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Abstract

We present a framework for meta-analysis of follow-up studies with constant or varying
duration using the binary nature of the data directly. We use a generalized linear mixed model
framework with the Poisson likelihood and the log link function. We fit models with fixed and
random study effects using Stata for performing meta-analysis of follow-up studies with constant
or varying duration. The methods that we present are capable of estimating all the effect measures
that are widely used in such studies such as the Risk Ratio, the Risk Difference (in case of studies
with constant duration), as well as the Incidence Rate Ratio and the Incidence Rate Difference (for
studies of varying duration). The methodology presented here naturally extends previously
published methods for meta-analysis of binary data in a generalized linear mixed model
framework using the Poisson likelihood. Simulation results suggest that the method is uniformly
more powerful compared to summary based methods, in particular when the event rate is low and
the number of studies is small. The methods were applied in several already published meta-
analyses with very encouraging results. The methods are also directly applicable to individual
patients' data offering advanced options for modeling heterogeneity and confounders. Extensions
of the models for more complex situations, such as competing risks models or recurrent events are
also discussed. The methods can be implemented in standard statistical software and illustrative
code in Stata is given in the appendix.
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1. Introduction

Meta-analysis constitutes a particular type of research, in which a set of original
studies is synthesized and the potential diversity across them is explored using
specific statistical methods (Glass, 1976; Greenland, 1998; Normand, 1999; Petiti,
1994). Although in medical research literature meta-analysis was initially applied
in the field of randomized clinical trials (Chalmers et al, 1987; Sacks et al, 1987),
it is nowadays considered a valuable tool for the combination of observational
studies (Stroup et al, 2000) as well as for gene-disease association studies (Bagos,
2008; Trikalinos et al, 2008).

Traditionally, meta-analysis is being performed using summary or
aggregate estimates calculated at a study-level. For binary outcomes, depending
on the study design and the goals of a particular research, effect measures from
each study (Table 1 and 2) are chosen and subsequently pooled taking into
consideration the estimates of their variance. The method for calculating the
overall estimates could rely on fixed or on random effects. Most of the summary-
data techniques are based on large sample approximations for the variance and
depend heavily on normality assumptions concerning the distribution of effect
measures. Therefore, when these are violated, the commonly used methodology
may be problematic. If the outcome of a study is measured on a continuous scale,
methods based on the Weighted Mean Difference (WMD) are employed when the
measures are on the same scale, whereas Standardized Mean Difference (SMD)
methods are used when measures are not reported in the same units.

Bayesian methods have been proposed and used for years in applications
in meta-analysis (Smith et al, 1995). In the classical setting, the chosen measure
of association is the Odds Ratio (OR), although methods for the Risk Ratio (RR)
and the Risk Difference (RD) have also been developed (Sutton & Abrams, 2001;
Warn et al, 2002). Although Bayesian methods could be adopted easily for
summary statistic data, their main advantage arises when it comes to using
directly the binary structure of the data without assuming a normally distributed
outcome (i.e. logOR). During the same period, frequentist methods that could also
exploit the binary nature of the data have been developed. In one of the first
attempts to carry out a statistical combination of binary data, a bivariate method
was proposed, which models simultaneously the logits of exposed and non-
exposed individuals (van Houwelingen et al, 1993). Later on, several approaches
for random effects meta-analysis of binary outcomes were proposed in a
multilevel framework (Thompson & Sharp, 1999; Thompson et al, 2001; Turner
et al, 2000).

In all of the above-mentioned analyses though, the selected measure of
association for binary data was the OR. Other approaches for multilevel modeling
in meta-analysis include similar procedures with continuous outcomes (Higgins et
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al, 2001; Thompson et al, 2001), as well as methods for ordinal responses (Poon,
2004; Whitehead et al, 2001). Thus, it is clear that up to now no method has been
proposed for performing meta-analysis using binary data in a frequentist
framework estimating effects such as the RR and RD. Such measures could be
preferable (compared to the OR) in the realm of prospective cohort studies or
clinical trials and offer some advantages since they are more easily interpretable
and might reflect better the clinical question. Furthermore, a common limitation
of follow-up studies is the incomplete observation time of some individuals due to
their withdrawal or loss before a point in calendar time that marks the termination
of study. The incidence rate (IR) is a measure of disease frequency that is often
used in observational studies with varying duration. The most likely value of the
rate parameter is the total number of events divided by the total observation time
added over all subjects included in the study with the latter known in
epidemiology as person-time (Clayton & Hills, 1993). The estimate of effect is
usually calculated in the form of the incidence rate ratio (IRR), while the
attributable risk for an event (usually a disease) given the exposure can be
estimated by the Incidence rate difference (IRD). Yet, little attention has been
paid so far to the development of methodology tailored to the conduct of meta-
analysis using IRRs or IRDs (Guevara et al, 2004). It is of relevance here to notice
that the Cochrane Handbook of Systematic Reviews suggests pooling counts and
rates using summary data methods (Deeks et al, 2008).

In this work, we discuss methods suitable for synthesizing measures of
association such as RR, RD, IRD and IRR. We extend previously published
multilevel methods that utilize a generalized linear mixed model framework, and
apply models for count data using the Poisson likelithood. We argue that even
though such methods are available, they have never been applied in meta-analysis
within a frequentist framework mainly because of the dominant role played by the
OR in the relevant literature. In Section 2 the newly proposed methods are
presented in detail. Initially (Section 2.1) we formulate the problem and present
briefly the well-known summary-based methods in order to establish notation. In
Section 2.2, the general framework based on a mixed-effect Poisson regression
model is illustrated, while in Section 2.3 we describe an alternative approach
fitting a bivariate Poisson model. Section 2.4 deals with the implementation of
Poisson regression models for meta-analysis of studies with individual patients’
data and, finally, in Section 3 the above-mentioned techniques are applied in a
simulation study in order to compute empirical power as well as in several
published meta-analyses in order to assess their properties and compare the
results.
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2. Methods

2.1 Meta-analysis using summary measures

Let ¢; denote the number of events in the ™ group (j=0 control/unexposed group,
j=1 intervention/exposed group) of the i study and n; the total number of
individuals in the same group. The total person-time in the j* group of the i*

study would be 7, = n, ¢, where £, is the average person-time (Table 1).

Table 1. Typical layout of the data used in a meta-analysis of k observational studies or controlled
clinical trials. If the duration of follow-up is constant the total person-time is irrelevant and only
the number of events and the total number of persons in each arm of a study is used.

Experimental arm Control arm
Person- Person-
study | Events | Persons . Events | Persons .
time time
1 C11 ni T C10 nio To
2 21 nai 1> €20 n20 Tro
k Cri Mkl T Cho ko Tho

If the duration of the study varies between the two arms, as is the case in
follow-up cohort studies, we would normally be interested in the IRR or in the
IRD. When, on the other hand the duration is fixed for both arms, then, the
measures of choice would be the RR or the RD. In retrospective case-control
studies, the OR is the only available measure that can be used. However, the OR
is also commonly used in prospective studies as an approximation to RR under the
rare disease assumption. In Table 2, all the above mentioned estimates along with
the large sample approximations for their standard errors are presented following
the notation outlined above. We report the asymptotic standard errors that are
based on large-sample theory as presented in standard textbooks (Clayton & Hills,
1993; Kleinbaum et al, 1982; Petiti, 1994), as well as in review papers (Normand,
1999; Sato, 1990).

In traditional fixed effects meta-analysis using summary measures, we
assume that the individual estimates 6; of each study are distributed normally
around the true effect  as:

6,~N(0,s) 2.1)
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where s’ is the estimated variance of each study. The combined estimate across k
studies can be calculated using:

6= wo [ Sw, 2.2)
i=1 i=1

with weights given by w, :1/ s7 . In the presence of heterogeneity a preferable

method is the random effects approach, which assumes that the true effect varies
randomly between studies and consequently, we introduce a random component

of the between studies variance 7°:

0,~N(0.s7+7°) (2.3)

Table 2. The most commonly used summary measures of association used in observational studies
and in controlled clinical trials. For each parameter we list its estimate and an approximate
standard error that can be both expressed in terms of the counts denoted in Table 1.

Parameter Estimate Standard Error

(9) (9) (s¢;)

RD 4=

logRR log (ﬁ} —log (C—Oj
n; 1

1 1 1 1
¢ ¢ —+—+ +
logOR lo i log| —2— \/ . - _
o8 g[nil_cil g(nio_cio G Go TG Tho ™
S Cio c,  Co
IRD S _S €1, S
T, T, Tll2 T.(z)
Ci ¢ 1 1
logIRR log| St | _1og| S0 1,1
% g(% ] g(zo J o G

The most commonly used estimate of ¢° is the one proposed by
DerSimonian and Laird (DerSimonian & Laird, 1986), which is calculated non-

iteratively by the method of moments (MM). The weightsw, = 1/ (si2 +7° ) , 1if used

in Eq. (2.2), will provide the random effects estimate of 4. The methods described
above can be easily extended in order to adjust for potential study-level covariates
in a meta-regression (Thompson & Higgins, 2002). The non-iterative approaches
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based on summary data offer the advantage of simplicity since the estimates and
their variances can be calculated using simple computations. Random effects
estimates derived iteratively utilizing maximum likelihood (ML), restricted
maximum likelihood (REML) or empirical Bayes (EB) methods have been
proposed (Thompson & Sharp, 1999). In the Appendix, we describe how these
models can be fitted in Stata.

The aforementioned summary based methods, despite being simple and
easy to implement, suffer from some of serious disadvantages. First of all, they
use normal approximations to draw inferences concerning the estimates. In
several situations, the normality assumptions may be inappropriate, especially
when we encounter zero events in one or both groups, in which case the estimates
and their variances are not defined. In such instances, the only way to circumvent
the problem would be to perform an ad-hoc correction adding a small quantity to
the count in each cell of the 2x2 tables before the analysis (Sweeting et al, 2004).
Secondly, the variances of the individual studies are considered known instead of
being estimated from the data. Another important drawback is that the summary
data methods cannot take advantage of individual patients’ data (IPD). The
collection and analysis of IPD is increasingly employed in pooled meta-analyses
or multicenter trials and helps to discover significant confounders or effect
modifiers acting at the individual level. Although meta-regression of summary
estimates can also be substantially helpful, its use is limited on study-level
covariates and the risk of ecological confounding resulting in spurious findings is
not negligible (Higgins & Thompson, 2004; Thompson & Higgins, 2002).

2.2 Meta-analysis using Poisson regression on grouped data

In the present section, we describe a meta-analytical approach applying fixed and
random effects Poisson regression models to grouped data, and we show their
direct analogy with the summary data methods. Consequently, we will extend
these models in case we have available IPD. When only summary (grouped) count
data are available in the form reported in Table 1, Poisson regression models are
directly applicable overcoming the problems discussed above. The relevance of
the Poisson distribution is obvious, considering that the approximate variances
described in the previous section can be derived by treating the counts in the
contingency table as realization of Poisson random variables (Clayton & Hills,
1993; Kleinbaum et al, 1982). Formulation of the models, for incidence data,
requires using the logarithm of the total number of counts (c;) as the dependent
variable in the Poisson regression, with the inclusion of the logarithm of the total
person-time 7j; as an offset (a variable with coefficient constraint to be 1). The
same model could be used for estimating RR, simply by substituting 7}; by n;;.
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A fixed-effects meta-analysis using Poisson regression could be performed
by fitting the model:

log(cl.j):ao +ta,+0z, +10g(7;j) 2.4

where z;; 1s an indicator variable for the groups under comparison (taking values
z;;=0 for counts arising from the non-exposed group and z;=1 for counts observed
in the intervention/exposed group for each study i). The parameter 0 after being
exponentiated yields the overall estimate of the IRR (or the RR if we use the total
counts n;;). This model incorporates dummy variables «; (i=2, 3... k) as indicators
for the study-specific fixed effects, in order to preserve the within studies
comparison of exposed vs. non-exposed groups (stratification). The analogy to the
measures reported in Table 2 is obvious if we re-arrange Eq. (2.4):

log(c, /T, )=a, +a,+0z, (2.5)

The overall y* test for checking the significance of the study by group interaction
is an analogue of the y* test for heterogeneity (Cochrane’s Q) used in the summary
data methods. Thus, fitting the model:

log(cl.j) =q,+a, +‘92y- +Zk:7,.aizij +10g(7;.j) (2.6)
i=2

and testing the null hypothesis H;:y, =0,V i=2,3,..k would result in a test
statistic:

k
W = Z]/i2 ~Y Z(zkfl) (2'7)

i=2
Consequently, using W, a modified version of the /* measure of inconsistency
(Higgins & Thompson, 2002; Higgins et al, 2003) can be easily calculated:

I? = max {0 w} (2.8)
W

It should be noted here, that Guevara and coworkers (Guevara et al, 2004),
considered this model, but they incorrectly named it “random effects model”. The
particular mistake is apparent since they also considered a model (termed “fixed
effects model”) in which it was not included a study-specific fixed intercept. As
discussed by Thompson and Sharp (Thompson & Sharp, 1999), such models are
inadequate because they do not perform stratification by study and are equivalent
to just pooling the data from the included trials without preserving the within-
studies comparisons.

The random effects models provided below are extensions to the linear
mixed (hierarchical) models described by Higgins and coworkers for the
quantitative synthesis of continuous outcomes using individual patients’ data
(Higgins et al, 2001). The linear mixed model is extended here to a generalized
linear mixed model using the Poisson distribution with the log link function. A
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similar methodology suitable for dichotomous outcomes using logistic regression
has also been presented by Turner and coworkers (Turner et al, 2000). Introducing
a study-specific random coefficient v;, which represents the deviation of study’s
true effect (y;) from the overall mean effect 6, suggests an additive component of
heterogeneity leading to a random coefficient Poisson regression. Thus:

log(cij):ao+ai +(0+V,)z; +10g(Tij), v, ~N(0,7%) (2.9)

With this model, the estimate for the between-studies variance is analogous to the
one estimated by the random effects model of DerSimonian and Laird (MM) or its
counterparts mentioned above (ML, REML or EB). However, the study-specific
effects are still regarded as fixed. Alternatively, one can apply models with
random study effects, assuming that the log-rates are random samples drawn from
a normal distribution. This way, the fitted model as shown below, includes the
effects v; of a study on the log-rate as well as the effects v; of study on the
exposure effect.

~ v, 0\ (o} o,
log(c; ) =a,+v,+(0+v,)z, +log(T;). , ~MVN|| . . (2.10)
When fitting a model including a random intercept and a random coefficient like
the one denoted in Eq. (2.10), we have to estimate also the covariance of the

random terms. This should be equal to:
cov(v,,v,)=0, =0, =po,o, (2.11)

If we force the covariance to be zero, we imply that the variance across studies for
the control groups is always smaller than that of the intervention groups, and that
the covariance of the estimate of the intervention and control groups is equal to
the between-study variance of the estimate in the control groups (Higgins et al,
2001). These assumptions are unrealistic, and arise as a result of the coding
scheme used for controls and cases (0/1). If however, we choose an encoding of
+%, we force the covariance of the random terms to be zero:

) o] [0)] O ~0 2.12)
0 oo o2 , cov(v,v,) = )

Although the issue regarding the use of each one of the previously
mentioned methods is controversial, we applied them all to compare the results
and reach safer conclusions. Discussion on this issue can be found in (Higgins &
Whitehead, 1996; Higgins et al, 2001; Turner et al, 2000). If the duration is
constant, using 7;;, a random effects estimate for the OR could be also calculated.
Denoting by 7;=P(d;=1) the underlying risk (the probability of being a case) of an
individual of the /™ group of the i study, we can fit a logistic regression model of
the form:
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logit (7, ) =logit| (5, =11j) |=a, +a, +(0+v,) 2, v, ~ N(0,27) (2.13)
Similar logistic regression models with or without random study effects have been
used in the past by several authors (Agresti & Hartzel, 2000; Thompson & Sharp,
1999; Turner et al, 2000) and are presented here only for completeness.

Once the models of Eq. (2.4), (2.9) or (2.10) are fitted, we can calculate an
estimate of IRD (or RD) making use of the relations, /R;=exp(6+a,) and

IRy=exp(ao). Thus, we will have:
IRD = IR - IR, =exp(é)exp(&0)—exp(&o) (2.14)

Using the delta method, it can be shown (Appendix I) that the variance of IRD is
equal to:

A

Var(IIAiD) = [exp(&o)exp(g)}2 {Var(é) +var(d, ) - 2cov(é, a, )}

A\ T2 .
+[exp(d, )] var(a,)
Consequently, an approximate 95% confidence interval forIRD would be
obtained using:

IRD —1.96, /var(H%D),H%D +1.96, /var(H%D)

These models can be easily fitted in Stata using gllamm, or in SAS
using PROC NLMIXED. They are expected to perform better compared to those
presented in the previous sub-section in case where the normality assumptions
may be invalid. In the Appendix IIl, Stata programs for fitting the models
developed in this section are presented using the g1 1amm module (Rabe-Hesketh
et al, 2002; Rabe-Hesketh et al, 2005). gllamm uses numerical integration by
adaptive quadrature in order to integrate the latent variables and obtain the
marginal log-likelihood. Afterwards, the log-likelihood is maximized by the
Newton-Raphson method using numerical first and second derivatives.

We have to emphasize here, that the models considered in this work
assume (similar to what is the case in the majority of methods for meta-analysis)
that the random effects are normally distributed. One can also assume a discrete
distribution for the random effects, which leads under certain circumstances to the
so-called non-parametric maximum likelihood (NPML) approach (Aitkin, 1999;
Biggeri et al, 2000). Even though such methods are not widely used, they can also
be fitted using gllamm as described by the developers of the software (Rabe-
Hesketh et al, 2003).

(2.15)
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2.3  Bivariate Poisson meta-analysis

An alternative formulation of the random effects Poisson regression model could
be described by modeling separately the counts of the control and intervention
groups. Thus, we will consider a bivariate response (cjo, ¢;1) using indices j=0 for
non-exposed and j=1 for the intervention/exposed group:

log(cm) =0, +6,+log (Ti()) (l)m] ~ MVN [0} 05 Oy (2.16)
log (Cil) =v, +6, +log (Tll) Uy 0 O 0-12

The covariance of the random terms is defined as:
COV(UiO’Uil) =0y =0 = PO,

The bivariate technique is completely analogous to the bivariate logistic
regression approach proposed by van Houwelingen and coworkers (van
Houwelingen et al, 2002; van Houwelingen et al, 1993) and offers the advantage
of modeling the baseline risk, which in some cases is considered an important
source of heterogeneity. In general, the results obtained using the univariate
multilevel model given by Eq. (2.10) and the bivariate model described here, are
expected to be quite similar. Once the model is fitted, we can calculate the

estimate of IRR using:
IR, exp(4))
IR, - exp(éo)

IRR = =exp(é1 —éo)=exp(é) (2.17)
The variance of 6 would be:

Var(é) = Var(él —90) = Var(él)+ Var(éo)—Zcov(él,éo) (2.18)
which can be easily calculated from the estimated covariance matrix. Thus, the
significance of 0 under Hy: 6,=0) can be tested and a 95% approximate
confidence interval for IRR could be computed according to:

exp|log IRR —1.96, |var(log IRR) |,exp|log IRR +1.96, [var(log IRR
p|(log ( g p(log g

The model can be used in order to calculate an estimate for IRD in a similar
manner;

IRD = exp(6,)-exp(6,) (2.19)

The variance can be easily shown by the delta-method (Appendix II) to be equal
to:
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var| exp(0))—exp(d,) |[=exp (4, ) var(6,)+exp(8,) var(,)
—2exp( )exp( ) ( ) (2.20)
=var(1RD)

Thus, an approximate 95% confidence interval for IRD could be obtained using:
IRD=1.96,|var(IRD), IRD +1.96,|var (IRD)

The variance of Eq. (2.15) (2.18) and (2.20) can be computed by the testnl and
nlcom commands in Stata using the general formulae for performing
multivariate Wald tests for linear and non-linear hypotheses (Green, 2008; Judge
et al, 1985). However, using Eq. (2.18) and (2.20) they are easily calculated in
every statistical package.

The model of Eq. (2.16) is also useful for providing insights for other
special cases often encountered. For instance, the univariate analogue of Eq.
(2.16) could be used for meta-analysis of epidemiological studies reporting
incidence of a disease (or any other proportion), without resorting to normal
approximations or the need to perform transformations that will constrain the risk
in the range [0-1]. Furthermore, extending the model of Eq. (2.9) in a bivariate
situation when we have two different types of mutually exclusive counts (i.e.
death from a particular disease vs. death from any other reason) will provide the
means for performing meta-analysis of such mutually exclusive outcomes in a
multilevel framework.

A similar model was recently proposed by Trikalinos and Olkin using
bivariate modeling of two stochastically correlated outcomes (logORs, logRRs or
RDs) calculated from summary data and analytical expressions for the covariance
of the two outcomes were given (Trikalinos & Olkin, 2008). However, using the
bivariate Poisson model, the correlation is inherently implied by the joint
modeling and no additional calculation is needed. In the model of Eq. (2.9), we
simply add a subscript for the #" outcome, (=0,1,2...). In the work of Trikalinos
and Olkin, there were 3 mutually exclusive outcomes (O=healthy, 1=death from
breast cancer, 2=death from other causes); however, the methodology could be
easily extended for any 7>3. In the simpler formulation, for a single study r-1

Poisson regressions can be fitted, using the counts ¢; as the dependent variables

in each case, an indicator of the exposed/non-exposed status as the independent
variable and the logarithm of the total number #, for each arm as an offset to the

model. Thus, it is straightforward to generalize this model in a meta-analysis of
i=1,2,...k studies, using k-1 indicator variables for the fixed studies effects.

DOI: 10.2202/1557-4679.1168 10
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Extending the model of Eq. (2.9), we can formulate a bivariate Poisson random-
coefficient model:

log(cilj) =ay +a,+(0,+v,)z, +log(n,j) }(Vﬂ ) N MWV((O),(O-IZ Ty j] 2.21)

log(c;) =ap+a,+(0,+v,)z, +10g(nl.j) Vip 0)’\ o, o,

2.4  Meta-analysis using individual patients’ data

If there are available individual patients’ data (IPD), the total number of events ¢;
from the j arm of the i” study will be equal to the sum of the counts of the r

. . . . . n;; .
individuals included in each arm, i.e. ¢ :zrild In such case, we will also

have T, =n,t, = Z"i/

ij 'ij =

ijr *
;. and we can use the individual person-time ;- to perform
an IPD meta-analysis including individuals that gave rise to an event
(dj=1,2,3...) and individuals that were not (d;;=0). For instance, using this
notation with grouped data the fixed-effects model of Eq. (2.4) can be rewritten:

log(cl.j) = log(zlfi1 dijr) =a,+a,+ Gzl.j + log(zzltiﬂ)
The same model, in case of IPD would be:

log(dijr ) =a,+a,+0z, + log(tijr ) (2.22)
Similarly, the random effects model of Eq. (2.9) becomes:
log(d,, ) =a, +a,+(0+v,)z, +log(t;, ), v, ~ N(0.7%) (2.23)

The same formulation could be also applied for the other models described in
previous sections. The implementation of these models will provide useful results,
since we can easily incorporate covariates x;; measured at the individual level.
Thus, the influential role of potential confounders or effect modifiers could be
investigated in a pooled analysis. Furthermore, the model could be tailored to the
characteristics of studies in which events occurred repeatedly. Multiple events per
individual or recurrent events are known to produce over-dispersed counts; in
other words, there is heterogeneity due to the within-individual correlation. The
occurrence of an event multiple times in an individual requires special handling of
over-dispersion and various approaches have been proposed (Glynn et al, 1993;
Stukel et al, 1994; Sturmer et al, 2000).

A simple technique in the context of the methods discussed here is to use a
random effects Poisson regression model, i.e. including a random intercept. The
random intercept assumption is sensible since we expect individuals that already
had an event to be at increased risk of having recurrence. The over-dispersion is
apparent in the meta-analysis of Guevara et al (Guevara et al, 2004), which we
will analyze in the next section. In the context of meta-analysis, this heterogeneity
is at the individual level and should be distinguished from the usually encountered

11
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between-studies heterogeneity. The IPD methods presented here can
accommodate such modeling utilizing a hierarchical model. Adding the random
intercept u;, (i.e. for individuals 7 in each study i) to Eq. (2.23), leads to a new
equation:

log(d,.jr) =a,+a;+u, +(0+v,)z, +10g(tijr) ,
v,~N(0,7%) u, ~N(0,6%) (2.24)

With this model, the between-subjects variability within each study can be
separated from the between-studies variability, providing thereby a better way of
exploring heterogeneity in an IPD meta-analysis. Adding in the model a random
coefficient v; for individuals » in each study i, would imply that cases in each
study are having a greater tendency to have a recurrence compared to controls, an
assumption that needs to be investigated.

3. Application of the methods

We present here the application of the methods proposed based on Poisson
regression and compare them against the established summary-based methods.
We initially performed a simulation study to calculate empirical power and we
also applied the methods in several published meta-analyses. We simulated
hypothetical meta-analyses of studies with exposed and non-exposed persons
drawn from a normal population with mean 100 individuals and variance of 50.
We performed simulations using 5, 10, 15, 20 and 25 studies per meta-analysis
with a Risk Ratio of 1.5 and 2.0 and we also varied the control group event rate
taking values in the range 1%, 2.5%, 5%, 10% and 30%. Each simulation
consisted of 1000 repetitions. Due to the excessive amount of computations
needed, we evaluated only the fixed effects method of Eq. (2.5), assuming no
between studies heterogeneity (°=0). The results of the simulation study are
presented in Table 3 and Table 4, corresponding to a RR of 1.5 and 2.0
respectively. The empirical power of the Poisson regression method is uniformly
higher compared to the summary based methods across the range of experimental
conditions. Furthermore, the differences are more pronounced in cases of rare
events (event rate <5%) and with small number of studies (<10), results that
highlight the potential usefulness of the newly proposed method.

We also analyzed four previously published meta-analyses. Two of these
were also re-analyzed by Guevara and coworkers (Guevara et al, 2004) and revisit
the effects of asthma self-management education on children. In particular, in the
first meta-analysis involving 16 studies, the days of school absence were
compared among intervention and control groups. In summary, the intervention
group consisted of 867 individuals observed for a period of 6,171 person-months
with 5,959 school absences. The corresponding values for the control arm were
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766 subjects followed for 5,305 person-months with a total of 5,941 school
absences (Wolf et al, 2003).

Table 3. The results of the simulation study comparing the empirical power of the proposed
methods (using fixed effects Poisson regression) against the summary based methods. The results
are based on 1000 repetitions with meta-analyses of varying number of studies (5, 10, 15, 20 and
25) and control group event rate (1%, 2.5%, 5%, 10% and 30%) using a Risk Ratio equal to 1.5.

Poisson regression Summary-based Number of Studies Control Group
method (power) method (power) N) Event Rate (%)
0.061 0.051 5 1.0%
0.129 0.074 10 1.0%
0.192 0.107 15 1.0%
0.274 0.124 20 1.0%
0.313 0.179 25 1.0%
0.169 0.136 5 2.5%
0.323 0.220 10 2.5%
0.441 0.310 15 2.5%
0.552 0.378 20 2.5%
0.647 0.495 25 2.5%
0.308 0.284 5 5.0%
0.548 0.478 10 5.0%
0.701 0.667 15 5.0%
0.829 0.732 20 5.0%
0.900 0.841 25 5.0%
0.548 0.559 5 10.0%
0.845 0.827 10 10.0%
0.950 0.930 15 10.0%
0.981 0.937 20 10.0%
0.998 0.957 25 10.0%
0.942 0.949 5 30.0%
0.997 0.963 10 30.0%
1.000 0.982 15 30.0%
1.000 0.992 20 30.0%
1.000 0.997 25 30.0%

The second meta-analysis that was presented in the same article
encompassed 11 studies measuring the emergency room (ER) visits. The meta-
analysis contained 630 individuals in the intervention group with 606 ER visits
recorded over 6,831 person-months. In the control group, a total number of 484
subjects was observed for a period of 5,151 person-months with 597 ER visits
totally (Wolf et al, 2003). Obviously, these two meta-analyses are dealing with
recurrent events.

The third meta-analysis synthesized evidence from 10 studies that
investigated the association between dietary fat intake and cardiovascular events
including all available data on cardiovascular deaths, non-fatal myocardial
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infarction, stroke, angina, heart failure, peripheral vascular disease, angioplasty,
and coronary artery bypass grafting (Hooper et al, 2001). In total, 6,636
individuals in the intervention group were monitored for a total period of 10,649
person-years yielding 553 combined cardiovascular events. In the control arm,
6,631 participants contributed 10,426 person-years of follow-up and experienced
653 cardiovascular events. This meta-analysis is characterized by the inclusion of
two extremely large trials (including in total more than 11,000 cases and
controls), whereas 4 other studies enrolled less than 200 cases and controls. The
results of these three meta-analyses are reported in Table 5.

Table 4. The results of the simulation study comparing the empirical power of the proposed
methods (using fixed effects Poisson regression) against the summary based methods. The results
are based on 1000 repetitions with meta-analyses of varying number of studies (5, 10, 15, 20 and
25) and control group event rate (1%, 2.5%, 5%, 10% and 30%) using a Risk Ratio equal to 2.0.

Poisson regression Summary-based Number of Studies Control Group
method (power) method (power) o) Event Rate (%)
0.160 0.094 5 1.0%
0.377 0.225 10 1.0%
0.556 0314 15 1.0%
0.682 0.404 20 1.0%
0.778 0.499 25 1.0%
0.458 0.368 5 2.5%
0.750 0.603 10 2.5%
0.902 0.811 15 2.5%
0.968 0.894 20 2.5%
0.988 0.938 25 2.5%
0.759 0.693 5 5.0%
0.962 0.921 10 5.0%
0.998 0.968 15 5.0%
0.999 0.982 20 5.0%
1.000 0.985 25 5.0%
0.946 0.950 5 10.0%
0.998 0.984 10 10.0%
1.000 0.980 15 10.0%
1.000 0.989 20 10.0%
1.000 0.997 25 10.0%
1.000 0.988 5 30.0%
1.000 0.990 10 30.0%
1.000 0.998 15 30.0%
1.000 1.000 20 30.0%
1.000 1.000 25 30.0%

Finally, we re-analyzed the data that were used by Warn and coworkers in
the development of their Bayesian method (Warn et al, 2002). The data were
obtained from a Cochrane Review investigating the effectiveness of single-dose
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ibuprofen (i.e. a non-steroidal anti-inflammatory analgesic) in reducing post-
operative pain (Collins et al, 2000). The original review comprised 46 small trials
of single-dose ibuprofen against placebo with doses ranging from 50mg to
800mg. Similarly to Warn and coworkers, we considered only the subset of 31
trials with dose of 400 mg. Since the length of follow-up is the same within trials,
it i1s appropriate to consider the patient’s ‘risk’ of experiencing pain relief and
thus, we used this dataset to for applying methods that estimate OR, RR and RD.
The results of this meta-analysis are reported in Table 6.

In all the datasets that we re-analyzed there was a moderate to severe
degree of heterogeneity and thus, random effects models should provide more
accurate results (Table 5 and 6). It should be noticed that even when we restrict
the attention to summary data methods, the different methods (MM-DL, ML,
REML) provide slightly different results, without changing though the overall
conclusions. The differences of the fixed effects methods based on summary data
compared to those using the Poisson regression are also non-negligible. All the
random effects Poisson regression methods provide more convincing results for
the significance of the intervention (exposure) compared to the summary data
methods. In all analyses the bivariate Poisson regression and the mixed model
with random study effects and 0/1 coding produce identical estimates. The model
with fixed study effects produces slightly different results, which in the case of
the meta-analysis for the effect of dietary fat intake on combined cardiovascular
events (Hooper et al, 2001), lead to different conclusions when the IRD is the
measure of choice. In this analysis, this model produces a marginally non-
significant point estimate contradicting the other Poisson models, but is in
agreement with summary data methods. The mixed model with zero covariance
and the £ coding, produces similar results compared to the mixed model with
random study effects and 0/1 coding, although in the meta-analysis for the effect
of ibuprofen on post-operating treatment of pain (Collins et al, 2000), the
difference in the estimates is large in all effects measures (RR, RD, OR).

In the meta-analysis investigating the effectiveness of single-dose
ibuprofen in reducing post-operative pain ibuprofen (Collins et al, 2000), we had
the opportunity to compare the newly established methods against the Bayesian
methods developed by Warn and coworkers (Warn et al, 2002). In general the
Poisson model with fixed study effects produce estimates that are close to the
ones produced by the Bayesian methods. Furthermore, in most of the cases, the
95% C.I. are wider compared to the Bayesian methods, on contrary to what
generally one would expect. Besides the theoretical considerations behind the
validity of the assumption that each model makes (i.e. zero covariance, coding
scheme etc) some general conclusions could be drawn following previous studies
(Higgins & Whitehead, 1996; Higgins et al, 2001; Turner et al, 2000). For
instance, when the meta-analysis consists of a small number of studies, the most
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plausible model would be the one with fixed study effects. Random study effects
could be preferable in cases of large number of included studies when the
calculation of a large number of study-specific coefficients would be problematic.
A large number of studies are also needed for a precise estimation of the
covariance of the random terms in the model with the random study effects (Riley
et al, 2007). The model with zero covariance potentially provides a compromise,
but makes additional assumptions that may be untenable. In the particular meta-
analyses that we analyzed, the meta-analysis for the effect of dietary fat intake on
combined cardiovascular events (Hooper et al, 2001) included a small number of
studies and two large influential studies; thus, the discrepancy of methods using
fixed vs. random study effects is reasonable. On the other hand, in the meta-
analysis for the effect of ibuprofen on post-operating treatment of pain which
included 31 studies (Collins et al, 2000), large discrepancies arose by the use of
zero covariance model.

4. Discussion

Meta-analyses are increasingly recognized as effective means of quantitatively
synthesizing the results of primary research and exploring variability across
studies (Petiti, 1994). Notwithstanding their simplicity, traditional summary-data
methods used in most meta-analyses have many limitations. Therefore, the
development of efficient methodology capable of exploiting the binary structure
of the data and overcoming the shortcomings of traditional meta-analytical
methods is needed (Bagos, 2008; Bagos & Nikolopoulos, 2007; Higgins et al,
2001; Thompson et al, 2001; Turner et al, 2000; Whitehead et al, 2001).

The current work describes various procedures based on Poisson
regression and indicates their usefulness in pooling rates and ratios calculated in
follow up studies. Although mixed-effects Poisson regression models have been
used in the past in the biomedical literature (Gibbons et al, 2008; Pennello et al,
1999), according to the authors’ knowledge they have never been described
explicitly for meta-analysis. The methods proposed in this work can be useful in
meta-analyses of count or rate data making use of the Poisson likelihood and thus,
avoiding the continuity corrections in case of rare events that fit poorly to the
normal approximation. The simulation study that we conducted revealed that the
Poisson regression method is uniformly more powerful compared to the summary
based method across a wide range of experimental conditions, especially in cases
of rare events (event rate <5%) and small number of studies (<10), results that
highlight the potential usefulness of the newly proposed method. Consequently,
the methods were successfully applied to the sparse data reported recently by
Rucker and coworkers (Rucker et al, 2009) with very encouraging results (data
not shown). In future studies, application of alternative methods such as the
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random-effects zero inflated Poisson regression models could be evaluated (Hall,
2000; Lee et al, 2006). The suggested methodology can be applied using widely
available statistical software (SAS, STATA etc) whereas, especially in STATA, it
can be easily implemented with the accompanied do file. The only limitation of
the method is the increased computational demands required by the random
coefficient models (several minutes for a standard meta-analysis).

We compared the proposed techniques with the commonly implemented
models using data obtained from several published meta-analyses obtaining
encouraging results. When the duration of follow-up is constant, estimates for the
RR as well as for RD could be easily obtained in addition to the already
established techniques for obtaining estimates of the OR. The choice of the
particular measure that will be used in a meta-analysis as well as in primary
research is however, an important issue that should be evaluated carefully (Deeks,
2002; Walter, 2000). When the duration varies, the proposed methodology
naturally arises as a consequence of the properties of Poisson distribution.
Nevertheless, events to person-time statistics should be used only when
appropriate (Kraemer, 2009).

The new approach is also perceived to be suitable for the analysis of
studies with recurrent events, which are common in medical research (Glynn &
Buring, 1996; Glynn et al, 1993; Stukel et al, 1994; Sturmer et al, 2000).
Overdispersion is often encountered in the case of multiple occurrences of an
event in the same subject and our methodology accounts for this phenomenon
adopting higher-level models. Emphasis has also been given to the analysis of
individual patients data, whose synthesis offer many advantages over the meta-
analysis based on summary statistics extracted from the published literature i.e.
standardization of variables, sufficient control of confounding, collection of
updated information and retrieval of unpublished data (Ioannidis et al, 2002;
Steinberg et al, 1997). Our method could be an appropriate and flexible choice
when meta-analysis of raw data from follow-up studies is planned in order to
model heterogeneity and confounders directly at the individual level.

The mixed-effects Poisson regression model can also be used in meta-
analyses of incidence or any other type of counts or rates. We have also shown
that the model could be extended to handle situations of meta-analysis of mutually
exclusive data (competing risks). The application of the method in the data used
by Trikalinos and Olkin provided very encouraging results (data not shown).
Furthermore, the models presented here based on Poisson regression can also be
used very easily for providing estimates and confidence intervals for another
useful measure, the Number Needed to Treat (NNT). NNT is defined as the
inverse of RD (Nuovo et al, 2002; Walter & Sinclair, 2009) and thus, its
confidence intervals can be easily produced by the Poisson model using the delta
method. Since the large sample approximations for the variance of NNT are also
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prone to bias (Duncan & Olkin, 2005), we expect that the methods proposed here
would compare favourably. Lastly, we have to mention that since Poisson
regression models have been for long used for performing estimations on survival
data (Laird & Olivier, 1981; Whitehead, 1980) another possible use of the mixed-
effects Poisson model could be that of performing IPD meta-analysis with
survival data.

Given the importance of conducting efficient research and the problems
encountered in the statistical aspects of meta-analysis, the Poisson-based approach
could be a promising and credible analytical tool in the synthesis of evidence from
follow-up studies, in which a specific metric might be more relevant, while the
period of observation will probably be incomplete in many participants or the
outcome of interest might be observed repeatedly in the population. Therefore,
using the suggested approach, analyses on scales other than the mathematically
advantageous OR such as the RR or the RD are feasible. Common statistical
software packages support the theoretical concept of combining studies with
Poisson regression making fairly easy the implementation of the suggested
methodology and we expect that this will be widely used.
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Table 5. Results obtained using the various methods described in the text on the three published meta-analyses. We present the estimates for
Incidence Rate Ratio (IRR) and Incidence Rate Difference (IRD) along with their respective 95% confidence intervals. IV: Inverse variance,
MM-DL: Method of Moments of DerSimonian and Laird, ML: Maximum Likelihood, REML: Restricted Maximum Likelihood.

Meta-analysis
Asthma self-management education in

. . Asth 1f- t tion i
Dietary fat intake/ sthma self-management education in

. . children / children /
combined cardiovascular events ..
(Hooper et al, 2001) School absences ER visits
i (Wolf et al, 2003) (Wolf et al, 2003)

IRR (95% CI)

IRD (95% CI)

IRR (95% CI)

IRD (95% CI)

IRR (95% CI)

IRD (95% CI)

Summary methods

fixed effects
av)

0.825 (0.736, 0.924)

-0.005 (-0.011, 0.000)

0.869 (0.838, 0.901)

-0.119 (-0.147, -0.091)

0.678 (0.603, 0.762)

-0.013 (-0.020, -0.007)

random effects
(MM-DL)

0.754 (0.617, 0.921)

-0.016 (-0.031, -0.001)

0.763 (0.671, 0.866)

-0.167 (-0.253, -0.082)

0.561 (0.416, 0.756)

-0.053 (-0.080, -0.026)

random effects
(ML)

0.804 (0.701, 0.922)

-0.009 (-0.016, -0.001)

0.743 (0.609, 0.905)

-0.166 (-0.248, -0.084)

0.544 (0.384, 0.771)

-0.019 (-0.030, -0.009)

random effects
(REML)

0.787 (0.672, 0.921)

-0.009 (-0.017, -0.002)

0.740 (0.599, 0.914)

-0.167 (-0.252, -0.082)

0.539 (0.373, 0.779)

-0.020 (-0.031, -0.009)

Individual Data
methods
(Poisson Regression)

Fixed effects

0.819 (0.731, 0.917)

-0.015 (-0.023, -0.006)

0.864 (0.834, 0.896)

-0.040 (-0.052, -0.029)

0.659 (0.588, 0.739)

-0.051 (-0.074, -0.028)

Bivariate fixed effects

0.829 (0.740, 0.929)

-0.011 (-0.017, -0.004)

0.862 (0.832, 0.894)

-0.154 (-0.192, -0.117)

0.765 (0.684, 0.857)

-0.027 (-0.039, -0.016)

Random effects
(fixed study effects)

0.819 (0.731, 0.917)

-0.015 (-0.023, -0.006)

0.727 (0.587, 0.900)

-0.105 (-0.168, -0.042)

0.516 (0.361, 0.739)

-0.090 (-0.143, -0.037)

Random effects
(random study effects,
7z=0/1, cov£0)

0.746 (0.592, 0.940)

-0.026 (-0.059, 0.008)

0.721 (0.579, 0.897)

-0.189 (-0.320, -0.058)

0.525 (0.361, 0.764)

-0.056 (-0.104, -0.007)

Random effects
(random study effects,
z=%1/2, cov=0)

0.779 (0.615, 0.987)

-0.019 (-0.038, 0.000)

0.722 (0.581, 0.898)

-0.155 (-0.266, -0.043)

0.521 (0.360, 0.754)

-0.041 (-0.069, -0.012)

Bivariate random
effects

0.746 (0.592, 0.940)

-0.026 (-0.059, 0.008)

0.721 (0.579, 0.897)

-0.189 (-0.320, -0.058)

0.525(0.361, 0.764)

-0.056 (-0.104, -0.007)
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Table 6. Results obtained using the various methods described in the text on re-analyzing the data from the meta-analysis investigating the
effectiveness of single-dose ibuprofen in reducing post-operative pain (Collins et al, 2000). We present the estimates for Risk Ratio (RR), Risk
Difference (RD) and Odds Ratio (OR) along with their respective 95% confidence intervals. For reasons of comparison we also list results
obtained by Warn and coworkers using their Bayesian methods denoted by model a, b and ¢ (Warn et al, 2002). IV: Inverse variance, MM-DL:
Method of Moments of DerSimonian and Laird, ML: Maximum Likelihood, REML: Restricted Maximum Likelihood.

DOl:

RD (95% CI)

RR (95% CI)

OR (95% CI)

Summary data methods

fixed effects (IV)

0.400 (0.371, 0.428)

2.390 (2.106,2.713)

6.221 (4.988, 7.759)

random effects (MM-DL)

0.395 (0.335, 0.454)

3.385 (2.617, 4.378)

8.021 (5.559, 11.575)

random effects (ML)

0.393 (0.334, 0.452)

3.412 (2.627,4.431)

8.048 (5.563, 11.643)

random effects (REML)

0.393 (0.333, 0.453)

3.447 (2.638, 4.503)

8.129 (5.575, 11.854)

Bayesian method (model ¢)

0.391 (0.328, 0.453)

3.438 (2.602, 4.933)

8.051 (5.481, 12.570)

Individual Data methods

(Poisson Regression, Logistic Regression)

Fixed effects

0.367 (0.206, 0.527)

3.451 (2.948, 4.040)

8.421 (6.841, 10.367)

Bivariate fixed effects

0.373 (0.331, 0.416)

3.318 (2.840, 3.876)

5.976 (4.983,7.169)

Random effects
(fixed study effects)

0.367 (0.206, 0.527)

3.451 (2.948, 4.040)

9.818 (6.861, 14.051)

Random effects
(random study effects, z=0/1, cov£0)

0.432(0.375, 0.488)

5.467 (3.623, 8.249)

11.326 (7.017, 18.281)

Random effects
(random study effects, z=+1/2, cov=0)

0.774 (0.478, 1.070)

4.093 (3.069, 5.458)

9.985 (6.582, 15.149)

Bivariate random effects

0.432 (0.375, 0.488)

5.467 (3.623, 8.249)

11.326 (7.017, 18.281)

Bayesian method (model a)

0.375 (0.312, 0.440)

3.864 (2.870, 5.263)

8.670 (5.570, 12.94)

Bayesian method (model b)

0.393 (0.333, 0.456)

3.853 (3.045, 5.143)

9.340 (6.300, 13.82)
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Appendix I

Once the models of Eq. (2.4), (2.9) or (2.10) are fitted, we can directly calculate
an estimate of IRD (or RD) making use of the relations, /R;=exp(6+a) and
IRy=exp(a). Thus, we will have:

IRD=IR, — IR, = exp(é)exp(&0 )—exp(d,)
The variance of IRD will be given by:
var [exp (@, )exp (é) —exp(4, )} = var [exp (a,)exp (é)} + var [exp (a, )]
To calculate the variance ofvar [exp (&0 ) exp (éﬂ , we have to define a function

A0, ag)=exp(ao)exp(d) and approximate it using a bivariate 1% order Taylor
expansion around the sample means of the parameters 6, ag ( i, =0, H, = &0) :

, . of (6.4, (6.4,
f(9,00)=f(@,&o)+%(g_g)+%(%_&O)

Then, using the delta method we will have:

Var[f(é?,ao)] ~ var :f(&,ao)]
=var M(&—é)+m(% _&0)}
00 Oa,
=var _af(e’do—)(aé)}ﬁLVar[—af(e,&O)(ao&0)
00 Oa,
+2cov{6f(0’&o)(9é),af(ai’&o) ao_&o)
Thus: —
Var[f(@,eo)]z[@] Var(@)ﬂ—{%’o&o)] var(ao)
+2cov(6,a,) 6f(;é&°) af(ai’ &0)

and after replacing the population values with the sample ones, the variance will
be:
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Var[exp (@, )exp (é)} = [exp (d,)exp (é)T Var(é) + [exp (a,)exp (é)T var(d,)
-2 [exp (,)exp (QA)} [exp (@, )exp (é)} cov(é, a, )

=[exp(&0 ) exp(é’ﬂ2 {Var(é) +var(d, ) - 2cov(é, y )}

Var[exp(&0 )] , can be calculated similarly to be equal to [exp( a, )]2 var(d, ), and
thus:

Var(IRD) - [exp(flo )exp (é)}z {Var(é) +var(d,)—2 cov(é, a, )}

+[exp(dy)] var(d, )

Appendix I1

To calculate the variance of IRD from the bivariate model of Eq. (2.16), we have
to define a function f{@,, 6y)=exp(d))—exp(Hy) and approximate it using a bivariate
1** order Taylor expansion around the sample means of the parameters 6;,

(,[‘91 :élﬂilé‘o :éo) :
r(3.)
06,

Foa)=r(a.0)e T g ). 08 g

Then, using the delta method we will have:

Var[f(ﬁl,ﬁo):l zVar[f(Hlﬁo)}

=var

Thus:
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or(6.6,)] o (6.6,)|

var| £(6,,6,) |~ 5 var(6,)+ = var(6,)
1 0
or(6.6,)or (6.6
+2COV((91,490) f( 1 o) f( 1 0)

06, 06,
and after replacing the population values with the sample ones, the variance will
be:

Var[exp(él)—exp(éo ):| = exp(él )2 Var(é?l)Jrexp(éo )2 Var(éo)

_2exp(91)exp(éo)cov< Al,éo)
=Var(IRD)

Appendix II1

*** calculation of IRR and IRD from studies with varying durations
*** we used the data of Wolf et al
*** the commands can be run interactively or in a do-file

input id personmonthl eventsl personmonthO eventsO
132 7 120 24

324 8 180 3

1908 273 876 182
156 1 156 13

528 20 540 27
576 110 336 104
84 13 84 52

90 5 90 18

9 1368 8 1140 22
10 1212 55 1248 40
11 75 11 75 27

12 378 95 306 85
end

O J oUW

gen selogirr=sqrt( 1/eventsl + 1/events0)
gen logirr=log( (eventsl/ personmonthl)/( eventsO/ personmonth0))

***% Summary data methods for IRR

*** Random effects (MM-DL)

metan logirr selogirr,random eform

*** Random effects (REML)

metareg logirr,wsse(selogirr) bse(reml)
*** Random effects (ML)

metareg logirr,wsse(selogirr) bse(ml)
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gen seird=sqrt( eventsl/ personmonthl”2 + events0/ personmonth0”2)
gen ird= (eventsl/ personmonthl) - ( events0/ personmonthO)

*** Summary data methods for IRD

*** Random effects (MM-DL

metan ird seird, random

*** Random effects (REML)

metareg ird,wsse (seird) bse(reml)
*** Random effects (ML)

metareg ird,wsse(seird) bse(ml)

*** Poisson regression methods
reshape long personmonth events,i(id ) Jj(treat)

gen cons=1
gen logt=log(personmonth )

*** fixed effects Poisson regression (we use eform for obtaining the IRR)
xi: glm events treat i.id, fam(poisson) link (log) offset(logt) eform
*** calculation of IRD with the delta method

nlcom exp( b[ cons])*(exp( b[treat ])-1)

*** random effects Poisson regression with random study effects
eq int:cons
eq slope:treat

gllamm events treat,fam(poisson) 1(id ) 1link(log) egs(int slope) nrf(2)
adapt offset (logt )

*** we use eform for obtaining the IRR

gllamm, eform /* IRR */

*** calculation of IRD with the delta method

nlcom exp( b[ cons])*(exp( bl[treat ])-1)

*** random effects Poisson regression with random study effects

**xx z=+1/2,cov=0

gen treat2=treat-0.5

eq slope2:treat?2

gllamm events treat2 ,fam(poisson) 1i(id ) 1link(log) egs(int slope2)
nocorr nrf (2) adapt offset(logt )

*** we use eform for obtaining the IRR

gllamm, eform

*** calculation of IRD with the delta method

nlcom exp( b[ cons])*(exp( b[treat2 ])-1)

*** random effects Poisson regression with fixed study effects

xi: gllamm events treat i.id, i(id) nrf(l) egs(slope) 1l(log) fam(poisson)
adapt offset (logt)

*** we use eform for obtaining the IRR

gllamm, eform

*** calculation of IRD with the delta method

nlcom exp( b[ cons])* (exp( bl[treat ])-1)
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*** pbivariate Poisson
tab treat,gen(c)

*** bivariate fixed effects Poisson

glm events cl c2, nocons fam(poisson) link(log)

*** calculation of IRR with the delta method
nlcom b[c2] - Dblcl]

*** calculation of IRD with the delta method
nlcom exp( b[c2]) - exp( blcl])

*** pbivariate random effects Poisson
eqcl : cl
eq c2 : c2

gllamm events cl c2 , nocons fam(poisson)
nrf (2) adapt offset(logt ) nip(12)
*** calculation of IRR with the delta method

nlcom b[c2] - Dblcl]
*** calculation of IRD with the delta method
nlcom exp( b[c2]) - exp( blcl])

i(id

)

offset (logt )

link (log)

eform

egs (cl c2)

*** calculation of RR, RD and OR from studies with constant durations

*** we used the data of Hooper et al

*** the commands can be run interactively or in a do-file

clear

set more off

input id rl nl r0 nO
119 32 2 30

2 215 0 14

3 57 80 31 82
4 20 40 6 40
5 22 38 5 46
6 19 37 6 43
7 37 61 9 64
8 21 28 3 28
9 15 32 0 34

10 18 37 1 39
11 20 38 0 38
12 26 42 0 38
13 40 81 2 39
14 9 41 7 39
15 15 40 5 40
16 19 49 0 51
17 9 12 6 16
18 9 49 0 47
19 33 49 17 48
20 39 39 14 37
21 29 42 24 41
22 6 30 0 11
23 124 306 5 85
24 67 98 1 40
25 13 30 5 32
26 27 36 13 38
27 42 63 10 32
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28 42 62 7 30
29 22 31 2 19
30 21 30 3 30
31 16 38 11 40
end

gen logrr=log(rl/nl) -log(r0/n0)
gen selogrr=sqrt(1/rl1+1/r0-1/nl1-1/n0)

replace logrr=log((rl+0.5)/(n1+0.5)) -log ((r0+0.5)/(n0+0.5)) if rl==
| rO==

replace selogrr= sqrt(l/(rl1+0.5) +1/(r0+0.5) -1/(nl1+0.5) -1/(n0+0.5)) if
rl== | rO==

gen rd=rl/nl-r0/n0
gen serd=sqrt(rl*(nl-rl)/nl1”3 +r0* (n0-r0)/n0"3 )

gen dl=nl-rl
gen dO0=n0-r0

gen logor=log(rl/dl) -log(r0/do0)

gen selogor=sqgrt (1/rl+1/r0+1/d1+1/d0)

replace logor=log((rl+0.5)/(d1+0.5)) -log ((r0+0.5)/(d0+0.5)) if rl1==0
|d0==0|r0==0|d1==0

replace selogor= sqrt(1/(rl1+0.5) +1/(r0+0.5) +1/(d1+0.5) +1/(d0+0.5)) if
rl1==0 |d0==0|r0==0]|dl==

*** Summary data methods for RR an RD using MM-DL
metan rl dl r0O dO0,rd randomi nowt counts
metan rl dl r0 dO,rr randomi nowt counts

**%* Summary data methods for RR an RD using MM-DL (alternative method)
metan rd serd,random nowt
metan logrr selogrr,random eform nowt

**%* Summary data methods for RR an RD using REML
metareg logrr,wsse (selogrr) bse(reml)
metareg rd,wsse (serd)bse (reml)

**%* Summary data methods for RR an RD using ML
metareg logrr,wsse(selogrr) bse(ml)
metareg rd,wsse (serd)bse(ml)

*** Poisson regression models
reshape long r n d, i(id) Jj(treat)
gen logt=log(n)

gen cons=1

eq int: cons

eq slop: treat

gen treat2=treat-0.5

eqg slop2: treat2

*** random effects Poisson regression with fixed study effects
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xi: gllamm r treat i.id, 1i(id) nrf(l) egs(slop) 1l(log) fam(poisson) adapt
offset (logt) eform

**calculation of RD using the delta method

nlcom exp( b[ cons])*(exp( b[treat ])-1)

*** random effects Poisson regression with random study effects

gllamm r treat, i(id) nrf(2) egs(int slop) 1l(log) fam(poisson) adapt
offset (logt) eform

**calculation of RD using the delta method

nlcom exp( b[ cons])*(exp( b[treat ])-1)

*** random effects Poisson regression with random study effects z=t11/2,
cov=0

gllamm r treat2 , 1(id) nrf(2) egs(int slop2) 1l(log) fam(poisson) nocorr
adapt offset(logt) eform

**calculation of RD using the delta method

nlcom exp( b[ cons])*(exp( b[treat ])-1)

*** the same models but using the binomial likelihood

***% in order to obtain the Odds Ratio

xi: gllamm r treat i.id, 1(id) nrf(l) egs(slop) 1l(logit) fam(binom)
adapt denom(n) eform

gllamm r treat , 1i(id) nrf(2) egs(int slop) 1l(logit) fam(binom) adapt
denom(n) eform

gllamm r treat2 , 1(id) nrf(2) egs(int slop2) 1l(logit) fam(binom) nocorr
adapt denom(n) eform

*** bivariate random effects Poisson
tab treat,gen(c)

eq cl: cl

eq c2 : c2

gllamm r cl c¢2, nocons fam(poisson) 1i(id) link(log) egs(cl c2) nrf(2)
adapt offset (logt )
**calculation of RR using the delta method

nlcom b[c2] - bl[cl] /* RR */
**calculation of RD using the delta method
nlcom exp( b[c2]) - exp( b[cl]) /* RD */

*** glternative specification for fitting the same models
rename d y0

rename r yl

gen i= n

reshape long y, 1(i) Jj(case)

drop 1

rename y wtl

eq int: cons

eq slop: treat

*** random effects Poisson regression with random study effects

gllamm case treat, i(id) nrf (2) egs (int slop) 1(log) fam (poisson)
w(wt)adapt eform

**calculation of RD using the delta method
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nlcom exp( b[ cons])* (exp( bl[treat ])-1)

*** bivariate random effects Poisson
tab treat,gen(cc)

eq cl: ccl

eq c2 : cc2

gllamm case ccl cc2, nocons fam(poisson) 1i(id ) 1link(log) egs(cl c2)
nrf(2) adapt w(wt)
**calculation of RR using the delta method

nlcom b[cc2] - blccl]
**calculation of RD using the delta method
nlcom exp( b[cc2]) - exp( blccl])

*** Logistic regression random effects model with fixed study effects
xi: gllamm case treat 1i.id, i(id) nrf(l) egs(slop) 1l(logit) fam(binom)
w(wt) adapt
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