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Abstract

Regression models for functional responses and scalar predictors are often fitted by means of
basis functions, with quadratic roughness penalties applied to avoid overfitting. The fitting
approach described by Ramsay and Silverman in the 1990s amounts to a penalized ordinary least
squares (P-OLS) estimator of the coefficient functions. We recast this estimator as a generalized
ridge regression estimator, and present a penalized generalized least squares (P-GLS) alternative.
We describe algorithms by which both estimators can be implemented, with automatic selection of
optimal smoothing parameters, in a more computationally efficient manner than has heretofore
been available. We discuss pointwise confidence intervals for the coefficient functions,
simultaneous inference by permutation tests, and model selection, including a novel notion of
pointwise model selection. P-OLS and P-GLS are compared in a simulation study. Our methods
are illustrated with an analysis of age effects in a functional magnetic resonance imaging data set,
as well as a reanalysis of a now-classic Canadian weather data set. An R package implementing
the methods is publicly available.
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1 Introduction

A broad array of regression models have been proposed for settings in which the
observations take the form of entire curves or functions. It has become conventional
to distinguish among three basic situations (Ramsay and Silverman, 2005; Chiou et
al., 2004):

1. both the responses and the predictors are functions—what might be termed
function-on-function regression;

2. the responses are scalars and the predictors are functions (scalar-on-function
regression);

3. the responses are functions and the predictors are scalars (function-on-scalar
regression).

The terms “functional regression” and “functional linear model” have been applied
to each of these scenarios, so it is important to be clear as to which of the three is
under discussion. This paper describes methodological and computational advances
for the third scenario, function-on-scalar regression.

Our starting point is the formulation of function-on-scalar regression in Section
13.4 of Ramsay and Silverman (2005; hereafter RS), which we begin by briefly
recapitulating. The basic model is

(D y(t) =ZB(t) + ().

Here the argument 7 ranges over some finite interval T C %; y(t) is an N-dimensional
“vector of functional responses,”’ 1.e., a vector-valued function with values in AN
Zis an N x g design matrix; B(t) = [Bi(t), ..., B4(t)]T is the vector of functional ef-
fects that we seek to estimate; and £(7) is a vector of error functions €, (¢),...,&en(t),
assumed to be drawn from a stochastic process with expectation zero at each 7. The
actual response data may come in one of two forms. We may be given a raw re-
sponse matrix

2 Y= [yl'(tj)} 1<i<N,1<j<n
derived by sampling the N response curves at points #1,...,%,. Alternatively, if
the outcomes lie in the span of a set of basis functions 6y,..., 0k, they can be

specified by an N x K matrix C of basis coefficients such that y(r) = C0(r), where
0(1) =[61(r),..., 0k (1)]".

Whether the responses are given in raw form or as basis coefficients, we posit
that the coefficient functions f,..., B, lie in the span of 6,..., . The problem is
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thereby reduced to estimating B = (b .. .bq)T, the g x K matrix of basis coefficients
determining the coefficient functions via

3) Bi(t) =blo(r) fork=1,...,q.

A key feature of this basis function approach is the use of quadratic roughness
penalties to avoid overfitting in the estimation of B.

In RS’s formulation, the response and coefficient functions may be expanded in
two different bases. For our purposes, as explained in Appendix A, it suffices to
assume the same basis is used for both.

The above framework is probably the most common “entry point” for biostatis-
ticians and other data analysts interested in function-on-scalar regression, due to
the relative simplicity and accessibility of the basis function-roughness penalty ap-
proach, the status of RS as a foundational text of functional data analysis, and the
wide dissemination of associated software for R and Matlab (Ramsay et al., 2009).
Still, this basic model does not seem to have been incorporated into many data ana-
lysts’ toolkits, in spite of its wide and growing range of potential applications. We
attribute this to several factors:

1. Although the roughness penalty approach is familiar to readers of RS, the
function-on-scalar regression problem entails somewhat involved matrix al-
gebra, so that the route to obtaining the optimal B may seem more opaque
than for other problems solved by roughness penalization.

2. The critical choice of the optimal degree of smoothing requires cross-valida-
tion, which is very time-consuming (Ramsay et al., 2009, p. 154). Given
the need for rapid implementation of modern data analyses, this may render
function-on-scalar regression infeasible in many applications.

3. The basis coefficient matrix C of the responses, as opposed to the raw re-
sponses Y, is emphasized in RS’s treatment and is assumed in the associated
software (Ramsay et al., 2009), whereas other authors have generally worked
with the raw data.! This and perhaps other differences in formulation have
hindered cross-fertilization between RS’s work and related models, some of
which are not explicitly “functional.”?

I'This difference is at least partly driven by disparate applications. RS are primarily interested in
densely sampled data for which reduction to basis coefficients may be a practical necessity. Related
work often deals with longitudinal data that is sparsely and/or irregularly sampled, possibly with
significant measurement error; here raw responses are more appropriate. The methods of this paper
are developed with the former class of applications in mind.

%In particular, RS (p. 259) note that functional-response models are related to varying-coefficient
models, and suggest that methods developed for the latter may be useful for the former. Indeed,
model (1) can be viewed as a repeated-measures varying-coefficient model.
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Our reconsideration of model (1) addresses each of these issues:

1. By a subtle modification of RS’s development, we reduce the objective func-
tion to the familiar generalized ridge regression form appearing in the rough-
ness penalty approach to nonparametric regression.

2. This reformulation motivates a computational shortcut that enables cross-
validation to be performed much faster than with existing software (Sec-
tion 8.1 discusses a classic data set for which speed is improved by two orders
of magnitude).

3. We show how our framework casts the RS estimate as a penalized ordinary
least squares (P-OLS) solution. This motivates a penalized generalized least
squares (P-GLS) model in basis coefficient space, extending RS’s model and
bridging the gap between it and recent work in the varying-coefficient model
literature.

Our work was motivated by a functional magnetic resonance imaging (fMRI)
study investigating functional connectivity, or temporal correlation among signals
in different brain locations. By a procedure outlined in Section 8.2, one can ex-
press connectivity between locations as a function of the distance between them.
Figure 1 displays functions of this kind for each of 59 participants. There is neu-
roscientific evidence that the relationship between distance and connectivity may
vary with age, and the figure suggests that there may indeed be systematic differ-
ences between the older and younger participants, in particular at short distances.
Our application of function-on-scalar regression to model the effect of age on the
connectivity functions will be presented in Section 8.2.

The contributions of this paper can be summarized as follows. First, we de-
scribe computationally efficient cross-validation for P-OLS, implemented in the
new refund package for R (R Development Core Team, 2010). Second, we extend
RS’s model to P-GLS, with fast automatic selection of multiple smoothing param-
eters. Third, we present a generalized ridge regression framework for function-on-
scalar regression that encompasses both P-OLS and P-GLS. Fourth, we introduce
a novel notion of pointwise model selection, which may be more useful than tra-
ditional “overall” model selection in many applications. Fifth, we describe two
distinct interval estimation approaches appropriate for P-OLS and for P-GLS re-
spectively. Sixth, we compare P-OLS and several variants of P-GLS via simulations
and with reference to the neuroimaging data set mentioned above.

Following some brief remarks on related models in Section 2, we begin our
main development in Section 3, in which the P-OLS estimator of RS is derived as
a generalized ridge estimator. Our P-GLS extension of RS’s model is described
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Figure 1: Functional connectivity between brain regions as a function of distance
between the regions, for each of 59 individuals. The darker curves represent partic-
ipants whose age is below the sample median.

in Section 4. Section 5 shows how our methods achieve computationally efficient
automatic smoothing parameter selection. Section 6 discusses confidence intervals,
hypothesis testing, and model selection. Comparative simulations and real data
analyses appear in Sections 7 and 8, and Section 9 offers concluding remarks.

2 Some related methods

Before proceeding we shall offer some remarks on related models. In practical
terms (at least when working with the raw responses), model (1) is equivalent to
a varying-coefficient model (Hastie and Tibshirani, 1993) with repeated measure-
ments. In conceptual terms, however, the functional data analysis (FDA) viewpoint
casts the model somewhat differently than the traditional repeated measures or lon-
gitudinal data viewpoint. If our data come from N subjects, each observed at times
t1,...,t,, then the longitudinal data paradigm views the values y;i,...,y;, for sub-
ject i as n distinct responses, whereas the FDA perspective posits a single functional
datum y;(-) that has been sampled at n points.

In the FDA framework, if we were to replace;z , the vector of predictors for the
ith functional response, with z;(¢)—for 7 representing time, this would be referred
to as time-varying predictors—the problem would be changed from function-on-
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scalar to a form of function-on-function regression, specifically the “concurrent”
model treated in Chapter 14 of RS. In this paper we restrict attention to function-
on-scalar regression, i.e., non-time-varying predictors, for simplicity.

The most commonly used penalized basis functions for functional data are
splines. The low-rank penalized spline bases favored by RS may be contrasted with
two alternative spline approaches. On the one hand, roughness penalization allows
for the use of a rich basis, as opposed to unpenalized spline approaches (Huang et
al., 2004) that may require a careful choice of a limited number of knots. On the
other hand, low-rank spline bases may offer substantial computational savings over
smoothing splines with a knot at each observation point, even when the latter are
efficiently implemented as in Eubank et al. (2004).

A key challenge in function-on-scalar regression is how to contend with de-
pendence among the error terms for a given functional response. More explicitly,
suppose we are given raw responses (2). Writing the associated stochastic terms as
[&i(t))] I<i<N.1<j<p W€ assume that & (tj,), &,(t},) are independent when i; # iy,
but need not be when i; = i>. One way to address this within-function dependence
is to try to remove it, by incorporating curve-specific effects in the model such that
the remaining error can be viewed as independent and identically distributed. Indi-
vidual curves may be treated as fixed effects (Brumback and Rice, 1998), but have
more often been modeled as random effects (Guo, 2002; Crainiceanu and Ruppert,
2004; Bugli and Lambert, 2006). In this paper we are interested in fast computation
with a possibly large number of functional responses, for which estimating individ-
ual curves may become infeasible. We therefore focus on the P-OLS and P-GLS
methods, which retain within-function dependence but offer contrasting ways of
dealing with it.

It should also be noted that function-on-scalar regression models can be fitted
by approaches other than spline-type basis functions, including kernel and local
polynomial smoothers (e.g., Fan and Zhang, 2000; Chiou et al., 2003, 2004) and
wavelets (e.g., Morris and Carroll, 2006; Abramovich and Angelini, 2006; Anto-
niadis and Sapatinas, 2007; Ogden and Greene, 2010).

3 The Ramsay-Silverman penalized ordinary least squares estimator

This section revisits RS’s function-on-scalar regression estimator. Our derivation
differs from that of RS (Section 13.4), and in particular shows how the solution can
be viewed as a generalized ridge regression estimator. This is not merely an exercise
in matrix algebra: rather, the ridge regression viewpoint has two key advantages.
First, it motivates the enormous computational improvements mentioned above.
Second, it casts RS’s estimator as a P-OLS estimator, and points the way toward a
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P-GLS alternative. We begin with the more conventional raw response form, and
then proceed to the basis coefficient response form; we also derive the latter as a
limiting case of the former.

3.1 Responses in raw form: the simplest case

The generalized ridge regression form of the (raw-response) estimator is most trans-
parent in the degenerate case in which N = g = 1. Here the raw response ma-
trix ¥ and parameter matrix B reduce to row vectors y! € %" and b’ € ZX. In
view of (3), model (1) reduces to the simple nonparametric regression model y =
O®b + €, where O is the basis function evaluation matrix [6;(#;)]1<i<n,1<<k, and
e =[e(ty),...,&(t;)]T. (Note that we are temporarily using y and € to denote vec-
tors in %", as opposed to the %" -valued functions y(-) and &(-) defined above.)
Taking X = © allows us to write this model in the generic form

“) y=Xb+e.

Assuming a rich basis, the least-squares solution b to (4) will yield a function esti-

A

mate 3(¢) = @TG(I) that is excessively wiggly. Instead we minimize the penalized
sum of squared errors (SSE) criterion

5) |y — Xb||> + b Pb,

where P is a positive-semidefinite K x K matrix such that b7 Pb provides a measure
of the wiggliness of b7 0(t). This so-called roughness penalty is often given by
P = A [[L(b" 0)(t)]?dt where A is a nonnegative tuning parameter and L is a linear
differential operator such as the second derivative operator, for which the above
integral equals [ B”(¢)2dt. Criterion (5) is minimized by

(6) h=xTx+P) " xTy.

We show next that, for general N and ¢, the RS estimator still has the generalized
ridge regression form (6).

3.2 Responses in raw form: the general case

In general the raw responses are modeled as ¥ = ZBO®T + E,> where E is the error
matrix [&(z j)]]SiSN 1<j<n- RS (p. 239) propose to estimate B by the minimizer of

3 Applications in which it is appropriate to use different bases for the ¢ coefficient functions
require a more complex formulation; see Section 14.4 of RS.
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the penalized SSE

) Z Z yilt)) — (2BOT) P+ Y A / b7 0)(1)]2dt.

i=1j= k=1

This is the double SSE over the n points at which each of the N functions is sampled,
plus roughness penalties on each of the coefficient functions B(-) = b} 0(-), k =
1,...,q.

To minimize criterion (7) we require the vec operator and Kronecker products.
Recall that vec(M) is the vector formed by concatenating the columns of M, and
that, given the my x ny matrix A with (i, j) entry a;;, and the mp X ng matrix B,
the Kronecker product A ® B is the (mampg) x (nang) matrix (a;;B)1<i<m,,1<j<n,-
We can now express the second term of (7) as vec(B )" (A ® R)vec(B"), where
A =diag(A1,...,Ay) and Ris the K x K matrix with (i, j) entry [(L6;)(¢)(L6;)(t)dt;
and, using the standard identity

(8) vec(ABCT) = (C®A)vec(B),
the first term of (7) equals
[vec(YT) — vec[(zBOT)T] 12 = |[vec(YT) — (Z2 ®)vec(BT)|>.

Defining Py = A ® R, we can then rewrite criterion (7) in form (5) with outcome
vector y = vec(Y7), design matrix X = Z® ©, penalty matrix P = P, and estimand
b = vec(BT). Thus, for given values of A1, ... , Ag, formula (6) leads directly to the
estimate (in vector form)

vee(B') = [(Z20)T(220)+ Py (Z2©) vee(¥T).

Another application of (8), along with other standard Kronecker product results,
leads to an alternative expression that may be more convenient (cf. eq. (13.25) of
RS):

9) vee(B') = [(Z72) @ (07@) + P5] ' (Z2©) vec(¥T).

To provide some intuition about viewing Z ® ® as the design matrix, we note
that, whereas ordinary linear regression models the linear dependence of a scalar re-
sponse on each predictor, here we are modeling the smooth dependence—captured
by K basis coefficients—of n sampled points of a response function on each pre-
dictor. Thus each entry z;; of the “base” design matrix Z gives rise to an n x K
submatrix, z;;0, of the derived design matrix Z® ©.

It is worth noting that if we replace ® with I,,, which may be thought of as a
degenerate case of restriction to the span of a basis, then (9) becomes a special case
of the (n-dimensional) multivariate ridge regression estimate of Brown and Zidek
(1980).
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3.3 Responses in basis coefficient form

When the responses are given in the form of an N x K matrix C = (c|...cy)T of
basis coefficients, B is estimated as the minimizer of

(10) /||ce( —7BO(1) ||2dt+27Lk/ (BT 0) (1)) .

Comparing this with (7), we see that the double SSE has been replaced by the
integral over ¢ of the SSE at point ¢, i.e. of Y [T 6(¢) — 2/ BO(¢)]*.

As in the raw response case, we can minimize (10) by formulating it as a gen-
eralized ridge regression criterion. Let Jgg be the K X K matrix with (i, j) entry
J 6i(t)0;(t)dt. Appendix B shows that criterion (10) can be expressed as

(11) Ivec(J 42 CT) — (Z @ Ty ) vec(BT |12 + vec(BT)T Pavec(BT),

which, like (7), has the generalized ridge form (5) with b = vec(BT) and P = Py,
but in this case the outcome vector is

1/2

(12) y=vec(JgyCT) =

12

and the design matrix is X =Z®J, / . Formula (6) thus yields the estimate

(13) vec(B) = |(ZoJY) (Z@Jy3) +Pa| (Z®J1/2) ec(/2CT).

One can gain some intuition into this solution by viewing the first (SSE) term
of (10), (11) as the SSE for a multivariate linear model with basis coefficients as
responses:*

1/2,

(14)  Jylei =Ty

Bl zi4u; = (7] ®J1/2)Vec(BT)—|—u,- fori=1,...,N,

where the error vectors u; = (i1, . .. ,u,-K)T are assumed independent of each other
with common mean zero and covariance matrix X.
It is instructive to contrast the above design matrix Z®J 4, 12 with the raw-

response design matrix Z ® O (see the end of Section 3.2). The submatrices ZijJ é/ez

“More precisely, the responses are coefficients with respect to the orthonormal basis given by

the components of the %X -valued function ¢ — J,, 00 1/ 26(t). Similarly, outcome vector (12) is the
concatenation of the N response functions’ coefficients with respect to this orthonormal basis.
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of the former, like those of the latter, consist of K columns corresponding to the co-
efficient functions’ expansion with respect to K basis functions. However, whereas
the latter submatrices have n rows, the former have K—expressing the assumption
that, even if the functional response data consist of a large number n of points,
these contain no more than K “pieces of information” given by K basis coefficients.
When Jgg = Ik, (13) reduces again to the multivariate ridge regression estimate
of Brown and Zidek (1980), but in this case the multivariate response is the basis
coefficient vector.

In Appendix B we provide further insight into criterion (10) by showing that, in
the orthonormal basis (Jgg = Ik) case, its first term reduces to ||C — ZB||%, where
| - ||[F denotes the Frobenius norm—i.e., the sum of squared differences between
corresponding entries of the N x K matrices C (the observed basis coefficients) and
ZB (the fitted values of the basis coefficients).

3.4 Relationship between the raw-response and basis coefficient estimators

Estimate (13) can be derived as a limiting case of the raw-response solution given
above, after a bit of rescaling. To simplify the following, assume 7 = [0,1]. If
we replace the first term of (7) with 1 ¥V | Y ity) — (zB®T);,]?, then the raw-
response estimate (9) becomes

-1
(15) Vec(BT) = {(ZTZ) ® (%@T('D) —|—PA} vec (%@TYTZ) :

If we assume a uniform grid of points #; = j/n for j =1,...,n then, as n — oo,
+07@ — Jgg and 1O"YT — M, where M = [ 6(1)yi(t)dt]| <<k i <j<y- We can
alternatively write M = [[ 6k (t)(Poyi)(#)dt]| <1<k 1 <i<n> Where Pp is the projection
in L2(]0, 1]) onto the span of the basis functions 6y, ..., 8. It follows that if, for
i=1,...,N, the projection of y;(-) onto this span is given by ¢! 6(-) where ¢; € ZX,
then M = JgoC” where C is the N x K matrix with ith row ciT. Consequently, in the
limit as n — oo, (15) becomes

(16) vec(B") = [(Z72) @ Jog +Pa] " vec(J9aCT Z),

which is readily shown to equal (13) (cf. RS’s (p. 238) equivalent formula for
vec(B)).

The above argument says that, for a given basis, fitting the raw-response model
for functions sampled on a dense grid is essentially equivalent to projecting the
responses onto the basis and then fitting the basis-coefficient model. In this sense,
reducing densely sampled responses to their basis expansion entails no real loss of
information.
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4 Penalized generalized least squares

It is well known that, for a linear model with errors that are not independent and
identically distributed, the best linear unbiased estimate of the coefficient vector is
given by GLS using the inverse of the error covariance matrix. Two complications
arise in our setting. First, it is not clear whether the optimality of unpenalized GLS
would carry over to function-on-scalar regression with penalized basis functions
(but see Lin et al., 2004, Section 5, for a minimum-variance result that may be
relevant). Second, GLS presupposes a known covariance matrix, but in practice the
covariance must be estimated, so that the resulting estimator is technically known
as feasible GLS. For brevity, however, we shall refer to our penalized feasible GLS
procedure as P-GLS.

4.1 Algorithm

The key ingredient of P-GLS is an estimate of the covariance matrix of the outcomes

given by (12), conditional on the scalar predictors, i.e., the NK x NK covariance ma-
ui

trix of the error vectors : referred to in (14). Under the assumptions given
un

below (14), the covariance matrix can be written as Iy ® X (cf. the “seemingly unre-

lated regression” of Zellner, 1962), and the problem reduces to estimating the K x K

matrix £ = Cov(u;). This can be done using the N x K matrix U = (i1 ...7y)7 of

P-OLS residuals given by

(17) vec(UT) = Vec(Jle/ezCT) - (Z®J]9/92)vec(l§gm),

where Bops is the P-OLS estimate (16). Let U * denote the matrix formed from U
by centering each column. The covariance can then be estimated by ¥ = U T /d
for a suitable d. It would be natural to take d = N —d f where df is the residual
degrees of freedom, but in this context, defining the latter quantity is not straightfor-
ward. It therefore seems most reasonable to take d = N, which yields the maximum
likelihood estimate (MLE) under normality.

Given our covariance estimate, the P-GLS criterion is obtained by replacing the
first (SSE) term of (11) with
[vec(ﬂe/;cT) —(Z® J},ﬁf)vec(BT)} Nyt [vec(Jle/;cT) — (z@T§)vec(BT)] .
(18)

DOI: 10.2202/1557-4679.1246 10
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As above, one can use a generalized ridge regression representation to derive the
minimizer

A A — -1 A —
(19)  vec(B") = [(Z72) @ (1ygS  TYD) + Pa|  vec(yiS Iy EC Z)

(see Appendix C). Note that this estimate reduces to (16) when =1
As in Krafty et al. (2008), we may wish to estimate B by an iterative P-GLS
procedure:

1. Compute the P-OLS estimate VGC(BZLS) by (16).

2. Use the residuals (17) to obtain a covariance matrix estimate ¥, and insert 3
) ) .. ) AT
into (19) to derive a provisional P-GLS estimate vec(Bg;g)-

3. Return to step 2 (now using the P-GLS residuals), and repeat until conver-
gence of Bgrs.

One goal of the simulations in Section 7 is to evaluate whether iterating to conver-
gence improves the performance of P-GLS.

4.2 Other approaches to covariance estimation

The MLE £ can be inverted only if N > K, and even if this inequality holds, the esti-
mate may become unstable for large K. Krafty et al. (2008), in a repeated-measures
setting, assume a covariance matrix of the form I' 4+ %1, where 6% might be inter-
preted as measurement error, and employ a Kullback-Leibler criterion to regularize
the covariance estimate. Their method requires cross-validation over two tuning pa-
rameters. This covariance model is especially appropriate when the data are sparse
and noisy and when covariance estimation is of intrinsic interest (Yao et al., 2005).
In the RS framework, however, the basis coefficients are generally taken to represent
denoised functional data, obviating the need for such a computationally intensive
approach. A less computationally demanding regularized estimate of the covari-
ance matrix, using the optimal shrinkage method of Schifer and Strimmer (2005),
was tested in simulations (not shown) but did not appear to improve performance.
In the nonparametric regression literature, some authors have used mixed model
software to perform smoothing and estimate correlation structure simultaneously
(e.g., Wang, 1998; Durban and Currie, 2003; Krivobokova and Kauermann, 2007).
An analogous approach might be attempted for function-on-scalar regression, as an
alternative to P-GLS. However, this would entail imposing one of several standard
parametric correlation structures; and for some examples, such as the periodic func-
tional data considered in Section 8.1, none of these structures may be appropriate.

11
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5 Smoothness selection

Selection of the smoothing parameters A1, ..., A, is a crucial step,’ and it is here that
our approach attains notable computational efficiency, as this section will explain.

5.1 Leave-one-function-out cross-validation for P-OLS

In the P-OLS setting, the smoothing parameters are usually chosen by a cross-
validation (CV) procedure in which one function is left out at a time (Rice and
Silverman, 1991). The criterion to be minimized is the cross-validated integrated
squared error

1y , (=) (12
20) N L b0 =5
(=)

. (+) is the predicted value for the ith functional response, based on the

model fitted to the other N — 1 functional responses. Letting ¢; and 65_0 denote the
vectors of basis coefficients determining the two functions in (20), the CV criterion

(20) is equal to

LS 12 0 -2
21) v L Weg (ci=& I
i=1

where §

Direct computation of (21) would require fitting the model to almost the entire
data set N times, but this can be avoided by a trick that we shall explain in reference
to the generic penalized regression criterion (5). Suppose the outcome vector is
partitioned into N groups, say y = (y{, . ,y%})T. Let H be the “hat matrix” such
that minimizing (5) yields fitted values $ = (37,...,91)T = Hy, and partition H
into blocks determined by the N groups: H = (H;;)1<i<n,i<j<n - Consider a CV
procedure in which the same model is refitted with each group deleted in turn,
and let jfg_l) denote the fitted values for the ith group based on the group-i-deleted
model. It can be shown by the Sherman-Morrison-Woodbury formula (e.g., Golub

and Van Loan, 1996) that
(22) vi— 3 = (= Hi) i 9)).

If the N groups have one element each, this reduces to y; — yl(_i) =y —9:1)/(1—
hi;) where hj; is the ith diagonal element of H. This last identity provides a well-
known computational shortcut for ordinary leave-one-out CV. The more general

3Since smoothness is controlled by A, .. ., Ay, the precise choice of the number of basis functions
K is generally seen as much less critical, as long as it is large enough to capture the detail of the
function(s) being estimated. Hence K is often chosen informally (e.g., Ruppert, 2002; Ruppert et
al., 2003, pp. 125-127; Wood, 20064, p. 161).
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identity (22) has been used previously for leave-one-function-out CV (Hoover et al.,
1998), as well as for multifold CV (Zhang, 1993); our generalized ridge regression
reformulation of RS’s development is what makes it available in the present setting

as well. Here the left side of (22) equals J i)/ez(ci — 6(_i)). Using the results of

Section 3.3 to evaluate the right side of (22), criterion (21) becomes

NZII[IK_(Zi ©Jg9){(Z'2)©Jo0 +Pr}  (zi® g )] oo (ci—Ci)y -
i=1

Whereas repeated model fits would require inverting N K(N — 1) x K(N — 1) matri-
ces, the most expensive part of evaluating the above expression is inverting N K x K
matrices.

We remark that efficiency might be further improved by using k-fold rather than
leave-one-out CV, say with k =5 or 10. It should also be noted that smoothness
selection for generalized ridge regression is usually accomplished by optimizing not
CV but either generalized cross-validation (GCV) or restricted maximum likelihood
(REML) (Reiss and Ogden, 2009). However, the latter two criteria presuppose
that the error covariance either is a multiple of the identity, or else is taken into
account—either by using P-GLS, or by simultaneous estimation of the dependence
structure as mentioned in Section 4.2.

In the single smoothing parameter case, i.e. when 4| =.. =24, = A4, the CV cri-
terion can be computed rapidly for different values of A by using Demmler-Reinsch
orthogonalization (e.g., Ruppert et al., 2003). As an alternative to the usual grid
search, the generic minimizer implemented in the R function optimize (Brent,
1973) appears to work quite well for finding the minimum of the CV score as a
function of A. Minimizing the CV score as a function of multiple smoothing pa-
rameters seems much more difficult, and our current implementation works only for
the common smoothing parameter case. The disadvantages of this restriction may
be overcome to some degree by scaling each predictor to have unit mean square;
see also Section 8.2.

5.2 P-GLS

As noted above, the automatic smoothing parameter selection criteria GCV and
REML are available for P-GLS. REML appears to be more popular for regression
with functional responses (e.g., Brumback and Rice, 1998; Guo, 2002; Krafty et al.,
2008), and is a particularly natural choice when the model includes random effects.
The demonstration by Krivobokova and Kauermann (2007) that REML is more
robust than GCV to misspecification of the correlation structure provides further
support for favoring REML in the present setting. In our implementation, smooth-
ing parameters are optimized efficiently, within each iteration of the algorithm of

13
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Section 4.1, by calling the gam function in the mgcv package (Wood, 2006a), to
which a REML option has recently been added (Wood, 2010). This function is, to
the best of our knowledge, the most stable and efficient publicly available software
for estimation of separate smoothing parameters A1, ..., 4, in models of generalized
ridge regression type.

6 Inference

6.1 Pointwise confidence intervals

To derive approximate standard errors for the function estimates ﬁi(t), observe that
Bil)=0()" B er =[ef ©0(1)" |vec(B")

where ¢; denotes the vector in Z¢ with 1 in the ith position and O elsewhere, and
thus Var[Bi(t)] = [T ® 6(r)T|Var[vec(B")][e; ® 8(t)]. The problem reduces, then,
to estimating the variance of Vec(BT). Different approaches to this task have been
proposed for P-OLS and for P-GLS. In either case, however, the variance estim:‘iltor
can be explained more clearly by referring to the generic expression (6) with b =
Vec(BT).

For P-OLS, (6) suggests the variance estimate

Var[vec(B")] = (X7 X + P) ' X Var(y|X)X (XTX + P) "

with y, X and P as given in the text immediately preceding (13). As in Section 4.1
we can take Var(y|X) = Iy ® X, where X is the MLE derived from the residuals in
the basis-coefficient domain. Plugging in the values of X and P yields

23)  Varlvec(B))] = (25T Z5+ PA) ' 25T (Iy 0 £)Z3(Z T 25+ Pa) !,
where Z; = Z®J

An analogous expression could be derived for P-GLS. Note, however, that this
estimate ignores the added variation due to the need to estimate A. In addition,
confidence intervals based on (23) may have poor coverage since the roughness
penalty introduces bias in the estimation of vec(B”) (Wood, 2006a, 2006b). The
latter problem can be remedied by instead using Bayesian confidence intervals, or
credible intervals, as developed by Wahba (1983) and Silverman (1985). In Ap-
pendix C we obtain the posterior covariance estimate from which such intervals can
be derived:

T A —1
(24) Var[vec(BT)|Y] = 62| (27 2) @ (1§38 1y + Py
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where 67 is a residual variance estimate given there. Appendix C also explains why

this approach works only for P-GLS but not for P-OLS. In summary, then, we base
interval estimation on the frequentist formula (23) for P-OLS, and on the Bayesian
formula (24) for P-GLS.

6.2 Hypothesis testing

RS (p. 227) propose to test the effects of a set of scalar predictors in pointwise
fashion by means of F-statistics. Suppose we wish to test a null model with design
matrix Zg against the alternative model (1). The statistic at point ¢ is given by

(ly(r) = ZoBo(1)|? —lly(@) —ZB(1)|*)/(m —mo)
(@) =ZB@)]I?/ (N —m)

where BO, 3 are the function estimates, and mg, m are the model degrees of free-
dom, for the null and alternative models respectively. Given the dependence among
models at different ¢s, F(¢) may not have the F;,_,, N—m distribution under the null
model. But in any case, inference is not usually performed by referring F(z) at
a particular ¢ to an F distribution. More often, one conducts simultaneous test-
ing by comparing the observed {F(¢) : t € J} to the permutation distribution of
sup,c 7 F (t). In practice, one approximates this distribution by Monte Carlo simu-
lation. The null model can then be rejected at the 100a% level if, for some ¢, F ()
exceeds the 100(1 — &) percentile of the permuted-data values of sup,. 5 F(t).

F(t) =

)

6.3 Overall and pointwise model selection

If permutation tests confirm that each of several scalar predictors has a significant
effect on the functional outcome, it is natural to ask which of these is the most pre-
dictive. More generally we may be interested in choosing the best among several
possibly non-nested function-on-scalar regression models. The P-OLS method of-
fers the most straightforward approach to model selection: one can simply select
the model with the lowest cross-validated integrated squared error (20).

In at least some applications, however, it may make sense to allow for a different
“best” model within different subsets of .7, the response functions’ domain. It is
natural to perform pointwise model selection criterion for each r € .7 using the
cross-validated pointwise squared error v ¥~ | [y;(t) — )?Efl) (t)]?, i.e. the quantity
whose integral over 7 equals (20). Note that since the functional linear model

“borrows strength” across values of ¢ and thus obtains a smooth estimate of )75_1) (),

the proposed pointwise CV criterion should be more stable than naive ordinary
CV based on fitting the model separately at each ¢. In practice one would use the
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equivalent expression 3 YN [(c; — 6§_i))T6(t)]2, which can be computed without

repeated model fits by the methods of Section 5.1.
7 Comparative simulations

We conducted a simulation study using the three-group one-way functional ANOVA
model® y;(r) = p(t) + Bgp(s) (t) + &(t) (¢t € [0,1]), where gp(i) denotes the group
(1, 2, or 3) to which the ith functional response belongs. The mean function
u(t) = 0.4arctan(10x — 5) 4 0.6, and the group effect functions B (t) = —0.5¢~ 1
—0.045sin(8¢) —0.3t+0.5, B2 (t) = —(t —0.5)> —0.15sin(13¢), and B3 () = — B (t) —
Ba(t), are shown in the top panels of Figure 2. The error functions &;(-) were sim-
ulated from a mean-zero Gaussian process with covariance V (s,1) = 6120.15|S_’ |+
62255,, where &y = 1 if s =t and = 0 otherwise, sampled at r = m /200 for m =
0,...,200 (cf. Section 4.2 above). Note that, although we adopt a fixed-effects
modeling approach in this paper, for purposes of simulating functional responses it
is more natural to think of V (s,#) as arising from a mixed model in which the er-
ror is decomposed as &(r) = & (¢) + &x(t), where Cov[g;i (s), &1 ()] = 620.1515],
Cov(en(s),en(t)] = Gzz&,, and €1,..., €&y are independent of €5, ..., Eyy. In mixed
model terms, [ (2) + Bgp (i) () + €1 (¢) is the underlying true function for observation
IR 612 represents the variation among the true functions in each group; and 622 rep-
resents the noise or error variance at each point of these functions, possibly due to
measurement error. We used samples of N, = 10,60 for each of the three groups,
and two levels of the among-function standard deviation o7 (0.05 and 0.15); 0> was
fixed at 0.05. For each combination of N, and o7, we simulated 500 data sets, and
fitted the model by four methods:

1. P-OLS with a common smoothing parameter A for all four coefficient func-
tions being estimated, chosen by cross-validation;

2. P-GLS with a common A chosen by REML and with ¥ estimated only once,
i.e., only one step of the iterative algorithm;

3. same as method 2, but with iteration to convergence;
4. same as method 2, but with separate smoothing parameters A;—A4.

The raw responses were smoothed with a 20-knot cubic B-spline basis, by means
of the R function smooth.spline, to produce functions similar to those shown at

This is not to be confused with the very different type of functional ANOVA studied, for in-
stance, by Hooker (2007).
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the bottom of Figure 2; model fitting was then performed on the responses in spline
coefficient form. We imposed the constraint 8 (¢) + B2(¢) + B3(¢) = 0 at each ¢ by
a standard device (Wood, 2006a, pp. 185-186). In simulations not reported here,
we tried using GCV rather than REML for the above three versions of P-GLS. The
results tended to be slightly worse than with REML.

Mean function p Effect functions B;
<
°© p
— 1
3 o B
° 3
o _| L
; s / h\
©o _| S 7
) ~ \\_//
< _| s — /
=} ! ~__
o~ | <
S 3

15

0.5 1.0
|

0.0
|

-05 00 05 10 15

Figure 2: Top: Mean function u(-) and group effect functions f;(-) (i = 1,2,3)
for the simulations. Bottom: Example smoothed response functions for the three
groups, color-coded as in the top right panel, with o7 = 0.05 and with o7 = 0.15.

Figure 3 presents 1000 times the mean integrated squared error in estimating
the four coefficient functions. The box plots have been truncated to facilitate visual
comparisons; the scale of each subfigure was chosen so as to include at least the
lower 95% of each empirical distribution. As one would expect, the error is lower
for u than for the group effects ;. Overall, the four methods perform quite simi-
larly. The most striking difference is in the easiest scenario (N, = 60,01 = 0.05),
in which the three P-GLS methods outperform P-OLS. On the other hand, P-OLS
does slightly better than P-GLS in the most difficult scenario (N, = 10,01 = 0.15).

Coverage for 95% confidence/credible intervals—in the “across-the-function”
sense, i.e., the proportion of the true function lying within the given interval—is
shown in Figure 4. The four subfigures use a common scale chosen to include at
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Figure 3: Mean integrated squared error times 1000, with N, = 10,60 and with
o1 = .05,.15. Each set of box plots represents the four methods: P-OLS, one-step
P-GLS, iterative P-GLS, and P-GLS with multiple smoothing parameters.

least the upper 95% of each empirical distribution. All methods have median cover-
age well above the nominal level, except when N, = 60, 7 = 0.05, in which case the
median coverage is quite close to 95%. However, the first quartile of the coverage is
seen to lie below 95% in all but one of the box plots. The P-OLS intervals tend to be
somewhat wider than their P-GLS counterparts in the N, = 10,071 = 0.15 scenario,
and slightly narrower otherwise, especially for N, = 60,07 = 0.05. The lack of a
clear overall pattern may arise from two opposing tendencies. On the one hand, the
credible intervals for P-GLS might be wider than the P-OLS confidence intervals
due to the former’s incorporating a bias correction (see above, Section 6.1); on the
other hand, the P-GLS intervals might be too narrow due to not accounting for error
in covariance estimation.

8 Real data examples

8.1 Canadian temperatures

The Canadian weather data set is familiar to students of FDA. RS use this data set to
illustrate a number of their methods, and it is included in the fda package (Ramsay
et al., 2009). The functional data consist of mean daily temperature and precipita-
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Figure 4: Observed across-the-function coverage for 95% confidence/credible in-
tervals. Each set of box plots represents the four methods: P-OLS, one-step P-GLS,
iterative P-GLS, and P-GLS with multiple smoothing parameters.

tion for the years 1960—1994 at 35 stations across Canada. Here we consider P-OLS
regression of the temperature curves on two scalar variables: the region in which
the station is located (Arctic, Atlantic, Continental, or Pacific), and the station’s
latitude. Projecting the temperature functions onto the Fourier basis consisting of
a constant function along with fi(¢) = sin(2mkzs /365) and gi(t) = cos(2mkt /365)
for k =1,...,12 yields the curves shown at left in Figure 5. Tests of the two pre-
dictors based on 300 permutations, as described in Section 6.2, found both to be
extremely significant: indeed, in both cases, the real-data F statistic at each point
lay far into the right tail of the simulated permutation distribution of maximal F
statistics. These results come as no great surprise. A more interesting question con-
cerns the two predictors’ comparative strength. Which tells us more about a site’s
average temperature: knowing which region it belongs to, or knowing its latitude?
This question can be answered separately for each day of the year by the pointwise
CV method of Section 6.3. As Figure 5 shows, for the period from May through
November, latitude has lower CV, and thus appears to be a stronger determinant of
temperature. From January through April, however, regional differences—such as,
perhaps, the tendency for coastal areas to have milder winters—appear to be more
important than latitude alone.
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Figure 5: At left, smoothed curves representing daily mean temperatures at the 35
Canadian locations. At right, pointwise cross-validation MSE for regression of the
temperature functions on region (solid curve) and on latitude (dashed curve).

Our P-OLS implementation, running in R version 2.9.0 on a MacBook Pro with
a 2.16 GHz Intel Core Duo processor, required 2.9 seconds to optimize A by cross-
validation over a grid of 21 candidate values (or 5.1 seconds to find A via the
optimize function with the default tolerance level, which gives higher accuracy
than would usually be needed). By contrast, the function fRegress.CV in the fda
package, which refits the model for each delete-one-function data set, needed about
32 seconds to compute the CV for a single candidate A. Thus, calling fRegress.CV
for each A in the same grid of values would take over 200 times as long as our
method.

8.2 Functional connectivity

We now return to the fMRI data displayed in Figure 1. In traditional fMRI exper-
iments, the blood oxygen level dependent (BOLD) signal, an index of brain activ-
ity, is recorded at each of a dense grid of brain locations, known as voxels, while
the subject attends to a series of stimuli. By contrast, our data were acquired by
resting-state fMRI, in which subjects are scanned while they attend to no stimulus
in particular. The objective is not to study the brain’s response to particular stimuli,
but to investigate functional networks of brain regions whose BOLD time courses
move in tandem. A popular analytic strategy involves choosing a “seed” brain re-
gion, and computing the correlation between its BOLD time series and those of
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every voxel in the brain. A recent set of seed correlation analyses (Kelly et al.,
2009) suggests that as the brain develops from childhood to adulthood, high corre-
lations between distant brain regions become more prevalent. As a tool for studying
the relationship between connectivity and distance from a given seed, we have de-
veloped subject-specific connectivity-distance functions. Briefly, these functions
are derived by applying the inverse hyperbolic tangent (or Fisher z transform) to
the correlations of each voxel with the seed region, then estimating a conditional
quantile (say, the 95th percentile) of the resulting values as a smooth function of
distance from the seed (Koenker et al., 1994). The fitted function is then projected
onto a cubic B-spline basis with 40 equally-spaced internal knots. Repeating this
for each of N subjects yields functional responses y;(-),...,yn(+), which we mod-
eled as y;(d) = B1(d) +ziB>(d) + €(d), where d denotes distance from the seed and
z; is the ith subject’s age.

This model was fitted to data from 59 participants, ranging in age from 20 to
49, who were scanned at New York University. Distance was measured from a
seed located in the posterior cingulate/precuneus region, and age was centered to
mean zero. The first plot in Figure 6 shows an estimate of f;; this function is
highest for short distances, as expected, but it also has a slight peak around 120
mm. The next two plots display estimates of 8, from P-GLS and P-OLS models,
respectively, with a common smoothing parameter A used for both 81 and 3. These
estimates resemble each other closely but seem rather too bumpy, evidently because
1B1(d)| > |B2(d)]| for most d, so that the penalty A [ B>+ A [ B5? is dominated by
its first term. A P-GLS fit with separate smoothing parameters for 3; and f3, yields
a much smoother estimate of the latter, as seen in the lower left plot.

Although our P-OLS implementation assumes a common A, multiple smoothing
parameter selection can be achieved, in effect, by rescaling. Consider fitting the
model y;(d) = Bi(d) +z;B; (d) + €i(d), where zi = cz; and B;(d) = Ba(d)/c for
some ¢ > 0, with a common A, thereby obtaining the estimate 32*, and taking ch*
as the estimate for 3. This is practically equivalent to fitting the original model with
separate parameters A, A, related by A; = c?A>. We can thus fit rescaled models
with a range of values of ¢ = \/A;/A;, and choose the CV-minimizing ¢. (For
a model having more than one scalar predictor, CV would have to be minimized
over a multidimensional grid.) The optimal value ¢ = .00056 yielded the age effect
function shown in the lower center plot of Figure 6. This is quite similar to the P-
GLS estimate with separate smoothing parameters, but the 95% confidence interval
is wider. The lower right plot shows expected profiles at the first and third quartiles
of the age distribution. All four model fits point to a negative age effect at short
distance from the seed, and little or no effect at longer distances. A simultaneous
test based on 1500 permutations (not shown) found a significant (at the 5% level)
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negative effect of age, for distances up to 24 mm from the seed. Our observation
that older subjects’ high-connectivity regions tend to be less concentrated around
the seed is consistent with the findings of Kelly et al. (2009).

Mean connectivity—distance profile P-GLS with single smoothing parameter P-OLS with single smoothing parameter
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Figure 6: The upper left plot shows the estimate (solid) and 95% credible inter-
val (dashed) for the intercept function 3; in the fMRI application. The next four
plots show the estimates and 95% intervals for the age effect function f3;, derived
by P-GLS and P-OLS with a single smoothing parameter; P-GLS with multiple
smoothing parameters; and P-OLS with a single smoothing parameter, but with
age optimally rescaled. The lower right plot shows expected profiles at the first
and third quartiles (solid and dashed, respectively) of the observed age distribution.
The upper left and lower right plots are based on the P-GLS model with multiple
smoothing parameters, but the other models produced similar results.

9 Conclusion

It is difficult to choose a clear “winner” between the two basic methods we have
discussed. P-OLS is more conceptually straightforward and less vulnerable to un-
dercoverage in small samples; moreover, the CV score, computed in the course of
smoothing parameter selection, can double as a criterion for selecting among dif-
ferent models, in either an overall or a pointwise sense. On the other hand, our
implementation of P-GLS with the mgcv package allows for rapid selection of mul-
tiple smoothing parameters, the advantages of which are apparent from our analysis
of the connectivity data. Our simulation results do not unequivocally favor either
P-OLS or any version of P-GLS, although they suggest that P-GLS may become
more accurate for functional ANOVA with relatively large, homogeneous groups
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of functional responses. The relative merits of P-OLS and P-GLS should become
clearer as these methods are applied to a wider variety of data sets. It is our hope
that our fast implementation of function-on-scalar regression will contribute to the
more widespread application of models of this type.

As noted above (see footnote 1 and Section 4.2), in this paper we have been
primarily concerned with densely sampled functional data of the type emphasized
by RS. Rather different approaches have been developed for sparsely and irregularly
sampled data with significant measurement error (e.g., Chiou et al., 2003, 2004; Yao
et al., 2005; Krafty et al., 2008). It would be of great interest to demarcate more
precisely the types of applications for which each approach is best suited.

A number of extensions of our methods are planned, including smooth (as op-
posed to linear) dependence of the functional response on continuous scalar pre-
dictors; generalized linear models with functional responses; and permutation tests
appropriate for more complex designs. The methods described here are imple-
mented in the R package refund (regression with functional data), available at
http://cran.r-project.org/web/packages/refund.

Appendix A: Reduction to using the same bases for the responses and coefficient
functions

The first term of equation (10) gave the (unpenalized) integrated SSE as [ ||CO(¢) —
ZBO(1)||>dt. In RS’s (Section 13.4) formulation, the functional responses are given
by y(t) = C¢(t), where ¢(t) = [¢1(¢),...,9k,]" for some basis functions @1, ..., ¢x,
not necessarily coinciding with the basis functions 6y, ..., 6k used to expand the
coefficient functions. We show here why, for our purposes, it suffices to assume
that the bases do coincide.

The integrated SSE can be written as

51 [lcow -zBowiPa=Y [ic o) <80 dr
i=1

1.e., this criterion can be expressed either as an integral of a SSE, or as a sum of
integrated squared errors. Let cl’-‘TG be the orthogonal projection (in L?) of ciT(p
onto the span of 6y,...,0k; it is easily shown that ¢j = J 55] 6¢Ci» Where where
Jog is the K x K, matrix with (i, j) entry [ 6;(t)¢;(t)dt. By the definition of an
orthogonal projection, we have the orthogonal decomposition

& ¢_Zl (C?QD_C?TG)—’_(C?TG_ZITBG%
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and thus, by the Pythagorean identity for inner product spaces, the integral on the
right side of (25) can be decomposed as

/ o (1) — T o)t + / 7 6(r) — 2 BO (1) .

The first of these two integrals does not depend on B. Consequently, the problem
of finding B to minimize the penalized SSE (i.e., (25) plus a roughness penalty) is
unchanged if we replace C¢(¢) with C*0(t), where C* = (c}...cy)T = CJg(PJgé.
For our development, then, we can assume that {9y, ..., ¢k, } = {61,...,0k}.

Appendix B: Derivation of alternative expressions for criterion (10)

Here we derive expression (11), and a further simplification in the orthonormal
basis case. We have

/ ICO(r)—zBO()|2dr = / w[(C—2B)T(C—ZB)6(1)0(1) ]dt
= tr[(C—ZB)" (C—ZB)J o)
= u[{(C—ZB)Jgg}"{(C—ZB)I gy }]
(26) = [Ivec(JgyC" — g BTZ")|?

27) = |[Clgy —ZBIgg I}

By (8), (26) equals the first term of (11). The second (penalty) term of (11) is the
same as in the raw response case (Section 3.2). We therefore conclude that (10)
equals (11), as claimed in Section 3.3. In the orthonormal case we take J é/ez =1k
in (27), and immediately obtain the simpler expression ||C — ZB||2.

Appendix C: Derivation of the P-GLS estimate and posterior covariance ma-
trix

The Cholesky decomposition $7' = LTL allows us to write the P-GLS criterion,
1.e., the SSE (18) plus the second (penalty) term of (11), as

112
[

28)  ee(LsL2CT) — [z® (LI Ivee (BT + vec(BT)T Pyvec(BT).
This criterion can be thought of as arising from “prewhitening” each observation via

premultiplication by L, and then performing P-OLS. Expression (28) has form (5)
with X = Z® (LJ ), y = vec(LJ 3 CT), and (as above) b = vec(BT) and P = Py,
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so that (6) gives the minimizer
AT 1/2 1/2 -1
vee(B') = {zoWYHY {Zzo LIy} +PA]
X [Z@ (LT3 vec(LI g CT),

which is easily shown to equal (19).

For posterior covariance estimation, the key result (Wood, 2006a, pp. 190-191;
Wood, 2006b, p. 450) is that if (4) holds with &€ ~ N(0,?I) and b is given by (6),
then b has posterior distribution

bly ~N[b,c*(XTXx +P)71].

Given a reasonably accurate estimate of X, these assumptions hold approximately
with X, y, b, P as above, leading to the estimate

Qo) Varlvee(B")Y] = 6*[{zo (L) (Ze (WgH} +PA| .

for a residual variance estimate 62. Given the hat matrix H such that § = X b=H v,
we can use the standard estimate 62 = ||y — $||*/[NK —tr(H)] (e.g., Wood, 2006a).
A bit of algebra reduces (29) to (24).

It is important to note that since the residual error variance cannot be taken as
oI without prewhitening the data, the above derivation is not valid for P-OLS.
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