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Mixed-Effects Poisson Regression Models for
Meta-Analysis of Follow-Up Studies with
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Abstract

We present a framework for meta-analysis of follow-up studies with constant or varying
duration using the binary nature of the data directly. We use a generalized linear mixed model
framework with the Poisson likelihood and the log link function. We fit models with fixed and
random study effects using Stata for performing meta-analysis of follow-up studies with constant
or varying duration. The methods that we present are capable of estimating all the effect measures
that are widely used in such studies such as the Risk Ratio, the Risk Difference (in case of studies
with constant duration), as well as the Incidence Rate Ratio and the Incidence Rate Difference (for
studies of varying duration). The methodology presented here naturally extends previously
published methods for meta-analysis of binary data in a generalized linear mixed model
framework using the Poisson likelihood. Simulation results suggest that the method is uniformly
more powerful compared to summary based methods, in particular when the event rate is low and
the number of studies is small. The methods were applied in several already published meta-
analyses with very encouraging results. The methods are also directly applicable to individual
patients' data offering advanced options for modeling heterogeneity and confounders. Extensions
of the models for more complex situations, such as competing risks models or recurrent events are
also discussed. The methods can be implemented in standard statistical software and illustrative
code in Stata is given in the appendix.

KEYWORDS: meta-analysis, multivariate methods, random effects, Poisson regression,
multilevel models
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1. Introduction 

Meta-analysis constitutes a particular type of research, in which a set of original 
studies is synthesized and the potential diversity across them is explored using 
specific statistical methods (Glass, 1976; Greenland, 1998; Normand, 1999; Petiti, 
1994). Although in medical research literature meta-analysis was initially applied 
in the field of randomized clinical trials (Chalmers et al, 1987; Sacks et al, 1987), 
it is nowadays considered a valuable tool for the combination of observational 
studies (Stroup et al, 2000) as well as for gene-disease association studies  (Bagos, 
2008; Trikalinos et al, 2008). 

Traditionally, meta-analysis is being performed using summary or 
aggregate estimates calculated at a study-level. For binary outcomes, depending 
on the study design and the goals of a particular research, effect measures from 
each study (Table 1 and 2) are chosen and subsequently pooled taking into 
consideration the estimates of their variance. The method for calculating the 
overall estimates could rely on fixed or on random effects. Most of the summary-
data techniques are based on large sample approximations for the variance and 
depend heavily on normality assumptions concerning the distribution of effect 
measures. Therefore, when these are violated, the commonly used methodology 
may be problematic. If the outcome of a study is measured on a continuous scale, 
methods based on the Weighted Mean Difference (WMD) are employed when the 
measures are on the same scale, whereas Standardized Mean Difference (SMD) 
methods are used when measures are not reported in the same units. 

Bayesian methods have been proposed and used for years in applications 
in meta-analysis (Smith et al, 1995). In the classical setting, the chosen measure 
of association is the Odds Ratio (OR), although methods for the Risk Ratio (RR) 
and the Risk Difference (RD) have also been developed (Sutton & Abrams, 2001; 
Warn et al, 2002). Although Bayesian methods could be adopted easily for 
summary statistic data, their main advantage arises when it comes to using 
directly the binary structure of the data without assuming a normally distributed 
outcome (i.e. logOR). During the same period, frequentist methods that could also 
exploit the binary nature of the data have been developed. In one of the first 
attempts to carry out a statistical combination of binary data, a bivariate method 
was proposed, which models simultaneously the logits of exposed and non-
exposed individuals (van Houwelingen et al, 1993). Later on, several approaches 
for random effects meta-analysis of binary outcomes were proposed in a 
multilevel framework (Thompson & Sharp, 1999; Thompson et al, 2001; Turner 
et al, 2000).  

In all of the above-mentioned analyses though, the selected measure of 
association for binary data was the OR. Other approaches for multilevel modeling 
in meta-analysis include similar procedures with continuous outcomes (Higgins et 
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al, 2001; Thompson et al, 2001), as well as methods for ordinal responses (Poon, 
2004; Whitehead et al, 2001). Thus, it is clear that up to now no method has been 
proposed for performing meta-analysis using binary data in a frequentist 
framework estimating effects such as the RR and RD. Such measures could be 
preferable (compared to the OR) in the realm of prospective cohort studies or 
clinical trials and offer some advantages since they are more easily interpretable 
and might reflect better the clinical question. Furthermore, a common limitation 
of follow-up studies is the incomplete observation time of some individuals due to 
their withdrawal or loss before a point in calendar time that marks the termination 
of study. The incidence rate (IR) is a measure of disease frequency that is often 
used in observational studies with varying duration. The most likely value of the 
rate parameter is the total number of events divided by the total observation time 
added over all subjects included in the study with the latter known in 
epidemiology as person-time (Clayton & Hills, 1993). The estimate of effect is 
usually calculated in the form of the incidence rate ratio (IRR), while the 
attributable risk for an event (usually a disease) given the exposure can be 
estimated by the Incidence rate difference (IRD). Yet, little attention has been 
paid so far to the development of methodology tailored to the conduct of meta-
analysis using IRRs or IRDs (Guevara et al, 2004). It is of relevance here to notice 
that the Cochrane Handbook of Systematic Reviews suggests pooling counts and 
rates using summary data methods (Deeks et al, 2008). 

In this work, we discuss methods suitable for synthesizing measures of 
association such as RR, RD, IRD and IRR. We extend previously published 
multilevel methods that utilize a generalized linear mixed model framework, and 
apply models for count data using the Poisson likelihood. We argue that even 
though such methods are available, they have never been applied in meta-analysis 
within a frequentist framework mainly because of the dominant role played by the 
OR in the relevant literature. In Section 2 the newly proposed methods are 
presented in detail.  Initially (Section 2.1) we formulate the problem and present 
briefly the well-known summary-based methods in order to establish notation. In 
Section 2.2, the general framework based on a mixed-effect Poisson regression 
model is illustrated, while in Section 2.3 we describe an alternative approach 
fitting a bivariate Poisson model. Section 2.4 deals with the implementation of 
Poisson regression models for meta-analysis of studies with individual patients’ 
data and, finally, in Section 3 the above-mentioned techniques are applied in a 
simulation study in order to compute empirical power as well as in several 
published meta-analyses in order to assess their properties and compare the 
results.  
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2. Methods 

2.1 Meta-analysis using summary measures 

Let cij denote the number of events in the jth group (j=0 control/unexposed group, 
j=1 intervention/exposed group) of the ith study and nij the total number of 
individuals in the same group. The total person-time in the jth group of the ith 
study would be ij ij ijT n t=  where ijt  is the average person-time (Table 1).  

Table 1. Typical layout of the data used in a meta-analysis of k observational studies or controlled 
clinical trials. If the duration of follow-up is constant the total person-time is irrelevant and only 
the number of events and the total number of persons in each arm of a study is used.  

If the duration of the study varies between the two arms, as is the case in 
follow-up cohort studies, we would normally be interested in the IRR or in the 
IRD. When, on the other hand the duration is fixed for both arms, then, the 
measures of choice would be the RR or the RD. In retrospective case-control 
studies, the OR is the only available measure that can be used. However, the OR 
is also commonly used in prospective studies as an approximation to RR under the 
rare disease assumption. In Table 2, all the above mentioned estimates along with 
the large sample approximations for their standard errors are presented following 
the notation outlined above. We report the asymptotic standard errors that are 
based on large-sample theory as presented in standard textbooks (Clayton & Hills, 
1993; Kleinbaum et al, 1982; Petiti, 1994), as well as in review papers (Normand, 
1999; Sato, 1990).  

In traditional fixed effects meta-analysis using summary measures, we 
assume that the individual estimates θi of each study are distributed normally 
around the true effect θ as: 

Experimental arm Control arm 

study Events Persons Person-
time Events Persons Person-

time 
1 c11 n11 T11 c10 n10 T10 

2 c21 n21 T21 c20 n20 T20 

… … … … … … … 

k ck1 nk1 Tk1 ck0 nk0 Tk0 

( )2,
i i

N sθ θ∼         (2.1) 
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where 2
is  is the estimated variance of each study. The combined estimate across k

studies can be calculated using: 

1 1

ˆ
k k

i i i
i i

w wθ θ
= =

=∑ ∑        (2.2) 

with weights given by 21i iw s= . In the presence of heterogeneity a preferable 
method is the random effects approach, which assumes that the true effect varies 
randomly between studies and consequently, we introduce a random component 
of the between studies variance τ2: 

Table 2. The most commonly used summary measures of association used in observational studies 
and in controlled clinical trials. For each parameter we list its estimate and an approximate 
standard error that can be both expressed in terms of the counts denoted in Table 1. 

Parameter 
( )θ

Estimate 

( )θ̂
Standard Error 

( )ˆse
θ

RD 1 0

1 0

i i

i i

c c
n n

−  
( ) ( )1 1 1 0 0 0

3 3
1 0

i i i i i i

i i

c n c c n c
n n
− −

+

logRR 1 0

1 0

log logi i

i i

c c
n n

⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ 1 0 1 0

1 1 1 1

i i i ic c n n
+ − −  

logOR 1 0

1 1 0 0

log logi i

i i i i

c c
n c n c

⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ 1 0 1 1 0 0

1 1 1 1

i i i i i ic c n c n c
+ + +

− −

IRD 1 0

1 0

i i

i i

c c
T T

−  1 0
2 2
1 0

i i

i i

c c
T T

+  

logIRR 1 0

1 0

log logi i

i i

c c
T T
⎛ ⎞ ⎛ ⎞

−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ 1 0

1 1

i ic c
+  

The most commonly used estimate of τ2 is the one proposed by 
DerSimonian and Laird (DerSimonian & Laird, 1986), which is calculated non-
iteratively by the method of moments (MM). The weights ( )* 2 21i iw s τ= + , if used 
in Eq. (2.2), will provide the random effects estimate of θ. The methods described 
above can be easily extended in order to adjust for potential study-level covariates 
in a meta-regression (Thompson & Higgins, 2002). The non-iterative approaches 

( )2 2,
i i

N sθ θ τ+∼        (2.3) 
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based on summary data offer the advantage of simplicity since the estimates and 
their variances can be calculated using simple computations. Random effects 
estimates derived iteratively utilizing maximum likelihood (ML), restricted 
maximum likelihood (REML) or empirical Bayes (EB) methods have been 
proposed (Thompson & Sharp, 1999). In the Appendix, we describe how these 
models can be fitted in Stata.  

The aforementioned summary based methods, despite being simple and 
easy to implement, suffer from some of serious disadvantages. First of all, they 
use normal approximations to draw inferences concerning the estimates. In 
several situations, the normality assumptions may be inappropriate, especially 
when we encounter zero events in one or both groups, in which case the estimates 
and their variances are not defined. In such instances, the only way to circumvent 
the problem would be to perform an ad-hoc correction adding a small quantity to 
the count in each cell of the 2x2 tables before the analysis (Sweeting et al, 2004). 
Secondly, the variances of the individual studies are considered known instead of 
being estimated from the data. Another important drawback is that the summary 
data methods cannot take advantage of individual patients’ data (IPD). The 
collection and analysis of IPD is increasingly employed in pooled meta-analyses 
or multicenter trials and helps to discover significant confounders or effect 
modifiers acting at the individual level. Although meta-regression of summary 
estimates can also be substantially helpful, its use is limited on study-level 
covariates and the risk of ecological confounding resulting in spurious findings is 
not negligible (Higgins & Thompson, 2004; Thompson & Higgins, 2002). 

2.2  Meta-analysis using Poisson regression on grouped data 

In the present section, we describe a meta-analytical approach applying fixed and 
random effects Poisson regression models to grouped data, and we show their 
direct analogy with the summary data methods. Consequently, we will extend 
these models in case we have available IPD. When only summary (grouped) count 
data are available in the form reported in Table 1, Poisson regression models are 
directly applicable overcoming the problems discussed above. The relevance of 
the Poisson distribution is obvious, considering that the approximate variances 
described in the previous section can be derived by treating the counts in the 
contingency table as realization of Poisson random variables (Clayton & Hills, 
1993; Kleinbaum et al, 1982). Formulation of the models, for incidence data, 
requires using the logarithm of the total number of counts (cij) as the dependent 
variable in the Poisson regression, with the inclusion of the logarithm of the total 
person-time Tij as an offset (a variable with coefficient constraint to be 1). The 
same model could be used for estimating RR, simply by substituting Tij by nij. 
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A fixed-effects meta-analysis using Poisson regression could be performed 
by fitting the model:  

( ) ( )0log logij i ij ijc z Tα α θ= + + +      (2.4) 

( ) 0

where zij is an indicator variable for the groups under comparison (taking values 
zij=0 for counts arising from the non-exposed group and zij=1 for counts observed 
in the intervention/exposed group for each study i). The parameter θ after being 
exponentiated yields the overall estimate of the IRR (or the RR if we use the total 
counts nij). This model incorporates dummy variables αi (i=2, 3… k) as indicators 
for the study-specific fixed effects, in order to preserve the within studies 
comparison of exposed vs. non-exposed groups (stratification). The analogy to the 
measures reported in Table 2 is obvious if we re-arrange Eq. (2.4): 

log ij ij i ijc T zα α θ= + +       (2.5) 
The overall χ2 test for checking the significance of the study by group interaction 
is an analogue of the χ2 test for heterogeneity (Cochrane’s Q) used in the summary 
data methods. Thus, fitting the model: 

( ) ( )0
2

log log
k

ij i ij i i ij ij
i

c z a z Tα α θ γ
=

= + + + +∑     (2.6) 

and testing the null hypothesis 0 : 0,  2,3,...iH i kγ = ∀ =  would result in a test 
statistic:  

Consequently, using W, a modified version of the I2 measure of inconsistency 
(Higgins & Thompson, 2002; Higgins et al, 2003) can be easily calculated: 

( )2 1
max 0,

W k
I

W
− −⎧ ⎫

= ⎨ ⎬
⎩ ⎭

     (2.8) 

It should be noted here, that Guevara and coworkers (Guevara et al, 2004), 
considered this model, but they incorrectly named it “random effects model”. The 
particular mistake is apparent since they also considered a model (termed “fixed 
effects model”) in which it was not included a study-specific fixed intercept. As 
discussed by Thompson and Sharp (Thompson & Sharp, 1999), such models are 
inadequate because they do not perform stratification by study and are equivalent 
to just pooling the data from the included trials without preserving the within-
studies comparisons.  

The random effects models provided below are extensions to the linear 
mixed (hierarchical) models described by Higgins and coworkers for the 
quantitative synthesis of continuous outcomes using individual patients’ data 
(Higgins et al, 2001). The linear mixed model is extended here to a generalized 
linear mixed model using the Poisson distribution with the log link function. A 

( )
2 2

1
2

k

i k
i

W γ χ −
=

=∑ ∼        (2.7) 
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similar methodology suitable for dichotomous outcomes using logistic regression 
has also been presented by Turner and coworkers (Turner et al, 2000). Introducing 
a study-specific random coefficient νi, which represents the deviation of study’s 
true effect (yi) from the overall mean effect θ, suggests an additive component of 
heterogeneity leading to a random coefficient Poisson regression. Thus: 

With this model, the estimate for the between-studies variance is analogous to the 
one estimated by the random effects model of DerSimonian and Laird (MM) or its 
counterparts mentioned above (ML, REML or EB). However, the study-specific 
effects are still regarded as fixed. Alternatively, one can apply models with 
random study effects, assuming that the log-rates are random samples drawn from 
a normal distribution. This way, the fitted model as shown below, includes the 
effects υi of a study on the log-rate as well as the effects νi of study on the 
exposure effect. 

When fitting a model including a random intercept and a random coefficient like 
the one denoted in Eq. (2.10), we have to estimate also the covariance of the 
random terms. This should be equal to: 

( )cov ,i i νυ υν ν υν υ σ σ ρσ σ= = =      (2.11) 
If we force the covariance to be zero, we imply that the variance across studies for 
the control groups is always smaller than that of the intervention groups, and that 
the covariance of the estimate of the intervention and control groups is equal to 
the between-study variance of the estimate in the control groups (Higgins et al, 
2001). These assumptions are unrealistic, and arise as a result of the coding 
scheme used for controls and cases (0/1). If however, we choose an encoding of 
±½, we force the covariance of the random terms to be zero: 

Although the issue regarding the use of each one of the previously 
mentioned methods is controversial, we applied them all to compare the results 
and reach safer conclusions. Discussion on this issue can be found in (Higgins & 
Whitehead, 1996; Higgins et al, 2001; Turner et al, 2000). If the duration is 
constant, using nij, a random effects estimate for the OR could be also calculated. 
Denoting by πij=P(δij=1) the underlying risk (the probability of being a case) of an 
individual of the jth group of the ith study, we can fit a logistic regression model of 
the form: 

( ) ( ) ( )0log log
ij i i ij ij

c a z Tα θ ν= + + + + , ( )20,
i

Nν τ∼   (2.9)  

( ) ( ) ( )0log log
ij i i ij ij

c z Tα υ θ ν= + + + + , 

2

2

  0
,

0   

i

i

MVN
ν νυ

υν υ

ν σ σ

υ σ σ

     
           

∼   (2.10) 

2

2

  00
,

0 0  

i

i

MVN
ν

υ

ν σ

υ σ

     
           

∼  , ( )cov , 0i iυ ν = (2.12) 
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Similar logistic regression models with or without random study effects have been 
used in the past by several authors (Agresti & Hartzel, 2000; Thompson & Sharp, 
1999; Turner et al, 2000) and are presented here only for completeness.  

Once the models of Eq. (2.4), (2.9) or (2.10) are fitted, we can calculate an 
estimate of IRD (or RD) making use of the relations, IR1=exp(θ+α0) and
IR0=exp(α0). Thus, we will have: 

( ) ( ) ( )1 0 0 0
ˆˆ ˆ ˆ ˆ ˆexp exp expIRD IR IR a aθ= − = −     (2.14) 

Using the delta method, it can be shown (Appendix I) that the variance of IRD is 
equal to: 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( )

2

0 0 0

2
0 0

ˆ ˆ ˆˆ ˆ ˆ ˆvar exp exp var var 2cov ,

ˆ ˆexp var                     +

IRD a a a

a a

θ θ θ⎡ ⎤= + −⎣ ⎦

⎡ ⎤⎣ ⎦

 (2.15) 

Consequently, an approximate 95% confidence interval for ˆIRD  would be 
obtained using:  

( ) ( )ˆ ˆ ˆ ˆ1.96 var , 1.96 varIRD IRD IRD IRD− +

These models can be easily fitted in Stata using gllamm, or in SAS 
using PROC NLMIXED. They are expected to perform better compared to those 
presented in the previous sub-section in case where the normality assumptions 
may be invalid. In the Appendix III, Stata programs for fitting the models 
developed in this section are presented using the gllamm module (Rabe-Hesketh 
et al, 2002; Rabe-Hesketh et al, 2005). gllamm uses numerical integration by 
adaptive quadrature in order to integrate the latent variables and obtain the 
marginal log-likelihood. Afterwards, the log-likelihood is maximized by the 
Newton-Raphson method using numerical first and second derivatives. 

We have to emphasize here, that the models considered in this work 
assume (similar to what is the case in the majority of methods for meta-analysis) 
that the random effects are normally distributed.  One can also assume a discrete 
distribution for the random effects, which leads under certain circumstances to the 
so-called non-parametric maximum likelihood (NPML) approach (Aitkin, 1999; 
Biggeri et al, 2000). Even though such methods are not widely used, they can also 
be fitted using gllamm as described by the developers of the software (Rabe-
Hesketh et al, 2003). 

( ) ( ) ( )0logit logit 1|
ij ij i i ij

P j a zπ δ α θ ν = = = + + +  , ( )20,
i

Nν τ∼ (2.13) 
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2.3  Bivariate Poisson meta-analysis  

An alternative formulation of the random effects Poisson regression model could 
be described by modeling separately the counts of the control and intervention 
groups. Thus, we will consider a bivariate response (ci0, ci1) using indices j=0 for 
non-exposed and j=1 for the intervention/exposed group: 

The covariance of the random terms is defined as: 
( )0 1 10 01 1 0cov ,i iυ υ σ σ ρσ σ= = =  

The bivariate technique is completely analogous to the bivariate logistic 
regression approach proposed by van Houwelingen  and coworkers (van 
Houwelingen et al, 2002; van Houwelingen et al, 1993) and offers the advantage 
of modeling the baseline risk, which in some cases is considered an important 
source of heterogeneity. In general, the results obtained using the univariate 
multilevel model given by Eq. (2.10) and the bivariate model described here, are 
expected to be quite similar. Once the model is fitted, we can calculate the 
estimate of IRR using: 

( )
( ) ( ) ( )11

1 0
0 0

ˆexpˆ ˆ ˆ ˆˆ exp expˆ ˆexp
IRIRR
IR

θ
θ θ θ

θ
= = = − =    (2.17) 

The variance of θ̂  would be: 

( ) ( ) ( ) ( ) ( )1 0 1 0 1 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆvar var var var 2cov ,θ θ θ θ θ θ θ= − = + −   (2.18) 

which can be easily calculated from the estimated covariance matrix. Thus, the 
significance of θ̂  under H0: θ1=θ0 can be tested and a 95% approximate 
confidence interval for ˆIRR  could be computed according to:  

( )( ) ( )( )ˆ ˆ ˆ ˆexp log 1.96 var log ,exp log 1.96 var logIRR IRR IRR IRR− +

The model can be used in order to calculate an estimate for IRD in a similar 
manner: 

( ) ( )1 0
ˆ ˆˆ exp expIRD θ θ= −       (2.19) 

The variance can be easily shown by the delta-method (Appendix II) to be equal 
to: 

( ) ( )
( ) ( )

0 0 0 0

1 1 1 1

log log

log log

i i i

i i i

c T

c T

υ θ

υ θ

= + + 


= + + 

2

0 0 10

2
1 01 1

  0
,

0   

i

i

MVN
υ σ σ

υ σ σ

     
           

∼ (2.16) 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )

2 2

1 0 1 1 0 0

1 0 1 0

ˆ ˆ ˆ ˆ ˆ ˆvar exp exp exp var exp var

ˆ ˆ ˆ ˆ2exp exp cov ,

ˆvar

                                         

                                        = IRD

θ θ θ θ θ θ

θ θ θ θ

⎡ ⎤− = +⎣ ⎦

−  (2.20) 

Thus, an approximate 95% confidence interval for ˆIRD  could be obtained using:  

( ) ( )ˆ ˆ ˆ ˆ1.96 var , 1.96 varIRD IRD IRD IRD− +

The variance of Eq. (2.15) (2.18) and (2.20) can be computed by the testnl and 
nlcom commands in Stata using the general formulae for performing 
multivariate Wald tests for linear and non-linear hypotheses (Green, 2008; Judge 
et al, 1985). However, using Eq. (2.18) and (2.20) they are easily calculated in 
every statistical package. 

The model of Eq. (2.16) is also useful for providing insights for other 
special cases often encountered. For instance, the univariate analogue of Eq. 
(2.16) could be used for meta-analysis of epidemiological studies reporting 
incidence of a disease (or any other proportion), without resorting to normal 
approximations or the need to perform transformations that will constrain the risk 
in the range [0-1]. Furthermore, extending the model of Eq. (2.9) in a bivariate 
situation when we have two different types of mutually exclusive counts (i.e. 
death from a particular disease vs. death from any other reason) will provide the 
means for performing meta-analysis of such mutually exclusive outcomes in a 
multilevel framework.  

A similar model was recently proposed by Trikalinos and Olkin using 
bivariate modeling of two stochastically correlated outcomes (logORs, logRRs or 
RDs) calculated from summary data and analytical expressions for the covariance 
of the two outcomes were given (Trikalinos & Olkin, 2008). However, using the 
bivariate Poisson model, the correlation is inherently implied by the joint 
modeling and no additional calculation is needed. In the model of Eq. (2.9), we 
simply add a subscript for the rth outcome, (r=0,1,2…). In the work of Trikalinos 
and Olkin, there were 3 mutually exclusive outcomes (0=healthy, 1=death from 
breast cancer, 2=death from other causes); however, the methodology could be 
easily extended for any r>3. In the simpler formulation, for a single study r-1 
Poisson regressions can be fitted, using the counts r

ijc  as the dependent variables 
in each case, an indicator of the exposed/non-exposed status as the independent 
variable and the logarithm of the total number ijn  for each arm as an offset to the 
model. Thus, it is straightforward to generalize this model in a meta-analysis of 
i=1,2,…k studies, using k-1 indicator variables for the fixed studies effects. 
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Extending the model of Eq. (2.9), we can formulate a bivariate Poisson random-
coefficient model: 

( ) ( ) ( )
( ) ( ) ( ) ( )

1 2
01 1 1 1 1 1 12

22
2 12 202 2 2 2

log log 0~ ,0log log
ij i i ij ij i

iij i i ij ij

c a a z n
MVN

c a a z n
θ ν ν σ σ

ν σ σθ ν
⎫= + + + + ⎛ ⎞⎛⎪ ⎞⎛ ⎞⎜ ⎟⎬ ⎜ ⎟⎟⎜= + + + + ⎝ ⎠ ⎠⎝⎪ ⎝ ⎠⎭

  
  (2.21) 

2.4  Meta-analysis using individual patients’ data 

If there are available individual patients’ data (IPD), the total number of events cij
from the jth arm of the ith study will be equal to the sum of the counts of the r 
individuals included in each arm, i.e. 

1
ijn

ij ijrr
c d

=
=∑ . In such case, we will also 

have 
1

ijn
ij ij ij ijrr

T n t t
=

= =∑  and we can use the individual person-time tijr to perform 
an IPD meta-analysis including individuals that gave rise to an event 
(dijr=1,2,3…) and individuals that were not (dijr=0). For instance, using this 
notation with grouped data the fixed-effects model of Eq. (2.4) can be rewritten: 

( ) ( ) ( )01 1
log log logij ijn n

ij ijr i ij ijrr r
c d z tα α θ

= =
= = + + +∑ ∑    

The same model, in case of IPD would be: 
( ) ( )0log logijr i ijr ijrd z tα α θ= + + +      (2.22) 

Similarly, the random effects model of Eq. (2.9) becomes: 

The same formulation could be also applied for the other models described in 
previous sections. The implementation of these models will provide useful results, 
since we can easily incorporate covariates xijr measured at the individual level. 
Thus, the influential role of potential confounders or effect modifiers could be 
investigated in a pooled analysis. Furthermore, the model could be tailored to the 
characteristics of studies in which events occurred repeatedly. Multiple events per 
individual or recurrent events are known to produce over-dispersed counts; in 
other words, there is heterogeneity due to the within-individual correlation. The 
occurrence of an event multiple times in an individual requires special handling of 
over-dispersion and various approaches have been proposed (Glynn et al, 1993; 
Stukel et al, 1994; Sturmer et al, 2000).  

A simple technique in the context of the methods discussed here is to use a 
random effects Poisson regression model, i.e. including a random intercept. The 
random intercept assumption is sensible since we expect individuals that already 
had an event to be at increased risk of having recurrence. The over-dispersion is 
apparent in the meta-analysis of Guevara et al (Guevara et al, 2004), which we 
will analyze in the next section. In the context of meta-analysis, this heterogeneity 
is at the individual level and should be distinguished from the usually encountered 

( ) ( ) ( )0log log
ijr i i ijr ijr

d a z tα θ ν= + + + + , ( )20,
i

Nν τ∼   (2.23)  
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between-studies heterogeneity. The IPD methods presented here can 
accommodate such modeling utilizing a hierarchical model. Adding the random 
intercept uir (i.e. for individuals r in each study i) to Eq. (2.23), leads to a new 
equation: 

With this model, the between-subjects variability within each study can be 
separated from the between-studies variability, providing thereby a better way of 
exploring heterogeneity in an IPD meta-analysis. Adding in the model a random 
coefficient vir for individuals r in each study i, would imply that cases in each 
study are having a greater tendency to have a recurrence compared to controls, an 
assumption that needs to be investigated. 

3. Application of the methods 

We present here the application of the methods proposed based on Poisson 
regression and compare them against the established summary-based methods. 
We initially performed a simulation study to calculate empirical power and we 
also applied the methods in several published meta-analyses. We simulated 
hypothetical meta-analyses of studies with exposed and non-exposed persons 
drawn from a normal population with mean 100 individuals and variance of 50. 
We performed simulations using 5, 10, 15, 20 and 25 studies per meta-analysis 
with a Risk Ratio of 1.5 and 2.0 and we also varied the control group event rate 
taking values in the range 1%, 2.5%, 5%, 10% and 30%. Each simulation 
consisted of 1000 repetitions. Due to the excessive amount of computations 
needed, we evaluated only the fixed effects method of Eq. (2.5), assuming no 
between studies heterogeneity (τ2=0). The results of the simulation study are 
presented in Table 3 and Table 4, corresponding to a RR of 1.5 and 2.0 
respectively. The empirical power of the Poisson regression method is uniformly 
higher compared to the summary based methods across the range of experimental 
conditions. Furthermore, the differences are more pronounced in cases of rare 
events (event rate ≤5%) and with small number of studies (≤10), results that 
highlight the potential usefulness of the newly proposed method. 

We also analyzed four previously published meta-analyses. Two of these 
were also re-analyzed by Guevara and coworkers (Guevara et al, 2004) and revisit 
the effects of asthma self-management education on children. In particular, in the 
first meta-analysis involving 16 studies, the days of school absence were 
compared among intervention and control groups. In summary, the intervention 
group consisted of 867 individuals observed for a period of 6,171 person-months 
with 5,959 school absences. The corresponding values for the control arm were 

( ) ( ) ( )0log log
ijr i ir i ijr ijr

d a u z tα θ ν= + + + + + , 

( )20,
i

Nν τ∼  ( )20,
ir

u N σ∼      (2.24)  
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766 subjects followed for 5,305 person-months with a total of 5,941 school 
absences (Wolf et al, 2003).  

Table 3. The results of the simulation study comparing the empirical power of the proposed 
methods (using fixed effects Poisson regression) against the summary based methods. The results 
are based on 1000 repetitions with meta-analyses of varying number of studies (5, 10, 15, 20 and 
25) and control group event rate (1%, 2.5%, 5%, 10% and 30%) using a Risk Ratio equal to 1.5.  

Poisson regression 
method (power) 

Summary-based 
method (power) 

Number of Studies 
(N) 

Control Group 
Event Rate (%) 

0.061 0.051 5 1.0% 
0.129 0.074 10 1.0% 
0.192 0.107 15 1.0% 
0.274 0.124 20 1.0% 
0.313 0.179 25 1.0% 
0.169 0.136 5 2.5% 
0.323 0.220 10 2.5% 
0.441 0.310 15 2.5% 
0.552 0.378 20 2.5% 
0.647 0.495 25 2.5% 
0.308 0.284 5 5.0% 
0.548 0.478 10 5.0% 
0.701 0.667 15 5.0% 
0.829 0.732 20 5.0% 
0.900 0.841 25 5.0% 
0.548 0.559 5 10.0% 
0.845 0.827 10 10.0% 
0.950 0.930 15 10.0% 
0.981 0.937 20 10.0% 
0.998 0.957 25 10.0% 
0.942 0.949 5 30.0% 
0.997 0.963 10 30.0% 
1.000 0.982 15 30.0% 
1.000 0.992 20 30.0% 
1.000 0.997 25 30.0% 

The second meta-analysis that was presented in the same article 
encompassed 11 studies measuring the emergency room (ER) visits. The meta-
analysis contained 630 individuals in the intervention group with 606 ER visits 
recorded over 6,831 person-months. In the control group, a total number of 484 
subjects was observed for a period of 5,151 person-months with 597 ER visits 
totally (Wolf et al, 2003). Obviously, these two meta-analyses are dealing with 
recurrent events.  

The third meta-analysis synthesized evidence from 10 studies that 
investigated the association between dietary fat intake and cardiovascular events 
including all available data on cardiovascular deaths, non-fatal myocardial 
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infarction, stroke, angina, heart failure, peripheral vascular disease, angioplasty, 
and coronary artery bypass grafting (Hooper et al, 2001). In total, 6,636 
individuals in the intervention group were monitored for a total period of 10,649 
person-years yielding 553 combined cardiovascular events. In the control arm, 
6,631 participants contributed 10,426 person-years of follow-up and experienced 
653 cardiovascular events. This meta-analysis is characterized by the inclusion of 
two extremely large trials (including in total more than 11,000 cases and 
controls), whereas 4 other studies enrolled less than 200 cases and controls. The 
results of these three meta-analyses are reported in Table 5. 

Table 4. The results of the simulation study comparing the empirical power of the proposed 
methods (using fixed effects Poisson regression) against the summary based methods. The results 
are based on 1000 repetitions with meta-analyses of varying number of studies (5, 10, 15, 20 and 
25) and control group event rate (1%, 2.5%, 5%, 10% and 30%) using a Risk Ratio equal to 2.0.  

Poisson regression 
method (power) 

Summary-based 
method (power) 

Number of Studies 
(N) 

Control Group 
Event Rate (%) 

0.160 0.094 5 1.0% 
0.377 0.225 10 1.0% 
0.556 0.314 15 1.0% 
0.682 0.404 20 1.0% 
0.778 0.499 25 1.0% 
0.458 0.368 5 2.5% 
0.750 0.603 10 2.5% 
0.902 0.811 15 2.5% 
0.968 0.894 20 2.5% 
0.988 0.938 25 2.5% 
0.759 0.693 5 5.0% 
0.962 0.921 10 5.0% 
0.998 0.968 15 5.0% 
0.999 0.982 20 5.0% 
1.000 0.985 25 5.0% 
0.946 0.950 5 10.0% 
0.998 0.984 10 10.0% 
1.000 0.980 15 10.0% 
1.000 0.989 20 10.0% 
1.000 0.997 25 10.0% 
1.000 0.988 5 30.0% 
1.000 0.990 10 30.0% 
1.000 0.998 15 30.0% 
1.000 1.000 20 30.0% 
1.000 1.000 25 30.0% 

Finally, we re-analyzed the data that were used by Warn and coworkers in 
the development of their Bayesian method (Warn et al, 2002). The data were 
obtained from a Cochrane Review investigating the effectiveness of single-dose 
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ibuprofen (i.e. a non-steroidal anti-inflammatory analgesic) in reducing post-
operative pain (Collins et al, 2000). The original review comprised 46 small trials 
of single-dose ibuprofen against placebo with doses ranging from 50mg to 
800mg. Similarly to Warn and coworkers, we considered only the subset of 31 
trials with dose of 400 mg. Since the length of follow-up is the same within trials, 
it is appropriate to consider the patient’s ‘risk’ of experiencing pain relief and 
thus, we used this dataset to for applying methods that estimate OR, RR and RD. 
The results of this meta-analysis are reported in Table 6. 

In all the datasets that we re-analyzed there was a moderate to severe 
degree of heterogeneity and thus, random effects models should provide more 
accurate results (Table 5 and 6). It should be noticed that even when we restrict 
the attention to summary data methods, the different methods (MM-DL, ML, 
REML) provide slightly different results, without changing though the overall 
conclusions. The differences of the fixed effects methods based on summary data 
compared to those using the Poisson regression are also non-negligible. All the 
random effects Poisson regression methods provide more convincing results for 
the significance of the intervention (exposure) compared to the summary data 
methods. In all analyses the bivariate Poisson regression and the mixed model 
with random study effects and 0/1 coding produce identical estimates.  The model 
with fixed study effects produces slightly different results, which in the case of 
the meta-analysis for the effect of dietary fat intake on combined cardiovascular 
events (Hooper et al, 2001), lead to different conclusions when the IRD is the 
measure of choice. In this analysis, this model produces a marginally non-
significant point estimate contradicting the other Poisson models, but is in 
agreement with summary data methods.  The mixed model with zero covariance 
and the ±½ coding, produces similar results compared to the mixed model with 
random study effects and 0/1 coding, although in the meta-analysis for the effect 
of ibuprofen on post-operating treatment of pain (Collins et al, 2000), the 
difference in the estimates is large in all effects measures (RR, RD, OR).  

In the meta-analysis investigating the effectiveness of single-dose 
ibuprofen in reducing post-operative pain ibuprofen (Collins et al, 2000), we had 
the opportunity to compare the newly established methods against the Bayesian 
methods developed by Warn and coworkers (Warn et al, 2002). In general the 
Poisson model with fixed study effects produce estimates that are close to the 
ones produced by the Bayesian methods. Furthermore, in most of the cases, the 
95% C.I. are wider compared to the Bayesian methods, on contrary to what 
generally one would expect. Besides the theoretical considerations behind the 
validity of the assumption that each model makes (i.e. zero covariance, coding 
scheme etc) some general conclusions could be drawn following previous studies 
(Higgins & Whitehead, 1996; Higgins et al, 2001; Turner et al, 2000). For 
instance, when the meta-analysis consists of a small number of studies, the most 
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plausible model would be the one with fixed study effects. Random study effects 
could be preferable in cases of large number of included studies when the 
calculation of a large number of study-specific coefficients would be problematic. 
A large number of studies are also needed for a precise estimation of the 
covariance of the random terms in the model with the random study effects (Riley 
et al, 2007). The model with zero covariance potentially provides a compromise, 
but makes additional assumptions that may be untenable. In the particular meta-
analyses that we analyzed, the meta-analysis for the effect of dietary fat intake on 
combined cardiovascular events (Hooper et al, 2001) included a small number of 
studies and two large influential studies; thus, the discrepancy of methods using 
fixed vs. random study effects is reasonable. On the other hand, in the meta-
analysis for the effect of ibuprofen on post-operating treatment of pain which 
included 31 studies (Collins et al, 2000), large discrepancies arose by the use of 
zero covariance model. 

4. Discussion 

Meta-analyses are increasingly recognized as effective means of quantitatively 
synthesizing the results of primary research and exploring variability across 
studies (Petiti, 1994). Notwithstanding their simplicity, traditional summary-data 
methods used in most meta-analyses have many limitations. Therefore, the 
development of efficient methodology capable of exploiting the binary structure 
of the data and overcoming the shortcomings of traditional meta-analytical 
methods is needed (Bagos, 2008; Bagos & Nikolopoulos, 2007; Higgins et al, 
2001; Thompson et al, 2001; Turner et al, 2000; Whitehead et al, 2001). 

The current work describes various procedures based on Poisson 
regression and indicates their usefulness in pooling rates and ratios calculated in 
follow up studies. Although mixed-effects Poisson regression models have been 
used in the past in the biomedical literature (Gibbons et al, 2008; Pennello et al, 
1999), according to the authors’ knowledge they have never been described 
explicitly for meta-analysis. The methods proposed in this work can be useful in 
meta-analyses of count or rate data making use of the Poisson likelihood and thus, 
avoiding the continuity corrections in case of rare events that fit poorly to the 
normal approximation. The simulation study that we conducted revealed that the 
Poisson regression method is uniformly more powerful compared to the summary 
based method across a wide range of experimental conditions, especially in cases 
of rare events (event rate ≤5%) and small number of studies (≤10), results that 
highlight the potential usefulness of the newly proposed method. Consequently, 
the methods were successfully applied to the sparse data reported recently by 
Rucker and coworkers (Rucker et al, 2009) with very encouraging results (data 
not shown). In future studies, application of alternative methods such as the 

16

The International Journal of Biostatistics, Vol. 5 [2009], Iss. 1, Art. 21

DOI: 10.2202/1557-4679.1168



random-effects zero inflated Poisson regression models could be evaluated (Hall, 
2000; Lee et al, 2006). The suggested methodology can be applied using widely 
available statistical software (SAS, STATA etc) whereas, especially in STATA, it 
can be easily implemented with the accompanied do file. The only limitation of 
the method is the increased computational demands required by the random 
coefficient models (several minutes for a standard meta-analysis).  

We compared the proposed techniques with the commonly implemented 
models using data obtained from several published meta-analyses obtaining 
encouraging results. When the duration of follow-up is constant, estimates for the 
RR as well as for RD could be easily obtained in addition to the already 
established techniques for obtaining estimates of the OR. The choice of the 
particular measure that will be used in a meta-analysis as well as in primary 
research is however, an important issue that should be evaluated carefully (Deeks, 
2002; Walter, 2000). When the duration varies, the proposed methodology 
naturally arises as a consequence of the properties of Poisson distribution. 
Nevertheless, events to person-time statistics should be used only when 
appropriate (Kraemer, 2009). 

The new approach is also perceived to be suitable for the analysis of 
studies with recurrent events, which are common in medical research (Glynn & 
Buring, 1996; Glynn et al, 1993; Stukel et al, 1994; Sturmer et al, 2000). 
Overdispersion is often encountered in the case of multiple occurrences of an 
event in the same subject and our methodology accounts for this phenomenon 
adopting higher-level models. Emphasis has also been given to the analysis of 
individual patients data, whose synthesis offer many advantages over the meta-
analysis based on summary statistics extracted from the published literature i.e. 
standardization of variables, sufficient control of confounding, collection of 
updated information and retrieval of unpublished data (Ioannidis et al, 2002; 
Steinberg et al, 1997). Our method could be an appropriate and flexible choice 
when meta-analysis of raw data from follow-up studies is planned in order to 
model heterogeneity and confounders directly at the individual level.  

The mixed-effects Poisson regression model can also be used in meta-
analyses of incidence or any other type of counts or rates. We have also shown 
that the model could be extended to handle situations of meta-analysis of mutually 
exclusive data (competing risks). The application of the method in the data used 
by Trikalinos and Olkin provided very encouraging results (data not shown). 
Furthermore, the models presented here based on Poisson regression can also be 
used very easily for providing estimates and confidence intervals for another 
useful measure, the Number Needed to Treat (NNT). NNT is defined as the 
inverse of RD (Nuovo et al, 2002; Walter & Sinclair, 2009) and thus, its 
confidence intervals can be easily produced by the Poisson model using the delta 
method. Since the large sample approximations for the variance of NNT are also 
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prone to bias (Duncan & Olkin, 2005), we expect that the methods proposed here 
would compare favourably. Lastly, we have to mention that since Poisson 
regression models have been for long used for performing estimations on survival 
data (Laird & Olivier, 1981; Whitehead, 1980) another possible use of the mixed-
effects Poisson model could be that of performing IPD meta-analysis with 
survival data. 

Given the importance of conducting efficient research and the problems 
encountered in the statistical aspects of meta-analysis, the Poisson-based approach 
could be a promising and credible analytical tool in the synthesis of evidence from 
follow-up studies, in which a specific metric might be more relevant, while the 
period of observation will probably be incomplete in many participants or the 
outcome of interest might be observed repeatedly in the population. Therefore, 
using the suggested approach, analyses on scales other than the mathematically 
advantageous OR such as the RR or the RD are feasible. Common statistical 
software packages support the theoretical concept of combining studies with 
Poisson regression making fairly easy the implementation of the suggested 
methodology and we expect that this will be widely used. 
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Table 5. Results obtained using the various methods described in the text on the three published meta-analyses. We present the estimates for 
Incidence Rate Ratio (IRR) and Incidence Rate Difference (IRD) along with their respective 95% confidence intervals. IV: Inverse variance, 
MM-DL: Method of Moments of DerSimonian and Laird, ML: Maximum Likelihood, REML: Restricted Maximum Likelihood. 

Meta-analysis 
Dietary fat intake/ 

combined cardiovascular events 
(Hooper et al, 2001) 

Asthma self-management education in 
children / 

School absences 
(Wolf et al, 2003) 

Asthma self-management education in 
children / 
ER visits 

(Wolf et al, 2003) 
  

IRR (95% CI) IRD (95% CI) IRR (95% CI) IRD (95% CI) IRR (95% CI) IRD (95% CI) 
Summary methods   

fixed effects 
 (IV) 0.825 (0.736, 0.924) -0.005 (-0.011, 0.000) 0.869 (0.838, 0.901) -0.119 (-0.147, -0.091) 0.678 (0.603, 0.762) -0.013 (-0.020, -0.007) 

random effects  
(MM-DL) 0.754 (0.617, 0.921) -0.016 (-0.031, -0.001) 0.763 (0.671, 0.866) -0.167 (-0.253, -0.082) 0.561 (0.416, 0.756) -0.053 (-0.080, -0.026) 

random effects  
(ML) 0.804 (0.701, 0.922) -0.009 (-0.016, -0.001) 0.743 (0.609, 0.905) -0.166 (-0.248, -0.084) 0.544 (0.384, 0.771) -0.019 (-0.030, -0.009) 

random effects  
(REML) 0.787 (0.672, 0.921) -0.009 (-0.017, -0.002) 0.740 (0.599, 0.914) -0.167 (-0.252, -0.082) 0.539 (0.373, 0.779) -0.020 (-0.031, -0.009) 

  
Individual Data 

methods  
(Poisson Regression) 

  

Fixed effects 0.819 (0.731, 0.917) -0.015 (-0.023, -0.006) 0.864 (0.834, 0.896) -0.040 (-0.052, -0.029) 0.659 (0.588, 0.739) -0.051 (-0.074, -0.028) 

Bivariate fixed effects 0.829 (0.740, 0.929) -0.011 (-0.017, -0.004) 0.862 (0.832, 0.894) -0.154 (-0.192, -0.117) 0.765 (0.684, 0.857) -0.027 (-0.039, -0.016) 

Random effects 
(fixed study effects) 0.819 (0.731, 0.917) -0.015 (-0.023, -0.006) 0.727 (0.587, 0.900) -0.105 (-0.168, -0.042) 0.516 (0.361, 0.739) -0.090 (-0.143, -0.037) 

Random effects 
(random study effects, 

z=0/1, cov≠0) 
0.746 (0.592, 0.940) -0.026 (-0.059, 0.008) 0.721 (0.579, 0.897) -0.189 (-0.320, -0.058) 0.525 (0.361, 0.764) -0.056 (-0.104, -0.007) 

Random effects 
(random study effects, 

z=±1/2, cov=0) 
0.779 (0.615, 0.987) -0.019 (-0.038, 0.000) 0.722 (0.581, 0.898) -0.155 (-0.266, -0.043) 0.521 (0.360, 0.754) -0.041 (-0.069, -0.012) 

Bivariate random 
effects 0.746 (0.592, 0.940) -0.026 ( -0.059, 0.008) 0.721 (0.579, 0.897) -0.189 (-0.320, -0.058) 0.525 (0.361, 0.764) -0.056 (-0.104, -0.007) 
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Table 6. Results obtained using the various methods described in the text on re-analyzing the data from the meta-analysis investigating the 
effectiveness of single-dose ibuprofen in reducing post-operative pain (Collins et al, 2000). We present the estimates for Risk Ratio (RR), Risk 
Difference (RD) and Odds Ratio (OR) along with their respective 95% confidence intervals. For reasons of comparison we also list results 
obtained by Warn and coworkers using their Bayesian methods denoted by model a, b and c (Warn et al, 2002). IV: Inverse variance, MM-DL: 
Method of Moments of DerSimonian and Laird, ML: Maximum Likelihood, REML: Restricted Maximum Likelihood. 

RD (95% CI) RR (95% CI) OR (95% CI) 

Summary data  methods 

fixed effects (IV) 0.400 (0.371, 0.428) 2.390  (2.106, 2.713) 6.221 (4.988, 7.759) 

random effects (MM-DL) 0.395 (0.335, 0.454) 3.385 (2.617, 4.378) 8.021 (5.559, 11.575) 

random effects (ML) 0.393 (0.334, 0.452) 3.412 (2.627, 4.431) 8.048 (5.563, 11.643) 

random effects (REML) 0.393 (0.333, 0.453) 3.447 (2.638, 4.503) 8.129 (5.575, 11.854) 

Bayesian method (model c) 0.391 (0.328, 0.453) 3.438 (2.602, 4.933) 8.051 (5.481, 12.570) 

  

Individual  Data methods 
(Poisson Regression, Logistic Regression)   

Fixed effects 0.367 (0.206, 0.527) 3.451 (2.948, 4.040) 8.421 (6.841, 10.367) 

Bivariate fixed effects 0.373 (0.331, 0.416) 3.318 (2.840, 3.876) 5.976 (4.983, 7.169) 

Random effects 
(fixed study effects) 0.367 (0.206, 0.527) 3.451 (2.948, 4.040) 9.818 (6.861, 14.051) 

Random effects 
(random study effects, z=0/1, cov≠0) 0.432 (0.375, 0.488) 5.467 (3.623, 8.249) 11.326 (7.017, 18.281) 

Random effects 
(random study effects, z=±1/2, cov=0) 0.774 (0.478, 1.070) 4.093 (3.069, 5.458) 9.985 (6.582, 15.149) 

Bivariate random effects 0.432 (0.375, 0.488) 5.467 (3.623, 8.249) 11.326 (7.017, 18.281) 

Bayesian method (model a) 0.375 (0.312, 0.440) 3.864 (2.870, 5.263) 8.670 (5.570, 12.94) 

Bayesian method (model b) 0.393 (0.333, 0.456) 3.853 (3.045, 5.143) 9.340 (6.300, 13.82) 
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Appendix I 

Once the models of Eq. (2.4), (2.9) or (2.10) are fitted, we can directly calculate 
an estimate of IRD (or RD) making use of the relations, IR1=exp(θ+α) and
IR0=exp(α). Thus, we will have: 

( ) ( ) ( )1 0 0 0
ˆˆ ˆ ˆ ˆ ˆexp exp expIRD IR IR a aθ= − = −  

The variance of IRD will be given by: 
( ) ( ) ( ) ( ) ( ) ( )0 0 0 0

ˆ ˆˆ ˆ ˆ ˆvar exp exp exp var exp exp var expa a a aθ θ⎡ ⎤ ⎡ ⎤− = + ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦

To calculate the variance of ( ) ( )0
ˆˆvar exp expa θ⎡ ⎤

⎣ ⎦ , we have to define a function 

f(θ, a0)=exp(a0)exp(θ) and approximate it using a bivariate 1st order Taylor 
expansion around the sample means of the parameters θ, a0  ( )0 0

ˆˆ ˆ ˆ, a aθμ θ μ= =  : 

( ) ( ) ( ) ( ) ( )
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∂ ∂
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Then, using the delta method we will have: 
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Thus: 
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and after replacing the population values with the sample ones, the variance will 
be: 
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thus: 
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Appendix II 

To calculate the variance of ˆIRD  from the bivariate model of Eq. (2.16), we have 
to define a function f(θ1, θ0)=exp(θ1)–exp(θ0) and approximate it using a bivariate 
1st order Taylor expansion around the sample means of the parameters θ1, θ0  

( )1 01 0
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Then, using the delta method we will have: 
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 0 1 0

1 0 1 0

1 1 0 0
1 0

1 0 1 0
1 1 0 0

1 0

ˆvar , var ,

ˆ ˆ ˆ ˆ, ,
ˆ ˆvar

ˆ ˆ ˆ ˆ, ,
ˆ ˆvar var

                        =

                        =

               

f f

f f

f f

θ θ θ θ

θ θ θ θ
θ θ θ θ

θ θ

θ θ θ θ
θ θ θ θ

θ θ

⎡ ⎤≈⎡ ⎤⎣ ⎦ ⎣ ⎦
⎡ ⎤∂ ∂
⎢ ⎥− + −
⎢ ⎥∂ ∂
⎣ ⎦
⎡ ⎤ ⎡ ⎤∂ ∂
⎢ ⎥ ⎢ ⎥− + −
⎢ ⎥ ⎢ ⎥∂ ∂
⎣ ⎦ ⎣ ⎦

( ) ( ) ( ) ( )1 0 1 0
1 1 0 0

1 0

ˆ ˆ ˆ ˆ, ,
ˆ ˆ2cov ,                

f fθ θ θ θ
θ θ θ θ

θ θ

⎡ ⎤∂ ∂
⎢ ⎥+ − −
⎢ ⎥∂ ∂
⎣ ⎦

Thus: 
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and after replacing the population values with the sample ones, the variance will 
be: 
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Appendix III 
*** calculation of IRR and IRD from studies with varying durations 
*** we used the data of Wolf et al 
*** the commands can be run interactively or in a do-file 

input id personmonth1 events1 personmonth0 events0 
1 132 7 120 24 
2 324 8 180 3 
3 1908 273 876 182 
4 156 1 156 13 
5 528 20 540 27 
6 576 110 336 104 
7 84 13 84 52 
8 90 5 90 18 
9 1368 8 1140 22 
10 1212 55 1248 40 
11 75 11 75 27 
12 378 95 306 85 
end 

gen selogirr=sqrt(  1/events1 + 1/events0)  
gen logirr=log( (events1/ personmonth1)/( events0/ personmonth0)) 

*** Summary data methods for IRR 

*** Random effects (MM-DL) 
metan logirr selogirr,random eform  
*** Random effects (REML) 
metareg logirr,wsse(selogirr) bse(reml)  
*** Random effects (ML) 
metareg logirr,wsse(selogirr) bse(ml)  
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gen seird=sqrt(  events1/ personmonth1^2 + events0/ personmonth0^2)  
gen ird= (events1/ personmonth1) - ( events0/ personmonth0) 

*** Summary data methods for IRD 

*** Random effects (MM-DL 
metan  ird seird,random  
*** Random effects (REML) 
metareg ird,wsse(seird) bse(reml) 
*** Random effects (ML) 
metareg ird,wsse(seird) bse(ml)  

*** Poisson regression methods 
reshape long personmonth events,i(id ) j(treat) 

gen cons=1 
gen logt=log(personmonth ) 

*** fixed effects Poisson regression (we use eform for obtaining the IRR) 
xi: glm events treat i.id, fam(poisson)  link(log) offset(logt) eform  
*** calculation of IRD with the delta method 
nlcom exp(_b[_cons])*(exp(_b[treat ])-1)  

*** random effects Poisson regression with random study effects 
eq int:cons 
eq slope:treat 

gllamm events treat,fam(poisson) i(id ) link(log) eqs(int slope) nrf(2) 
adapt offset(logt ) 
*** we use eform for obtaining the IRR 
gllamm, eform /* IRR */ 
*** calculation of IRD with the delta method 
nlcom exp(_b[_cons])*(exp(_b[treat ])-1) 

*** random effects Poisson regression with random study effects  
*** z=±1/2,cov=0 
gen treat2=treat-0.5 
eq slope2:treat2 
gllamm events treat2 ,fam(poisson) i(id ) link(log) eqs(int slope2) 
nocorr nrf(2) adapt offset(logt ) 
*** we use eform for obtaining the IRR 
gllamm, eform  
*** calculation of IRD with the delta method 
nlcom exp(_b[_cons])*(exp(_b[treat2 ])-1)  

*** random effects Poisson regression with fixed study effects 
xi: gllamm events treat i.id, i(id) nrf(1) eqs(slope) l(log) fam(poisson) 
adapt offset(logt)  
*** we use eform for obtaining the IRR 
gllamm, eform  
*** calculation of IRD with the delta method 
nlcom exp(_b[_cons])*(exp(_b[treat ])-1)  
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*** bivariate Poisson 
tab treat,gen(c) 

*** bivariate fixed effects Poisson 
glm events c1 c2, nocons fam(poisson)  link(log) offset(logt ) eform 
*** calculation of IRR with the delta method 
nlcom _b[c2] - _b[c1] 
*** calculation of IRD with the delta method 
nlcom exp(_b[c2]) - exp(_b[c1]) 

*** bivariate random effects Poisson 
eq c1 : c1 
eq c2 : c2 

gllamm events  c1 c2  , nocons fam(poisson) i(id ) link(log) eqs(c1 c2) 
nrf(2) adapt offset(logt ) nip(12) 
*** calculation of IRR with the delta method 
nlcom _b[c2] - _b[c1] 
*** calculation of IRD with the delta method 
nlcom exp(_b[c2]) - exp(_b[c1])  

*** calculation of RR, RD and OR from studies with constant durations 
*** we used the data of Hooper et al 
*** the commands can be run interactively or in a do-file 

clear 
set more off 
input id r1 n1 r0 n0 
1 19 32 2 30 
2 2 15 0 14 
3 57 80 31 82 
4 20 40 6 40 
5 22 38 5 46 
6 19 37 6 43 
7 37 61 9 64 
8 21 28 3 28 
9 15 32 0 34 
10 18 37 1 39 
11 20 38 0 38 
12 26 42 0 38 
13 40 81 2 39 
14 9 41 7 39 
15 15 40 5 40 
16 19 49 0 51 
17 9 12 6 16 
18 9 49 0 47 
19 33 49 17 48 
20 39 39 14 37 
21 29 42 24 41 
22 6 30 0 11 
23 124 306 5 85 
24 67 98 1 40 
25 13 30 5 32 
26 27 36 13 38 
27 42 63 10 32 
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28 42 62 7 30 
29 22 31 2 19 
30 21 30 3 30 
31 16 38 11 40 
end 

gen logrr=log(r1/n1) -log(r0/n0) 
gen selogrr=sqrt(1/r1+1/r0-1/n1-1/n0) 

replace logrr=log((r1+0.5)/(n1+0.5)) -log((r0+0.5)/(n0+0.5)) if r1==0 
|r0==0 
replace selogrr= sqrt(1/(r1+0.5) +1/(r0+0.5) -1/(n1+0.5) -1/(n0+0.5)) if 
r1==0 |r0==0 

gen rd=r1/n1-r0/n0 
gen serd=sqrt(r1*(n1-r1)/n1^3 +r0*(n0-r0)/n0^3 ) 

gen d1=n1-r1 
gen d0=n0-r0 

gen logor=log(r1/d1) -log(r0/d0) 
gen selogor=sqrt(1/r1+1/r0+1/d1+1/d0) 
replace logor=log((r1+0.5)/(d1+0.5)) -log((r0+0.5)/(d0+0.5)) if r1==0 
|d0==0|r0==0|d1==0 
replace selogor= sqrt(1/(r1+0.5) +1/(r0+0.5) +1/(d1+0.5) +1/(d0+0.5)) if 
r1==0 |d0==0|r0==0|d1==0 

*** Summary data methods for RR an RD using MM-DL 
metan r1 d1 r0 d0,rd randomi nowt counts 
metan r1 d1 r0 d0,rr randomi nowt counts 

*** Summary data methods for RR an RD using MM-DL (alternative method) 
metan rd serd,random nowt  
metan logrr selogrr,random eform nowt  

*** Summary data methods for RR an RD using REML 
metareg logrr,wsse(selogrr) bse(reml)  
metareg rd,wsse(serd)bse(reml)  

*** Summary data methods for RR an RD using ML 
metareg logrr,wsse(selogrr) bse(ml)  
metareg rd,wsse(serd)bse(ml)  

*** Poisson regression models 
reshape long r n d, i(id) j(treat) 
gen logt=log(n) 
gen cons=1 
eq int: cons 
eq slop: treat 
gen treat2=treat-0.5 
eq slop2: treat2 

*** random effects Poisson regression with fixed study effects 
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xi: gllamm r treat i.id, i(id) nrf(1) eqs(slop) l(log) fam(poisson) adapt 
offset(logt) eform  
**calculation of RD using the delta method 
nlcom exp(_b[_cons])*(exp(_b[treat ])-1) 

*** random effects Poisson regression with random study effects 
gllamm r treat, i(id) nrf(2) eqs(int slop) l(log) fam(poisson) adapt 
offset(logt) eform  
**calculation of RD using the delta method 
nlcom exp(_b[_cons])*(exp(_b[treat ])-1)  

*** random effects Poisson regression with random study effects z=±1/2, 
cov=0 
gllamm r treat2 , i(id) nrf(2) eqs(int slop2) l(log) fam(poisson) nocorr 
adapt offset(logt) eform  
**calculation of RD using the delta method 
nlcom exp(_b[_cons])*(exp(_b[treat ])-1)  

*** the same models but using the binomial likelihood 
*** in order to obtain the Odds Ratio 
xi: gllamm r treat  i.id, i(id) nrf(1) eqs(slop) l(logit) fam(binom) 
adapt denom(n) eform 

gllamm r treat , i(id) nrf(2) eqs(int slop) l(logit) fam(binom) adapt 
denom(n) eform 

gllamm r treat2 , i(id) nrf(2) eqs(int slop2) l(logit) fam(binom) nocorr 
adapt denom(n) eform 

*** bivariate random effects Poisson 
tab treat,gen(c) 
eq c1: c1 
eq c2 : c2 

gllamm r  c1 c2, nocons fam(poisson) i(id) link(log) eqs(c1 c2) nrf(2) 
adapt offset(logt )  
**calculation of RR using the delta method 
nlcom _b[c2] - _b[c1] /* RR */ 
**calculation of RD using the delta method 
nlcom exp(_b[c2]) - exp(_b[c1]) /* RD */ 

*** alternative specification for fitting the same models 
rename d y0  
rename r y1 
gen i=_n 
reshape long y, i(i) j(case) 
drop i 
rename y wt1 
eq int: cons 
eq slop: treat 

*** random effects Poisson regression with random study effects 
gllamm case treat, i(id) nrf(2) eqs(int slop) l(log) fam(poisson) 
w(wt)adapt eform 
**calculation of RD using the delta method 
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nlcom exp(_b[_cons])*(exp(_b[treat ])-1) 

*** bivariate random effects Poisson 
tab treat,gen(cc) 
eq c1: cc1 
eq c2 : cc2 

gllamm case  cc1 cc2, nocons fam(poisson) i(id ) link(log) eqs(c1 c2) 
nrf(2) adapt w(wt) 
**calculation of RR using the delta method 
nlcom _b[cc2] - _b[cc1] 
**calculation of RD using the delta method 
nlcom exp(_b[cc2]) - exp(_b[cc1]) 

*** Logistic regression random effects model with fixed study effects 
xi: gllamm case treat i.id, i(id) nrf(1) eqs(slop) l(logit) fam(binom) 
w(wt)  adapt 
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