the 
difference in power between the best and worst method ranged between 0% and 
6.5%, with a median of only 0.5%. In the subset of simulations where log 
binomial regression converged, logistic regression methods again performed best. 
When log binomial regression failed to converge, the (equal) highest power was 
most often achieved by constrained log binomial regression. 
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Table 2: Number (%) of simulation scenarios where the type I error rate differed significantly from the nominal level, 
and median (range) for the type I error rate, both overall and by convergence status of the log binomial regression 
model. 

 Overall 
(118 scenarios) 

 Log binomial converged 
(118 scenarios) 

Log binomial did not converge
(23 scenarios) 

Analysis method N (%) Median (range) N (%) Median (range) N (%) Median (range) 
Log binomial regression 21 (17.8) 4.3 (2.8, 6.6) 21 (17.8) 4.3 (2.8, 6.6) N/A N/A 
Constrained log binomial regression 20 (16.9) 4.4 (2.8, 8.6) 21 (17.8) 4.3 (2.8, 6.5) 15 (65.2) 11.7 (3.9, 23.8)
COPY 1000 method 22 (18.6) 4.2 (2.7, 6.4) 26 (22.0) 4.2 (2.7, 6.4) 7 (30.4) 8.7 (0.0, 22.2) 
Expanded logistic regression 17 (14.4) 4.4 (3.0, 6.2) 25 (21.2) 4.3 (2.8, 6.0) 7 (30.4) 7.5 (3.1, 13.7) 
Log Poisson regression 17 (14.4) 4.3 (3.0, 6.0) 21 (17.8) 4.3 (2.8, 6.0) 6 (26.1) 7.4 (2.0, 11.8) 
Log normal regression 14 (11.9) 4.7 (2.9, 7.8) 12 (10.2) 4.6 (2.9, 8.0) 7 (30.4) 8.1 (3.1, 12.5) 
Logistic regression methods a) 17 (14.4) 4.5 (3.2, 6.4) 22 (18.6) 4.5 (3.1, 6.4) 9 (39.1) 8.1 (2.3, 12.8) 

Table 3: Number (%) of simulation scenarios where (equal) minimum and maximum values were attained for power, 
both overall and by convergence status of the log binomial regression model. 

 Overall 
(278 scenarios) 

 Log binomial converged 
(278 scenarios) 

Log binomial did not converge
(37 scenarios) 

Analysis method 
Minimum  

N (%) 
Maximum 

N (%)  
Minimum  

N (%) 
Maximum 

N (%)  
Minimum  

N (%) 
Maximum 

N (%)  
Log binomial regression 114 (41.0) 59 (21.2) 101 (36.3) 68 (24.5) N/A N/A 
Constrained log binomial regression 98 (35.3) 84 (30.2) 104 (37.4) 74 (26.6) 10 (27.0) 32 (86.5) 
COPY 1000 method 181 (65.1) 42 (15.1) 188 (67.6) 44 (15.8) 16 (43.2) 14 (37.8) 
Expanded logistic regression 126 (45.3) 58 (20.9) 134 (48.2) 60 (21.6) 21 (56.8) 11 (29.7) 
Log Poisson regression 114 (41.0) 66 (23.7) 117 (42.1) 67 (24.1) 11 (29.7) 13 (35.1) 
Log normal regression 127 (45.7) 102 (36.7) 135 (48.6) 106 (38.1) 18 (48.6) 12 (32.4) 
Logistic regression methods a) 39 (14.0) 193 (69.4) 40 (14.4) 199 (71.6) 13 (35.1) 13 (35.1) 

a) Type I error rate and power are the same for all logistic regression methods. 
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3.4 Bias 

When unadjusted analyses were performed, the median percent relative bias in the 
estimated relative risk was the same for all methods, except for the COPY 1000 
method which generally produced slightly smaller median relative risk estimates. 
When adjusted analyses were performed, CS methods often substantially 
overestimated the relative risk, with median percent relative biases as large as 
15.1% (Table 4), corresponding to a median bias of 0.3 when the true relative risk 
was 2. In contrast, the median percent relative bias did not exceed 5.1% for any 
other method. Underestimation of the relative risk also occurred and the minimum 
value for the median percent relative bias was around -5% for all methods. 
Similar results were observed when log binomial regression converged. When it 
failed to converge, all methods tended to overestimate the true relative risk, 
especially CS methods. Overall, the difference in the median percent relative bias 
between the best and worst method was generally small (median 0.6%) but could 
be substantial, depending on the scenario (range 0% to 17.0%). 

Table 4: Median (range) for the median percent relative bias in the estimated 
relative risk, both overall and by convergence status of the log binomial 
regression model. 

Analysis method 

Overall 
(396 scenarios) 

Log binomial 
converged 

(396 scenarios) 

Log binomial did 
not converge 
(60 scenarios) 

Log binomial regression 0.0 (-4.7, 3.2) 0.0 (-4.7, 3.2) N/A 
Constrained log binomial regression 0.0 (-4.7, 5.1) 0.0 (-4.7, 3.2) 4.3 (-7.8, 17.3) 
COPY 1000 method -0.2 (-4.9, 2.9) -0.3 (-4.9, 2.9) 2.1 (-13.6, 23.8) 
Expanded logistic regression 0.0 (-4.7, 3.2) 0.0 (-4.7, 3.2) 3.5 (-7.8, 15.8) 
Log Poisson regression 0.0 (-4.7, 3.2) 0.0 (-4.7, 3.2) 3.6 (-8.1, 15.8) 
Log normal regression 0.0 (-4.7, 4.1) 0.0 (-4.7, 4.2) 2.1 (-6.0, 12.0) 
CS methods a) 0.0 (-4.7, 15.1) 0.0 (-4.7, 14.7) 9.6 (-7.3, 24.0) 
MS methods a) 0.0 (-4.7, 3.2) 0.0 (-5.4, 3.2) 2.9 (-6.6, 16.0) 

a) Bias is the same for CS methods and for MS methods. 

3.5 Precision 

Precision was generally poor for CS + bootstrap and MS + bootstrap compared to 
other methods. CS + bootstrap achieved the widest median confidence interval for 
the vast majority of scenarios, both overall and by convergence status of log 
binomial regression, while constrained log binomial regression showed the best 
performance (Table 5). The variability between methods in median confidence 
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interval width could be large, with differences between the best and worst method 
of up to 1.05 (median difference 0.15).  

3.6 Coverage 

The percentage of simulation scenarios where coverage rates differed significantly 
from the nominal level varied greatly between methods (Table 6). Overall, CS + 
bootstrap and MS + bootstrap failed to achieve acceptable coverage in 34.3% and 
29.0% of simulation scenarios respectively. By comparison, coverage problems 
occurred for between 6.6% and 13.9% of scenarios for other methods. Observed 
coverage rates ranged between 85.9% and 97.9%, indicating that undercoverage 
could be substantial. The COPY 1000 method produced the best results both 
overall and when log binomial regression converged, only failing to maintain 
acceptable coverage for 6.6% and 7.1% of scenarios respectively. When log 
binomial regression failed to converge, the top performing methods were log 
Poisson regression and MS + bootstrap, each with coverage problems in 13.3% of 
scenarios. Constrained log binomial regression performed very poorly in this 
subset, with coverage rates significantly different from the nominal level in 63.3% 
of scenarios. 

3.7 Differing conclusions 

The conclusion about the effectiveness of treatment differed depending on the 
method used in up to 13.6% of simulated datasets for a given scenario. Most 
inconsistencies occurred for adjusted analyses, especially in the two covariate 
scenarios when adjustment was made for both covariates. Inconsistencies were 
also common when treatment had an effect on the outcome. In some cases, the 
different conclusions resulted from p-values that were marginally smaller or 
larger than 0.05, however large differences in p-values were also often observed. 
The largest differences in p-values occurred when adjustment was made for a 
continuous covariate and treatment had no effect (data not shown). Log binomial 
regression, constrained log binomial regression and the COPY 1000 method 
generally led to the same conclusions, as did expanded logistic regression, log 
Poisson regression and logistic regression methods. 
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Table 5: Number (%) of simulation scenarios where (equal) minimum and maximum values were attained for median 
confidence interval width, both overall and by convergence status of the log binomial regression model. 

 Overall 
(396 scenarios) 

 Log binomial converged 
(396 scenarios) 

Log binomial did not converge
(60 scenarios) 

Analysis method 
Minimum  

N (%) 
Maximum 

N (%)  
Minimum  

N (%) 
Maximum 

N (%)  
Minimum  

N (%) 
Maximum 

N (%)  
Log binomial regression 3 (0.8) 0 (0.0) 9 (2.3) 0 (0.0) N/A N/A 
Constrained log binomial regression 224 (56.6) 0 (0.0) 219 (55.3) 0 (0.0) 35 (58.3) 0 (0.0) 
COPY 1000 method 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 22 (36.7) 0 (0.0) 
Expanded logistic regression 57 (14.4) 0 (0.0) 59 (14.9) 0 (0.0) 0 (0.0) 0 (0.0) 
Log Poisson regression 14 (3.5) 0 (0.0) 13 (3.3) 0 (0.0) 1 (1.7) 0 (0.0) 
Log normal regression 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (1.7) 0 (0.0) 
CS + delta method 66 (16.7) 0 (0.0) 66 (16.7) 0 (0.0) 0 (0.0) 1 (1.7) 
CS + bootstrap 0 (0.0) 319. (80.6) 0 (0.0) 319 (80.6) 0 (0.0) 59 (98.3) 
MS + delta method 98 (24.7) 0 (0.0) 96 (24.2) 0 (0.0) 1 (1.7) 0 (0.0) 
MS + bootstrap 0 (0.0) 77 (19.4) 0 (0.0) 77 (19.4) 0 (0.0) 0 (0.0) 
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Table 6: Number (%) of simulation scenarios where the coverage rate differed significantly from the nominal level, 
and median (range) for the coverage rate, both overall and by convergence status of the log binomial regression model. 

 Overall 
(396 scenarios) 

 Log binomial converged 
(396 scenarios) 

Log binomial did not converge
(60 scenarios) 

Analysis method N (%) Median (range) N (%) Median (range) N (%) Median (range) 
Log binomial regression 42 (10.6) 94.9 (91.1, 96.7) 42 (10.6) 94.9 (91.1, 96.7) N/A N/A 
Constrained log binomial regression 53 (13.4) 95.5 (85.9, 97.2) 41 (10.4) 95.6 (92.6, 97.2) 38 (63.3) 89.4 (76.2, 98.0)
COPY 1000 method 26 (6.6) 95.1 (92.4, 96.8) 28 (7.1) 95.1 (92.4, 97.8) 13 (21.7) 93.4 (76.9, 100)
Expanded logistic regression 39 (9.8) 95.6 (93.2, 97.0) 48 (12.1) 95.6 (93.2, 97.2) 10 (16.7) 94.0 (86.3, 98.0)
Log Poisson regression 39 (9.8) 95.6 (93.2, 97.0) 38 (9.6) 95.6 (93.2, 97.2) 8 (13.3) 94.2 (88.2, 98.6)
Log normal regression 34 (8.6) 95.3 (92.2, 97.1) 32 (8.1) 95.4 (92.0, 97.5) 11 (18.3) 93.2 (87.5, 98.0)
CS + delta method 55 (13.9) 95.6 (87.8, 97.0) 52 (13.1) 95.6 (87.8, 97.1) 26 (43.3) 92.1 (84.1, 98.0)
CS + bootstrap 136 (34.3) 95.9 (87.5, 97.9) 135 (34.1) 96.0 (87.5, 98.2) 20 (33.3) 93.1 (84.3, 98.0)
MS + delta method 43 (10.9) 95.6 (93.1, 97.0) 43 (10.9) 95.6 (93.1, 97.1) 9 (15.0) 93.9 (88.2, 98.0)
MS + bootstrap 115 (29.0) 96.0 (94.0, 97.7) 114 (28.8) 96.0 (94.0, 97.7) 8 (13.3) 94.9 (88.2, 98.6)
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3.8 Invalid predicted probabilities 

Invalid predicted probabilities only occurred for expanded logistic regression, log 
Poisson regression and log normal regression in scenarios where adjustment was 
made for a continuous covariate. When invalid predicted probabilities did occur 
they were rare, with a median prevalence of only 0.5% for all methods (Table 7). 
Log normal regression had a lower maximum prevalence of invalid predicted 
probabilities across all scenarios compared to expanded logistic regression and 
log Poisson regression (4.5% vs. 6.5% and 6.0% respectively). However, log 
normal regression produced invalid predicted probabilities in more scenarios 
(25.5%), compared to expanded logistic regression (21.2%) and log Poisson 
regression (20.2%). The maximum prevalence of invalid predicted probabilities 
was the same or lower for log Poisson regression compared to expanded logistic 
regression in all but one scenario.  

Table 7: Number (%) of simulation scenarios where invalid predicted 
probabilities occurred and median (maximum) prevalence of invalid predicted 
probabilities for these scenarios. 

Analysis method a) N (%) Median (maximum)  
Expanded logistic regression 84 (21.2)  0.5 (6.5) 
Log Poisson regression 80 (20.2) 0.5 (6.0) 
Log normal regression 101 (25.5) 0.5 (4.5) 

a) Methods that are not listed produced no invalid predicted probabilities for all 396 simulation 
scenarios. 

3.9 Adjusting for an irrelevant covariate 

The impact of adjusting for a covariate that had no effect on the outcome varied 
between methods. More convergence problems occurred when adjustment was 
made for an irrelevant covariate, particularly for log binomial regression and the 
COPY 1000 method. The latter method also suffered from more problems with 
type I error as a result of adjustment, while other methods were largely 
unaffected. Adjustment resulted in small changes in power, ranging from -3.3% to 
1.8%. The median percent relative bias in the estimated relative risk often 
increased slightly following adjustment and the largest increases were seen for log 
normal regression. This method also tended to produce wider confidence intervals 
for adjusted analyses, along with CS methods. In contrast, confidence intervals 
based on adjustment were often narrower for other methods, although the 
maximum change in the median confidence interval width in either direction was 
only 0.13. Coverage problems were more common for log binomial regression 
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and CS + bootstrap when adjusting for an irrelevant covariate but other methods 
were largely unaffected. 

3.10 Failing to adjust for an important covariate 

Failing to adjust for a covariate that had an effect on the outcome had the 
advantage of avoiding many of the convergence problems observed in the 
adjusted analyses. A disadvantage of failing to adjust was the resulting increase in 
type I error problems for all methods except the COPY 1000 method. Further, 
lack of adjustment often resulted in power reductions which could be substantial 
(up to 13.7%), although small increases in power also occurred. There was 
generally little change in the median percent relative bias when no adjustment was 
made, however large reductions sometimes occurred for CS methods. Narrower 
confidence intervals were common for log normal regression and CS methods 
based on unadjusted analyses, while confidence intervals generally became wider 
for other methods. Unadjusted analyses resulted in more coverage problems for 
expanded logistic regression, log Poisson regression, log normal regression and 
MS + delta method but fewer coverage problems for other methods. 

3.11 Binary vs. continuous covariate 

There were differences in results depending on whether a binary or continuous 
covariate was considered. For the continuous covariate, convergence problems 
were observed for log binomial regression, constrained log binomial regression, 
the COPY 1000 method and log normal regression, while no convergence 
problems occurred for the binary covariate. The continuous covariate was also 
associated with more coverage problems. Power, median percent relative bias and 
median confidence interval width could be smaller or larger for the continuous 
covariate compared to the binary covariate and this held for all methods.  

3.12 Sensitivity analyses 

Increasing the number of covariates in the simulation model led to more problems 
with convergence, especially for log binomial regression. This method suffered 
from convergence problems in 16 (40.0%) scenarios and convergence rates fell as 
low as 39.9% for these scenarios. Type I error and coverage problems were less 
common compared to simulations with fewer covariates. Type I error rates ranged 
between 3.2% and 6.2%, while coverage rates ranged between 92.0% and 97.3%. 
Biases also became less severe and the median percent relative bias did not fall 
below -1.7% or exceed 9.0%. MS + bootstrap showed improved performance in 
terms of precision and coverage and was no longer identified as a poor performer 
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for these properties. Increasing the number of covariates in the simulation model 
had little impact on the results otherwise (data not shown). 

Simulating datasets using a logit, probit or complementary log-log link 
generally produced results similar to those obtained using a log link. Convergence 
problems still occurred for log binomial regression, constrained log binomial 
regression and the COPY 1000 method. Type I error rates were again close to the 
nominal level, except for constrained log binomial regression and the COPY 1000 
method when the probit link or complementary log-log link was used. Maximum 
type I error rates for these methods were 70.9% and 73.6% respectively, 
compared to the nominal level of 5% (Table 8). Logistic regression was still the 
most powerful method for the majority of simulation scenarios. Confidence 
intervals remained widest for bootstrapping methods, particularly when combined 
with CS. 

When MS was used to determine the true relative risk, CS methods tended 
to overestimate the relative risk, as seen for the log link simulations. Bias 
remained small for other methods when the data were simulated using a logit link, 
but underestimation of the relative risk could be substantial for log binomial 
regression and the COPY 1000 method using a probit or complementary log-log 
link (Table 9). Coverage rates were generally acceptable for the logit link, ranging 
from 93.7% to 97.3%. In contrast, coverage rates were often too low for the probit 
and complementary log-log link, although expanded logistic regression, log 
Poisson regression and MS + delta method generally performed well and coverage 
rates did not fall below 93.0% for these methods (Table 10). 

When CS was used to determine the true relative risk, CS methods 
performed well in terms of bias, while other methods tended to underestimate the 
relative risk. Biases were fairly small based on the logit link but could be 
substantial based on the probit or complementary log-log link (Table 9). Coverage 
rates remained fairly close to the nominal level for the logit link, ranging from 
92.5% to 97.3%. For the probit and complementary log-log link however, 
undercoverage was common for all methods and coverage rates dropped as low as 
6.5% (Table 10).  

4 Example 

To illustrate the different methods for estimating relative risks, we consider a 
RCT of fish oil supplements (a source of omega-3 fatty acids) versus placebo for 
preterm infants (Makrides et al., 2009). Mothers of infants born less than 33 
weeks gestation were recruited from five Australian hospitals between 2001 and 
2005. Treatment assignment was performed using blocked randomization within 
strata defined by infant birth weight (<1.25kg or ≥1.25kg), gender and recruiting 
hospital.  
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Table 8: Number (%) of simulation scenarios where the type I error rate differed significantly from the nominal level, 
and median (range) for the type I error rate when the data were simulated using a logit, probit or complementary log-
log link. 

 Logit link 
(17 scenarios) 

 Probit link 
(17 scenarios) 

Complementary log-log link 
(17 scenarios) 

Analysis method N (%) Median (range) N (%) Median (range) N (%) Median (range) 
Log binomial regression 2 (11.8) 4.8 (3.2, 5.8) 0 (0.0) 5.0 (4.0, 5.9) 0 (0.0) 4.9 (3.6, 7.9) 
Constrained log binomial regression 2 (11.8) 4.8 (3.2, 5.8) 5 (29.4) 5.4 (4.0, 24.6) 5 (29.4) 5.4 (4.0, 70.9) 
COPY 1000 method 2 (11.8) 4.6 (3.2, 5.8) 2 (11.8) 5.2 (4.0, 19.9) 5 (29.4) 5.2 (4.0, 73.6) 
Expanded logistic regression 2 (11.8) 4.8 (3.2, 5.6) 0 (0.0) 5.1 (4.0, 5.8) 0 (0.0) 4.8 (4.0, 5.9) 
Log Poisson regression 2 (11.8) 4.7 (3.2, 5.8) 0 (0.0) 5.1 (4.0, 5.8) 0 (0.0) 4.8 (4.0, 5.8) 
Log normal regression 1 (5.9) 4.8 (3.2, 6.3) 0 (0.0) 5.6 (4.0, 6.0) 0 (0.0) 5.0 (4.0, 6.2) 
Logistic regression methods a) 1 (5.9) 4.9 (3.2, 6.1) 0 (0.0) 5.3 (4.1, 5.9) 0 (0.0) 5.0 (4.2, 6.0) 

Table 9: Median (range) for the median percent relative bias in the estimated relative risk when the data were 
simulated using a logit, probit or complementary log-log link and the true relative risk was determined using MS or CS. 

 Logit link 
(34 scenarios) 

 Probit link 
(34 scenarios) 

Complementary log-log link 
(34 scenarios) 

Analysis method MS CS  MS CS  MS CS  
Log binomial regression -0.1 (-1.6, 1.2) -0.6 (-3.6, 1.2) -0.3 (-8.5, 1.2) -0.5 (-14.7, 1.2) -0.2 (-10.0, 1.2) -0.9 (-23.4, 1.2)
Constrained log binomial regression -0.1 (-1.5, 1.2) -0.6 (-3.4, 1.2) -0.3 (-4.8, 1.2) -0.5 (-11.3, 1.2) 0.0 (-4.6, 6.1) -0.6 (-18.7, 1.2)
COPY 1000 method -0.3 (-1.9, 1.1) -0.6 (-3.6, 1.1) -0.4 (-9.4, 1.1) -0.5 (-15.6, 1.1) -0.1 (-15.1, 1.1) -0.4 (-27.7, 1.1)
Expanded logistic regression 0.0 (-0.8, 1.0) -0.6 (-2.5, 1.0) 0.0 (-0.8, 2.3) -0.4 (-6.5, 1.0) 0.1 (-1.6, 4.1) -0.2 (-13.4, 1.0)
Log Poisson regression 0.0 (-1.0, 1.0) -0.5 (-2.8, 1.0) 0.0 (-0.8, 1.0) -0.5 (-6.8, 1.0) 0.0 (-1.6, 1.0) -0.2 (-14.9, 1.0)
Log normal regression -0.3 (-1.7, 1.8) -0.6 (-4.2, 1.8) -0.3 (-5.3, 1.8) -0.7 (-11.0, 1.8) -0.2 (-6.7, 1.8) -0.4 (-20.6, 1.8)
CS methods a) 0.1 (-0.8, 4.2) -0.1 (-2.2, 1.2) 0.0 (-0.8, 9.2) -0.1 (-6.4, 1.8) 0.1 (-1.6, 17.8) 0.0 (-9.7, 5.8) 
MS methods a) 0.0 (-1.0, 1.0) -0.5 (-2.8, 1.0) -0.1 (-0.8, 1.0) -0.5 (-6.8, 1.0) 0.0 (-1.6, 1.0) -0.2 (-14.9, 1.0)

a) Type I error rate is the same for all logistic regression methods. Bias is the same for CS methods and for MS methods. 
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Table 10: Number (%) of simulation scenarios where the coverage rate differed significantly from the nominal level, 
and median (range) for the coverage rate when the data were simulated using a logit, probit or complementary log-log 
link and the true relative risk was determined using (a) MS or (b) CS. 

 Logit link 
 (34 scenarios) 

 Probit link 
 (34 scenarios) 

Complementary log-log link 
 (34 scenarios) 

Analysis method N (%) Median (range) N (%) Median (range) N (%) Median (range) 
(a)      
Log binomial regression 2 (5.9) 94.8 (93.8, 96.6) 8 (23.5) 94.6 (85.6, 96.2) 7 (20.6) 94.6 (81.5, 95.6)
Constrained log binomial regression 2 (5.9) 95.3 (94.0, 96.8) 13 (38.2) 94.9 (70.5, 96.5) 13 (38.2) 94.6 (25.1, 96.4)
COPY 1000 method 2 (5.9) 95.0 (93.9, 96.6) 6 (17.6) 94.8 (81.1, 96.2) 9 (26.5) 94.8 (53.1, 95.7)
Expanded logistic regression 2 (5.9) 95.3 (94.1, 96.8) 2 (5.9) 95.2 (94.1, 96.5) 2 (5.9) 95.3 (93.0, 96.4)
Log Poisson regression 2 (5.9) 95.4 (94.2, 96.8) 2 (5.9) 95.3 (94.2, 96.5) 2 (5.9) 95.3 (93.5, 96.4)
Log normal regression 2 (5.9) 95.3 (93.7, 96.8) 7 (20.6) 94.4 (90.5, 96.5) 7 (20.6) 94.9 (75.2, 96.4)
CS + delta method 2 (5.9) 95.2 (94.2, 96.8) 5 (14.7) 94.8 (90.0, 96.5) 10 (29.4) 94.9 (69.8, 96.4)
CS + bootstrap 2 (5.9) 95.5 (94.3, 97.1) 3 (8.8) 95.1 (89.8, 96.5) 10 (29.4) 95.2 (69.4, 96.5)
MS + delta method 2 (5.9) 95.3 (94.2, 96.8) 2 (5.9) 95.2 (94.2, 96.5) 1 (2.9) 95.2 (93.7, 96.4)
MS + bootstrap 4 (11.8) 95.5 (94.4, 97.3) 4 (11.8) 95.7 (94.4, 96.8) 9 (26.5) 95.8 (94.3, 97.1)
(b)      
Log binomial regression 5 (14.7) 94.9 (92.5, 96.6) 14 (41.2) 93.9 (59.6, 95.7) 16 (47.1) 93.6 (25.9, 95.6)
Constrained log binomial regression 5 (14.7) 95.3 (92.8, 96.8) 19 (55.9) 93.3 (52.8, 96.4) 19 (55.9) 92.2 (17.8, 96.4)
COPY 1000 method 5 (14.7) 95.1 (93.0, 96.6) 13 (38.2) 94.2 (58.9, 95.7) 16 (47.1) 94.2 (7.2, 95.7)
Expanded logistic regression 2 (5.9) 95.2 (94.1, 96.8) 11 (32.4) 94.7 (90.1, 96.4) 14 (41.2) 94.8 (58.7, 96.4)
Log Poisson regression 2 (5.9) 95.3 (93.7, 96.8) 14 (41.2) 94.5 (87.8, 96.4) 14 (41.2) 94.7 (44.8, 96.4)
Log normal regression 4 (11.8) 95.3 (92.6, 96.8) 14 (41.2) 94.2 (71.2, 96.4) 14 (41.2) 94.4 (6.5, 96.4)
CS + delta method 2 (5.9) 95.3 (94.2, 96.8) 7 (20.6) 95.1 (92.0, 96.7) 7 (20.6) 94.9 (79.0, 96.4)
CS + bootstrap 2 (5.9) 95.6 (94.3, 97.1) 4 (11.8) 95.3 (92.5, 96.7) 7 (20.6) 95.1 (80.8, 96.5)
MS + delta method 2 (5.9) 95.2 (93.8, 96.8) 14 (41.2) 94.5 (88.0, 96.4) 14 (41.2) 94.6 (41.0, 96.4)
MS + bootstrap 3 (8.8) 95.5 (94.2, 97.3) 11 (32.4) 94.9 (89.5, 96.8) 18 (52.9) 95.5 (51.7, 96.8)
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We consider two binary outcomes of interest: whether the infant was 
discharged home from hospital on oxygen and whether the infant had a significant 
mental delay at 18 months (defined by a Mental Development Index score <70 
using the Bayley Scales of Infant Development, Second Edition (Bayley, 1993)). 
These outcomes were analyzed using each of the ten methods for estimating 
relative risks described in Sections 2.2 and 2.3. Adjustment was made for one or 
both of the stratification variables, infant birth weight (treated as continuous) and 
gender. Stratification by recruiting hospital was performed for administrative 
purposes only and was therefore not considered in the analysis.  

Since the focus of the current article is on methods for estimating relative 
risks based on independent data, one infant per mother was randomly selected for 
inclusion in the analysis to remove clustering due to multiple pregnancies. Results 
presented here are therefore purely for illustrative purposes and should not be 
used to draw conclusions about the effectiveness of fish oil supplements for 
preterm infants. In the subset used in this analysis, 54% of the 540 infants were 
male and infant birth weight was approximately normally distributed with a mean 
of 1.3kg and a variance of 0.18kg. 

4.1 Discharged home on oxygen 

The percentage of infants discharged home on oxygen was 9.36% and 10.41% for 
the treatment and control group respectively, producing an unadjusted relative risk 
(95% confidence interval (CI)) of 0.90 (0.54, 1.50). There was no evidence to 
suggest that gender had any effect on whether the infant was discharged home on 
oxygen, however the risk of being discharged home on oxygen significantly 
decreased as birth weight increased. This example is therefore similar to the two 
covariate simulation scenarios where treatment and the binary covariate had no 
effect on the outcome, while the continuous covariate had an effect.  

Adjusted relative risks varied depending on the method and the 
covariate(s) included in the model, ranging between 0.84 and 0.93 (Table 11). 
When adjustment was made for birth weight, log binomial regression and the 
COPY 1000 method failed to converge until a variety of starting values were 
provided. These methods had the most convergence problems in the simulation 
study. CS + bootstrap produced the widest confidence interval when adjustment 
was made for birth weight and the second widest when adjustment was made for 
gender only. This is consistent with the simulation results which showed that CS 
+ bootstrap had poor precision. When adjustment was made for gender only, 
confidence intervals became narrower for log normal regression and CS methods 
but wider otherwise. This same pattern was observed in the simulation study for 
the scenarios where no adjustment was made for an important covariate (birth 
weight in this case). Despite differences between methods, the conclusion was the 
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same in each case: there was no evidence to suggest that treatment has an effect 
on the risk of being discharged home on oxygen. 

Table 11: Relative risk (95% CI) for treatment from analysis of whether infant 
was discharged home on oxygen. 

Analysis method 

Adjusted for  
gender and  
birth weight 

Adjusted for  
gender only 

Adjusted for birth 
weight only 

Log binomial regression 0.88 (0.56, 1.41) 0.90 (0.53, 1.50) 0.91 (0.57, 1.45) 
Constrained log binomial regression 0.88 (0.54, 1.44) 0.90 (0.54, 1.49) 0.91 (0.56, 1.47) 
COPY 1000 method 0.89 (0.56, 1.41) 0.90 (0.53, 1.49) 0.91 (0.57, 1.44) 
Expanded logistic regression 0.87 (0.53, 1.42) 0.90 (0.54, 1.50) 0.85 (0.52, 1.40) 
Log Poisson regression 0.87 (0.53, 1.41) 0.90 (0.54, 1.50) 0.87 (0.53, 1.40) 
Log normal regression 0.90 (0.55, 1.50) 0.86 (0.52, 1.44) 0.93 (0.56, 1.55) 
CS + delta method 0.84 (0.47, 1.51) 0.90 (0.54, 1.50) 0.85 (0.47, 1.52) 
CS + bootstrap 0.84 (0.43, 1.55) 0.90 (0.51, 1.51) 0.85 (0.45, 1.55) 
MS + delta method 0.87 (0.54, 1.40) 0.90 (0.54, 1.50) 0.87 (0.54, 1.40) 
MS + bootstrap 0.87 (0.50, 1.48) 0.90 (0.50, 1.54) 0.87 (0.52, 1.49) 

4.2 Significant mental delay 

In the treatment group, 4.03% of infants showed a significant mental delay 
compared to 9.49% of control group infants, resulting in an unadjusted relative 
risk (95% CI) of 0.43 (0.21, 0.87). There was no evidence to suggest that either 
gender or birth weight had any effect on the outcome. In this example, the risk 
was twice as high in one group compared to the other, as was the case with many 
of the simulation scenarios considered, however here the treatment reduced the 
risk, rather than increasing it.  

Adjusted relative risks ranged between 0.42 and 0.48, depending on the 
method and the covariate(s) included in the model (Table 12). The difference in 
estimates between CS and other methods that were often seen in the simulation 
study were not observed in this example. This may be due to the fact that neither 
of the covariates appeared to be having an effect on the outcome. Log normal 
regression and MS + bootstrap produced the widest confidence intervals, followed 
by CS + bootstrap. Wider confidence intervals for the bootstrapping methods 
were expected based on the results of the simulation study. The conclusion was 
the same for all methods, with strong evidence to suggest that treatment reduces 
the risk of significant mental delay. The upper limit of the 95% confidence 
interval was very close to one for log normal regression however, and a slightly 
smaller treatment effect may have resulted in different conclusions being drawn, 
depending on the method. 
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Table 12: Relative risk (95% CI) for treatment from analysis of whether infant 
had a significant mental delay. 

Analysis method 

Adjusted for  
gender and  
birth weight 

Adjusted for  
gender only 

Adjusted for birth 
weight only 

Log binomial regression 0.43 (0.20, 0.86) 0.43 (0.20, 0.85) 0.43 (0.20, 0.84) 
Constrained log binomial regression 0.43 (0.21, 0.88) 0.43 (0.21, 0.88) 0.43 (0.21, 0.87) 
COPY 1000 method 0.44 (0.21, 0.86) 0.44 (0.20, 0.86) 0.43 (0.20, 0.85) 
Expanded logistic regression 0.42 (0.21, 0.85) 0.42 (0.21, 0.86) 0.42 (0.21, 0.86) 
Log Poisson regression 0.43 (0.21, 0.87) 0.43 (0.21, 0.87) 0.42 (0.21, 0.87) 
Log normal regression 0.48 (0.23, 0.98) 0.47 (0.23, 0.96) 0.44 (0.21, 0.90) 
CS + delta method 0.42 (0.21, 0.87) 0.42 (0.21, 0.87) 0.42 (0.21, 0.87) 
CS + bootstrap 0.42 (0.19, 0.87) 0.42 (0.19, 0.87) 0.42 (0.19, 0.87) 
MS + delta method 0.43 (0.21, 0.87) 0.43 (0.21, 0.87) 0.42 (0.21, 0.87) 
MS + bootstrap 0.43 (0.18, 0.89) 0.43 (0.18, 0.90) 0.42 (0.18, 0.88) 

5 Discussion 

We have compared ten different methods for estimating relative risks from 
independent observations in a RCT setting. The simulation results indicate that 
there is variability between the methods and that the best method to use depends 
on the statistical property considered. There was often little difference between 
the best method and several competing methods, suggesting that a number of 
methods may be reasonable for use in practice. 

Few comparisons have previously been made between methods for 
estimating relative risks. One study reported improved convergence rates for 
constrained log binomial regression compared to log binomial regression but 
found that convergence was still poor in some settings (Carter et al., 2005), 
consistent with the results of this study. Previous research also shows that 
expanded logistic regression (Skov et al., 1998) and log Poisson regression 
(Barros and Hirakata, 2003; Zou, 2004; Carter et al., 2005; Petersen and Deddens, 
2008) often perform similarly to log binomial regression when there are no 
convergence problems, as confirmed by the current study. However, there is 
evidence to suggest that log Poisson regression has several advantages over 
expanded logistic regression; parameter estimates from log Poisson regression had 
greater asymptotic efficiency (Lumley et al., 2006), produced invalid predicted 
probabilities less often and generally had smaller bias and mean squared error 
(Blizzard and Hosmer, 2006). These findings are consistent with the results of the 
current study, where the median bias and maximum prevalence of invalid 
predicted probabilities were often slightly smaller for log Poisson regression 
compared to expanded logistic regression. 
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Although adjustment is often made for baseline covariates in RCTs, 
unadjusted analyses do have several advantages. Firstly, we found no 
convergence problems for unadjusted analyses, suggesting there may be no need 
to consider alternatives to log binomial regression when only unadjusted analyses 
are planned. Secondly, bias actually decreased for CS methods as a result of 
failing to adjust for an important covariate and was largely unaffected for other 
methods. This is consistent with asymptotic theory which indicates that 
unadjusted estimates of treatment effect obtained from a GLM will be unbiased 
for identity and log links but potentially biased for other links (Gail et al., 1984). 
Adjusting for an important covariate generally resulted in narrower confidence 
intervals, however. Adjusted analyses may therefore be preferred to unadjusted 
analyses in practice. A potential risk associated with performing an adjusted 
analysis is that one or more of the pre-specified baseline covariates may not 
actually have an effect on the outcome. We found little cost associated with 
adjusting for an irrelevant covariate for expanded logistic regression, log Poisson 
regression and MS methods. In contrast, other methods suffered from more 
problems with convergence (log binomial regression, constrained log binomial 
regression and the COPY 1000 method), type I error (COPY 1000 method) and 
coverage (log binomial regression and CS + bootstrap), as well as reduced 
precision (log normal regression and CS methods) when an irrelevant covariate 
was included in the model.  

Since the data were mostly simulated from a GLM with a log link, logistic 
regression methods may have been at a disadvantage compared to other methods 
due to use of an incorrect link function. Despite this, MS still performed relatively 
well in these scenarios, particularly when combined with the delta method. In 
contrast, CS performed poorly with median biases as large as 0.3 when the true 
relative risk was 2. Use of the CS method in practice could result in an important 
overstatement of the effect of an intervention if the log link is correct. When the 
logit link was correct however, both CS and MS generally performed well. If the 
data are truly logistic, then logistic regression methods are useful as they allow 
the results to be presented in a way that is easy to interpret while fitting a model 
with the appropriate form for the data. A similar approach may also be used to 
estimate relative risks based on other link functions (Cummings, 2009; Penman 
and Johnson, 2009). Interestingly, several of the methods that assume a log link 
applies (expanded logistic regression, log Poisson regression and log normal 
regression) performed well whether the data were simulated from a GLM with a 
log, logit, probit or complementary log-log link, provided the true relative risk 
was determined using MS. This suggests that these methods may be reasonable to 
use even when the log link is incorrect, provided the marginal relative risk is of 
interest. 
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Invalid predicted probabilities were occasionally produced by expanded 
logistic regression, log Poisson regression and log normal regression. The 
importance of producing valid predicted probabilities is a matter of debate 
(Blizzard and Hosmer, 2006; Lumley et al., 2006). We would argue that the 
decision between models that do or do not allow invalid predicted probabilities 
depends on the context. If the purpose of the model is to predict risk for 
individuals based on their covariate values, then use of models that allow invalid 
predicted probabilities should be avoided. However, if the model is used simply to 
estimate the overall effect of treatment, as in RCTs, then invalid predicted 
probabilities are less of a concern, provided the model generally fits the data well. 

In the simulation study, the type I error rate was determined based on a 
Wald test of the null hypothesis of no treatment effect. The Wald test was chosen 
as it could be performed for all methods considered and led to conclusions about 
the effectiveness of treatment that were consistent with the 95% confidence 
intervals. Use of other tests for some methods may be preferable in practice, 
however. We investigated type I error rates based on a likelihood ratio test for log 
binomial regression, the COPY 1000 method and logistic regression methods, and 
a score test for expanded logistic regression, log Poisson regression and log 
normal regression. Compared to the Wald test, these tests produced fewer type I 
error problems but did not alter the recommendations we make in Section 6. 

While we compared a large number of methods for estimating relative 
risks across a wide range of scenarios, the simulation study did have its 
limitations. First, it was assumed that all data were available for analysis and 
hence missing data were not considered. Missing data are a common problem in 
RCTs, although analysis may still be based on complete data if imputation 
methods are used to fill in the missing values. Second, we did not attempt to 
overcome convergence problems when they occurred. Choosing different starting 
values (Deddens et al., 2003) or estimation methods (for example, using the 
difficult option in Stata (Cummings, 2009)) may lead to convergence for the log 
binomial regression model, while altering the number of copies may improve 
convergence for the COPY 1000 method (Deddens et al., 2003). Although these 
approaches may work in some instances in practice, as illustrated in the example 
dataset, they were not feasible to investigate in a large simulation study. Finally, 
only independent observations were considered. Further research is needed to 
understand how the different methods for estimating relative risks compare when 
the data are correlated and this work is currently in progress. 

6 Recommendations 

Recommendation of a single method for estimating relative risks in practice is 
difficult, since no method performed best across all scenarios or all properties 
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considered in the simulation study. Further, differences observed between 
methods were often small and may have been due to the particular datasets 
generated in the simulation study. In some scenarios however, large differences 
were observed between methods that could have important implications in 
practice. We therefore make recommendations about which methods should be 
avoided on the basis of unacceptable performance relative to other methods in the 
context of RCTs with independent observations. 

If a single approach for estimating relative risks is of interest, CS methods 
should be avoided based on the large median percent relative biases observed in 
some settings. Bootstrap methods should also be avoided due to their relatively 
poor precision and problems with coverage in certain settings, although improved 
performance may be possible using a larger number of bootstrap samples or a 
different method for obtaining confidence intervals. Log binomial regression, 
constrained log binomial regression and the COPY 1000 method are not 
recommended as convergence problems may occur. These methods also tended to 
have more problems compared to other methods when the log link was incorrect. 
Although convergence problems were possible for log normal regression, they 
rarely occurred and only in small samples. Given that this method generally 
performed well otherwise, it may still be a reasonable approach to use in practice, 
particularly if a large study is planned. Other methods worthy of consideration in 
practice are expanded logistic regression, log Poisson regression and MS + delta 
method. These methods generally performed well in the simulation study, even 
when the log link was incorrect, provided the marginal relative risk was of 
interest. 

An alternative analysis approach, sometimes used in practice (e.g. Meade 
et al., 2008), is to try estimating relative risks using log binomial regression and 
only use another method if convergence problems occur. This approach seems 
reasonable, since the simulation study showed that log binomial regression 
generally performed well when it converged. If log binomial regression fails to 
converge, constrained log binomial regression and the COPY 1000 method are 
not recommended due to the possibility of further convergence problems. 
Additionally, constrained log binomial regression performed relatively poorly in 
terms of type I error and coverage when log binomial regression did not converge, 
although it was often most powerful. CS methods should also not be used based 
on problems with bias, precision and coverage in some settings. This leaves 
expanded logistic regression, log Poisson regression, log normal regression and 
MS methods for consideration in practice. Again, convergence problems could 
occur for log normal regression but given the rarity of such problems in the 
simulation study, we chose not to exclude this method from consideration on this 
basis. 
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Since several different methods may be appropriate for estimating relative 
risks based on statistical properties, it is important to consider other factors when 
choosing between them. Log Poisson regression and log normal regression are 
very simple to describe and implement, making them appealing options in 
practice. An additional advantage of log Poisson regression is that it is now 
widely used, making it a more recognizable and potentially acceptable choice. 
Expanded logistic regression is also quite simple to implement but a preliminary 
data manipulation step is required and explanation is more difficult. MS methods 
may not be the best choice in practice as they are complex to describe and 
implement. Currently they require detailed user-written programs in SAS, 
although this may change with future software developments. Log normal 
regression appears to be more sensitive to deviations from the assumed log link 
compared to the other methods. 

Whichever approach is chosen to estimate relative risks in practice, it is 
important to pre-specify the approach. The results of the simulation study showed 
that different methods can lead to different conclusions about the effectiveness of 
treatment, with conclusions varying between methods for up to 13.6% of 
simulated datasets. Thus, pre-specification is necessary to avoid the possibility of 
choosing a method based on favorability of the results. 

In conclusion, log binomial regression can be a useful tool for providing a 
clinically meaningful estimate of the effect of treatment on a binary outcome 
while controlling for potential confounders. This model may fail to converge 
however, and alternative methods for estimating relative risks are therefore 
required. If log binomial regression is pre-specified as the method of analysis for 
a binary outcome in a RCT and adjusted analyses are planned, we recommend 
pre-specifying an alternative approach that will be used in the event that log 
binomial regression fails to converge and specifying different starting values for 
the parameter estimates does not resolve the problem. Of the many alternative 
methods available, log Poisson regression would be a good choice in practice.  
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