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Abstract

We consider two-stage sampling designs, including so-called nested case control studies,
where one takes a random sample from a target population and completes measurements on each
subject in the first stage. The second stage involves drawing a subsample from the original sample,
collecting additional data on the subsample. This data structure can be viewed as a missing data
structure on the full-data structure collected in the second-stage of the study. Methods for
analyzing two-stage designs include parametric maximum likelihood estimation and estimating
equation methodology. We propose an inverse probability of censoring weighted targeted
maximum likelihood estimator (IPCW-TMLE) in two-stage sampling designs and present
simulation studies featuring this estimator.
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1 Introduction

We consider two-stage sampling designs where one takes a random sample from
a target population and measures V on each subject in the first stage. The
second stage involves drawing a subsample from the original sample, collecting
additional data on the subsample. The decision regarding selection into the
subsample can be influenced by V. This data structure can be viewed as a
missing data structure on the full-data structure X collected in the second-
stage of the study.

Specifically, the observed data structure on a randomly sampled subject
can be represented as O = (V,A;AX), where V is included in X, and A
denotes the indicator of inclusion in the second-stage sample. The sample is
then represented as n i.i.d. copies Oq, ..., O, of O. One particular type of two-
stage sample is a so-called “nested case-control” sample where the outcome
Y is included in V' and subjects are sampled conditional on Y. We propose
an inverse probability of censoring weighted targeted maximum likelihood es-
timator (IPCW-TMLE) for the estimation of target estimands, such as causal
effects, in two-stage sampling designs.

A TMLE is a general procedure for estimation of a target parameter of
the data-generating distribution in semiparametric models, and, in particular,
can be used for any censored data structure. It is a two-step method where
one first obtains an estimate of the data-generating distribution, and then
in the second step updates the initial fit in a bias-reduction step targeted
toward the parameter of interest, instead of the overall density. The TMLE
unifies the locally efficient double robust properties of estimating function
based methodology with the properties of maximum likelihood estimation.
TMLESs are loss-based well-defined, efficient, unbiased substitution estimators
of the target parameter of the data-generating distribution. In this paper,
we present general IPCW-TMLEs, and then apply it to nested case-control
samples in simulations.

2 Literature

Two-stage designs, including nested case-control studies, have been discussed
and developed in previous literature, including Neyman (1938), Cochran (1963),
Mantel (1973), Kupper et al. (1975), Liddell et al. (1977), Thomas (1977), and
Breslow et al. (1983). Advantages can include reduction in costs associated
with collecting data on the entire cohort and minimal losses in efficiency (Ern-
ster, 1994; Rothman and Greenland, 1998; Essebag et al., 2003; Hak et al.,
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2004; Vittinghoff and Bauer, 2006). Much of the literature focuses on logistic
regression for effect estimation (Breslow and Cain, 1988; Flanders and Green-
land, 1991; Ernster, 1994; Barlow et al., 1999; Szklo and Nieto, 1999). Robins
et al. (1994) presented the missingness framework for two stage designs, and
(double robust augmented) inverse probability of treatment-weighted estima-
tors. We also refer to van der Laan and Robins (2003) which provides an
in-depth study and overview of double robust estimation for missing data and
causal inference data structures.

Wang et al. (2009). A recent paper by Wang et al. (2009) presents causal
effect estimators using estimating equation methodology where the outcome
Y, exposure A, and a subset S of covariates W are measured in the first
stage (V' includes Y, A, and S). They consider the same two-stage de-
sign, where one measures V' = (S,Y,A) on everyone in the sample, and
X = (S,Y, A, W) on the subjects in the validation sample defined by A = 1,
where the missingness mechanism is known. The Wang et al. article focuses
on estimation of EY (a) under the consistency assumption ¥ = Y (A), the
randomization assumption, A is independent of Y'(a), given (W,S), so that
EY(a) = EswExo(Y | A= a,S, W), and a parametric model for the treat-
ment mechanism II(S,W) = P(A = 1] S,W). Please see the Appendix for a
discussion of the relationship between the estimators presented in Wang et al.
(2009) and IPCW-TMLE.

TMLE. TMLE was first presented in van der Laan and Rubin (2006) and cov-
ered in detail in a forthcoming text (van der Laan and Rose, 2011). Methodol-
ogy for other types of case-control studies, including independent case-control
designs and individually matched case-control studies, were first presented in
van der Laan (2008b) and Rose and van der Laan (2008, 2009). We make the
following remark regarding the problem of estimation of an additive causal
effect of a treatment A on outcome Y, controlling for confounders W. When
Y is continuous, the TMLE based on a quasi-log-likelihood loss function with
a logistic regression submodel is recommended (Gruber and van der Laan,
2010). This choice of submodel is more robust than a TMLE based on the
squared error loss function with a linear regression, due to the linear regres-
sion fluctuations not respecting global constraints. The double robust para-
metric regression estimators presented by Scharfstein et al. are special cases
of TMLES, as discussed in Rosenblum and van der Laan (2010) (Scharfstein
et al., 1999, p. 1141). The class of estimators given in Rosenblum and van der
Laan (2010) are not identical to, but are asymptotically equivalent to a class
of estimators (Tsiatis, 2006, Section 5.4, p. 132).
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3 TIPCW-TMLE in Two-Stage Samples

Recall that we consider two-stage sampling designs where one takes a random
sample from a target population, measures V' on each subject in this first
stage, and draws a subsample where one collects additional data. Inclusion
in the subsample can be influenced by V. This data structure is a missing-
data structure on the full-data structure X collected in the second-stage. The
observed data structure is O = (V,; A, AX), where V is included in X, and A
denotes the indicator of inclusion in the second-stage sample. The sample can
then be represented as n i.i.d. copies Oy,...,0, of O.

Let Py be the true probability distribution of X, and let M* be a sta-
tistical model for Pxg. Let ¥¥ : MF — R? be the target parameter of the
full-data distribution, so that ¢}" = ¥¥(Px,) is the parameter of the true
probability distribution of X. We will denote the efficient influence curve of
U at a full-data distribution Px with D (Py).

Let gao(0 | X) = Pxo(A = § | X) be the conditional probability distri-
bution of A, given X. We assume the missing at random (MAR) assumption
which states that gao(d | X) = gao(d | V), i.e,, A is independent of X,
given V. For notational convenience, let IIo(V) = gao(1 | V). This missing-
ness mechanism might be known, a model might be available, or no further
assumptions are made beyond MAR. Either way, the missingness mechanism
can be estimated from the data (A;,V;), ¢ = 1,...,n, extracted from the
observations O;, i =1,...,n.

The statistical model M for the probability distribution Fy of O is now
defined in terms of the full-data statistical model and the model on the miss-
ingness mechanism. The efficient influence curve of U¥'(Px ) as an identifiable
parameter of Py will be denoted with D*(Fy) = D*(Px,0, ). We wish to esti-
mate 1. based on a sample of n i.i.d. observations Oy, ..., O, from Py € M.

3.1 TMLE

The TMLE is a general procedure for estimation of a target parameter of
the data-generating distribution in semiparametric models (van der Laan and
Rubin, 2006). It marries the locally efficient double robust properties of esti-
mating function based methodology and the properties of maximum likelihood
estimation. TMLESs are loss-based well-defined, efficient, unbiased substitution
estimators of the target parameter of the data-generating distribution.
Suppose that, given n iid. observations Xi,...,X,, Py, is a TMLE
of Pxo, and U"(P%,) is the corresponding TMLE of ¢". Specifically, let
L¥(Px)(X) be a full-data loss function (e.g., log-likelihood loss function) so
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that
Py = in EyL(Px)(X).
o =arg min Fo (Px)(X)
Let P?(’n be an initial estimator of Py g, possibly a L¥-loss based super learner
(van der Laan et al., 2007). In addition, let {Px(¢) : €} be a parametric
working submodel of M¥ through Py at ¢ = 0 so that its score at ¢ = 0
equals, or spans, the full-data efficient influence curve:

d I
S L(Px(aX) = D (Px)(X), a.e.
e=0
Such a TMLE P% , is then defined as follows. For k =1,..., K, one computes
the amount of fluctuation:
" = arg min PfLF(P)k(;Il(e)),

n —

for P)k(jnl, and one sets Py = P)’al(eﬁ). Here PF is defined as the empiri-
cal distribution of the full-data Xi,..., X, and, for a function f of X and
probability distribution P, we used the notation Pf = [ f(x)dP(x) This up-
dating process is iterated until convergence is achieved, i.e., K is chosen so
that e ~ 0. The final update P, is denoted with P, and is called the
TMLE of Pxy. By the score condition on the working fluctuation model, it
follows that

PnDF(P)*(m) = 0.

3.2 IPCW-TMLE

Given the TMLE developed for the full-data structure, we propose estimating
Yo based on Oy, ...,0, with an IPCW-TMLE. This IPCW-TMLE is simply
defined by the above procedure with the addition of weights A;/IL,(V;) for
observations i = 1,...,n, where IL, (V') is an estimator of IIo(V') = gao(1 | V).
Thus, this IPCW-TMLE involves the following steps:

IPCW initial estimator. Computing an initial [IPCW-loss based estimator
P%.,, (e.g., using super learning, van der Laan et al., 2007) based on, for
example, the IPCW-loss function

A

L(Px)(0) = (V)

L"(Px)(X).

Typically, this initial estimator is obtained by providing the initial esti-
mator of Px in the full-data TMLE the IPCW weights.
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IPCW-TMLE. For k =1,..., K, one computes the amount of fluctuation:

= argminPnL(Pf(;}(e))

n

B 1l A e e
= argmin ; Hn(Vi)L (Px, (€))(X),

k
n

for P)’“(;ll, and one sets P, = P)]al (€;). This updating process is iterated
until convergence is achieved, i.e., K is chosen so that €& ~ 0. The final

update is denoted with Py, and is called the IPCW-TMLE of Px .

Estimator of the target parameter. Finally, one evaluates the target pa-
rameter ¢, = WF(Px,,). This is the TMLE of ¢

As is apparent from the above definition of IPCW-TMLE, IPCW-TMLE is
a targeted minimum loss based estimator (also TMLE), the generalization of
TMLE (van der Laan, 2008a; van der Laan et al., 2009; van der Laan and
Rose, 2011), but with a loss function defined as IPCW full-data loss function,
and a parametric submodel Py (e) with score (A/IIy(V))DF(Px) at € = 0.

Since it solves the IPCW full-data efficient influence curve equation, the
[PCW-TMLE has an influence curve equal to (A/IIy(V))DF(Py) if Tl is
known, and Py denotes the limit of Py, (see next section). Double robust-
ness properties of the full-data efficient influence curve are immediately in-
herited by the IPCW-TMLE. If II5(V) is consistently estimated with a max-
imum likelihood estimator, the influence curve of the IPCW-TMLE equals
(A/TL,(V)) D (PL) minus its projection on the tangent space of the model
used for IIy. As shown below, if we use a nonparametric maximum likeli-
hood estimator for II; and the full-data model is nonparametric, then the
IPCW-TMLE solves the actual efficient influence curve equation, so that the
IPCW-TMLE is efficient if Py = Pxo. As with any asymptotically linear
estimator, an estimate of the asymptotic variance /n(¢} — ¥{) is given by
the empirical variance of the estimated influence curve.

3.2.1 TIPCW Full-Data Efficient Influence Curve Equation

By the score condition on the working fluctuation model and €& = 0, it follows
that this IPCW-TMLE solves the ICPW full-data efficient influence curve
equation:

I A
i I (V7)

0= DF (P, )(X) = 0.
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If the full-data TMLE is double robust or has other robustness properties, then
these properties will be inherited by this IPCW-TMLE under the assumption
that II,, is a consistent estimator of Ily. If V' is discrete (with finite support),
then we propose using a nonparametric estimator I, of I1.

In this case, we have the following important result. If the full-data model
is nonparametric, V' is discrete, and the missingness mechanism is estimated
nonparametrically, then it follows that the IPCW-TMLE actually solves the
true efficient influence curve equation. The latter implies that, under appro-
priate regularity conditions, and if Py, is consistent for Px ,the IPCW-TMLE
will be an asymptotically efficient estimator of ).

Proof of Result. Consider the statistical model M for the observed missing
data structure O implied by a nonparametric full-data model M*, the MAR
assumption, possibly a model for the missingness mechanism Ily, and V' is
discrete. Let ¥ : M — IR be the statistical target parameter of interest defined
by U(Pp, 1) = UF(Px). The efficient influence curve of of ¥ at Py = Ppy, 1,
can be represented as

D*(Px,11)(0) = ﬁDF(PKO)— {ﬁ‘/) — 1} Eo(D¥ (Pxp) | A =1,V),

where D (Pyx ) is the efficient influence curve of the full-data parameter W*" :
ME — R.

The IPCW-TMLE P%,, solves 0 = P,A/I,D*(P%,,) for any choice of
estimator II, of IIy. If II,, is a nonparametric estimator of Ily, then it follows
that we also have

0="r, {ﬁ — 1} E.(D"(Py,) | A=1,V),

for any choice of estimator of the regression Eo(D"(Px,,) | A =1,V). As a
consequence, it follows that for nonparametric estimators I1,, of IIy, and IPCW-
TMLE P% ,,, the IPCW-TMLE solves the efficient influence curve equation:

0= P,D*(Py,, 11,).

We also note that, if we fit [Iy with a logistic regression, use it as an offset,
and add a covariate E,(D"(P%,) | A = 1,V)/IL,(V) to update this logistic
regression fit of Iy, iterate this updating process of the missingness mechanism
until convergence, then the resulting fit II* will also solve:

0=P, {ﬁ — 1} E (D" (PY,) |A=1V).
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This follows from the well known fact that the score of a univariate linear
logistic regression working model logit I1(J§) = logit I + 6C' for the coefficient
d in front of the univariate covariate C(V'), equals C(V)(A — II(0)(V)). For
such clever fits of the missingness mechanism we also have that (II;, Py )
solves the efficient influence curve estimating equation:

A A
0= X’”)_{H:L(W

L B D (P) [ A= LV)

so that double robustness and asymptotic efficiency can still be derived.

The latter type of IPCW-TMLE is slightly more complex than the regular
IPCW-TMLE since it now also requires fitting the regression E,(D"(P%,,) |
A = 1,V). However, this represents a minor increase in complexity since it
only involves running a mean regression of the outcome D (P, )(X;) on V;
among the observations with A; = 1.

3.2.2 Risk Difference Example

In this section we demonstrate the IPCW-TMLE for the simple full-data struc-
ture X = (W, A,Y), with covariate vector W, binary exposure (or treatment)
A, and binary outcome Y. The observed data structure for a randomly sam-
pled subject is O = (V,A,AX), where V = Y. The target parameter of
the full-data distribution of X is given by W¥(Pxo) = Exg[Exo(Y | A =
1L,W) — Exo(Y | A=0,W)] and the full-data statistical model M*" is non-
parametric. The full-data efficient influence curve D¥(Qo, go) at Px is given
by

D*(Qo, 90) ([(A =1 _Iia=0)

W) 900 W)) (= Qol 4, W)

+Qo(1, W) — Qo(0, W) — ¥"(Qo),

where Qg = (Qo, Qwo), Qwp is the true full-data marginal distribution of W,
Qo(A, W) = Exo(Y | A,W), and go(a | W) = Pxo(A = a | W). The first
term will be denoted by D{ and the second term by D{j, since these two
terms represent components of the full-data efficient influence curve that are
elements of the tangent space of the conditional distribution of Y, given A, W,
and the marginal distribution of W, respectively. That is, Df is the component
of the efficient influence curve that equals a score of a parametric fluctuation
model of a conditional distribution of Y, given (A, W), and D{;, is a score of
a parametric fluctuation model of the marginal distribution of W. Note that
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Di(Q, g) equals a function H*(A, W) times the residual (Y —Q(A, W)), where

) C(I(A=1) I(A=0)
H{(AW) = <g<1rw> - g<0|w>>'

IPCW initial estimator. We can estimate the marginal distribution of Q.
with IPCW-MLE

Q= argigin > L Qu) (W) 5,

where L (Qw) = —logQw is the log-likelihood loss function for the
marginal distribution of W. Note that Qy,, is a discrete distribution that
puts mass 1/{nll,(Y;)} on each observation W; in the sample for which
W; is observed (i.e., A; = 1). Suppose that, based on a sample of n i.i.d.
observations X;, we estimated Qg with loss-based learning using the log-
likelihood loss function L¥(Q)(X) = —log Q(A, W)Y (1 — Q(A, W)}V,
Given the actual observed data, we can estimate Q, with super learning
and weights A;/TL,(Y;) for observations i = 1,...,n, which corresponds
to the same super learner but now based on the IPCW-loss function

A
I1,(Y)

L(Q)(0) = LT(Q)(X).

Let LF(Q) = L"(Qw) + LF(Q) be the full-data loss function for Q =
(Q, Qw) and let L(Q,11) = L¥(Q)A/II be the corresponding IPCW-loss

function.

Similarly, we can estimate gy with loss-based super learning based on the
IPCW-log-likelihood loss function

L(9)(0) =

This now provides an initial estimator Q% = (QY,,, @%) and ¢9. This es-
timator was obtained using the same algorithm for computing the initial
estimator for the full-data TMLE, but now assigning weights A, /IL,, (Y;)
to each observation. In essence, a full-data loss function L¥(Q) for Q
used to obtain an initial estimator for the full-data TMLE has been
replaced by the IPCW-loss function L(Q,I1,,) = L¥(Q)A/IL,, and, sim-
ilarly, a full-data loss function L' (g) = —logg has been replaced by
L(g,11,) = L"(g)A/1L,.

DOI: 10.2202/1557-4679.1217 8
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Parametric submodel for full-data TMLE. Let

Quwaler) = (14 e Dip (@) Qw

be a parametric submodel through Q%un, and let

Qn
(1-Q)

be a parametric submodel through the conditional distribution of Y,
given A, W, implied by Q%. This describes a submodel {Q0(e) : €}
through Q° with a two-dimensional fluctuation parameter € = (e, €3).
We have that d/deL* (Q°(€)) at e = 0 yields the two scores D, (Q%) and
DE(QY, ¢g2), and therefore spans the full-data efficient influence curve
DF(QY, ¢%), a requirement for the parametric submodel for the full-data
TMLE. This parametric submodel and the loss function L (Q) now de-
fines the full-data TMLE and this same parametric submodel with the
IPCW-loss function L(Q,11) = L¥(Q)A/II defines the IPCW-TMLE.

Q&) (Y =1| A, W) = expit (log (A, W) 4+ eoH (A, W))

The IPCW-TMLE. Define
. A n o
€, = argmin PnH—L (@Qnle),

and let QL = Q%(¢,). Note €, = 0 which shows that the IPCW em-
pirical distribution of W is not updated. Note also that e;, is ob-
tained by performing an IPCW logistic regression of Y on H}(A, W)
where Q%(A, W) is used as an offset, and extracting the coefficient for
H*(A,W). We then update Q° with logit Q! (A, W) = logit Q°(A, W)+
el H*(A,W). The updating process converges in one step in this example,
so that the IPCW-TMLE is given by QF = Q..

Estimator of the target parameter. Lastly, one evaluates the target pa-

rameter ¢y = U (Qr), where Qi = (Q),QY.,,), by plugging Q;, and
?/VJZ into our substitution estimator

v i @) - Qo) b

n <
=1

This is the IPCW-TMLE of ¢
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3.2.3 Right Censoring

Suppose our full-data structure is a right-censored data structure and we con-
duct a nested case-control study. For example, we have that X might be
defined as X = (W, A, T,2, Y™*), where W are covariates, A is an exposure of
interest, T = min(7,C), T is the time to the event, C' denotes a censoring
variable, Z = I(T = T) is a failure indicator, and Y* = (T < t,Z = 1) is an
indicator of having an observed failure by endpoint ¢t. Our missing data struc-
ture is given by O = (A, AX,T,Z, Y*), where A = 1 denotes membership in
the nested case-control sample.

A special feature of this right censored data structure is that one will
define a case based on a binary random variable Y* that is not the outcome
of interest. For example, Y* could represent observed death by year 5, which
would be denoted Y* = (T < 5 years, = = 1). It is important to stress that
the definition of a case (Y* = 1) in a nested case-control study within a right
censored data structure is therefore different than without right censoring.
Let’s say our parameter of interest W'(Py ) is the causal risk difference under
causal assumptions: Exo[Pxo(T' >5[ A=1,W)—PxoT >5|A=0,W)].

We define the TMLE for the full-data structure and we then use the [IPCW-
TMLE for actual missing data structure. In other words, we need a TMLE
of ¥}" based on X, and then IPCW-TMLE is defined as well. The TMLE
of the additive causal effect of treatment on survival, and other parameters,
based on the right-censored data structure is presented elsewhere (Moore and
van der Laan, 2009a,b; Stitelman and van der Laan, 2010; van der Laan and
Rose, 2011).

3.2.4 Effect Modification

Nested case-control studies within clinical trials and observational studies are
increasingly popular when researchers are interested in effect modification
(Rothman and Greenland, 1998; Essebag et al., 2003, 2005; Prentice and Qi,
2006; Vittinghoff and Bauer, 2006; Polley and van der Laan, 2009). This is of
particular importance when the candidate patient characteristic effect modi-
fier of the treatment effect is difficult or expensive to measure (Vittinghoff and
Bauer, 2006).

The general approach involves defining our full-data structure, for example,
X = (W, A*, A)Y), and our observed data O = (V,; A, AX), where again V'
is in X. We are interested in studying the effect modification of a variable
denoted A*. Our full-data parameter of interest might be

QZJ(? = EO[QO(LU _QO(LO) _QO(Oal) +QO(O’O)]7

DOI: 10.2202/1557-4679.1217 10
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where Qy(a*,a) = Eo(Y | A* = a*, A = a,W). The full-data TMLE involves
first running an initial regression of Y on A*; A, and W. We note that A and
A* are implicitly assumed to have finite support. The targeting step requires
a parametric working submodel to fluctuate the initial estimator and a choice
of loss function. We use a clever covariate that will define this parametric
working submodel. The clever covariate for Qj(a*, a) is given by

_I(A*=a*",A=a)
gola*,a | W) 7’

where go(a*,a | W) = Pxo(A = a | W)Pxo(A* = a* | A = a, W), and
Pxo(A =a | W) may be known, as in a clinical trial, but Pxo(A* =a* | A =
a, W) must be fitted. The clever covariate for the difference parameter 1%? is
the corresponding difference of clever covariates. As loss function one can use
the least squares loss function, in which case the working submodel is a linear
regression of Y on H* using the initial estimator as offset. If Y is binary,
or continuous in (0,1) (e.g., after a linear transformation), then one can use
the more robust quasi-log-likelihood loss function (Gruber and van der Laan,
2010). In the latter case, the working submodel is a logistic linear regression
of Y on H*, using the initial estimator as offset. Therefore, one can target the
parameter with a single clever covariate, or one can target all four parameters
with a four dimensional clever covariate, and look at multiple differences. This
now defines the full-data TMLE for the desired target parameter 2/?5 . The
desired IPCW-TMLE for the observed data is obtained by assigning weights
A; /11,(Y;) to each observation, or equivalently, by replacing the full-data loss
function in the full-data TMLE by the IPCW-loss function.

4 Simulations

We present several simulation studies to examine the performance of the
IPCW-TMLE. First, we generate simulated nested case-control samples within
real cohort data. We then study the IPCW-TMLE in simulated cohorts.

4.1 SPPARCS Simulations

The National Institute of Aging funded Study of Physical Performance and
Age-Related Changes in Sonomans (SPPARCS) is a population-based, census-
sampled, study of the epidemiology of aging and health. Participants of this
longitudinal cohort were recruited if they were aged 54 years and over and were

11
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Table 1: SPPARCS variables

Variable Description
Y Death occurring within 5 years of baseline
A LTPA score > 22.5 METSs at baseline

HEALTH. EX Health self-rated as “excellent”
HEALTH FAIR  Health self-rated as “fair”
HEALTH.POOR Health self-rated as “poor”
SMOKE.CURR  Current smoker

SMOKE.EX Former smoker
W CARDIAC Cardiac event prior to baseline
CHRONIC Chronic health condition at baseline
AGE.1 x < 60 years old
AGE.2 60 < x < 70 years old
AGE.J 80 < x < 90 years old
AGE.5 x > 90 years old
FEMALE Female

residents of Sonoma, CA or surrounding areas. Study recruitment of 2092 per-
sons occurred between May 1993 and December 1994 and follow-up continued
for approximately 10 years. One area of particular research interest for this
data has been the effect of vigorous leisure-time physical activity (LTPA) on
mortality in the elderly, which has been studied in a previous collaboration
(Bembom and van der Laan, 2008) using marginal structural models. LTPA
was calculated from answers to a detailed questionnaire where performed vigor-
ous physical activities are assigned standardized intensity values in metabolic
equivalents (METSs). The recommended level of energy expenditure for the
elderly is 22.5 METs.

The full-data structure is X = (W, A,Y), where Y = I(T < 5 years), T
is time to the event death, A is a binary categorization of LTPA, and W are
potential confounders. These variables are further defined in Table 1. The
observed data structure on a randomly sampled subject can be represented as
O = (V,A,AX), where V is in X. Of note is the lack of any right censoring
in this longitudinal cohort. The outcome (death within or at five years after
baseline interview) and date of death was recorded for each subject. This
information was available from a variety of sources, including death certificates.
Our parameter of interest is the risk difference )" = Px (Y1 = 1) — Px (Yo =
1), the average treatment effect of LTPA on mortality five years after baseline
interview.
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Table 2: SPPARCS cohort results. The TMLE was estimated in the
SPPARCS cohort. Sample size was 2066, with 269 deaths five years from
baseline interview and 1797 nondeaths. RD is risk difference, SE is standard
error, and p is p-value

Estimate  SE P
RD  -0.054 0.012 < 0.001

The cohort was reduced to a size of n = 2066, as 26 subjects were missing
LTPA values and/or self-rated health score (1.2% missing data). The preva-
lence of death was 13%, and the number of cases in the cohort sample was
nC = 269. The TMLE was estimated on the full cohort sample, and the
results are displayed in Table 2. Within TMLE, the machine learning Dele-
tion/Substitution/Addition (DSA) algorithm was used to obtain an estimate
of the functions Qo = Pxo(Y = 1] A, W) and gy = Pxo(A | W) since the
functional form of the data was unknown. One could also use an ensemble
approach, such as super learning (van der Laan et al., 2007). The estimated
parameter of interest was highly significant, and indicates that physical activ-
ity at or above recommended levels decreases five-year mortality risk in this
population by 5.4%.

Nested case-control simulations. We used this cohort study to simulate
nested case-control study designs where an estimate of the missingness weights
were obtained from the full cohort. Members of the nested case-control sample
are denoted with A = 1. Our observed data structure was defined as O =
(V,A, AX) and we had V =Y. Therefore, the missing data structure ignored
those individuals with A = 0, except for the purpose of estimating IIy(V').

Control individuals were randomly sampled from among those still alive
five years from baseline interview, and assigned the value A = 1. This was a
simplified approach compared to an incidence-density design where individuals
are sampled from those still at risk of death at the time a case becomes a
case. Sampling was performed with various numbers of controls relative to the
number of cases (2nC', 3nC, and 4nC). The empirical values for Px (A =
1Y =0), were 0.299, 0.446, and 0.608 for the three sample sizes. All cases
(Y=1) were sampled with probability 1.

The cohort was resampled 1000 times. In each of the 1000 cohort resamples,
one nested case-control study was extracted; those individuals with (A = 1),
allowing for ties (Bureau et al., 2008). The estimated values I1,, (V') used in the
weight vector were taken from their respective cohort resample. The IPCW-
TMLE was estimated in each of the 1000 nested case-control samples, and
the TMLE was estimated in the cohort samples. The DSA algorithm was
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Table 3: SPPARCS simulated nested case-control results. IPCW-
TMLESs were estimated in the nested case-control samples, and TMLEs were
estimated in the cohort samples. RD is risk difference, SE is standard error,
RE is relative efficiency compared to cohort RD, nC' = 269 is number of cases,
and nC'o_is number of controls

Sample size Estimate RE
Cohort RD 2,066 -0.055  1.000

nCo = 2nC -0.101 0.319
Nested case-control RD nCo = 3nC -0.056 0.567
nCo =4nC  -0.051 0.789

used to obtain estimates of the functions @y and go. The relative efficiency
of the nested case-control parameters are compared to the cohort parameter
in Table 3, as well as average values for the parameter of interest. Relative
efficiency of the nested case-control design improved as the number of controls
increases. With an average of 4 controls per case (approximately 1076 of the
1797 available noncase subjects), the relative efficiency of the nested case-
control design reached 78.9%.

4.2 Simulated Cohort

In the SPPARCS data simulations, we did not know the true value of the
parameter of interest. It was important to have a completely objective way of
defining the truth, and to then assess the performance of our estimator with
respect to the truth. Therefore, we repeat the same simulation study, but now
from a population we fully understand, as we know the value of the true 1{".
The cohort was sampled from the target population of 1,000,000 individuals.
We simulated a five-dimensional covariate W = (W, : j = 1,...,5), a binary
exposure A, and indicator Y, where 1 indicated disease (or in the case of the
SPPARCS data, death by 5 years from baseline interview). These variables
were generated according to the following rules:

W; ~ U(0,1),
g()(A | W) = expit(W1 + WQ + W3 + W4>,
Qo(A, W) = explt(A - 4W1 + AW1 - ].5W2 + SiIl(W5>>.

The true value for the risk difference was RD = —0.061 and the prevalence
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Table 4: Simulation data nested case-control results. ITPCW-TMLEs
were estimated in the nested case-control samples and TMLEs were estimated
in the cohort samples. RD is risk difference, SE is standard error, RE is relative
efficiency compared to cohort RD, nC' = 296 is number of cases, and nCo is
number of controls

Sample size Estimate RE
Cohort RD 2,066 -0.063  1.000

nCo = 2nC -0.045 0.411
Nested case-control RD nCo = 3nC -0.068 0.725
nCo =4nC  -0.069 0.788

The true value for the risk difference was RD = —0.061 and the prevalence
of death was 13.3%. One cohort sample was taken with 2,066 individuals,
and the estimated value of death prevalence was 14.3%. The number of cases
in the cohort sample was nC' = 296. Controls were randomly sampled from
among the noncases in the original cohort at various sample sizes relative to
the number of cases (2nC, 3nC, and 4n(C'), and assigned the value A = 1.
Noncases that were not sampled were assigned the value A = 0. The values
for Px,(A =1|Y = 0) were 0.330, 0.506, and 0.674 for the three sample
sizes. All cases were assigned A = 1.

Logistic regression was used to estimate the functions Qy and gy since the
functional form was known. The relative efficiency of the nested case-control
parameters are compared to the cohort in Table 4, as well as average values
for the parameter of interest. As before, relative efficiency of the nested case-
control design improves as the number of controls increases. With an average
of 4 controls per case, the nested design reaches a relative efficiency of 78.4%.

4.3 Simulated Clinical Trial

For a simulated clinical trial, 10,000 subjects were sampled and assigned a
treatment A. The outcome of disease was assigned with Pxo(Y =1 | W, A) =
expit(3A —4W; + W3 — 12W, — 2W;5 4+ 2A sin(W3)). Of the 10,000 subjects, 647
individuals developed disease (6.47%). The value of the effect modification
parameter of interest in the full trial was @/;g = 0.016. The full-data in the
randomized controlled trial cohort was analyzed with a TMLE.

We proposed that the effect modifier of interest, W3 = A* was only mea-
sured in a nested case-control sample. Controls were randomly sampled from
among the noncases in the original cohort at various sample sizes relative to
the number of cases (2nC, 3nC, 4nC, and 5nC'), and assigned A = 1. Non-
cases that were not sampled were assigned A = 0. The values for Py, (A =
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Table 5: Randomized controlled trial simulation data nested case-
control results. IPCW-TMLEs were estimated in the nested case-control
samples and TMLEs were estimated in the full trial samples. SE is standard
error, RE is relative efficiency compared to cohort RD, nC' = 647 is number
of cases, and nC'o is number of controls
Sample size Estimate RE
Full trial 1% 10,000 0.016 1.000

nCo=2nC  0.024  0.142
Nested case-control ¥  nCo = 3nC 0.022 0.253
nCo=4nC  0.019  0.517
nCo=5nC  0.016  0.864

1|Y =0) were 0.141, 0.210, 0.280, and 0.350 for the four sample sizes. All
subjects with Y = 1 were assigned A = 1.

An IPCW-TMLE was used to analyze the nested case-control samples.
Multinomial regression was used with main terms to estimate the function Qo,
representing a misspecified model. Due to the double robustness of the TMLE
and IPCW-TMLE procedures, the estimates of the parameter of interest are
consistent even when @ is misspecified. The values for go(A* | W) were
known since it was a randomized controlled trial. Results are displayed in
Table 5. The relative efficiency of the nested case-control design improves as
the number of controls increases, and with 38.8% of the total trial participants
we reach an efficiency of 86.4%.

5 Discussion

Two-stage sampling designs, including nested case-control sampling, are pop-
ular in many fields, including epidemiology. They have the potential to reduce
the costs associated with collecting data on the full cohort with minimal losses
in efficiency (Ernster, 1994; Rothman and Greenland, 1998; Hak et al., 2004;
Vittinghoff and Bauer, 2006). We introduced the IPCW-TMLE for estima-
tion of causal effects in two-stage sampling designs, with a focus on nested
case-control sampling designs. In general, TMLE methodology can be used
in conjunction with procedures that handle censoring, missingness, measure-
ment error, and other persistent issues found in public health and medicine, in
addition to adjusting for the missingness due to the two-stage sampling design.

Our simulated nested case-control studies within the SPPARCS data demon-
strated 78.9% efficiency with an average of 4 controls per case. We had 78.4%
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efficiency in our simulated nested case-control studies within a simulated co-
hort, again with an average of 4 controls per case. These results coincided
with the conclusions of Ury (1975), which noted that as a general rule, 4 con-
trols per case yields a relative efficiency of 80.0%. We also demonstrated the
use of [IPCW-TMLES for nested case-control study designs within randomized
controlled trials when interested in an effect modification research question.
With less than 40% of the trial subjects, we reached an efficiency of 86.4%
compared to the full trial.

Maintainers of large comprehensive databases that include adverse events
often require researchers to pay for access, and cost almost always increases as
the sample size requested increases. Thus, nested case-control studies are also
a natural design for studies of safety with pharmaceutical drugs. The IPCW-
TMLE is maximally efficient in these scenarios as no covariate information on
the noncase-control observations is discarded. With the increase in popularity
of nested case-control study designs in longitudinal cohorts and randomized
controlled trials, the IPCW-TMLE procedure provides an additional tool to
yield unique biological and public health discovery.

Appendix: Wang et al. and IPCW-TMLE

Recall the paper by Wang et al. (2009) discussed in Section 2 where they con-
sider the same two-stage design as in this paper. Let’s consider the model
for the observed data O = (V, A, AX) implied by a nonparametric full-data
model for the distribution of X, and known Pxo(A = 1| V). In that case,
the IPCW-TMLE we propose is locally efficient if Pyo(A =1 | V) is non-
parametrically estimated or is estimated in a targeted way as specified in our
article, and will be inefficient otherwise. If the full-data model is not nonpara-
metric, then our proposed IPCW-TMLE will not be locally efficient, even if
Pxo(A =11V) is estimated nonparametrically.

If X =(S,Y, A, W), and one only assumes the consistency and randomza-
tion assumption, then the statistical model for the distribution of X is indeed
nonparametric. Thus, in that statistical model, the proposed IPCW-TMLE
of EY (a) will be efficient if S,Y, A are discrete and Pxo(A =11 S,Y,A) is
estimated nonparametrically or in targeted manner. However, as in Wang et
al., if one also assumes a parametric model for the treatment mechanism, then
the statistical model for the full-data is mot nonparametric. As a consequence
of this choice of full-data model, the efficient influence curve does not exist in
closed form, and has smaller variance than the efficient influence curve for the
nonparametric full-data model, (and there exists a whole class of double robust
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influence curves/estimating functions), so that the Cramer-Rao lower bound
in their more restricted model is smaller than the Cramer-Rao lower bound
for the nonparametric full-data model our IPCW-TMLE aims to achieve. For
such a nonparametric full-data model, their locally efficient estimator solves
the actual efficient influence curve estimating equation while the IPCW-TMLE
solves the inefficient IPCW-full-data efficient equation.

Wang et al. also consider the subclass of influence functions/estimating
functions generated by the nonparametric full-data model corresponding with
a saturated parametric model for the treatment mechanism, and they refer
to the optimal influence function in this subclass as the efficient double ro-
bust estimating function. Their efficient double robust estimating function
equals the efficient influence curve for the observed data model implied by
nonparametric full-data model, i.e., the efficient influence curve of our model.
As a consequence, their efficient double robust estimator (based on solving
the efficient double robust estimating equation) and our double robust TMLE
are both locally efficient for the observed data model corresponding with the
nonparametric full-data model. If the full-data model is nonparametric, V'
is continuous, and we do not use the targeted estimator of the missingness
mechanism then our proposed IPCW-TMLE is not locally efficient, while their
efficient double robust estimator will be locally efficient.
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