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Abstract
The determination of a cut-off value for a continuous prognostic test is an important problem,

which is statistically challenging and practically important for risk assessment. We propose in
this paper a method to estimate the optimal cut-off from this type of longitudinal data with
censored failure times. The principle is to combine the prognostic error rates of false positives and
false negatives with a cost function, which has the advantages to be statistically convenient and
to be directly associated with the decision-making. Simulations were performed and the results
demonstrate the interest of our approach compared to a reference method. The method is also
illustrated by predicting the long-term survival of kidney transplant recipients from the 1-year
creatinine clearance.
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1 Introduction

Cut-off determination is a frequent issue for statisticians. In clinical or epi-
demiological studies, the effect of continuous risk factors are often analyzed
respecting a dose-effect relationship [Sebaugh et al., 1991]. For example in
kidney transplantation, numerous studies demonstrated that creatinine clear-
ance is highly correlated with long-term graft survival [Nicol et al., 1993, Giral
et al., 1996, Hariharan et al., 2002]. However, it is difficult for clinicians to ap-
ply these results in practice as no cut-off is estimated for a decision. Moreover,
from a statistical point of view, it may be important to categorize continuous
covariates when a dose-effect assumption does not hold.

In order to determine such cut-offs in survival analyses with censored follow-
up, a widely used method is to define a grid and to retain the cut-off associ-
ated with the highest difference between survival curves. However, with such
a procedure, investigators are confronted with the problem of multiple test-
ing. Therefore, authors such as LeBlanc and Crowley [1993] have considered
tree methods. These procedures split data by maximizing the difference in
survival between groups, which is commonly measured by the log-rank test.
Contal and O’Quigley [1999] have also proposed the maximization of a statis-
tic, which bears the advantage of avoiding cut-offs located near the extremes.
The most recent publication on this topic is based on the generalized maxi-
mally selected statistics [Hothorn and Zeileis, 2008]. The latter authors have
proposed an algorithm for a unified treatment of different kinds of maximally
selected statistics enabling a large number of cut-offs. The procedure leads
to a maximally selected chi-square test, as published by Miller and Siegmund
[1982]. The common characteristic of these methods is their independence to
their application. However, risk assessment in medical practice has to take
into account the consequences of the clinician decision.

In this paper, we propose an alternative method for cut-off estimation based
on a decision-making framework. Depending on the application, this method
reflects the impact of prognostic errors (monetary cost, medical gravity, social
consequences, etc.) and takes into account the desired time of the prognostic.

In Section 2, we describe the adaptation of time-dependent ROC curves,
initially defined by Heagerty et al. [2000], for the estimation of cut-offs. We
define in detail the ROC analysis because the evaluation of the prognostic
capacity of a marker is of prime importance before the determination of a
particular cut-off. Two non-parametric methods are proposed, based on the
Kaplan-Meier estimator and on the Akritas nearest neighborhood estimator.
In Section 3, we propose comparing the recent method of Hothorn and Zeileis
[2008] with the new approaches by simulations. Section 4 applies the methods
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to the analysis of kidney transplant recipients. The clinical objectives are the
evaluation of the prognostic capacity of the 1-year creatinine clearance (CrCl)
and the definition of the optimal cut-off to discriminate two groups according
to their risk of failure. Finally, Section 5 discusses the new method and its
benefits and limitations.

2 Methods

2.1 Framework

Using the counting process notation, let D(t) = 1 if the failure occurred before
time t (i.e., T ≤ t) and D(t) = 0 otherwise (i.e., T > t). All patients are free
of failure at the beginning of the study (D(0) = 0). We consider X, measured
at t = 0, as a prognostic marker of the failure time T . By convention, suppose
that high values of X are associated with a high risk of failure. The prognostic
test is defined as positive (patient at risk of failure), if the prognostic marker
is higher than a cut-off c. The methodology associated with this type of
prognostic analysis has been recently developed by Heagerty et al. [2000,
2005]. The sensitivity is thus the probability of a positive prognostic test
among patients with failure before time t, i.e. P (X > c|D(t) = 1). The
specificity is the probability of a negative prognostic test among patients free of
failure before time t, i.e. P (X ≤ c|D(t) = 0). The ROC (Receiver Operating
Characteristic) curve of a prognostic at time t represents the sensitivity in
function of one minus the specificity for the different cut-offs c. The ROC curve
is monotone non-decreasing for each t. The accuracy of the marker to predict
the failure is measured by the area under the curve (AUC), independently
of the cut-off. In order to find the optimal cut-off, we define a cost function,
C(c|t), which represents the total cost associated with the prognostic test based
on the cut-off c at time t. One can distinguish the number of false positives
(patients with a positive test but free of failure at time t) and the number of
false negatives (patients with a negative test but with a failure before time t),
respectively n(fp)(c|t) and n(fn)(c|t). As a result, the cost function represents
the sum of these errors weighted by their respective costs, C(fp) and C(fn).
Thus, we have:

C(c|t) ∝ k × n(fp)(c|t) + n(fn)(c|t), (1)

where ∝ means ”proportional to” and where k = C(fp)/C(fn) is the relative
importance of a false positive according to a false positive. Depending on
the application, this function C(c|t) can be determined such that it reflects
the monetary impact, the medical gravity, the social impact, etc. The optimal
cut-off is calculated to minimize this cost function for a given time of prognosis
t.
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2.2 Estimation using the Kaplan-Meier estimator

In the framework above, the sensitivity of the prognostic test with cut-off c at
time t represents the probability of having a positive test {X > c}, given that
a failure occurs before time t. Based on the work of Heagerty et al. [2000], the
non-parametric estimation of this probability, seKM(c|t), is:

seKM(c|t) = {1− SKM(t|X > c)}{1− ḠX(c)}/{1− SKM(t)}, (2)

where SKM(t|X > c) is the Kaplan-Meier estimator of the survival probability
at time t conditional on {X > c} and ḠX(c) is the empirical distribution
function. Respectively, the estimator of the specificity of a prognostic test
with cut-off c at time t, spKM(c|t), is:

spKM(c|t) = SKM(t|X ≤ c)ḠX(c)/SKM(t) (3)

The ROC curve of a prognostic at time t, is the sensitivity seKM(c|t) plotted
in function of one minus the specificity spKM(c|t) for all the possible cut-off c.
In order to find the optimal cut-off, c̃, the cost function (1) can be developed
as follow:

C(c|t) ∝ kP (X > c,D(t) = 0) + P (X ≤ c,D(t) = 1)

∝ kP (T > t|X > c)P (X > c) + P (T ≤ t|X ≤ c)P (X ≤ c),

and can be non-parametrically estimated:

CKM(c|t) ∝ kSKM(t|X > c){1− ḠX(c)}+ {1− SKM(t|X ≤ c)}ḠX(c) (4)

2.3 Estimation using the Akritas estimator

Heagerty et al. [2000] also proposed to estimate P (X > c,D(t) = 0) us-
ing the nearest neighborhood estimator initially proposed by Akritas [1994].
Respecting the same notations, let Sλn(c, t) denote the estimation of this bi-
variate survival probability, where 2λn ∈ (0, 1) represents the percentage of
observations that is included in each neighborhood. This estimator ensures a
monotone ROC curve in contrast to the Kaplan-Meier approach. Moreover,
the Kaplan-Meier estimator will be biased if censoring is dependent on marker,
whereas the Akritas estimator will be robust in this situation. The sensitivity
and specificity become:
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seλn(c|t) = {(1− ḠX(c))− Sλn(c, t)}/{1− Sλn(−∞, t)} (5)

spλn(c|t) = 1− Sλn(c, t)/Sλn(−∞, t) (6)

The ROC curve of a prognostic at time t is similarly obtained using the prob-
abilities (5) and (6) instead of (2) and (3). The cost function can be estimated
by:

Cλn(c|t) ∝ (k + 1)Sλn(c, t) + ḠX(c) (7)

2.4 Computation details

We chose the trapezoid method to calculate the area under the curve. In order
to calculate the 95% confidence intervals (CI95%) of the optimal cut-offs and
of the areas under the curves, 1999 bootstrap replications were performed and
percentile intervals were calculated [Efron, 1987].

3 Results from simulations

Both approaches were compared to the Hothorn and Zeiles method [2008],
which identifies a global cutoff over all failure time and is based on the maxi-
mization of the difference between the survival curves (generalized maximally
selected statistics). The false positive and negative errors are not taken into
account. The Hothorn and Zeiles method is thus completely independent of
the application and the decision consequences. Therefore, the present com-
parisons are only relevant if no assumption is made about the prognostic time
and the consequences. We arbitrarily chose k = 1 (no preference regarding the
minimization of the false positive or the false negative errors). We also arbi-
trarily chose a prognostic time equal to half the maximum observed follow-up
time.

We simulated artificial samples for different sample sizes (N=25, 50, 100
and 200). Let us suppose a variable Z simulated assuming a standard normal.
This variable was used in the 4 following scenarios in order to define the value
of X:

1. The times-to-event are simulated according to a proportional hazard
model with a Weibull distribution (scale and shape parameters respec-
tively equal to 1.5 and 0.5). z is the observation of a random variable
Z which is a transformation of X. We assume that the regression co-
efficient β equals 0.4 (relative risk equals 1.5). A single cut-off is fixed
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at 0.5 with Z = 1 if X > 0.5 and with Z = 0 otherwise. The times of
censoring are uniformly distributed between 0 and 15.

2. The times of events are simulated similarly. However, we fix a cut-off in
0.5 with X = Z if Z > 0.5 and with X = 0 otherwise. In contrast to the
scenario #1, the hazard function does not jump at 0.5. The function is
constant before 0.5 and proportionately increases with the values above
0.5.

3. If Z ≤ 0.5 the times of events are simulated according to a Weibull law
(scale and shape parameters respectively equal to 1.5 and 0.5), but if
Z > 0.5 the Exponential distribution is used (scale and shape parameters
respectively equal to 1.5 and 1.0). Thus, a single cut-off exists at 0.5 but
the PH assumption does not hold.

4. The scenario is equivalent to (1) but with X = Z. There is no cut-off.

1000 simulations were performed per scenario and per sample size. The
results are presented in Table (1). Globally, the results were very similar
regardless of the method. Below a sample size of 50 individuals, no method
was reliable, but the proposed methodology (Kaplan-Meier or Akritas) offered
estimations closer to the true cut-off in comparison to the Hothorn and Zeileis
method. Regardless of the scenario, the variability of the estimations using cost
function seemed to be lower than those obtained by the Hothorn and Zeileis
method. If no cut-off exists (Scenario #4), the proposed method estimated
cuts-offs close to 0, which separated the sample into two balanced groups. In
this scenario, the Hothorn and Zeileis method offered lower estimations.

4 Kidney transplant survival data

4.1 Data description

The data were extracted from the DIVAT data bank from Nantes Hospital
(France), which is a prospective cohort of kidney transplant recipients. Bio-
logical and clinical data have been recorded since 1990. Specialized clinical
research assistants who were independent to the medical team, computerized
the pre- and post-transplant parameters of each patient transplanted in the
center. Recorded data are submitted to an annual medical cross-audit with a
level of error below 1%.

In this paper, we consider a subpopulation of 839 patients more than 18
years of age and who received a kidney transplant between January 1996 and
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Size H. & Z. K. & M. Akritas
Scenario #1

N = 25 -0.06 (1.07) 0.10 (0.97) 0.11 (0.98)
N = 50 0.13 (1.09) 0.28 (0.83) 0.27 (0.84)
N = 100 0.30 (0.82) 0.36 (0.73) 0.34 (0.69)
N = 200 0.41 (0.51) 0.38 (0.46) 0.38 (0.43)

Scenario #2
N = 25 0.02 (1.20) 0.21 (0.98) 0.18 (1.08)
N = 50 0.25 (1.08) 0.36 (0.90) 0.33 (0.89)
N = 100 0.49 (0.81) 0.41 (0.73) 0.41 (0.69)
N = 200 0.57 (0.50) 0.49 (0.50) 0.49 (0.50)

Scenario #3
N = 25 0.24 (1.05) 0.16 (0.85) 0.17 (0.80)
N = 50 0.36 (1.01) 0.32 (0.63) 0.32 (0.60)
N = 100 0.44 (0.77) 0.40 (0.44) 0.40 (0.40)
N = 200 0.49 (0.37) 0.43 (0.26) 0.43 (0.24)

Scenario #4
N = 25 -0.28 (1.09) 0.05 (0.83) -0.04 (0.81)
N = 50 -0.35 (1.06) 0.00 (0.76) 0.01 (0.74)
N = 100 -0.32 (0.91) -0.01 (0.70) -0.03 (0.67)
N = 200 -0.31 (0.80) 0.01 (0.61) 0.02 (0.60)

Table 1: Estimations of the cut-off values according to the scenarios and the
sample sizes. Based on 1000 simulations, the medians (and the corresponding
inter-quartile intervals) are reported.
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September 2006. Death or a return to dialysis mean that the graft failed.
The value of the creatinine clearance (CrCl) one year after the transplant is
the marker of interest to predict long-term graft survival. A low CrCl value
is associated with a higher risk of graft failure. Note that there is no reason
to justify that a cut-off exists with a discontinuity of the risk at this value.
However, clinicians have to take decisions to classify the patients according to
their risk of failure. Usually, clinicians consider a CrCl above 40 ml/min as
an indication of a poor prognosis. A cut-off of 40 ml/min is obtained as half
of the lower CrCl limit for a healthy person (80 ml/min). When one kidney
is transplanted to a patient, one expects a CrCl of half the normal values.
To our knowledge, no quantitative study has been performed to justify this
threshold according to the risk of failure. Based on the Kaplan-Meier analysis
of graft survival, Hariharan et al. have shown that a creatinine level of more
than 1.5 mg/dL is associated with a poor graft outcome, compared to levels
below that value [Hariharan et al., 2002]. The focus of interest is whether this
cut-off is optimal for discriminating two groups of patients according to their
risk of graft failure.

Our objective was to determine the optimal cut-off of the CrCl value col-
lected 1 year after the transplantation for predicting graft survival. The origin
of the study (t = 0) is thus at 1 year after the transplantation and concerns
only patients with a functional kidney at 1 year. Return to dialysis, death and
censored patient within the first year of transplantation were not included in
the analysis. The survival time of interest is thus the time between the first
anniversary of the transplantation and the graft failure or the death of the
patient. In the following developments, we will principally choose a prognostic
time of up to 4 or 8 years after the CrCl measurement (t = 4, 8). Different
formulae are available to calculate the CrCl. We used the Modification of Diet
in Renal Disease version [Levey et al., 1999]. The mentioned data are provided
for reanalysis and verification (http://www.divat.fr/).

4.1.1 Study of the prognostic accuracy

Figure 1 shows the ROC curves based on the Kaplan-Meier or on the Akritas
estimators. It illustrates the ability of the CrCl to predict a failure up to 4 and
up to 8 years after the first anniversary of the transplantation. In agreement
with Heagerty et al. [2000], both estimators gave similar results. Using the
Akritas version, the AUC at 4 years was 0.79 (CI95% = [0.70, 0.85]) versus 0.73
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prognostic variable for a short-term prognostic.

4.1.2 Determination of an optimal cut-off

If the objective of the cut-off is to discriminate all the events with a minimum
of errors, then k should be equal to 1 (the cost of a false negative is equivalent
to the cost of a false positive). However, in such a case, the cut-off can appear
to be disconnected from the real medical issue. In our application, the medical
consequences of a false negative are much more serious than the consequences
of a false positive. The relative weight k is assumed at 1/9. We used the
approach of Vickers and Elkin [2006] to determine this ratio. Consider that
the follow-up of the at-risk patients is more frequent (every 3 months) in
comparison with the follow-up of the risk-free patients (every year). If the
probability of failure is close to 1, all clinicians will decide on an intensive
follow-up. If the probability of failure is close to 0, all clinicians will decide
on a less intensive follow-up. After discussions, clinicians defined the disease
probability for which the decision is unsure at 10%. In other words, if the
probability of a graft failure is below 10%, they accept to increase the length
of the intervals between two visits. Above 10%, they accept to decrease this
length. Their decision appears unsure at about 10% and Vickers and Elkin
[2006] demonstrated that the relative harms of a false positive and a false
negative is thus equal to 10/(100-10).

Figure 2 represents the optimal cut-offs for k = 1/9, for both estimators
and for all the prognostic times. Consider a prognostic up to 4 years after
the CrCl measurement, which corresponds to the time origin, 1 year after the
transplantation. The optimal cut-off equals 31.4 ml/min (CI95% = [26.7, 33.9],
Akritas estimator). For a prognostic up to 8 years after the CrCl measurement,
the optimal cut-off also equals 31.4 ml/min (CI95% = [27.7, 34.1], Akritas
estimator). One can see that these estimations are different from the usual
cut-off of 40 ml/min. However, the cut-offs do not vary according to the
prognostic time. The results based on the Kaplan-Meier estimator are very
similar.

We did not compare our results with the Hothorn and Zeileis method,
because we chose the specific value of k and the specific time of prognosis.
The comparison would not be relevant.

(CI95% = [0.69, 0.87]) at 8 years. Using the Kaplan-Meier estimator, the AUC
at 4 years was 0.80 (CI95% = [0.69, 0.87]) versus 0.70 (CI95% = [0.50, 0.82]) at
8 years. Regardless of the estimators and as expected, the CrCl was a better
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Figure 1: The ROC curves estimated for evaluating the capacity of the CrCl
to predict a graft failure or the death of the transplanted recipient up to 4
years (A) and 8 years (B)

9

Foucher et al.: Cut-Off Estimation of a Continuous Prognostic Factor

Published by De Gruyter, 2012



1 2 3 4 5 6 7 8

20
25

30
35

40
45

Time post transplantation (in years)

O
pt

im
al

 c
ut

−
of

fs
 o

f t
he

 1
−

ye
ar

 C
L 

(in
 m

l/m
in

)

●

● ●
●

●

●

●

●

● Kaplan−Meier estimator
Akritas estimator

Figure 2: Optimal cut-offs depending on both estimators (Kaplan-Meier and
Akritas) for k = 1/9. The cut-off estimations are associated with the corre-
sponding 95% confidence interval.

10

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 1

DOI: 10.2202/1557-4679.1215



5 Discussion

In medicine, it is useful to determine a decision cut-off of prognostic markers.
We have proposed a method in order to define such thresholds from time-
dependent data where the failure may be censored.

We first proposed to validate the methodology using simulated data and
comparing the results with the recent method of Hothorn and Zeileis [2008].
This approach is today a reference in traditional statistical analysis: the prin-
cipal objective is the study of the correlation between risk factor and time-
to-event and the estimation of cut-off associated with the lower p-value (null
hypothesis that the hazard ratio equals 1). With the present approach, we
distinguish the risk factor analysis from the prognostic analysis where the cut-
off estimation needs to be adapted to the medical question. Therefore, for a
relevant comparison of the methods, no assumption was made about the con-
sequences of the prognostic decision. The objective of these simulations was
to validate our methodology in this context. Regarding the simulation results,
this objective was achieved. However, this does not mean that the proposed
methodology is better. As explained, the methodologies should not be applied
in the same context.

In accordance with Gail and Pfeiffer [2005], we believe that existing meth-
ods are irrespective of the intended application. Our proposed approach is
more adequate in the context of medical decision making. Two possible mod-
ulations can be considered in order to obtain a cut-off close to the expectations
of clinicians. Firstly, we can calculate the predictive accuracy and the cut-off
value according to the required time of the prognosis. This distinction is of
prime importance since a marker could be informative for early events, but
not so useful for a long-term prediction. Our application illustrated this state-
ment. Moreover, the fixing of the prognostic time is very important since the
gravity of error may be different if it appears just after the decision or if it
appears a long time after. From a statistical point of view, dichotomization
of the survival time of the proposed method may lead to a loss of informa-
tion. However, regarding the practice of the medical decision, determining the
prognostic time is important.

Secondly, the concrete consequences of decision errors based on the cut-off
can be taken into account. For example in transplantation, clinicians prefer
to wrongly predict a future failure as opposed to wrongly predict the survival
of the graft. This second error is only associated with a more intensive but
useless follow-up. The priority is thus to minimize the number of false negatives
(k < 1). The weights of both errors should be defined according to experts.
The methodology proposed by Vickers and Elkin [2006] can be used to help
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this definition. Even if no idea about the weights results from the discussion,
the non-informative choice is always possible (k = 1).

The simulations demonstrated the good capacity of the methods to esti-
mate the existing cut-off. One can ask the relevance of these estimations when
no cut-off exist (scenario #5). However, in the medical practice, decisions have
to be made even if no cut-off exists. This is the case in our application: the risk
of graft failure decreases continuously with an increase in CrCl. Nevertheless,
clinicians have to make decisions daily based on this marker.

A limitation of the proposed methodology is that no adjustment is possible
to take into account confounding factors. The cut-off value can vary accord-
ing to other determinants. However, based on the proposed nonparametric
methodology, a solution is to perform a stratified analysis. To avoid the tradi-
tional limitations associated with stratified analysis, it may be interesting to
develop a multivariate approach, semiparametric method can be considered.

Finally, it may also be of interest to generalize the method to multiple
variables and to consider the marker as time-dependent. We are in the process
of working on this type of extension, in particular based the recent paper by
Zheng and Heagerty [2007].
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