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Abstract

We describe analytic approaches for study designs that, like large simple trials, can be better
characterized as longitudinal studies with baseline randomization than as either a pure randomized
experiment or a purely observational study. We (i) discuss the intention-to-treat effect as an effect
measure for randomized studies, (ii) provide a formal definition of causal effect for longitudinal
studies, (iii) describe several methods -- based on inverse probability weighting and g-estimation -
- to estimate such effect, (iv) present an application of these methods to a naturalistic trial of
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1 Longitudinal studies with baseline randomization 

A study is said to be a longitudinal, or a follow-up, study when subjects are 

followed from study entry until the determination of certain outcome of interest, 

loss to follow-up, or the administrative end of follow-up, whichever comes first. 

Longitudinal studies are often referred to as cohort studies by epidemiologists and 

as panel studies by social scientists. When the goal is estimating the causal effect 

of certain treatment on the outcome, longitudinal studies are preferred over non 

longitudinal (i.e., cross-sectional) ones in which the temporal order of treatment 

and outcome may be unclear. Longitudinal studies are usually classified as either 

experiments (the treatment is assigned by the investigators) or observational 

studies (the investigators play no role in treatment assignment). Experiments are 

said to be randomized when the investigators assign the treatment at random. 

Randomized experiments are considered the mainstay design for causal inference. 

Data from randomized experiments are usually analyzed in a very straightforward 

manner: the distribution of the outcome is compared between those assigned to 

each treatment group. If a difference is found, then treatment is declared to have a 

causal effect on the outcome. Below we discuss some advantages and 

disadvantages of this “intention-to-treat” analysis. 

Despite the apparently clear distinction between randomized experiments 

and observational studies, in practice it is common to find longitudinal studies 

that combine characteristics from both designs. For example, consider a 

conventional two-arm randomized clinical trial in which the investigators select a 

group of subjects based on stringent eligibility criteria, randomly assign them to 

one of two treatments (or placebo) at baseline, and monitor them closely until the 

end of follow-up. Some of the subjects participating in this study may, at any time, 

deviate from the trial’s protocol by switching to a treatment other than that 

assigned to them at baseline or by dropping out of the study completely. In the 

presence of these deviations from protocol, which are not randomly assigned by 

the investigators but rather the result of subjects and treating physicians’ decisions, 

the investigators can only record data as if they were conducting an observational 

study. The greater the proportion of subjects who deviate from the trial’s protocol, 

the closer the resemblance between the randomized clinical trial and an 

observational study, and the more questionable the intention-to-treat analysis of 

the trial becomes. 

Hence one can think of a continuum from an ideal randomized experiment 

in which subjects (perhaps laboratory rats) are fully compliant with the assigned 

treatment and never lost to follow-up to a purely observational study in which 

subjects’ information is prospectively collected whenever it becomes available. 

The terms “large simple trial” or naturalistic trial have been coined to refer to a 

type of longitudinal study that shares, by design, characteristics of both 
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randomized trials and observational studies. In a large simple trial, like in a 

conventional randomized clinical trial, the treatment is randomly assigned at 

baseline. However, large simple trials differ from conventional randomized 

clinical trials in their relative lack of restrictions on subject eligibility and their 

simplified data collection (Lesko and Mitchell, 2005). The idea is increasing the 

generalizability and the clinical relevance of the results by including subjects that 

represent the diversity existing in the actual patient population, and by explicitly 

allowing the treating physicians to modify the treatment regime depending on the 

subjects’ response to the assigned treatment and their changing prognosis over the 

(often long) duration of the study.  

This article is concerned with study designs that, like large simple trials, 

can be better characterized as longitudinal studies with baseline randomization 

than as either a pure randomized experiment or a purely observational study. We 

(i) discuss the intention-to-treat effect as an effect measure for randomized studies, 

(ii) provide a formal definition of causal effect for longitudinal studies, (iii) 

describe several methods ― based on inverse probability weighting and g-

estimation ― to estimate such effect, (iv) present an application of these methods 

to a randomized study of antipsychotic therapy, and (v) discuss the relative 

advantages and disadvantages of each method. We start by describing the 

longitudinal study with baseline randomization that will be used as an example 

throughout the article.  

  

2 Example: Antipsychotic medications and severity of 

schizophrenia symptoms 

We analyzed a randomized, open-label, multi-center trial to compare the effect of 

antipsychotic medications on the symptom severity of schizophrenia. Details of 

the trial have been described elsewhere (Tunis et al., 2006). Briefly, subjects were 

recruited within both academic and community treatment settings (primarily in 

mental health outpatient clinics) between May 1998 and September 2001, and 

were randomly assigned to one of three first-line treatments: olanzapine (N=229), 

risperidone (N=221), or conventional antipsychotics (N=214). Both olanzapine 

and risperidone are commonly known as atypical antipsychotics. Within the 

conventional group, the choice of antipsychotics (e.g., perphenazine, haloperidol) 

was at the discretion of the treating physicians. For simplicity, our analysis 

combined the olanzapine and risperidone arms to form an atypical antipsychotic 

arm (randomization arm R=1, N=450) and compared it with the conventional 

antipsychotic arm (R=0, N=214). Thus, for the purposes of this paper, we 

effectively assume that all types of atypical antipsychotic regimes are equivalent.   
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To be eligible for the study, subjects had to be at least 18 years old, meet 

the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-

IV) criteria for schizophrenia, schizoaffective disorder, or schizophreniform 

disorder, have no serious medical conditions or history of contraindication of the 

study medications, and have a psychotic symptom threshold of >18 on the Brief 

Psychiatric Rating Scale (BPRS). The BPRS score is commonly used to measure 

the symptom severity of schizophrenia (Overall and Gorham, 1962) and was rated 

by the clinicians in the current study. Each symptom in the scale ranges from 0 

(not present) to 6 (extremely severe). 

There was a randomization visit and five post-randomization visits at 2 

weeks, and 2, 5, 8, and 12 months. Data on medication use, clinical symptoms, 

BPRS score, quality of life, and resource use were collected at the time of 

randomization and at each post-baseline visit. Subjects in the two arms had 

similar baseline characteristics (Table 1). The outcome of interest, Y, was the 

change in BPRS score between baseline and end of the study (i.e., 12 months 

post-baseline), with a negative value indicating a clinical improvement. For each 

subject, the treatment assigned at randomization could be changed (e.g., from 

conventional to atypical antipsychotics) during the study period based on the 

subject’s response or other reasons. Only 7% of the person-visits reported no use 

of any antipsychotic therapy. For simplicity, our analyses do not differentiate 

between use of conventional antipsychotics and no use of any antipsychotics. We 

now describe the intention-to-treat approach and its application to this study.  

Table 1. Baseline characteristics by treatment arm * 

Characteristics Atypical 

antipsychotic arm 

(N=450) 

Conventional 

antipsychotic arm 

(N=214) 

p-value † 

Age (in years): mean (SD) 42.4 (12.0) 43.6 (12.1) 0.24

Male: number (%) 277 (61.6) 143 (66.8) 0.19

Race: number (%) 

   White 

   Black 

   Other 

   Missing 

241 (53.6)

138 (30.7)

54 (12.0)

17 (3.8)

108 (50.5)

74 (34.6)

24 (11.2)

8 (3.7)

0.79

Baseline BPRS: mean (SD) 32.1 (11.7) 31.2 (11.1) 0.37

Baseline GAF: mean (SD) 46.0 (12.9) 46.3 (12.8) 0.84

* SD: standard deviation; BPRS: Brief Psychiatric Rating Scale score; GAF: 

global assessment of functioning score 

† Based on t-test for continuous variables, and χ
2
 test for categorical variables.  
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3 The intention-to-treat effect 

Randomized experiments, when analyzed using the intention-to-treat (ITT) 

principle, do not require any assumptions to consistently estimate causal effects. 

To briefly describe the ITT principle, suppose you want to estimate the causal 

effect of a dichotomous treatment A on a continuous outcome Y in certain 

population. You conduct a randomized experiment by randomly splitting the 

population into two groups, assigning one group (arm R=1) but not the other (arm 

R=0) to be treated, following all subjects for some fixed period (say, one year), 

and measuring every subject’s outcome at the end of that period. Under the ITT 

principle, you compare the mean outcome between the group that you intended to 

treat (R=1) and the group that you intended to keep untreated (R=0), regardless of 

the treatment that each subject actually received. If the mean outcome differs, you 

can conclude that treatment A has an effect on the mean of Y because these two 

groups are expected to be exchangeable with respect to all measured and 

unmeasured characteristics at baseline. In contrast, causal inferences from 

observational studies are risky precisely because this exchangeability cannot be 

guaranteed.  

When all subjects comply with their assigned treatment and there is no 

loss to follow-up,  the mean outcome in group R=1, i.e., E[Y|R=1], is also the 

mean outcome among the treated, i.e., E[Y|A=1], which consistently estimates the 

mean outcome that would have been observed if all subjects in the population had 

been treated, i.e., E[Y
a=1

], where a subject’s Y
a=1

 is the counterfactual (or potential) 

outcome that would have been observed if the subject had, possibly contrary to 

the fact, received treatment (a=1). Similarly, the mean outcome among the 

untreated, i.e., E[Y|R=0]= E[Y|A=0], is a consistent estimator of the mean outcome 

that would have been observed if no subject in the population had been treated, 

i.e., E[Y
a=0

]. Thus, in the absence of noncompliance and loss to follow-up, the ITT 

difference of observed means  

]0|[]1|[]0|[]1|[ =−===−= AYEAYERYERYE

consistently estimates the difference of counterfactual (or potential) means 

][][ 01 == − aa YEYE , 

which is the effect of treatment on the outcome in the population on the scale of 

difference of means. For an introduction to counterfactual-based causal inference 

see, for example, Hernán (2004).  

But things are rarely that easy in longitudinal studies with randomization 

at baseline. A key limitation of many randomized experiments, like our study of 
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antipsychotics, is lack of compliance with the treatment assigned at baseline. That 

is, subjects may not adhere to their assigned treatment for the entire follow-up 

from randomization to the measurement of the outcome. Another key limitation of 

many randomized experiments is that some subjects do not complete the follow-

up. In our study, only 46% (205/450) of the subjects assigned to atypical 

antipsychotics (R=1), and 26% (56/214) of the subjects assigned to conventional 

ones (R=0), stayed on their assigned treatment and completed the follow-up.  

The problem of noncompliance highlights the crucial differences between 

assigned treatment and received treatment: the randomized assignment R is a 

baseline variable over which the investigators have direct control, but the 

treatment Ak received at visit k is actually a time-varying variable whose value at 

any given time is beyond the investigators’ control. As a consequence, the ITT 

contrast E[Y|R=1] – E[Y|R=0] does not estimate the effect of receiving the 

treatment but the effect of being assigned to the treatment. When, as in our study, 

all subjects initiate the treatment they were assigned to, regardless of whether they 

later continue taking it, we say the ITT effect is the effect of treatment initiation. 

Because the ITT effect depends on the degree of noncompliance, it may be 

close to null in placebo-controlled experiments even if the treatment does actually 

have an effect, or it may be non null when comparing two active treatments even 

if the two treatments are equally effective. Despite this limitation, the ITT effect 

is often the only effect estimated in placebo-controlled randomized experiments 

because (i) it provides a valid test of the null hypothesis, and (ii) it is usually a 

conservative estimate (i.e., biased towards the null) of the effect of actually 

receiving the treatment. The conservativeness of the ITT effect in placebo-

controlled experiments, however, makes it a risky effect measure when the goal is 

evaluating a treatment’s safety: one could naïvely conclude that a treatment is safe 

because the ITT effect is null, even if treatment causes serious adverse effects. 

The explanation may be that many subjects stopped taking the treatment before 

developing the adverse effects. 

In our study, we calculated the mean change in schizophrenia symptom 

severity, as measured by BPRS score, from baseline to the end of follow-up in 

each arm: E[Y|R=1] = —10.55 and E[Y|R=0] = —9.50. We then estimated the ITT 

effect as the difference E[Y|R=1] – E[Y|R=0] = —1.05 (95% confidence interval 

[CI]: —3.26, 1.16), i.e., the group assigned to atypical antipsychotics (R=1) had a 

slightly greater improvement in symptom severity at the end of follow-up than the 

group assigned to conventional antipsychotics (R=0). This estimate depends on 

the degree of noncompliance in our study. We defer to the next section a 

discussion about noncompliance and focus now on loss to follow-up. 

Our ITT analysis seems straightforward. However, this is only because we 

cheated by ignoring that some subjects were lost to follow-up and thus did not 

have a measurement of BPRS score at one year from baseline. To obtain the 
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estimate of —1.05, we restricted the analysis to subjects with at least one post-

randomization visit during which their BPRS score was recorded (430 in the R=1 

arm, 204 in the R=0 arm). We then computed, for each subject, the difference 

between her BPRS score at baseline and at her last available visit, which could 

have taken place at 2 weeks; or 2, 5, 8, or 12 months post-baseline. Thus, our  

—1.05 estimate is based on differences in symptoms severity measured at different 

times for each subject, depending on how long she was under follow-up. This 

“last available observation carried forward” approach, although commonly used 

in practice, is not a true ITT analysis. For example, imagine that treatment 

worsens some subjects’ symptoms so much that they do not return after baseline 

(or that they return only at 2 weeks when the harmful effect of treatment is not 

apparent yet). Then this pseudo-ITT analysis would make treatment look better 

than it really is. 

A naïve alternative to the pseudo-ITT analysis above is the so-called 

“complete-case” ITT analysis. That is, an ITT analysis restricted to subjects who 

completed the follow-up. In our study, the estimate for the “complete-case” ITT 

analysis was 0.42 (95% CI: —2.36, 3.19). Again, this estimate may be biased 

because those who completed the follow-up in arms R=1 and R=0 may not be 

exchangeable. Rather than a simple complete-case analysis, we need an analysis 

that still compares the mean outcomes between arms R=1 and R=0 but that adjusts 

for the potential bias induced by loss to follow-up. However, adjustment for loss 

to follow-up requires making uncheckable assumptions about the comparability 

between the subjects that were and were not lost to follow-up. This is too bad as 

the beauty of a pure ITT analysis is, precisely, that it does not require any 

assumptions about exchangeability. 

In our study, we adjusted for censoring due to incomplete follow-up by 

using inverse probability weighting (IPW). IPW requires the untestable 

assumption that subjects with complete and incomplete follow-up are 

exchangeable, conditional on the measured variables. Because IPW is more 

formally described in Section 5, we only briefly outline the procedure here. First, 

for each subject, we estimated her probability of providing complete data at all 

visits from baseline until the first visit she missed, the first visit with incomplete 

information, or the end of follow-up at one year, whichever happened first. 

Second, we restricted the ITT analysis to those subjects who completed all visits 

(235 in R=1 and 130 in R=0), and assigned to each of them a weight proportional 

to the inverse of their estimated probability of complete follow-up. The inverse 

probability weighted ITT estimate was —0.86 (95% CI: —3.88, 2.15). 
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4 The effect of continuous treatment 

As reviewed above, the ITT effect of baseline assignment R is often not 

satisfactory, even if no subject had been lost to follow-up, because of the presence 

of noncompliance. In those cases, we would rather estimate the effect of the time-

varying treatment Ak. But what do we mean by the effect of a time-varying 

treatment Ak? The response to this question is not unique. One possibility is 

comparing the mean outcome if all subjects had been continuously treated during 

the entire follow-up with the mean outcome if no subject had been ever treated 

during the follow-up. We now provide a formal definition of this effect, which we 

will refer to as the “effect of continuous treatment”. For pedagogic purposes, we 

ignore the presence of incomplete follow-up until the end of this section. 

We first need to introduce some notation. Let Ak be 1 if the subject is on 

atypical antipsychotics at visit k, and 0 otherwise. The baseline value A0 equals 

the value of the randomized assignment R. For simplicity, let us assume that 

treatment status can only change at the time of a visit. We use the overbar 

notation Āk to denote a subject’s treatment history from baseline until visit k, i.e., 

Āk={A0, A1,… Ak}. In our study k takes value 0 for the baseline (randomization) 

visit, and values 1 to 4 for the post-randomization visits. We use Ā to denote the 

subject’s treatment history over the entire follow-up. For example, a subject who 

was assigned to atypical antipsychotics (R=1) and initially complied with her 

assignment but stopped taking treatment at visit k=1 would have a treatment 

history Ā={1, 1, 0, 0, 0}. We define a pre-specified (or static) treatment regime as 

ā={a0, a1, a2, a3, a4}. For example, the treatment regime “always treated with 

atypical antipsychotics” can be represented as 1 ={1,1,1,1,1}, and the treatment 

“never treated with atypical antipsychotics” as 0 ={0,0,0,0,0}. A subject’s Y
ā
 is 

the (possibly counterfactual) outcome that would have been observed at visit k=5 

(i.e., one year post-baseline) if the subject had followed regime ā. Thus the effect 

of continuous treatment in the population can be expressed as 

][][ 01 == − aa YEYE . 

In our study, this is the mean counterfactual outcome that would have 

been observed if all subjects had been continuously treated with atypical 

antipsychotics minus the mean counterfactual outcome that would have been 

observed if all subjects had been never treated with atypical antipsychotics. If all 

subjects had been always on either atypical or conventional antipsychotic therapy, 

the effect of continuous treatment could also be conceptualized as “the effect had 

everybody stayed on their assigned treatment regime”, i.e.,  
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]0|[]1|[ 01 =−= == RYERYE aa , 

because in randomized experiments groups R=1 and R=0 are expected to be 

exchangeable. 

Unlike the ITT effect, the effect of continuous treatment does not depend 

on the degree of noncompliance with the assigned treatment during the follow-up 

period. But, unlike the ITT effect in the absence of loss to follow-up, the effect of 

continuous treatment cannot be consistently estimated by a simple comparison. 

Specifically, we cannot simply compare the mean outcome between those 

subjects who happened to follow the regimes 1   “always treated with atypical 

antipsychotics” and 0  “never treated with atypical antipsychotics”, because 

subjects who followed those regimes did so for some particular reasons (e.g., their 

response to treatment or the severity of their condition) and are generally not 

exchangeable. For example, in our study subjects randomized to atypical 

antipsychotics R=1 who did not require hospitalization during the follow-up were 

more likely to stay on their assigned treatment. As a result, the group of subjects 

who stayed on atypical antipsychotics Ā = 1   is the selected sample of subjects 

that either had low severity to start with or that responded well to atypical 

antipsychotics. That is, the contrast  

]0,0|[]1,1|[ ==−== ARYEARYE , 

which equals the contrast  

]0|[]1|[ =−= AYEAYE , 

will generally result in a biased estimate of the effect of continuous treatment, 

even if no subjects had been lost to follow-up. This contrast is usually known as 

the “per protocol” analysis. (Note that the sample estimates of the differences 

]0,0|[]1,1|[ ==−== ARYEARYE  and ]0|[]1|[ =−= AYEAYE  will 

generally differ.) 

Estimating the effect of continuous treatment may require data on the 

time-varying treatment and joint predictors of compliance and the outcome, and 

some sort of adjustment for such predictors. In an attempt to identify the main 

predictors of noncompliance, Table 2 shows the association between several 

factors and compliance with the assigned treatment by randomized arm. To 

estimate the odds ratios in the table, we fit a pooled logistic model for the 

probability of staying on the assigned treatment  
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],,,0|Pr[ 1 rRlLrACrA kkkkk ===== −

in each arm R=r, where Lk is the vector of time-varying covariates measured at 

visit k, kL ={L0, L1,… Lk } is the history of measured covariates measured by visit 

k, Ck  is a time-varying censoring indicator that takes value 0 for subjects 

uncensored (i.e., with complete follow-up data) by time k, and value 1 otherwise, 

and kC ={C0, C1, …Ck} is a subject’s censoring history through k. 0=kC  denotes 

complete follow-up through visit k.  We assumed that Lk preceded Ak (our results 

were not sensitive to this assumption) and that kL  could be appropriately 

summarized by the following variables: age at baseline, sex, ethnicity, time since 

randomization, and the following time-varying covariates: baseline and most 

recent BPRS and global assessment of functioning (GAF, smaller score indicates 

more severe dysfunction) scores, and a moderate or severe adverse event (1: yes; 

0: no) and hospitalization (1: yes; 0: no) since last visit. These time-varying 

covariates span the domains of symptom severity, functioning, tolerability, and 

resource utilization. Each person contributed as many observations to the logistic 

model as visits she was under complete follow-up until abandoning her assigned 

treatment. The model did not include covariates to summarize prior treatment 

history 
1−kA  because all subjects had the same treatment history while on their 

assigned treatment. 

The analysis shown in Table 2 identifies some important predictors of 

noncompliance, such as recent symptom severity or hospitalization. Because these 

factors are also predictors of the outcome (which is, in fact, symptom severity at a 

later time), some sort of adjustment for these factors may be required. The need 

for an adjustment raises two issues.  

First, adjustment for noncompliance often requires assumptions about the 

comparability of those who did and did not comply with the assigned treatment. 

In our example, some approaches would require the untestable assumption that all 

possibly time-varying factors (e.g., past BPRS score) that predict both treatment 

switching and symptoms severity at one year have been measured at all times and 

appropriately adjusted for. This reliance on empirically unverifiable assumptions 

makes the problem of causal inference from a longitudinal study with baseline 

randomization bear a striking resemblance to the problem of causal inference 

from an observational study.  

Second, even if all the information required for noncompliance adjustment 

is available and even if all subjects had completed the follow-up, the use of 

standard adjustment methods (e.g., stratification, regression analysis, matching) 

may introduce selection bias when estimating the effect of continuous treatment. 

This selection bias will occur if the reasons for noncompliance at any time are 
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affected by prior treatment received and by unmeasured determinants of the 

outcome (Hernán et al., 2004). In this article we will use two analytic methods 

that do not introduce selection bias when adjusting for noncompliance: inverse 

probability weighting and g-estimation (Robins and Hernán, 2008). An additional 

advantage of some forms of g-estimation is that a consistent estimation of the 

effect of continuous treatment in a randomized study does not require untestable 

assumptions about the predictors of noncompliance. The next two sections 

describe these methods and their application to our study. 

Table 2. Odds ratio (95% confidence interval) of treatment discontinuation by 

randomized arm * 

Atypical 

antipsychotic arm 

( person-visits:1,240) 

Conventional 

antipsychotic arm 

(person-visits:593) 

Age (in years) 0.99 (0.97, 1.02) 1.00 (0.98, 1.02) 

Female sex 1.02 (0.57, 1.83) 0.92 (0.53, 1.60) 

White race 1.16 (0.66, 2.02) 1.03 (0.61, 1.74) 

Baseline BPRS 
   < 25 

   25 – 44 

   ≥ 45 

Reference 

1.11 (0.50, 2.44) 

0.74 (0.21, 2.66) 

Reference 

0.99 (0.53, 1.81) 

0.64 (0.21, 1.99) 

Baseline GAF 
   < 50 

   50 – 60 

   ≥ 60 

1.79 (0.59, 5.37) 

1.18 (0.39, 3.52) 

Reference 

0.81 (0.36, 1.82) 

1.19 (0.53, 2.65) 

Reference 

BPRS at current visit 
   < 25 

   25 – 44 

   ≥ 45 

Reference 

2.17 (1.15, 4.20) 

1.11 (0.27, 4.62) 

Reference 

1.31 (0.70, 2.46) 

0.45 (0.09, 2.28) 

GAF at current visit 
   < 50 

   50 – 60 

   ≥ 60 

0.84 (0.31, 2.27) 

1.08 (0.44, 2.67) 

Reference 

0.90 (0.39, 2.07) 

1.28 (0.63, 2.59) 

Reference 

Adverse event since last visit 2.36 (1.34, 4.16) 1.98 (1.16, 3.37) 

Hospitalization since last visit 2.40 (1.14, 5.05) 0.78 (0.29, 2.10) 

* BPRS: Brief Psychiatric Rating Scale score; GAF: global assessment of 

functioning score 
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In this section we have so far ignored the problem of incomplete follow-up. 

Table 3 shows the association between loss to follow-up and the measured 

covariates in the trial. We now combine our previous discussion on incomplete 

follow-up with the current discussion on noncompliance to clarify that the effect 

of interest is not simply the effect of continuous treatment, but the effect of 

continuous treatment under complete follow-up. Let C  a subject’s censoring 

history from baseline until the end of follow-up (one year in our trial). Then the 

effect of continuous treatment under complete follow-up is defined as   

][][ 0,00,1 ==== − caca YEYE . 

That is, we would like to estimate the effect of continuous treatment if everybody 

had fully adhered to the follow-up procedures specified in the study protocol. The 

reasoning that we used for adjustment for noncompliance also applies to 

incomplete follow-up: we may need to identify the joint predictors of complete 

follow-up and the outcome, and adjust for them using methods that do not 

introduce selection bias, such as inverse probability weighting and g-estimation. 

Table 3. Odds ratio (95% confidence interval) of loss to follow-up by randomized 

arm * 

Atypical 

antipsychotic arm 

( person-visits:1,240) 

Conventional 

antipsychotic arm 

(person-visits:593) 

Age (in years) 0.99 (0.97, 1.00) 0.99 (0.97, 1.02) 

Female sex 0.90 (0.62, 1.30) 1.21 (0.70, 2.09) 

White race 0.64 (0.45, 0.91) 0.59 (0.34, 1.01) 

Baseline BPRS 
   < 25 

   25 – 44 

   ≥ 45 

Reference 

0.67 (0.43, 1.05) 

0.47 (0.21, 1.04) 

Reference 

1.18 (0.58, 2.38) 

0.69 (0.21, 2.25) 

Baseline GAF 
   < 50 

   50 – 60 

   ≥ 60 

1.34 (0.68, 2.64) 

1.43 (0.75, 2.71) 

Reference 

1.52 (0.51, 4.57) 

1.79 (0.62, 5.19) 

Reference 

BPRS at current visit 
   < 25 

   25 – 44 

   ≥ 45 

Reference 

1.40 (0.93, 2.12) 

2.02 (0.90, 4.55) 

Reference 

2.32 (1.21, 4.42) 

3.42 (1.17, 9.98) 
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GAF at current visit 
   < 50 

   50 – 60 

   ≥ 60 

1.36 (0.73, 2.53) 

1.19 (0.69, 2.06) 

Reference 

1.12 (0.41, 3.02) 

0.77 (0.31, 1.92) 

Reference 

Adverse event since last visit 1.24 (0.86, 1.81) 0.97 (0.55, 1.70) 

Hospitalization since last visit 1.93 (1.09, 3.42) 0.69 (0.20, 2.46) 

* BPRS: Brief Psychiatric Rating Scale score; GAF: global assessment of 

functioning score 

5 Inverse probability weighting 

The ideal procedure to estimate the effect of continuous treatment under complete 

follow-up would be to (i) randomize subjects to either R=1 or R=0, (ii) force all 

subjects in the R=1 arm to take treatment Ak=1 at all times k, (iii) similarly force 

all subjects in the R=0 arm to take treatment Ak=0 at all times k, and (iv) force all 

subjects to be under follow-up for the entire duration of the study. If this protocol 

were enforced, the effect would be consistently estimated by the contrast 

]0|[]1|[ =−= AYEAYE , i.e., the mean outcome among those who were 

continuously treated with A=1 minus the mean outcome among those who were 

continuously treated with A=0. Note that we do not need to restrict the analysis to 

the uncensored subjects (i.e., we do not have to calculate the mean conditional on 

Ck being 0 for all times k) because, under the protocol described above, nobody is 

censored (i.e., everybody’s Ck=0 for all k). 

Unfortunately for investigators, but luckily for the study subjects, forcing 

the subjects in the study population to adhere to any given protocol is near 

impossible in human studies. In most randomized studies, subjects are indeed 

randomized to either R=1 or R=0, but their subsequent values of received 

treatment Ak (and censoring status Ck) depend on their evolving covariate history, 

as shown in Table 2. Inverse probability weighting (IPW) is a method that uses 

the data from the actual randomized study population to simulate a “pseudo-

population” in which, under certain assumptions outlined below, subjects are 

randomly assigned to receive either treatment Ak=1 or Ak=0, and remain under 

complete follow-up Ck=0, at each visit k, irrespective of their evolving covariate 

history. In such pseudo-population, we can calculate the difference in mean 

outcomes between those who were continuously treated with each treatment, 

]0|[]1|[ =−= AYEAYE , to consistently estimate the effect of continuous 

treatment under complete follow-up.  

The key assumption for IPW to be able to create such pseudo-population 

is that the investigators have measured all joint determinants of received treatment 
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Ak (or, equivalently, of compliance, with the assigned treatment R) and the 

outcome Y. This assumption of no unmeasured confounding, or exchangeability 

assumption, can be stated in many equivalent ways. Here is one of them: consider 

the pooled logistic model that we fit to estimate the associations shown in Table 2. 

The assumption of no unmeasured confounding says that any risk factor for Y that 

is not included in the model would be unassociated with the received treatment 

(odds ratio of 1) if it were included in the model. The assumption of no 

unmeasured confounding is also known as the assumption of sequential 

randomization because it is equivalent to assuming that, within levels of past 

treatment and covariate history, the value of the received treatment Ak at each visit 

was selected at random. In other words, IPW uses the assumption that the 

treatment regime in the study population was randomly assigned conditional on 

covariate history to simulate a pseudo-population in which the treatment regime is 

randomly assigned unconditional on covariate history. A similar assumption 

regarding censoring status in the study population is required to ensure that 

nobody is censored in the pseudo-population. IPW is, conceptually, the general 

version of standardization (Hernán and Robins, 2006). The method was first 

described by Robins in the contexts of compliance adjustment (Robins, 1993; 

Robins and Finkelstein, 2000) and of models for causal inference from complex 

longitudinal data (Robins, 1997). For a less technical description of the conditions 

required by IPW, see Hernán and Robins (2006) for non time-varying exposures, 

and Robins and Hernán (2008) for time-varying exposures. These conditions 

include the exchangeability assumption sketched above, and the positivity 

condition. That is, the requirement that the conditional probability of receiving 

either treatment Ak=1 or Ak=0 and of remaining under complete follow-up Ck=0 is 

greater than zero (i.e., positive) for all covariate histories and at all visits. We 

assume that positivity holds throughout this paper. 

The pseudo-population is simulated by reweighting the contributions of 

each study subject by a subject-specific inverse probability weight for treatment 

and censoring. We first describe the weights and then explain how we estimated 

them in our study. 

The treatment weights are defined as 

∏
= −

−

=

=
=

4

0 1

1

],,,0|[

],,0|[

k kkkk

kkkA

RLACAf

RACAf
W

where f[Ak|·]is the conditional density of Ak. These weights are referred to as 

inverse probability weights because the denominator of the weight is, informally, 

the probability that the subject received her own treatment history given her past 

treatment and covariate history. The numerator of the weights, which cannot be a 
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function of the time-varying covariates in kL , is merely a stabilizing factor to 

reduce the variance of the estimator. Thus, these inverse probability weights are 

known as stabilized weights. Under the exchangeability assumption that all joint 

predictors of treatment Ak  and the outcome Y are included in kL , IPW simulates a 

pseudo-population in which treatment was randomly assigned conditional, at most, 

on past treatment history 1−kA  but in which the effect of treatment on the outcome 

is the same as in the original (unweighted) study population. 

The censoring weights are defined as 

∏
= +

+

==

==
=

4

0 1

1

],,,0|0Pr[

],,0|0Pr[

k kkkk

kkkC

RLACC

RACC
W

for those subjects that completed the follow-up, and are set W
C
 equal to zero for 

the others. These weights are also inverse probability weights because the 

denominator of the weight is the probability that the subject completed the follow-

up given her treatment and covariate history. The numerator, again not a function 

of the time-varying variables in kL , helps stabilize the weight. Under the 

exchangeability assumption that all joint predictors of incomplete follow-up Ck  

and the outcome Y are included in kL , IPW simulates a pseudo-population in 

which everybody completed the follow-up (i.e., in which censoring was abolished) 

but in which the effect of treatment on the outcome is the same as in the original 

(unweighted) study population. We used these censoring weights to obtain the 

inverse probability weighted ITT estimate under complete follow-up in section 2. 

The inverse probability weight used in our IPW analysis is the product W
A×

W
C
. 

The inverse probability weights are unknown but can be estimated from 

the data. In our study, we estimated the denominator of the treatment weights W
A

by fitting, separately in each arm R=r, the pooled logistic model for 

],,,0|Pr[ 1 rRlLrACrA kkkkk ===== −  described above to generate Table 2, 

except that the categorical variables for the BPRS and GAF scores were replaced 

by linear and quadratic terms for the score. Note that the additional assumption of 

no misspecification of the model used to estimate the weights is necessary for the 

method to provide consistent estimates. 

Because few subjects who did not adhere to the assigned arm switched 

back to the originally assigned class of antipsychotics, we assumed that the 

probability of staying on the non assigned drug was 1 for the reminder of the 

follow-up. We estimated the numerator of the treatment weights W
A
 by fitting, 

separately in each arm R=r, a similar pooled logistic model that included only 

time since randomization as a covariate. The denominator of the censoring 
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weights W
C
 was estimated by fitting, separately in each arm, a pooled logistic 

model for  

],,,0|0Pr[ 11 rRlLrACC kkkkk ===== −+

that included the covariates listed above. Each person contributed as many 

observations to the logistic model as visits she was under complete follow-up. 

The numerator of the censoring weights was estimated by fitting a similar pooled 

logistic model except that it included only time since randomization and Ak as 

covariates. 

 The assignment of the estimated inverse probability weights W
A×

W
C
 to 

every subject in the population results in a pseudo-population in which, under the 

assumptions of IPW, all subjects undergo complete follow-up and the treatment 

received at each visit is randomly assigned conditionally on prior treatment 

history, but in which the effect of treatment is the same as in the original study 

population. The effect of continuous treatment under complete follow-up can now 

be estimated by simply restricting the analysis to the members of the pseudo-

population that always adhered to their assigned treatment at baseline. That is, by 

conducting a “per protocol” analysis in the pseudo-population. Note that, if our 

outcome of interest had been continuously measured during the follow-up (e.g., 

survival) ― as opposed to the situation in our study in which the outcome was 

only measured at the end of follow-up ― then we could have conducted an “on 

treatment” analysis in the pseudo-population, i.e., censoring subjects at the first 

time they deviated from their assigned treatment.  

In our study, we computed the inverse probability weighted mean of the 

outcome in subjects assigned to R=1 who remained on atypical antipsychotics for 

the entire duration of the study (N=205), and in subjects assigned to R=0 who 

remained on conventional antipsychotics for the entire duration of the study 

(N=56). The estimated weights W
A×

W
C
 had a mean of 0.98 (their expected mean 

is 1) and their values ranged from 0.37 to 2.77 in the censored population. 

Equivalently, we fit the weighted least squares model  

RRYE 10]|[ θθ +=  

to these 261 subjects, in which the parameter 1θ  is the causal effect of interest (in 

the scale of the mean difference). The effect of continuous treatment that we 

estimated by applying this IPW approach to our study was —1.53 (95% CI: —5.46, 

2.39). To account for the correlation induced by the use of inverse probability 

weights, we used a generalized estimating equation (Liang and Zeger, 1986) 

program (e.g., option “repeated” in SAS proc genmod) that outputs a robust 

variance estimator. The 95% CIs obtained from the robust variance are 
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conservative (i.e., their coverage is at least 95% in large samples). Using either 

bootstrapping or a variance estimator that explicitly incorporates how the weights 

were estimated would have resulted in slightly narrower confidence intervals, as 

discussed by Robins (1999). 

The IPW approach described in the previous paragraph used data from all 

subjects to estimate the inverse probability weights, but the final (weighted) 

contrast only included data from subjects who fully adhered to baseline treatment 

and remained uncensored through the end of the study. However, it may be 

reasonable to argue that the mean outcome in pseudo-population subjects who 

took atypical antipsychotics most, but not all, of the time will be closer to the 

mean outcome in subjects who took atypical antipsychotics all the time than to 

that in subjects who never took atypical antipsychotics all the time. It could 

further be argued that the mean outcome of subjects who took atypical 

antipsychotics half of the time would be somewhere in between the mean 

outcomes of subjects who took atypical antipsychotics most of the time and those 

who almost never took atypical antipsychotics. In other words, we may believe 

that there is a dose-response relation between duration of use of atypical 

antipsychotics and symptom severity of schizophrenia. In our study, we chose to 

represent our dose-response beliefs by the model  

∑
=

= +=
M

m

m

ca
adYE

0

10

0, )(][ ψψ , 

where d(a)m is an indicator for use of atypical antipsychotics on day m (1; yes, 0; 

no), and  ∑
=

M

m

mad
0

)( is the duration of atypical antipsychotic treatment from 

baseline at day m=0 to the end of follow-up at day m=M (in our study M=365). 

The parameter 1ψ  from this model measures the increase (or decrease) in the 

mean outcome per each additional time period on atypical antipsychotic treatment, 

and 3651 ×ψ  measures the effect of continuous atypical antipsychotic use 

compared with no use of atypical antipsychotic treatment. This model is referred 

to as a marginal structural model (MSM) (Robins et al., 2000) because it models 

the marginal (unconditional) mean of the counterfactual outcomes, and models for 

functionals of counterfactual outcomes are often referred to as structural models. 

Our MSM provides a mapping from any static treatment regime ā to the mean 

response ][ 0, =caYE  under the assumptions that the mean outcome is a linear 

function of the duration of treatment over the entire follow-up. If necessary, this 

assumption can be relaxed by proposing a more complex model. For example, one 

may relax the assumption of linear dependence by adding a quadratic term 
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for∑
=

M

m

mad
0

)( , and the assumption of equal effect of treatment taken at different 

times during the follow-up by replacing ∑
=

M

m

mad
0

)(  by, say, ∑
=

M

m

mad
180

)( . 

The parameters of our MSM can be consistently estimated by estimating 

the parameters of the regression model 

[ ] ∑
=

+=
M

m

mAdAYE
0

10 )(| ββ  

in the pseudo-population, that is, by fitting a weighted least squares model in 

which each study subject receives the estimate of her inverse probability weight 

W
A×

W
C
. The estimated weights in the entire pseudo-population had mean 1.00 

(range: 0.16, 6.89). Our estimate of the effect of continuous treatment from the 

MSM with a robust variance estimator was: —2.52 (95% CI: —6.07, 1.04).  

In summary, we used IPW to estimate the effect of continuous treatment 

under complete follow-up by using two strategies. First, we eluded making any 

assumptions about the dose-response relation between use of atypical 

antipsychotics and symptoms severity by restricting the analysis to those who 

fully complied with their assigned treatment during the follow-up. Second, we 

made assumptions about the dose-response by fitting a linear model. The model 

allowed us to estimate the effect of interest by “borrowing information” from 

subjects that did not fully comply with their assigned treatment. 

6 G-estimation 

We now provide a conceptual description of g-estimation, another method to 

estimate the parameter 1ψ  from the structural model above. G-estimation was first 

described by Robins (Robins, 1989; Robins, 1993). We describe g-estimation in 

four steps. 

First, note that the counterfactual outcomes Y
ā
 are unmeasured predictors 

of the observed outcome Y. To see why, let us pick the counterfactual outcome 
0=aY  under no treatment. In our study, subjects with large positive values of 0=aY

are those who would have developed a large increase in symptoms severity at the 

end of follow-up had they not received atypical antipsychotics, that is, the 

subjects with a worse prognosis. Thus the counterfactual outcome 0=aY  can be 

viewed as an individual’s characteristic that, if known at baseline, would provide 

information about the individual’s underlying predisposition for a bad outcome. 
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Of course, the value of 0=aY  is missing for most subjects but, for the sake of the 

argument in this and the next paragraph, suppose that the value of 0=aY  were 

known for all subjects at baseline.  

Second, note that the random treatment assignment R is, by definition of 

randomization, expected to be unassociated with any baseline variable. In 

particular, R is expected to be independent of 0=aY , a baseline marker for severity. 

More precisely, the parameter 1η  in the logistic model  

logit 0

10

0 ]|1Pr[ == +== aa
YYR ηη  

will be zero. 

Third, note that we cannot know the value of the counterfactual outcome 

but, given several candidates, we have a method to rule out some of then. Imagine 

that an omniscient friend of ours added several variables to the study dataset. Let 

us refer to this collection of variables as H(p=1), H(p=2),… where p is an 

arbitrary index. Our friend guarantees us that only one of them is the 

counterfactual outcome 0=aY , and challenges us to identify it. No big deal: we 

simply fit the model  

logit )()](|1Pr[ 10 pHpHR ηη +==

separately for each of the variables H(p=1), H(p=2), etc., and choose the variable 

that results in the estimate of 1η  that is closest to zero. For example, if we find 

that H(p=3) minimizes the absolute value of the estimate of 1η , then we would 

say that H(p=3) equals the counterfactual outcome 0=aY . Only one more piece is 

needed to complete this conceptual description of g-estimation. 

Fourth, let us assume that the structural model 

∑
=

+=
M

m

mi

a

i adY
0

1,0 )(ψψ

holds for every individual i in the study. This deterministic subject-specific model 

is stronger than the model used in the previous section because the subject-

specific model assumes that 1ψ  is the treatment effect for every single individual 

whereas the model in last section assumes that 1ψ  is the treatment effect averaged 

over all subjects (i.e., the model in last section is a “mean model”). Below we 

explain how to estimate the parameter 1ψ  by using the subject-specific model 

rather than the mean model of the previous section. However, we do not believe 
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that the subject-specific model holds. We use it only for pedagogic reasons: the g-

estimation procedure is easier to explain for the subject-specific model than for 

the mean model. Fortunately, it turns out that the g-estimation procedure 

described below to consistently estimate the parameter 1ψ  under the subject-

specific model also estimates the parameter 1ψ  under the mean model, which is 

our actual aim. See Robins and Hernán (2008) for technical details.  

Clearly, the subject-specific parameter i,0ψ  is the counterfactual outcome 

under no treatment so the model can be rewritten as  

∑
=

=
+=

M

m

m

a

i

a

i adYY
0

1

0
)(ψ , 

or  

∑
=

=
−=

M

m
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i
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i adYY
0

1

0
)(ψ . 

If the model holds for all counterfactual outcomes then it also holds for the 

observed outcome Y= AY , which is just the counterfactual outcome under the 

actual treatment regime Ā. Thus, we can rewrite the model as  

∑
=

=
−=

M

m

mi

a

i AdYY
0

1

0
)(ψ . 

Under this model, if we knew the true value of the parameter 1ψ , then we could 

calculate the value of 0=aY  for all subjects. But if we knew the true value of 1ψ , 

we would not need to use g-estimation! The whole point of this section is 

describing a method to estimate 1ψ , so how does it help us having learned that the 

true value of 1ψ  can be used, under our modeling assumptions, to calculate the 

counterfactual outcome 0=aY ? We have reached the core of g-estimation: We can 

simply guess the value of 1ψ , use our guessed value to calculate a candidate for 

counterfactual outcome 0=aY , and then check whether our guess was right by 

examining the estimate of 1η  for our candidate variable. If our guess was not right, 

we keep guessing until we find the true value of 1ψ  by checking the value of the 

estimate of 1η . More formally, we compute  

19

Toh and Hernán: Longitudinal Studies with Baseline Randomization



∑
=

−=
M

m

mii AdpYpH
0

)()(

for a sufficiently wide and fine range of values of p. The g-estimate of 1ψ  is the 

value of p that results in an H(p) that results in an estimate of 1η  equal to zero. 

Although for a linear structural model, like the one considered in this example, a 

closed form estimator exists and thus g-estimation does not require an actual 

search over the range of p, such search will generally be necessary for more 

complex models (e.g., accelerated failure time models for survival analysis). 

We now explain how to obtain a 95% confidence interval for 1ψ . For each 

value of p we conduct a test of the null hypothesis 01 =η . An (1−α)% confidence 

interval for 1ψ  is formed by the values of p that result in estimates of 1η  for which 

the null hypothesis 01 =η  cannot be rejected at the α level. Most standard 

software packages to estimate the parameters of a logistic model will 

automatically perform a Wald test for such null hypothesis and output the 

corresponding p-value, but any other large-sample test (e.g., score test) may be 

used. In fact, the estimating equations for 1ψ  described in more theoretical 

presentations of g-estimation (and used in software written specifically for g-

estimation) correspond to the score test for 01 =η  from the logistic model.  See, 

for example, the Appendix of Hernán et al. (2005). 

We have so far ignored the fact that some subjects were censored by 

incomplete follow-up before their outcome Y was measured, and thus cannot 

participate in the g-estimation procedure. To adjust for the possible selection bias 

introduced by this censoring, we conducted g-estimation in a pseudo-population 

simulated by assigning the inverse probability of censoring weights W
C
 to all 

subjects who were uncensored in the study population. The estimated weights W
C

had a mean of 0.99 (range: 0.63, 2.53). The effect of continuous treatment that we 

obtained by applying (inverse probability weighted) g-estimation to our study 

was —1.50 (95% CI: —6.84, 3.84). 

The random treatment assignment R is an example of an instrumental 

variable or instrument. The method of g-estimation described above exploits the 

expected independence between the counterfactual outcome and the instrument to 

estimate the parameters of structural models. Hence g-estimation is the general 

version of instrumental variable estimation for time-varying treatments (Hernán 

and Robins, 2006). For applications of g-estimation in the analysis of randomized 

experiments, see Mark and Robins (1993) and Cole and Chu (2005). 

Because a g-estimation analysis, like an ITT analysis, relies on the actual 

randomization and thus does not require the untestable assumption of sequential 

randomization of treatment given the measured covariates, it can be referred to as 
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a randomized analysis. In contrast, an IPW analysis that requires the untestable 

assumption of sequential randomization of treatment given the measured 

covariates can be referred to as an observational analysis. (This classification 

applies to assumptions regarding treatment, not censoring, because both g-

estimation and ITT analyses require IPW to adjust for censoring and thus both 

require the untestable assumption of sequential randomization of censoring given 

the measured covariates.) However, if one is willing to make the assumption of 

sequential randomization of treatment, then g-estimation can be easily modified to 

take advantage of this assumption. We now describe how to conduct an 

observational analysis based on g-estimation. 

The assumption of sequential randomization of treatment given the 

measured covariates implies that no baseline predictors of the outcome, other than 

those measured and included in kL , will predict treatment Ak at any visit k. 

Consider the logistic model for logit ],,,0|Pr[ 1 RlLrACaA kkkkkk ==== −  that 

we fit to estimate the probabilities in the denominator of the inverse probability of 

treatment weight W
A
. The assumption of sequential randomization says that the 

coefficient of any baseline risk factor that is added to the model as a covariate is 

expected to be zero (odds ratio equal to 1). In particular, if we add the covariate 
0=aY  and fit a logistic model for  

],,,,0|Pr[ 0

1

=

− ==== a

kkkkkk YRlLrACaA , 

the parameter 1η  for 0=aY  is expected to be zero (for comparability with the two 

models specified for IPW, one per randomization arm, we included product terms 

between R and all the other covariates except for  0=aY  in the model above). Of 

course, we do not know the value of 0=aY  for most subjects but we can use our 

structural model  
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to propose candidates   
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for a sufficiently wide and fine range of values of p. Again, the g-estimate of 1ψ  

is the value of p that results in an H(p) that results in an estimate of 1η  equal to 
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zero. In our study, the effect of continuous treatment that we obtained by using an 

observational analysis based on (inverse probability weighted) g-estimation to our 

study was —2.64 (95% CI: —6.12, 0.84). 

Finally, a comment about statistical efficiency in g-estimation. The g-

estimation procedures described above, and the analysis of our study, are based on 

adding the covariate H(p) to the logistic model. But note that the rationale behind 

g-estimation would carry through if we added a function of H(p)  (say, its log), 

rather than H(p) itself, to the model. In fact, it can be shown that using certain 

functions of H(p) might result in a narrower confidence interval around the g-

estimate compared with using H(p). However, although g-estimation based on the 

estimating function H(p) is possibly inefficient, it is also easy to carry out. On the 

other hand, the efficient g-estimator involves functions of H(p) that are hard to 

compute and whose description is beyond the scope of this paper (Robins, 1993). 

In our study, estimates based on several simple functions of H(p) (e.g., its log) 

were similar to the ones shown here using H(p) (data not shown). 
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Table 4. Estimates of the causal effect of atypical antipsychotics on change in score of the Brief Psychiatric Rating 

Scale (BPRS) at one year after randomization. See text for details.* 

Initiation vs. No initiation Continuous use vs. No use 

Method Pseudo-ITT Complete-

case  

ITT 

ITT 

+ IPW for 

censoring 

IPW 

for censoring and 

treatment 

G-estimation for treatment 

+ IPW for censoring 

Assumptions 

 Censoring 
 Sequential randomization 

 + correctly specified model  

Un-

conditional 

Un-

conditional Conditional Conditional Conditional Conditional Conditional 

 Treatment 
 Sequential randomization (conditional)

 + correctly specified  model 
No No No Yes Yes No Yes 

 Correctly specified structural   

 (dose-response) model  
No No No No Yes Yes Yes 

No. of subjects in final contrast 634 † 365 ‡ 365 ‡ 261§ 365 ‡ 365 ‡ 365 ‡ 

Effect estimate —1.05 0.42 —0.86 —1.53 —2.52 —1.50 —2.64 

95% confidence interval # -3.26, 1.16 -2.36, 3.19 -3.88, 2.15 -5.46, 2.39 -6.07, 1.04 -6.84, 3.84 -6.12, 0.84 

* ITT: intention-to-treat; IPW: inverse probability weighting 

† Subjects with at least one post-randomization BPRS score recorded. The last available BPRS score was used 

‡ Subjects with complete follow-up data 

§ Subjects with complete follow-up data and full adherence to the assigned treatment 

# Conservative 95% confidence intervals except for the pseudo-ITT and complete-case ITT analyses 
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7 Discussion 

Table 4 summarizes all the effect estimates that we have presented throughout the 

article. A cursory examination of the table shows that none of the estimates 

reached traditional statistical significance (i.e., all 95% CIs include null value) 

and thus it can be argued that none of them is different from zero. However, for 

the purposes of this discussion, we will regard these point estimates as coming 

from a larger study with much narrower confidence intervals.  

The table has two parts: The first 3 columns show different estimates of 

the ITT effect; the last 4 columns show different estimates of the effect of 

continuous treatment. Let us discuss the ITT effect estimates first. An ITT 

analysis is usually the primary, and often the only, analysis of randomized 

experiments. As discussed above, there are good reasons why the ITT effect needs 

to be reported. However, the ITT effect is often presented as a straightforward 

analysis even when that is not the case. For example, in our study many subjects 

did not complete the follow-up and thus their outcome was unknown. As a result, 

any ITT-like analysis requires some additional assumptions to estimate the ITT 

effect under complete follow-up. The first two columns of Table 4 present the 

estimates from two common ITT-like analyses: the “last available observation 

carried forward” or pseudo-ITT analysis, and the “complete-case” ITT analysis. 

A pseudo-ITT analysis assumes that 1) those with and without complete 

follow-up are exchangeable, and 2) the ITT effect of treatment is the same 

whether we use a measurement of the outcome at 2 weeks or at 12 months since 

baseline. When applied to our study, the pseudo-ITT effect estimate was —1.05, 

which may be explained by either a sustained beneficial effect of atypical 

antipsychotics compared with conventional ones, or by an early beneficial effect 

of atypical antipsychotics followed by worsening of the symptoms leading to 

drop-out of subjects on atypical antipsychotics. 

A complete-case analysis eliminates assumption 2) of the pseudo-ITT 

analysis but still assumes that those with and without complete follow-up are 

exchangeable. When applied to our study, the complete-case ITT effect estimate 

was 0.42, which may be explained by either a harmful effect of atypical 

antipsychotics, or by a differential drop-out of subjects doing badly on 

conventional antipsychotics.   

Both ITT-like analyses make the assumption that there is no selection bias 

due to incomplete follow-up or, equivalently, that censoring by incomplete 

follow-up was randomly assigned during the follow-up. This assumption of 

unconditional sequential randomization of censoring is a strong assumption. We 

therefore considered a weaker assumption: censoring was sequentially 

randomized within levels of (conditionally on) the measured time-varying 

covariates. If investigators are willing to assume the weaker, conditional 
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assumption ― and they will if they were willing to assume the stronger, 

unconditional one ― then they can use IPW to adjust for selection bias explained 

by the measured time-varying factors. The third column of Table 4 presents the 

ITT analysis with IPW adjustment for incomplete follow-up. The estimate of  

—0.86, which may be explained by a true beneficial ITT effect of atypical 

antipsychotics compared with conventional ones, can be affected by insufficient 

adjustment for selection bias. However, because the unadjusted estimate was 0.42 

and the adjusted one is —0.86, it is possible that further adjustment (if it were 

possible) by unmeasured factors would have made the estimate even more 

negative, i.e., the true ITT effect would be stronger than our estimate, which can 

then be viewed as a conservative one. Of all three estimates of the ITT effect 

under complete follow-up that are shown in Table 4, the inverse probability 

weighted ITT analysis makes the weakest assumptions. Although in this particular 

study the inverse probability weighted ITT and the pseudo-ITT estimates 

happened to be very close, this coincidence cannot be generally expected. 

The ITT effect is the effect of treatment assignment or initiation under a 

particular pattern of compliance. In our study, the ITT is the effect of initiating 

atypical antipsychotic therapy compared with conventional antipsychotic therapy. 

As discussed above, the effect of treatment initiation may be quantitatively or 

even qualitatively different from the effect of continuous treatment when many 

study subjects do not adhere to the treatment after initiation. This dependence of 

the magnitude on the ITT effect on the degree of compliance may make it hard to 

transport to other populations with different levels of compliance, or even to the 

same population at different times (for example, the publication of the study 

results may affect compliance in the same population in which the study was 

conducted). It also makes the ITT approach a dangerous one for identifying 

potential harmful effects. In placebo-controlled safety studies, one needs to be 

careful when presenting ITT effects because null effect estimates may merely 

reflect substantial noncompliance rather than the absence of adverse effects. In 

fact, the ITT effect may suggest that the treatment of interest is less toxic than the 

comparator even when both treatments have similar toxicity. Thus an ITT analysis 

cannot generally be the only analytic approach for a randomized experiment (e.g., 

a large simple trial) with a safety outcome or lack of a placebo control.  

As a complement to the ITT effect under complete follow-up, Table 4 also 

shows our estimates of the effect of continuous treatment under complete follow-

up, that is, the effect if all subjects had adhered to their assigned treatment for the 

entire follow-up. Unfortunately, to estimate this effect we need assumptions 

beyond those necessary to estimate the ITT effect under complete follow-up. At 

least one of two types of assumptions needs to be made: (i) sequential 

randomization of treatment within levels of the measured covariates, or (ii) a 

dose-response model. If only assumption (i) is made, then IPW is needed. If only 
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assumption (ii) is made, then g-estimation is needed. If both assumptions are 

made, then either IPW or g-estimation can be used. Let us see each of these cases 

separately. 

Under assumption (i), one can use IPW to simulate a pseudo-population in 

which treatment is given at random. In this pseudo-population, a subject’s 

prognosis is unrelated to the treatment regime she receives during the follow-up. 

Thus, to estimate the effect of continuous treatment, one only needs to restrict the 

analysis to subjects who always adhered to their baseline assignment. In the 

pseudo-population of our study, we compared the average outcome of subjects 

assigned to atypical antipsychotics with that of subjects assigned to conventional 

antipsychotics. As expected, the IPW estimate of the effect of continuous 

treatment until complete follow-up (—1.53) suggests that atypical antipsychotics 

result in a greater symptomatic improvement than that suggested by the IPW 

estimate of the ITT effect (—0.86). The estimate of —1.53 will be biased if the 

covariates used to estimate the inverse probability weights do not include all 

important confounders of the treatment effect, or if they are measured with error, 

or if the weight model is misspecified. Note that, in our study, treatment may 

actually change in between visits while the adjusting factors are only measured at 

the visits, which may result in insufficient adjustment. 

Under assumption (ii), one can use g-estimation to conduct a generalized 

instrumental variable analysis that does not require any assumptions regarding 

sequential randomization of treatment. That is, g-estimation may consistently 

estimate the effect of continuous treatment even in the presence of unmeasured 

confounding for the treatment effect. However, the method requires a structural 

model for the effect of treatment on the outcome. In our study, we assumed that 

the effect of atypical antipsychotic use on the outcome is a linear function of the 

duration of treatment. Our estimated effect of continuous treatment in the sixth 

column of Table 4, —1.50, depends critically on that dose-response assumption. 

To estimate the sensitivity of the estimate to the assumption of correct dose-

response specification, we estimated the effect of continuous treatment under 

alternative models (data not shown) and found that the model used for the 

estimates in Table 4 were the closest to the null value. Thus our results are likely 

to be conservative.  

Interestingly, we found that both the IPW-based observational analysis 

(column 4 of Table 4) and the g-estimation-based randomized analysis (column 6) 

yielded similar estimates of the effect of continuous treatment, even though the 

validity of each method rests on a qualitatively different assumption. Leaving 

aside sampling variability, this coincidence may reflect either that both 

assumptions were approximately correct, or that both were wrong in such a way 

that the bias was in the same direction and of the same magnitude. 
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Finally, one can combine assumptions (i) and (ii) to estimate the effect of 

continuous treatment by using either IPW or g-estimation. In our study, the 

estimates are —2.52 (column 5 of Table 4) and —2.64 (column 7), respectively. If 

either of assumptions (i) or (ii) does not hold, then both estimates will be invalid. 

On the other hand, if both assumptions hold, the estimates are expected to have 

narrower confidence intervals than the corresponding IPW and g-estimation ones 

that relied only on either assumption (i) or (ii).  

Table 4 does not include any estimates from standard methods for bias 

adjustment, such as regression or matching. In our study, for comparison purposes, 

we fit a standard (unweighted) linear regression model for the mean outcome 

conditional on a summary of treatment history (number of days on atypical 

antipsychotics as in our structural linear model) and summaries of the baseline 

and time-varying factors (i.e., BPRS, functional status, hospitalizations, and 

toxicity). The estimate of continuous effect was 1.10 (95% CI: —3.29, 5.49). 

Unlike all estimates of continuous effect in Table 4, this standard estimate 

suggests that atypical antipsychotics are inferior to conventional ones. However, 

the validity of standard statistical techniques requires not only assumptions (i) and 

(ii), but also (iii) the assumption that the time-varying factors (e.g., the measured 

values of BPRS between baseline and the end of the study) are not affected by the 

treatment itself. If assumption (iii) does not hold, the standard estimate is 

expected to be biased (Hernán et al., 2004). In most cases, like in our study, 

assumption (iii) will be hard to defend if we actually believe that treatment may 

affect the outcome.  

The IPW and g-estimation methods presented here can be extended in a 

variety of directions. For example, as originally described by Robins, IPW can be 

applied to settings with non dichotomous treatments (Haight et al., 2005; Cotter et 

al., 2008) and with failure time outcomes (survival analysis) (Hernán et al., 2001; 

Cole et al., 2003), and to the estimation of the effect of dynamic treatment 

regimes (Hernán et al., 2006). The extension to dynamic regimes is crucial 

because in some cases estimating the effect of continuous treatment (a non-

dynamic regime) may be of little interest. For example, if many subjects stop 

taking the treatment because it causes serious adverse effects, one would not want 

to estimate the effect under the non-dynamic regimes “always adhere to the 

baseline treatment” but rather under the dynamic regimes “adhere to the baseline 

treatment unless adverse effects occur”. Further, when certain types of patients 

will always discontinue treatment given certain adverse events, then estimating 

the effect under non-dynamic regimes like “always adhere to the baseline 

treatment” is problematic because the positivity assumption is violated. The 

consideration of dynamic regimes may make it more likely that the positivity 

assumption holds. In the analyses presented here, we chose the effect of 

continuous treatment for pedagogic, rather than clinical, reasons.  

27

Toh and Hernán: Longitudinal Studies with Baseline Randomization



In summary, we recommend that a table similar to Table 4 is generated 

from randomized experiments with substantial noncompliance or loss to follow-

up. Because each approach in the table has relative advantages and disadvantages, 

and depends on a different combination of assumptions, a general agreement 

among all estimates will strengthen our confidence in the results. On the other 

hand, the existence of serious discrepancies will provide some guidance regarding 

important sources of bias in the study that might not have been identified 

otherwise. Of course, implementing our recommendation would require major 

modifications to current practice, and to the protocols of randomized experiments. 

For example, to conduct the analyses that require the assumption of sequential 

randomization, the protocols of randomized experiments would need to include 

plans to measure post-randomization variables. To go beyond the ITT (or pseudo-

ITT) analysis, the protocol would need to include a more complex statistical 

analysis plan and to collect more precise adherence information. To assess the 

sensitivity of the estimates to model specification in analyses that require the 

assumption of correct dose-response specification, the statistical plan would need 

to specify a variety of dose-response models. However, it seems to us that the 

added complexity is necessary to take full advantage of the substantial resources 

that are usually invested in a randomized experiment. 
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