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Abstract

We describe analytic approaches for study designs that, like large simple trials, can be better
characterized as longitudinal studies with baseline randomization than as either a pure randomized
experiment or a purely observational study. We (i) discuss the intention-to-treat effect as an effect
measure for randomized studies, (ii) provide a formal definition of causal effect for longitudinal
studies, (iii) describe several methods -- based on inverse probability weighting and g-estimation -
- to estimate such effect, (iv) present an application of these methods to a naturalistic trial of
antipsychotics on symptom severity of schizophrenia, and (v) discuss the relative advantages and
disadvantages of each method.
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1 Longitudinal studies with baseline randomization

A study is said to be a longitudinal, or a follow-up, study when subjects are
followed from study entry until the determination of certain outcome of interest,
loss to follow-up, or the administrative end of follow-up, whichever comes first.
Longitudinal studies are often referred to as cohort studies by epidemiologists and
as panel studies by social scientists. When the goal is estimating the causal effect
of certain treatment on the outcome, longitudinal studies are preferred over non
longitudinal (i.e., cross-sectional) ones in which the temporal order of treatment
and outcome may be unclear. Longitudinal studies are usually classified as either
experiments (the treatment is assigned by the investigators) or observational
studies (the investigators play no role in treatment assignment). Experiments are
said to be randomized when the investigators assign the treatment at random.
Randomized experiments are considered the mainstay design for causal inference.
Data from randomized experiments are usually analyzed in a very straightforward
manner: the distribution of the outcome is compared between those assigned to
each treatment group. If a difference is found, then treatment is declared to have a
causal effect on the outcome. Below we discuss some advantages and
disadvantages of this “intention-to-treat” analysis.

Despite the apparently clear distinction between randomized experiments
and observational studies, in practice it is common to find longitudinal studies
that combine characteristics from both designs. For example, consider a
conventional two-arm randomized clinical trial in which the investigators select a
group of subjects based on stringent eligibility criteria, randomly assign them to
one of two treatments (or placebo) at baseline, and monitor them closely until the
end of follow-up. Some of the subjects participating in this study may, at any time,
deviate from the trial’s protocol by switching to a treatment other than that
assigned to them at baseline or by dropping out of the study completely. In the
presence of these deviations from protocol, which are not randomly assigned by
the investigators but rather the result of subjects and treating physicians’ decisions,
the investigators can only record data as if they were conducting an observational
study. The greater the proportion of subjects who deviate from the trial’s protocol,
the closer the resemblance between the randomized clinical trial and an
observational study, and the more questionable the intention-to-treat analysis of
the trial becomes.

Hence one can think of a continuum from an ideal randomized experiment
in which subjects (perhaps laboratory rats) are fully compliant with the assigned
treatment and never lost to follow-up to a purely observational study in which
subjects’ information is prospectively collected whenever it becomes available.
The terms “large simple trial” or naturalistic trial have been coined to refer to a
type of longitudinal study that shares, by design, characteristics of both
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randomized trials and observational studies. In a large simple trial, like in a
conventional randomized clinical trial, the treatment is randomly assigned at
baseline. However, large simple trials differ from conventional randomized
clinical trials in their relative lack of restrictions on subject eligibility and their
simplified data collection (Lesko and Mitchell, 2005). The idea is increasing the
generalizability and the clinical relevance of the results by including subjects that
represent the diversity existing in the actual patient population, and by explicitly
allowing the treating physicians to modify the treatment regime depending on the
subjects’ response to the assigned treatment and their changing prognosis over the
(often long) duration of the study.

This article is concerned with study designs that, like large simple trials,
can be better characterized as longitudinal studies with baseline randomization
than as either a pure randomized experiment or a purely observational study. We
(1) discuss the intention-to-treat effect as an effect measure for randomized studies,
(i1) provide a formal definition of causal effect for longitudinal studies, (iii)
describe several methods — based on inverse probability weighting and g-
estimation — to estimate such effect, (iv) present an application of these methods
to a randomized study of antipsychotic therapy, and (v) discuss the relative
advantages and disadvantages of each method. We start by describing the
longitudinal study with baseline randomization that will be used as an example
throughout the article.

2 Example: Antipsychotic medications and severity of
schizophrenia symptoms

We analyzed a randomized, open-label, multi-center trial to compare the effect of
antipsychotic medications on the symptom severity of schizophrenia. Details of
the trial have been described elsewhere (Tunis et al., 2006). Briefly, subjects were
recruited within both academic and community treatment settings (primarily in
mental health outpatient clinics) between May 1998 and September 2001, and
were randomly assigned to one of three first-line treatments: olanzapine (N=229),
risperidone (N=221), or conventional antipsychotics (N=214). Both olanzapine
and risperidone are commonly known as atypical antipsychotics. Within the
conventional group, the choice of antipsychotics (e.g., perphenazine, haloperidol)
was at the discretion of the treating physicians. For simplicity, our analysis
combined the olanzapine and risperidone arms to form an atypical antipsychotic
arm (randomization arm R=1, N=450) and compared it with the conventional
antipsychotic arm (R=0, N=214). Thus, for the purposes of this paper, we
effectively assume that all types of atypical antipsychotic regimes are equivalent.
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To be eligible for the study, subjects had to be at least 18 years old, meet
the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-
IV) criteria for schizophrenia, schizoaffective disorder, or schizophreniform
disorder, have no serious medical conditions or history of contraindication of the
study medications, and have a psychotic symptom threshold of >18 on the Brief
Psychiatric Rating Scale (BPRS). The BPRS score is commonly used to measure
the symptom severity of schizophrenia (Overall and Gorham, 1962) and was rated
by the clinicians in the current study. Each symptom in the scale ranges from 0
(not present) to 6 (extremely severe).

There was a randomization visit and five post-randomization visits at 2
weeks, and 2, 5, 8, and 12 months. Data on medication use, clinical symptoms,
BPRS score, quality of life, and resource use were collected at the time of
randomization and at each post-baseline visit. Subjects in the two arms had
similar baseline characteristics (Table 1). The outcome of interest, Y, was the
change in BPRS score between baseline and end of the study (i.e., 12 months
post-baseline), with a negative value indicating a clinical improvement. For each
subject, the treatment assigned at randomization could be changed (e.g., from
conventional to atypical antipsychotics) during the study period based on the
subject’s response or other reasons. Only 7% of the person-visits reported no use
of any antipsychotic therapy. For simplicity, our analyses do not differentiate
between use of conventional antipsychotics and no use of any antipsychotics. We
now describe the intention-to-treat approach and its application to this study.

Table 1. Baseline characteristics by treatment arm *

Characteristics Atypical Conventional p-value f
antipsychotic arm  antipsychotic arm
(N=450) (N=214)
Age (in years): mean (SD) 42.4 (12.0) 43.6 (12.1) 0.24
Male: number (%) 277 (61.6) 143 (66.8) 0.19
Race: number (%) 0.79
White 241 (53.6) 108 (50.5)
Black 138 (30.7) 74 (34.6)
Other 54 (12.0) 24 (11.2)
Missing 17 (3.8) 8 (3.7)
Baseline BPRS: mean (SD) 32.1(11.7) 31.2 (11.1) 0.37
Baseline GAF: mean (SD) 46.0 (12.9) 46.3 (12.8) 0.84

* SD: standard deviation; BPRS: Brief Psychiatric Rating Scale score; GAF:
global assessment of functioning score
+ Based on t-test for continuous variables, and ” test for categorical variables.
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3 The intention-to-treat effect

Randomized experiments, when analyzed using the intention-to-treat (ITT)
principle, do not require any assumptions to consistently estimate causal effects.
To briefly describe the ITT principle, suppose you want to estimate the causal
effect of a dichotomous treatment A on a continuous outcome Y in certain
population. You conduct a randomized experiment by randomly splitting the
population into two groups, assigning one group (arm R=1) but not the other (arm
R=0) to be treated, following all subjects for some fixed period (say, one year),
and measuring every subject’s outcome at the end of that period. Under the ITT
principle, you compare the mean outcome between the group that you intended to
treat (R=1) and the group that you intended to keep untreated (R=0), regardless of
the treatment that each subject actually received. If the mean outcome differs, you
can conclude that treatment A has an effect on the mean of Y because these two
groups are expected to be exchangeable with respect to all measured and
unmeasured characteristics at baseline. In contrast, causal inferences from
observational studies are risky precisely because this exchangeability cannot be
guaranteed.

When all subjects comply with their assigned treatment and there is no
loss to follow-up, the mean outcome in group R=1, i.e., E[YIR=1], is also the
mean outcome among the treated, i.e., E[YIA=1], which consistently estimates the
mean outcome that would have been observed if all subjects in the population had
been treated, i.e., E[Y":l], where a subject’s Y*=! is the counterfactual (or potential)
outcome that would have been observed if the subject had, possibly contrary to
the fact, received treatment (a=1). Similarly, the mean outcome among the
untreated, i.e., E[YIR=0]= E[Y1A=0], is a consistent estimator of the mean outcome
that would have been observed if no subject in the population had been treated,
ie., E [Y“:O]. Thus, in the absence of noncompliance and loss to follow-up, the ITT
difference of observed means

E[YIR=1]-E[YIR=0]=E[YIA=1]-E[Y | A=0]
consistently estimates the difference of counterfactual (or potential) means
E[yazl] _ E[Y“:O] ,
which is the effect of treatment on the outcome in the population on the scale of
difference of means. For an introduction to counterfactual-based causal inference
see, for example, Herndn (2004).

But things are rarely that easy in longitudinal studies with randomization
at baseline. A key limitation of many randomized experiments, like our study of
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antipsychotics, is lack of compliance with the treatment assigned at baseline. That
is, subjects may not adhere to their assigned treatment for the entire follow-up
from randomization to the measurement of the outcome. Another key limitation of
many randomized experiments is that some subjects do not complete the follow-
up. In our study, only 46% (205/450) of the subjects assigned to atypical
antipsychotics (R=1), and 26% (56/214) of the subjects assigned to conventional
ones (R=0), stayed on their assigned treatment and completed the follow-up.

The problem of noncompliance highlights the crucial differences between
assigned treatment and received treatment: the randomized assignment R is a
baseline variable over which the investigators have direct control, but the
treatment Ay received at visit k is actually a time-varying variable whose value at
any given time is beyond the investigators’ control. As a consequence, the ITT
contrast E[YIR=1] — E[YIR=0] does not estimate the effect of receiving the
treatment but the effect of being assigned to the treatment. When, as in our study,
all subjects initiate the treatment they were assigned to, regardless of whether they
later continue taking it, we say the ITT effect is the effect of treatment initiation.

Because the ITT effect depends on the degree of noncompliance, it may be
close to null in placebo-controlled experiments even if the treatment does actually
have an effect, or it may be non null when comparing two active treatments even
if the two treatments are equally effective. Despite this limitation, the ITT effect
is often the only effect estimated in placebo-controlled randomized experiments
because (i) it provides a valid test of the null hypothesis, and (ii) it is usually a
conservative estimate (i.e., biased towards the null) of the effect of actually
receiving the treatment. The conservativeness of the ITT effect in placebo-
controlled experiments, however, makes it a risky effect measure when the goal is
evaluating a treatment’s safety: one could naively conclude that a treatment is safe
because the ITT effect is null, even if treatment causes serious adverse effects.
The explanation may be that many subjects stopped taking the treatment before
developing the adverse effects.

In our study, we calculated the mean change in schizophrenia symptom
severity, as measured by BPRS score, from baseline to the end of follow-up in
each arm: E[YIR=1] = —10.55 and E[YIR=0] = —9.50. We then estimated the ITT
effect as the difference E[YIR=1] — E[YIR=0] = —1.05 (95% confidence interval
[CI]: -3.26, 1.16), i.e., the group assigned to atypical antipsychotics (R=1) had a
slightly greater improvement in symptom severity at the end of follow-up than the
group assigned to conventional antipsychotics (R=0). This estimate depends on
the degree of noncompliance in our study. We defer to the next section a
discussion about noncompliance and focus now on loss to follow-up.

Our ITT analysis seems straightforward. However, this is only because we
cheated by ignoring that some subjects were lost to follow-up and thus did not
have a measurement of BPRS score at one year from baseline. To obtain the
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estimate of —1.05, we restricted the analysis to subjects with at least one post-
randomization visit during which their BPRS score was recorded (430 in the R=1
arm, 204 in the R=0 arm). We then computed, for each subject, the difference
between her BPRS score at baseline and at her last available visit, which could
have taken place at 2 weeks; or 2, 5, 8, or 12 months post-baseline. Thus, our
—1.05 estimate is based on differences in symptoms severity measured at different
times for each subject, depending on how long she was under follow-up. This
“last available observation carried forward” approach, although commonly used
in practice, is not a true ITT analysis. For example, imagine that treatment
worsens some subjects’ symptoms so much that they do not return after baseline
(or that they return only at 2 weeks when the harmful effect of treatment is not
apparent yet). Then this pseudo-ITT analysis would make treatment look better
than it really is.

A naive alternative to the pseudo-ITT analysis above is the so-called
“complete-case” ITT analysis. That is, an ITT analysis restricted to subjects who
completed the follow-up. In our study, the estimate for the “complete-case” ITT
analysis was 0.42 (95% CI. -2.36, 3.19). Again, this estimate may be biased
because those who completed the follow-up in arms R=1 and R=0 may not be
exchangeable. Rather than a simple complete-case analysis, we need an analysis
that still compares the mean outcomes between arms R=1 and R=0 but that adjusts
for the potential bias induced by loss to follow-up. However, adjustment for loss
to follow-up requires making uncheckable assumptions about the comparability
between the subjects that were and were not lost to follow-up. This is too bad as
the beauty of a pure ITT analysis is, precisely, that it does not require any
assumptions about exchangeability.

In our study, we adjusted for censoring due to incomplete follow-up by
using inverse probability weighting (IPW). IPW requires the untestable
assumption that subjects with complete and incomplete follow-up are
exchangeable, conditional on the measured variables. Because IPW is more
formally described in Section 5, we only briefly outline the procedure here. First,
for each subject, we estimated her probability of providing complete data at all
visits from baseline until the first visit she missed, the first visit with incomplete
information, or the end of follow-up at one year, whichever happened first.
Second, we restricted the ITT analysis to those subjects who completed all visits
(235 in R=1 and 130 in R=0), and assigned to each of them a weight proportional
to the inverse of their estimated probability of complete follow-up. The inverse
probability weighted ITT estimate was —0.86 (95% CI: -3.88, 2.15).
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4 The effect of continuous treatment

As reviewed above, the ITT effect of baseline assignment R is often not
satisfactory, even if no subject had been lost to follow-up, because of the presence
of noncompliance. In those cases, we would rather estimate the effect of the time-
varying treatment A;. But what do we mean by the effect of a time-varying
treatment A;? The response to this question is not unique. One possibility is
comparing the mean outcome if all subjects had been continuously treated during
the entire follow-up with the mean outcome if no subject had been ever treated
during the follow-up. We now provide a formal definition of this effect, which we
will refer to as the “effect of continuous treatment”. For pedagogic purposes, we
ignore the presence of incomplete follow-up until the end of this section.

We first need to introduce some notation. Let Ay be 1 if the subject is on
atypical antipsychotics at visit k, and O otherwise. The baseline value Ay equals
the value of the randomized assignment R. For simplicity, let us assume that
treatment status can only change at the time of a visit. We use the overbar
notation A4; to denote a subject’s treatment history from baseline until visit %, i.e.,
Ai={Ao, Ai,... A;}. In our study k takes value 0 for the baseline (randomization)
visit, and values 1 to 4 for the post-randomization visits. We use 4 to denote the
subject’s treatment history over the entire follow-up. For example, a subject who
was assigned to atypical antipsychotics (R=1) and initially complied with her
assignment but stopped taking treatment at visit k=1 would have a treatment
history 4={1, 1, 0, 0, 0}. We define a pre-specified (or static) treatment regime as
a={ap, a\, ay, as, as}. For example, the treatment regime “always treated with
atypical antipsychotics” can be represented as 1={1,1,1,1,1}, and the treatment
“never treated with atypical antipsychotics” as 0={0,0,0,0,0}. A subject’s ¥* is
the (possibly counterfactual) outcome that would have been observed at visit k=5
(i.e., one year post-baseline) if the subject had followed regime a. Thus the effect
of continuous treatment in the population can be expressed as

E[Y*=']- E[Y*].

In our study, this is the mean counterfactual outcome that would have
been observed if all subjects had been continuously treated with atypical
antipsychotics minus the mean counterfactual outcome that would have been
observed if all subjects had been never treated with atypical antipsychotics. If all
subjects had been always on either atypical or conventional antipsychotic therapy,
the effect of continuous treatment could also be conceptualized as “the effect had
everybody stayed on their assigned treatment regime”, i.e.,
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E[Y~"IR=1]-E[Y"°IR=0],

because in randomized experiments groups R=1 and R=0 are expected to be
exchangeable.

Unlike the ITT effect, the effect of continuous treatment does not depend
on the degree of noncompliance with the assigned treatment during the follow-up
period. But, unlike the ITT effect in the absence of loss to follow-up, the effect of
continuous treatment cannot be consistently estimated by a simple comparison.
Specifically, we cannot simply compare the mean outcome between those
subjects who happened to follow the regimes 1 “always treated with atypical
antipsychotics” and 0 “never treated with atypical antipsychotics”, because
subjects who followed those regimes did so for some particular reasons (e.g., their
response to treatment or the severity of their condition) and are generally not
exchangeable. For example, in our study subjects randomized to atypical
antipsychotics R=1 who did not require hospitalization during the follow-up were
more likely to stay on their assigned treatment. As a result, the group of subjects
who stayed on atypical antipsychotics 4 =1 is the selected sample of subjects
that either had low severity to start with or that responded well to atypical
antipsychotics. That is, the contrast

E[YIR=1,A=1]-E[YIR=0,A =0],

which equals the contrast

E[YIA=1]-E[YI|A =0],

will generally result in a biased estimate of the effect of continuous treatment,
even if no subjects had been lost to follow-up. This contrast is usually known as
the “per protocol” analysis. (Note that the sample estimates of the differences
E[YIR=1,A=1]-E[YIR=0,A=0] and E[YIA=1]-E[YIA=0] will
generally differ.)

Estimating the effect of continuous treatment may require data on the
time-varying treatment and joint predictors of compliance and the outcome, and
some sort of adjustment for such predictors. In an attempt to identify the main
predictors of noncompliance, Table 2 shows the association between several
factors and compliance with the assigned treatment by randomized arm. To
estimate the odds ratios in the table, we fit a pooled logistic model for the
probability of staying on the assigned treatment

DOI: 10.2202/1557-4679.1117 8



Toh and Hernan: Longitudinal Studies with Baseline Randomization
Pr[A, =rIC, =0,A, , =7,L, =1, ,R=r]

in each arm R=r, where L; is the vector of time-varying covariates measured at
visit k, L, ={Lo, Ly,... Ly } is the history of measured covariates measured by visit

k, Cy 1is a time-varying censoring indicator that takes value O for subjects
uncensored (i.e., with complete follow-up data) by time ., and value 1 otherwise,

and Ek ={Cy, C, ...Cy} is a subject’s censoring history through k. Ek =0 denotes
complete follow-up through visit k. We assumed that L; preceded A, (our results
were not sensitive to this assumption) and that I, could be appropriately

summarized by the following variables: age at baseline, sex, ethnicity, time since
randomization, and the following time-varying covariates: baseline and most
recent BPRS and global assessment of functioning (GAF, smaller score indicates
more severe dysfunction) scores, and a moderate or severe adverse event (1: yes;
0: no) and hospitalization (1: yes; 0: no) since last visit. These time-varying
covariates span the domains of symptom severity, functioning, tolerability, and
resource utilization. Each person contributed as many observations to the logistic
model as visits she was under complete follow-up until abandoning her assigned
treatment. The model did not include covariates to summarize prior treatment

history Zk_l because all subjects had the same treatment history while on their

assigned treatment.

The analysis shown in Table 2 identifies some important predictors of
noncompliance, such as recent symptom severity or hospitalization. Because these
factors are also predictors of the outcome (which is, in fact, symptom severity at a
later time), some sort of adjustment for these factors may be required. The need
for an adjustment raises two issues.

First, adjustment for noncompliance often requires assumptions about the
comparability of those who did and did not comply with the assigned treatment.
In our example, some approaches would require the untestable assumption that all
possibly time-varying factors (e.g., past BPRS score) that predict both treatment
switching and symptoms severity at one year have been measured at all times and
appropriately adjusted for. This reliance on empirically unverifiable assumptions
makes the problem of causal inference from a longitudinal study with baseline
randomization bear a striking resemblance to the problem of causal inference
from an observational study.

Second, even if all the information required for noncompliance adjustment
is available and even if all subjects had completed the follow-up, the use of
standard adjustment methods (e.g., stratification, regression analysis, matching)
may introduce selection bias when estimating the effect of continuous treatment.
This selection bias will occur if the reasons for noncompliance at any time are
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affected by prior treatment received and by unmeasured determinants of the
outcome (Hernan et al., 2004). In this article we will use two analytic methods
that do not introduce selection bias when adjusting for noncompliance: inverse
probability weighting and g-estimation (Robins and Herndn, 2008). An additional
advantage of some forms of g-estimation is that a consistent estimation of the
effect of continuous treatment in a randomized study does not require untestable
assumptions about the predictors of noncompliance. The next two sections
describe these methods and their application to our study.

Table 2. Odds ratio (95% confidence interval) of treatment discontinuation by
randomized arm *

Atypical Conventional
antipsychotic arm antipsychotic arm
( person-visits:1,240) (person-visits:593)

Age (in years) 0.99 (0.97, 1.02) 1.00 (0.98, 1.02)
Female sex 1.02 (0.57, 1.83) 0.92 (0.53, 1.60)
White race 1.16 (0.66, 2.02) 1.03 (0.61, 1.74)
Baseline BPRS

<25 Reference Reference

25-44 1.11 (0.50, 2.44) 0.99 (0.53, 1.81)

>45 0.74 (0.21, 2.66) 0.64 (0.21, 1.99)
Baseline GAF

<50 1.79 (0.59, 5.37) 0.81 (0.36, 1.82)

50 -60 1.18 (0.39, 3.52) 1.19 (0.53, 2.65)

> 60 Reference Reference
BPRS at current visit

<25 Reference Reference

25-44 2.17 (1.15, 4.20) 1.31 (0.70, 2.46)

> 45 1.11 (0.27, 4.62) 0.45 (0.09, 2.28)

GAPF at current visit

<50 0.84 (0.31,2.27) 0.90 (0.39, 2.07)
50 — 60 1.08 (0.44, 2.67) 1.28 (0.63, 2.59)
> 60 Reference Reference

Adverse event since last visit
Hospitalization since last visit

2.36 (1.34,4.16)
2.40 (1.14, 5.05)

1.98 (1.16, 3.37)
0.78 (0.29, 2.10)

* BPRS: Brief Psychiatric Rating Scale score; GAF: global assessment of
functioning score

DOI: 10.2202/1557-4679.1117 10
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In this section we have so far ignored the problem of incomplete follow-up.
Table 3 shows the association between loss to follow-up and the measured
covariates in the trial. We now combine our previous discussion on incomplete
follow-up with the current discussion on noncompliance to clarify that the effect
of interest is not simply the effect of continuous treatment, but the effect of

continuous treatment under complete follow-up. Let C a subject’s censoring
history from baseline until the end of follow-up (one year in our trial). Then the
effect of continuous treatment under complete follow-up is defined as

E[yE:I,Eza ] _ E[Yazazza] .

That is, we would like to estimate the effect of continuous treatment if everybody
had fully adhered to the follow-up procedures specified in the study protocol. The
reasoning that we used for adjustment for noncompliance also applies to
incomplete follow-up: we may need to identify the joint predictors of complete
follow-up and the outcome, and adjust for them using methods that do not
introduce selection bias, such as inverse probability weighting and g-estimation.

Table 3. Odds ratio (95% confidence interval) of loss to follow-up by randomized

arm *
Atypical Conventional
antipsychotic arm antipsychotic arm
( person-visits:1,240) (person-visits:593)
Age (in years) 0.99 (0.97, 1.00) 0.99 (0.97, 1.02)
Female sex 0.90 (0.62, 1.30) 1.21 (0.70, 2.09)
White race 0.64 (0.45,0.91) 0.59 (0.34, 1.01)
Baseline BPRS
<25 Reference Reference
25-44 0.67 (0.43, 1.05) 1.18 (0.58, 2.38)
> 45 0.47 (0.21, 1.04) 0.69 (0.21, 2.25)
Baseline GAF
<50 1.34 (0.68, 2.64) 1.52 (0.51, 4.57)
50 -60 1.43 (0.75,2.71) 1.79 (0.62, 5.19)
> 60 Reference Reference
BPRS at current visit
<25 Reference Reference
25-44 1.40 (0.93, 2.12) 2.32(1.21, 4.42)
> 45 2.02 (0.90, 4.55) 3.42(1.17,9.98)

11
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GAPF at current visit

<50 1.36 (0.73, 2.53) 1.12 (0.41, 3.02)

50 -60 1.19 (0.69, 2.06) 0.77 (0.31, 1.92)

> 60 Reference Reference
Adverse event since last visit 1.24 (0.86, 1.81) 0.97 (0.55, 1.70)
Hospitalization since last visit 1.93 (1.09, 3.42) 0.69 (0.20, 2.46)

* BPRS: Brief Psychiatric Rating Scale score; GAF: global assessment of
functioning score

5 Inverse probability weighting

The ideal procedure to estimate the effect of continuous treatment under complete
follow-up would be to (i) randomize subjects to either R=1 or R=0, (ii) force all
subjects in the R=1 arm to take treatment A;=1 at all times k, (iii) similarly force
all subjects in the R=0 arm to take treatment A;=0 at all times k, and (iv) force all
subjects to be under follow-up for the entire duration of the study. If this protocol
were enforced, the effect would be consistently estimated by the contrast

E[YIA=1]-E[Y1A=0], ie., the mean outcome among those who were

continuously treated with A=1 minus the mean outcome among those who were
continuously treated with A=0. Note that we do not need to restrict the analysis to
the uncensored subjects (i.e., we do not have to calculate the mean conditional on
Cy being 0 for all times k) because, under the protocol described above, nobody is
censored (i.e., everybody’s C;=0 for all k).

Unfortunately for investigators, but luckily for the study subjects, forcing
the subjects in the study population to adhere to any given protocol is near
impossible in human studies. In most randomized studies, subjects are indeed
randomized to either R=1 or R=0, but their subsequent values of received
treatment A, (and censoring status C;) depend on their evolving covariate history,
as shown in Table 2. Inverse probability weighting (IPW) is a method that uses
the data from the actual randomized study population to simulate a “pseudo-
population” in which, under certain assumptions outlined below, subjects are
randomly assigned to receive either treatment A;=1 or A;=0, and remain under
complete follow-up C;=0, at each visit k, irrespective of their evolving covariate
history. In such pseudo-population, we can calculate the difference in mean
outcomes between those who were continuously treated with each treatment,

E[YIA=1]-E[YIA=0], to consistently estimate the effect of continuous

treatment under complete follow-up.
The key assumption for IPW to be able to create such pseudo-population
is that the investigators have measured all joint determinants of received treatment

DOI: 10.2202/1557-4679.1117 12



Toh and Hernan: Longitudinal Studies with Baseline Randomization

Ay (or, equivalently, of compliance, with the assigned treatment R) and the
outcome Y. This assumption of no unmeasured confounding, or exchangeability
assumption, can be stated in many equivalent ways. Here is one of them: consider
the pooled logistic model that we fit to estimate the associations shown in Table 2.
The assumption of no unmeasured confounding says that any risk factor for Y that
is not included in the model would be unassociated with the received treatment
(odds ratio of 1) if it were included in the model. The assumption of no
unmeasured confounding is also known as the assumption of sequential
randomization because it is equivalent to assuming that, within levels of past
treatment and covariate history, the value of the received treatment Ay at each visit
was selected at random. In other words, IPW uses the assumption that the
treatment regime in the study population was randomly assigned conditional on
covariate history to simulate a pseudo-population in which the treatment regime is
randomly assigned unconditional on covariate history. A similar assumption
regarding censoring status in the study population is required to ensure that
nobody is censored in the pseudo-population. IPW is, conceptually, the general
version of standardization (Herndan and Robins, 2006). The method was first
described by Robins in the contexts of compliance adjustment (Robins, 1993;
Robins and Finkelstein, 2000) and of models for causal inference from complex
longitudinal data (Robins, 1997). For a less technical description of the conditions
required by IPW, see Herndn and Robins (2006) for non time-varying exposures,
and Robins and Herndn (2008) for time-varying exposures. These conditions
include the exchangeability assumption sketched above, and the positivity
condition. That is, the requirement that the conditional probability of receiving
either treatment A;=1 or A;=0 and of remaining under complete follow-up C;=0 is
greater than zero (i.e., positive) for all covariate histories and at all visits. We
assume that positivity holds throughout this paper.

The pseudo-population is simulated by reweighting the contributions of
each study subject by a subject-specific inverse probability weight for treatment
and censoring. We first describe the weights and then explain how we estimated
them in our study.

The treatment weights are defined as

WAzﬁ fIA,1C, =0,A,_,R]
v fIA1C, =0,A,_ Z ,R]

where f[Ail-]is the conditional density of A;. These weights are referred to as
inverse probability weights because the denominator of the weight is, informally,
the probability that the subject received her own treatment history given her past
treatment and covariate history. The numerator of the weights, which cannot be a
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function of the time-varying covariates in L, , is merely a stabilizing factor to

reduce the variance of the estimator. Thus, these inverse probability weights are
known as stabilized weights. Under the exchangeability assumption that all joint

predictors of treatment A; and the outcome Y are included in Zk , IPW simulates a
pseudo-population in which treatment was randomly assigned conditional, at most,
on past treatment history A, , but in which the effect of treatment on the outcome

is the same as in the original (unweighted) study population.
The censoring weights are defined as

we _li[ Pr[C,,, =0IC, =
+o Pr[C,,, =01C, =0,A,,L,,R]

for those subjects that completed the follow-up, and are set WE equal to zero for
the others. These weights are also inverse probability weights because the
denominator of the weight is the probability that the subject completed the follow-
up given her treatment and covariate history. The numerator, again not a function

of the time-varying variables in L, , helps stabilize the weight. Under the
exchangeability assumption that all joint predictors of incomplete follow-up Cy
and the outcome Y are included in Ijk, IPW simulates a pseudo-population in

which everybody completed the follow-up (i.e., in which censoring was abolished)
but in which the effect of treatment on the outcome is the same as in the original
(unweighted) study population. We used these censoring weights to obtain the
inverse probability weighted ITT estimate under complete follow-up in section 2.
The inverse probability weight used in our IPW analysis is the product W* ™ W*.
The inverse probability weights are unknown but can be estimated from
the data. In our study, we estimated the denominator of the treatment weights W
by fitting, separately in each arm R=r, the pooled logistic model for

Pr[A, =r1C, =0,A,, =7,L, =1,,R =r] described above to generate Table 2,

except that the categorical variables for the BPRS and GAF scores were replaced
by linear and quadratic terms for the score. Note that the additional assumption of
no misspecification of the model used to estimate the weights is necessary for the
method to provide consistent estimates.

Because few subjects who did not adhere to the assigned arm switched
back to the originally assigned class of antipsychotics, we assumed that the
probability of staying on the non assigned drug was 1 for the reminder of the
follow-up. We estimated the numerator of the treatment weights W* by fitting,
separately in each arm R=r, a similar pooled logistic model that included only
time since randomization as a covariate. The denominator of the censoring
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weights W° was estimated by fitting, separately in each arm, a pooled logistic
model for

Pr(C,,, =0IC, =0,A, , =7,L, =1, ,R=r]
that included the covariates listed above. Each person contributed as many
observations to the logistic model as visits she was under complete follow-up.
The numerator of the censoring weights was estimated by fitting a similar pooled
logistic model except that it included only time since randomization and Ax as
covariates.

The assignment of the estimated inverse probability weights WX W to
every subject in the population results in a pseudo-population in which, under the
assumptions of IPW, all subjects undergo complete follow-up and the treatment
received at each visit is randomly assigned conditionally on prior treatment
history, but in which the effect of treatment is the same as in the original study
population. The effect of continuous treatment under complete follow-up can now
be estimated by simply restricting the analysis to the members of the pseudo-
population that always adhered to their assigned treatment at baseline. That is, by
conducting a “per protocol” analysis in the pseudo-population. Note that, if our
outcome of interest had been continuously measured during the follow-up (e.g.,
survival) — as opposed to the situation in our study in which the outcome was
only measured at the end of follow-up — then we could have conducted an “on
treatment” analysis in the pseudo-population, i.e., censoring subjects at the first
time they deviated from their assigned treatment.

In our study, we computed the inverse probability weighted mean of the
outcome in subjects assigned to R=1 who remained on atypical antipsychotics for
the entire duration of the study (N=205), and in subjects assigned to R=0 who
remained on conventional antipsychotics for the entire duration of the study
(N=56). The estimated weights W™ W€ had a mean of 0.98 (their expected mean
is 1) and their values ranged from 0.37 to 2.77 in the censored population.
Equivalently, we fit the weighted least squares model

E[YIR]=6,+6,R

to these 261 subjects, in which the parameter 6, is the causal effect of interest (in

the scale of the mean difference). The effect of continuous treatment that we
estimated by applying this IPW approach to our study was —1.53 (95% CI: -5.46,
2.39). To account for the correlation induced by the use of inverse probability
weights, we used a generalized estimating equation (Liang and Zeger, 1986)
program (e.g., option “repeated” in SAS proc genmod) that outputs a robust
variance estimator. The 95% CIs obtained from the robust variance are
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conservative (i.e., their coverage is at least 95% in large samples). Using either
bootstrapping or a variance estimator that explicitly incorporates how the weights
were estimated would have resulted in slightly narrower confidence intervals, as
discussed by Robins (1999).

The IPW approach described in the previous paragraph used data from all
subjects to estimate the inverse probability weights, but the final (weighted)
contrast only included data from subjects who fully adhered to baseline treatment
and remained uncensored through the end of the study. However, it may be
reasonable to argue that the mean outcome in pseudo-population subjects who
took atypical antipsychotics most, but not all, of the time will be closer to the
mean outcome in subjects who took atypical antipsychotics all the time than to
that in subjects who never took atypical antipsychotics all the time. It could
further be argued that the mean outcome of subjects who took atypical
antipsychotics half of the time would be somewhere in between the mean
outcomes of subjects who took atypical antipsychotics most of the time and those
who almost never took atypical antipsychotics. In other words, we may believe
that there is a dose-response relation between duration of use of atypical
antipsychotics and symptom severity of schizophrenia. In our study, we chose to
represent our dose-response beliefs by the model

o M
EY“ =y, +y, Y d(),,
m=0

where d(a),, is an indicator for use of atypical antipsychotics on day m (1; yes, 0;

M
no), and Zd (a),, is the duration of atypical antipsychotic treatment from

m=0
baseline at day m=0 to the end of follow-up at day m=M (in our study M=365).
The parameter y, from this model measures the increase (or decrease) in the
mean outcome per each additional time period on atypical antipsychotic treatment,
and y, x365 measures the effect of continuous atypical antipsychotic use
compared with no use of atypical antipsychotic treatment. This model is referred
to as a marginal structural model (MSM) (Robins et al., 2000) because it models
the marginal (unconditional) mean of the counterfactual outcomes, and models for
functionals of counterfactual outcomes are often referred to as structural models.
Our MSM provides a mapping from any static treatment regime & to the mean
response E[Y““="] under the assumptions that the mean outcome is a linear
function of the duration of treatment over the entire follow-up. If necessary, this
assumption can be relaxed by proposing a more complex model. For example, one
may relax the assumption of linear dependence by adding a quadratic term
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M
foer (a),, , and the assumption of equal effect of treatment taken at different

m=0

M M
times during the follow-up by replacing Zd (a),, by, say, Zd (a),,
m=0 m=180
The parameters of our MSM can be consistently estimated by estimating
the parameters of the regression model

Ely17]= 8, + 53 dn),

in the pseudo-population, that is, by fitting a weighted least squares model in
which each study subject receives the estimate of her inverse probability weight
WX WE. The estimated weights in the entire pseudo-population had mean 1.00
(range: 0.16, 6.89). Our estimate of the effect of continuous treatment from the
MSM with a robust variance estimator was: —2.52 (95% CI: -6.07, 1.04).

In summary, we used IPW to estimate the effect of continuous treatment
under complete follow-up by using two strategies. First, we eluded making any
assumptions about the dose-response relation between use of atypical
antipsychotics and symptoms severity by restricting the analysis to those who
fully complied with their assigned treatment during the follow-up. Second, we
made assumptions about the dose-response by fitting a linear model. The model
allowed us to estimate the effect of interest by “borrowing information” from
subjects that did not fully comply with their assigned treatment.

6 G-estimation

We now provide a conceptual description of g-estimation, another method to
estimate the parameter y/, from the structural model above. G-estimation was first

described by Robins (Robins, 1989; Robins, 1993). We describe g-estimation in
four steps. )

First, note that the counterfactual outcomes Y* are unmeasured predictors
of the observed outcome Y. To see why, let us pick the counterfactual outcome

Y%~ under no treatment. In our study, subjects with large positive values of Y a0
are those who would have developed a large increase in symptoms severity at the
end of follow-up had they not received atypical antipsychotics, that is, the

subjects with a worse prognosis. Thus the counterfactual outcome Y“=° can be
viewed as an individual’s characteristic that, if known at baseline, would provide
information about the individual’s underlying predisposition for a bad outcome.
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Of course, the value of Y*° is missing for most subjects but, for the sake of the

argument in this and the next paragraph, suppose that the value of Y*=° were

known for all subjects at baseline.

Second, note that the random treatment assignment R is, by definition of
randomization, expected to be unassociated with any baseline variable. In
particular, R is expected to be independent of Y“°, a baseline marker for severity.
More precisely, the parameter 7, in the logistic model

logitPr[R =11Y" =7, +5,Y*°

will be zero.

Third, note that we cannot know the value of the counterfactual outcome
but, given several candidates, we have a method to rule out some of then. Imagine
that an omniscient friend of ours added several variables to the study dataset. Let
us refer to this collection of variables as H(p=1), H(p=2),... where p is an
arbitrary index. Our friend guarantees us that only one of them is the

counterfactual outcome Y°™°, and challenges us to identify it. No big deal: we
simply fit the model

logit Pr(R =11 H(p)] =1, +1,H(p)

separately for each of the variables H(p=1), H(p=2), etc., and choose the variable
that results in the estimate of 7, that is closest to zero. For example, if we find

that H(p=3) minimizes the absolute value of the estimate of 7,, then we would
say that H(p=3) equals the counterfactual outcome Y a0, Only one more piece is

needed to complete this conceptual description of g-estimation.
Fourth, let us assume that the structural model

B M
Y =y, +V/1zd(a)m
m=0

holds for every individual i in the study. This deterministic subject-specific model
is stronger than the model used in the previous section because the subject-

specific model assumes that v, is the treatment effect for every single individual
whereas the model in last section assumes that i/, is the treatment effect averaged
over all subjects (i.e., the model in last section is a “mean model”). Below we
explain how to estimate the parameter y, by using the subject-specific model
rather than the mean model of the previous section. However, we do not believe
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that the subject-specific model holds. We use it only for pedagogic reasons: the g-
estimation procedure is easier to explain for the subject-specific model than for
the mean model. Fortunately, it turns out that the g-estimation procedure
described below to consistently estimate the parameter y, under the subject-

specific model also estimates the parameter y, under the mean model, which is

our actual aim. See Robins and Hernan (2008) for technical details.
Clearly, the subject-specific parameter v, is the counterfactual outcome

under no treatment so the model can be rewritten as

_ M

Y =Y 4y, Y d(),,
m=0

or
5 ~ M
v =y —y Y d), .
m=0

If the model holds for all counterfactual outcomes then it also holds for the

observed outcome Y=Y*, which is just the counterfactual outcome under the
actual treatment regime 4. Thus, we can rewrite the model as

o M
Y, =Y, -y, ) d(A), .
m=0

Under this model, if we knew the true value of the parameter y,, then we could

calculate the value of Y*=° for all subjects. But if we knew the true value of v,
we would not need to use g-estimation! The whole point of this section is
describing a method to estimate y/,, so how does it help us having learned that the

true value of y, can be used, under our modeling assumptions, to calculate the

counterfactual outcome Y “~? We have reached the core of g-estimation: We can
simply guess the value of y,, use our guessed value to calculate a candidate for

counterfactual outcome Y, and then check whether our guess was right by
examining the estimate of 7, for our candidate variable. If our guess was not right,
we keep guessing until we find the true value of y, by checking the value of the
estimate of 77,. More formally, we compute
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H.(p)=Y,—pY d(A),

m=0

for a sufficiently wide and fine range of values of p. The g-estimate of v/, is the
value of p that results in an H(p) that results in an estimate of 7, equal to zero.
Although for a linear structural model, like the one considered in this example, a
closed form estimator exists and thus g-estimation does not require an actual
search over the range of p, such search will generally be necessary for more
complex models (e.g., accelerated failure time models for survival analysis).

We now explain how to obtain a 95% confidence interval for y,. For each
value of p we conduct a test of the null hypothesis 7, =0. An (1-a)% confidence
interval for y, is formed by the values of p that result in estimates of 7, for which
the null hypothesis 77, =0 cannot be rejected at the a level. Most standard
software packages to estimate the parameters of a logistic model will
automatically perform a Wald test for such null hypothesis and output the
corresponding p-value, but any other large-sample test (e.g., score test) may be
used. In fact, the estimating equations for y/, described in more theoretical
presentations of g-estimation (and used in software written specifically for g-
estimation) correspond to the score test for 7, =0 from the logistic model. See,
for example, the Appendix of Hernén et al. (2005).

We have so far ignored the fact that some subjects were censored by
incomplete follow-up before their outcome Y was measured, and thus cannot
participate in the g-estimation procedure. To adjust for the possible selection bias
introduced by this censoring, we conducted g-estimation in a pseudo-population
simulated by assigning the inverse probability of censoring weights W* to all
subjects who were uncensored in the study population. The estimated weights W°
had a mean of 0.99 (range: 0.63, 2.53). The effect of continuous treatment that we
obtained by applying (inverse probability weighted) g-estimation to our study
was —1.50 (95% CI: —6.84, 3.84).

The random treatment assignment R is an example of an instrumental
variable or instrument. The method of g-estimation described above exploits the
expected independence between the counterfactual outcome and the instrument to
estimate the parameters of structural models. Hence g-estimation is the general
version of instrumental variable estimation for time-varying treatments (Herndn
and Robins, 2006). For applications of g-estimation in the analysis of randomized
experiments, see Mark and Robins (1993) and Cole and Chu (2005).

Because a g-estimation analysis, like an ITT analysis, relies on the actual
randomization and thus does not require the untestable assumption of sequential
randomization of treatment given the measured covariates, it can be referred to as
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a randomized analysis. In contrast, an IPW analysis that requires the untestable
assumption of sequential randomization of treatment given the measured
covariates can be referred to as an observational analysis. (This classification
applies to assumptions regarding treatment, not censoring, because both g-
estimation and ITT analyses require IPW to adjust for censoring and thus both
require the untestable assumption of sequential randomization of censoring given
the measured covariates.) However, if one is willing to make the assumption of
sequential randomization of treatment, then g-estimation can be easily modified to
take advantage of this assumption. We now describe how to conduct an
observational analysis based on g-estimation.

The assumption of sequential randomization of treatment given the
measured covariates implies that no baseline predictors of the outcome, other than

those measured and included in Ijk, will predict treatment A; at any visit k.
Consider the logistic model for logitPr[A, =a, |C, =0,A,_, =7,L, =1,,R] that
we fit to estimate the probabilities in the denominator of the inverse probability of
treatment weight WA, The assumption of sequential randomization says that the

coefficient of any baseline risk factor that is added to the model as a covariate is
expected to be zero (odds ratio equal to 1). In particular, if we add the covariate

Y“=° and fit a logistic model for

Pr(A, =a,1C, =0,A_, =7, L, =1 ,RY"],
the parameter 7, for YO is expected to be zero (for comparability with the two
models specified for IPW, one per randomization arm, we included product terms

between R and all the other covariates except for Y“° in the model above). Of

course, we do not know the value of Y a=0 for most subjects but we can use our
structural model

o M
Y =Y, -y, > d(A),
m=0
to propose candidates

H.(p)=Y,—pY d(A),

m=0

for a sufficiently wide and fine range of values of p. Again, the g-estimate of y,
is the value of p that results in an H(p) that results in an estimate of 7, equal to
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zero. In our study, the effect of continuous treatment that we obtained by using an
observational analysis based on (inverse probability weighted) g-estimation to our
study was —2.64 (95% CI: —-6.12, 0.84).

Finally, a comment about statistical efficiency in g-estimation. The g-
estimation procedures described above, and the analysis of our study, are based on
adding the covariate H(p) to the logistic model. But note that the rationale behind
g-estimation would carry through if we added a function of H(p) (say, its log),
rather than H(p) itself, to the model. In fact, it can be shown that using certain
functions of H(p) might result in a narrower confidence interval around the g-
estimate compared with using H(p). However, although g-estimation based on the
estimating function H(p) is possibly inefficient, it is also easy to carry out. On the
other hand, the efficient g-estimator involves functions of H(p) that are hard to
compute and whose description is beyond the scope of this paper (Robins, 1993).
In our study, estimates based on several simple functions of H(p) (e.g., its log)
were similar to the ones shown here using H(p) (data not shown).
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Table 4. Estimates of the causal effect of atypical antipsychotics on change in score of the Brief Psychiatric Rating

Scale (BPRS) at one year after randomization. See text for details.*

Initiation vs. No initiation

Continuous use vs. No use

Method Pseudo-ITT  Complete- ITT IPW G-estimation for treatment
case + IPW for for censoring and + IPW for censoring
ITT censoring treatment
Assumptions
Censoring
Sequential randomization Un- Un-
+ correctly specified model conditional  conditional Conditional Conditional Conditional Conditional Conditional
Treatment
Sequential randomization (conditional) No No No Yes Yes No Yes
+ correctly specified model
Correctly specified structural No No No No Yes Yes Yes
(dose-response) model
No. of subjects in final contrast 634 365 * 365 & 261§ 365 i 365 * 365 *
Effect estimate -1.05 0.42 —-0.86 -1.53 -2.52 -1.50 —2.64
959, confidence interval # -3.26,1.16  -2.36,3.19  -3.88,2.15 -546,239 -6.07,1.04 -6.84,3.84 -6.12,0.84

* ITT: intention-to-treat; [PW: inverse probability weighting

T Subjects with at least one post-randomization BPRS score recorded. The last available BPRS score was used

+ Subjects with complete follow-up data

§ Subjects with complete follow-up data and full adherence to the assigned treatment
# Conservative 95% confidence intervals except for the pseudo-ITT and complete-case ITT analyses
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7 Discussion

Table 4 summarizes all the effect estimates that we have presented throughout the
article. A cursory examination of the table shows that none of the estimates
reached traditional statistical significance (i.e., all 95% ClIs include null value)
and thus it can be argued that none of them is different from zero. However, for
the purposes of this discussion, we will regard these point estimates as coming
from a larger study with much narrower confidence intervals.

The table has two parts: The first 3 columns show different estimates of
the ITT effect; the last 4 columns show different estimates of the effect of
continuous treatment. Let us discuss the ITT effect estimates first. An ITT
analysis is usually the primary, and often the only, analysis of randomized
experiments. As discussed above, there are good reasons why the ITT effect needs
to be reported. However, the ITT effect is often presented as a straightforward
analysis even when that is not the case. For example, in our study many subjects
did not complete the follow-up and thus their outcome was unknown. As a result,
any ITT-like analysis requires some additional assumptions to estimate the ITT
effect under complete follow-up. The first two columns of Table 4 present the
estimates from two common ITT-like analyses: the “last available observation
carried forward” or pseudo-ITT analysis, and the “complete-case” ITT analysis.

A pseudo-ITT analysis assumes that 1) those with and without complete
follow-up are exchangeable, and 2) the ITT effect of treatment is the same
whether we use a measurement of the outcome at 2 weeks or at 12 months since
baseline. When applied to our study, the pseudo-ITT effect estimate was —1.05,
which may be explained by either a sustained beneficial effect of atypical
antipsychotics compared with conventional ones, or by an early beneficial effect
of atypical antipsychotics followed by worsening of the symptoms leading to
drop-out of subjects on atypical antipsychotics.

A complete-case analysis eliminates assumption 2) of the pseudo-ITT
analysis but still assumes that those with and without complete follow-up are
exchangeable. When applied to our study, the complete-case ITT effect estimate
was 0.42, which may be explained by either a harmful effect of atypical
antipsychotics, or by a differential drop-out of subjects doing badly on
conventional antipsychotics.

Both ITT-like analyses make the assumption that there is no selection bias
due to incomplete follow-up or, equivalently, that censoring by incomplete
follow-up was randomly assigned during the follow-up. This assumption of
unconditional sequential randomization of censoring is a strong assumption. We
therefore considered a weaker assumption: censoring was sequentially
randomized within levels of (conditionally on) the measured time-varying
covariates. If investigators are willing to assume the weaker, conditional
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assumption — and they will if they were willing to assume the stronger,
unconditional one — then they can use IPW to adjust for selection bias explained
by the measured time-varying factors. The third column of Table 4 presents the
ITT analysis with IPW adjustment for incomplete follow-up. The estimate of
—0.86, which may be explained by a true beneficial ITT effect of atypical
antipsychotics compared with conventional ones, can be affected by insufficient
adjustment for selection bias. However, because the unadjusted estimate was 0.42
and the adjusted one is —0.86, it is possible that further adjustment (if it were
possible) by unmeasured factors would have made the estimate even more
negative, i.e., the true ITT effect would be stronger than our estimate, which can
then be viewed as a conservative one. Of all three estimates of the ITT effect
under complete follow-up that are shown in Table 4, the inverse probability
weighted ITT analysis makes the weakest assumptions. Although in this particular
study the inverse probability weighted ITT and the pseudo-ITT estimates
happened to be very close, this coincidence cannot be generally expected.

The ITT effect is the effect of treatment assignment or initiation under a
particular pattern of compliance. In our study, the ITT is the effect of initiating
atypical antipsychotic therapy compared with conventional antipsychotic therapy.
As discussed above, the effect of treatment initiation may be quantitatively or
even qualitatively different from the effect of continuous treatment when many
study subjects do not adhere to the treatment after initiation. This dependence of
the magnitude on the ITT effect on the degree of compliance may make it hard to
transport to other populations with different levels of compliance, or even to the
same population at different times (for example, the publication of the study
results may affect compliance in the same population in which the study was
conducted). It also makes the ITT approach a dangerous one for identifying
potential harmful effects. In placebo-controlled safety studies, one needs to be
careful when presenting ITT effects because null effect estimates may merely
reflect substantial noncompliance rather than the absence of adverse effects. In
fact, the ITT effect may suggest that the treatment of interest is less toxic than the
comparator even when both treatments have similar toxicity. Thus an ITT analysis
cannot generally be the only analytic approach for a randomized experiment (e.g.,
a large simple trial) with a safety outcome or lack of a placebo control.

As a complement to the ITT effect under complete follow-up, Table 4 also
shows our estimates of the effect of continuous treatment under complete follow-
up, that is, the effect if all subjects had adhered to their assigned treatment for the
entire follow-up. Unfortunately, to estimate this effect we need assumptions
beyond those necessary to estimate the ITT effect under complete follow-up. At
least one of two types of assumptions needs to be made: (i) sequential
randomization of treatment within levels of the measured covariates, or (ii) a
dose-response model. If only assumption (i) is made, then IPW is needed. If only
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assumption (ii) is made, then g-estimation is needed. If both assumptions are
made, then either IPW or g-estimation can be used. Let us see each of these cases
separately.

Under assumption (i), one can use IPW to simulate a pseudo-population in
which treatment is given at random. In this pseudo-population, a subject’s
prognosis is unrelated to the treatment regime she receives during the follow-up.
Thus, to estimate the effect of continuous treatment, one only needs to restrict the
analysis to subjects who always adhered to their baseline assignment. In the
pseudo-population of our study, we compared the average outcome of subjects
assigned to atypical antipsychotics with that of subjects assigned to conventional
antipsychotics. As expected, the IPW estimate of the effect of continuous
treatment until complete follow-up (—1.53) suggests that atypical antipsychotics
result in a greater symptomatic improvement than that suggested by the IPW
estimate of the ITT effect (-0.86). The estimate of —1.53 will be biased if the
covariates used to estimate the inverse probability weights do not include all
important confounders of the treatment effect, or if they are measured with error,
or if the weight model is misspecified. Note that, in our study, treatment may
actually change in between visits while the adjusting factors are only measured at
the visits, which may result in insufficient adjustment.

Under assumption (ii), one can use g-estimation to conduct a generalized
instrumental variable analysis that does not require any assumptions regarding
sequential randomization of treatment. That is, g-estimation may consistently
estimate the effect of continuous treatment even in the presence of unmeasured
confounding for the treatment effect. However, the method requires a structural
model for the effect of treatment on the outcome. In our study, we assumed that
the effect of atypical antipsychotic use on the outcome is a linear function of the
duration of treatment. Our estimated effect of continuous treatment in the sixth
column of Table 4, —1.50, depends critically on that dose-response assumption.
To estimate the sensitivity of the estimate to the assumption of correct dose-
response specification, we estimated the effect of continuous treatment under
alternative models (data not shown) and found that the model used for the
estimates in Table 4 were the closest to the null value. Thus our results are likely
to be conservative.

Interestingly, we found that both the IPW-based observational analysis
(column 4 of Table 4) and the g-estimation-based randomized analysis (column 6)
yielded similar estimates of the effect of continuous treatment, even though the
validity of each method rests on a qualitatively different assumption. Leaving
aside sampling variability, this coincidence may reflect either that both
assumptions were approximately correct, or that both were wrong in such a way
that the bias was in the same direction and of the same magnitude.
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Finally, one can combine assumptions (i) and (ii) to estimate the effect of
continuous treatment by using either IPW or g-estimation. In our study, the
estimates are —2.52 (column 5 of Table 4) and —2.64 (column 7), respectively. If
either of assumptions (i) or (ii) does not hold, then both estimates will be invalid.
On the other hand, if both assumptions hold, the estimates are expected to have
narrower confidence intervals than the corresponding IPW and g-estimation ones
that relied only on either assumption (i) or (ii).

Table 4 does not include any estimates from standard methods for bias
adjustment, such as regression or matching. In our study, for comparison purposes,
we fit a standard (unweighted) linear regression model for the mean outcome
conditional on a summary of treatment history (number of days on atypical
antipsychotics as in our structural linear model) and summaries of the baseline
and time-varying factors (i.e., BPRS, functional status, hospitalizations, and
toxicity). The estimate of continuous effect was 1.10 (95% CI: -3.29, 5.49).
Unlike all estimates of continuous effect in Table 4, this standard estimate
suggests that atypical antipsychotics are inferior to conventional ones. However,
the validity of standard statistical techniques requires not only assumptions (i) and
(i1), but also (iii) the assumption that the time-varying factors (e.g., the measured
values of BPRS between baseline and the end of the study) are not affected by the
treatment itself. If assumption (iii) does not hold, the standard estimate is
expected to be biased (Herndn et al., 2004). In most cases, like in our study,
assumption (iii) will be hard to defend if we actually believe that treatment may
affect the outcome.

The IPW and g-estimation methods presented here can be extended in a
variety of directions. For example, as originally described by Robins, [IPW can be
applied to settings with non dichotomous treatments (Haight et al., 2005; Cotter et
al., 2008) and with failure time outcomes (survival analysis) (Hernén et al., 2001;
Cole et al., 2003), and to the estimation of the effect of dynamic treatment
regimes (Herndn et al., 2006). The extension to dynamic regimes is crucial
because in some cases estimating the effect of continuous treatment (a non-
dynamic regime) may be of little interest. For example, if many subjects stop
taking the treatment because it causes serious adverse effects, one would not want
to estimate the effect under the non-dynamic regimes “always adhere to the
baseline treatment” but rather under the dynamic regimes “adhere to the baseline
treatment unless adverse effects occur”. Further, when certain types of patients
will always discontinue treatment given certain adverse events, then estimating
the effect under non-dynamic regimes like ‘“always adhere to the baseline
treatment” is problematic because the positivity assumption is violated. The
consideration of dynamic regimes may make it more likely that the positivity
assumption holds. In the analyses presented here, we chose the effect of
continuous treatment for pedagogic, rather than clinical, reasons.
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In summary, we recommend that a table similar to Table 4 is generated
from randomized experiments with substantial noncompliance or loss to follow-
up. Because each approach in the table has relative advantages and disadvantages,
and depends on a different combination of assumptions, a general agreement
among all estimates will strengthen our confidence in the results. On the other
hand, the existence of serious discrepancies will provide some guidance regarding
important sources of bias in the study that might not have been identified
otherwise. Of course, implementing our recommendation would require major
modifications to current practice, and to the protocols of randomized experiments.
For example, to conduct the analyses that require the assumption of sequential
randomization, the protocols of randomized experiments would need to include
plans to measure post-randomization variables. To go beyond the ITT (or pseudo-
ITT) analysis, the protocol would need to include a more complex statistical
analysis plan and to collect more precise adherence information. To assess the
sensitivity of the estimates to model specification in analyses that require the
assumption of correct dose-response specification, the statistical plan would need
to specify a variety of dose-response models. However, it seems to us that the
added complexity is necessary to take full advantage of the substantial resources
that are usually invested in a randomized experiment.
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