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Estimation Based on Case-Control Designs
with Known Prevalence Probability

Mark J. van der Laan

Abstract

Regular case-control sampling is an extremely common design used to generate data to
estimate effects of exposures or treatments on a binary outcome of interest when the proportion of
cases (i.e., binary outcome equal to 1) in the population of interest is low. Case-control sampling
represents a biased sample of a target population of interest by sampling a disproportional number
of cases. Case-control studies are also commonly employed to estimate the effects of genetic
markers or biomarkers on binary phenotypes.

In this article we present a general method of estimation relying on knowing the prevalence
probability, conditional on the matching variable if matching is used.

Our general proposed methodology, involving a simple weighting scheme of cases and
controls, maps any estimation method for a parameter developed for prospective sampling from
the population of interest into an estimation method based on case-control sampling from this
population.

We show that this case-control weighting of an efficient estimator for a prospective sample
from the target population of interest maps into an efficient estimator for matched and unmatched
case-control sampling. In particular, we show how application of this generic methodology
provides us with double robust locally efficient targeted maximum likelihood estimators of the
causal relative risk and causal odds ratio for regular case control sampling and matched case
control sampling.

Various extensions and generalizations of our methods are discussed.

KEYWORDS: case control sampling, canonical gradient, causal effect, counterfactual, double
robust estimation, efficient influence curve, estimating function, gradient, incidence density
sampling, influence curve, inverse probability of treatment weighting, locally efficient estimation,
marginal structural models, matched case control sampling, randomization assumption,
randomized trial, semi-parametric regression, targeted maximum likelihood estimation
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1 Introduction.

Case-control sampling is an extremely common design used to generate data
to estimate effects of exposures or treatments on a binary outcome of interest
when the actual population proportion of cases (i.e. binary outcome equal to
1) is small. As a consequence, it is of interest to present estimators of causal
effects or variable importance parameters based on case-control data.

1.1 Formulation of case-control estimation problem.

Let’s first formulate the statistical problem. For the sake of concreteness and
illustration, our formulation will focus on a case-control point treatment data
structure with baseline covariates in which one is concerned with estimation
of the causal effect or variable importance of the treatment variable on the
binary outcome. Our initial formulation will assume that the variables are
not subject to missingness or censoring. Our general methods are straightfor-
ward extensions and apply to general case control data structures, including
censored data structures and time-dependent longitudinal data structures.

Experimental unit of interest. Let O∗ = (W,A, Y ) ∼ P ∗0 represent the
experimental unit and corresponding distribution P ∗0 of interest, consisting of
baseline covariates W , a subsequent monitored treatment/exposure variable
A, and a ”final” binary outcome Y .

Causal or variable importance parameter of interest. Suppose one
is concerned with statistical inference regarding a particular euclidean valued
variable importance or causal effect parameter ψ∗0 = Ψ∗(P ∗0 ) ∈ IRd of this
distribution P ∗0 . For example, one might be interested in the marginal causal
additive effect of a binary treatment A ∈ {0, 1} defined as

∗
0 ≡ E∗0{E∗0(Y | A = 1,W )− E∗0(Y | A = 0,W )} = E∗0(Y1)− E∗0(Y0)

= P ∗0 (Y1 = 1)− P ∗0 (Y0 = 1),

where the latter causal effect interpretation of this parameter of P ∗0 requires the
notion of treatment specific counterfactual outcomes Y0, Y1, viewing (W,A, Y =
YA) as a time-ordered missing data structure on the full data structure (W,Y0,
Y1), and one needs to assume the randomization assumption stating that A
is independent of Y0, Y1, given W . The latter causal parameter formulation
∗
0 can also be viewed as a W -adjusted variable importance (of variable A)

parameter of the true regression of Y on A,W , in which case there is no need

1

van der Laan: Case-Control Designs with Known Prevalence Probability



to assume the time ordering (W ⇒ A ⇒ Y ), the missing data structure as-
sumption, or the randomization assumption, and the adjustment set W is user
supplied (and does thus not need to correspond with the set of all confounders
of A): see van der Laan (2006) for a general formulation of variable importance
parameters and its direct relation to causal effect parameters.
One can also define the parameter of interest as a causal relative risk

∗
0 =

E∗0E
∗
0(Y | A = 1,W )

E∗0E
∗
0(Y | A = 0,W )

=
EY1

EY0

=
P (Y1 = 1)

P (Y0 = 1)
,

or a causal odds ratio,

∗
0 =

P (Y1 = 1)P (Y0 = 0)

P (Y1 = 0)P (Y0 = 1)
,

or their variable importance analogue.
We will use these particular marginal causal effects or marginal variable im-

portance parameters as our main examples in order to illustrate our proposed
methodology for case-control data, including our proposed targeted maximum
likelihood estimation methodology.

Model for target probability distribution. A model for O∗ is obtained
by modelling this distribution of O∗: for example, one might know that A is
independent of W , one might know the actual distribution (treatment mech-
anism) P ∗0 (A = a | W ), or one might assume a marginal structural model

E∗0(Ya | V ) = E∗0(E∗0(Y | A = a,W ) | V ) = m(a, V | β∗0),

where V ⊂ W denotes some user supplied potential effect modifier of interest,
and m(· | β) some parameterization modelling the causal effect of the inter-
vention A = a on the outcome Y , conditional on V . If one wishes to avoid
making causal assumptions, the marginal structural parameter represents the
effect of a change in variable A on the mean outcome of Y within subgroups
V = v, controlling for potential confounders W . We will denote such a model
for P ∗0 with M∗: i.e., it is assumed that P ∗0 ∈M∗.

Case-control sampling and its probability distribution. If one would
sample n i.i.d. observations O∗1, . . . , O

∗
n ∼ P ∗0 , then we could (e.g.) apply the

locally efficient targeted MLE of ψ∗0 (see e.g. van der Laan and Rubin (2006)
or Moore and van der Laan (2007)), or one could use double robust estimating
function methodology (van der Laan and Robins (2002)).
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However, this so called prospective sampling scheme is often considered
impractical and ineffective in situations in which the probability P ∗0 (Y = 1)
on the event Y = 1 (say disease) is very small. For example, if the proportion
of diseased in the population of interest is one in hundred thousand, then one
would have to sample millions of observations in order to have some cases (i.e,
Yi = 1) in the sample. This sparsity of cases in the population of interest is
precisely the typical motivation for case-control sampling.

We will distinguish between two types of case-control sampling: indepen-
dent or un-matched case-control sampling and matched case-control sampling.
In both cases, the marginal distribution of the cases and the marginal distribu-
tion of the controls is completely determined by the population (i.e. prospec-
tive sampling) distribution P ∗0 of the random variable (W,A, Y ) of interest.

Independent Case-Control Sampling. One first samples a case by sam-
pling (W1, A1) from the conditional distribution of (W,A), given Y = 1. Sub-
sequently, one samples J controls (W j

0 , A
j
0) from the conditional distribution

of (W,A), given Y = 0, j = 1, . . . , J . It is allowed that these J control obser-
vations are dependent as long as their marginal distributions are indeed equal
to the conditional distribution of W,A, given Y = 0.

This results in an experimental unit observed data structure:

O = ((W1, A1), (W j
0 , A

j
0 : j = 1, . . . , J)) ∼ P0,

where we denote the sampling distribution of this data structure O described
above with P0. Thus, a case control data set will consists of n independent
and identically distributed observations O1, . . . , On with sampling distribution
P0 described above. That is, we treat the cluster consisting of one case and
J controls as the experimental unit, and the marginal distribution of the case
and controls are specified as above by P ∗0 .

Matched Case-Control Sampling. One specifies a categorical matching
variable M ⊂ W . One first samples a case by sampling (M1,W1, A1) from the
conditional distribution of (M,W,A), given Y = 1. Subsequently, one samples
J controls (M j

0 ,W
j
0 , A

j
0) from the conditional distribution of (M,W,A), given

Y = 0,M = M1. That is, with probability equal to 1 we have M j
0 = M1,

j = 1, . . . , J . It is allowed that these J control observations are dependent
as long as their marginal distributions are indeed equal to the conditional
distribution of M,W,A, given Y = 0,M = M1.

This results in an experimental unit data structure:

O = ((M1,W1, A1), (M j
0 = M1,W

j
0 , A

j
0 : j = 1, . . . , J)) ∼ P0,
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where we denote the sampling distribution of this data structure O described
above with P0. Thus, a matched case-control data set will consists of n in-
dependent and identically distributed observations O1, . . . , On with sampling
distribution P0 described above. That is, we treat the cluster consisting of one
case and the J matched controls as the experimental unit, and the marginal
distribution of the case and J controls are specified as above by P ∗0

We will also refer to the independent case-control experiment and the
matched case-control experiments as Case-Control Design I and Case-Control
Design II, respectively.

Extensions. Our methods naturally handle the case that J is random and
thus varies per experimental unit, assuming that the marginal distributions of
cases and controls, conditional on J = j, do not depend on j. In the situation
that a case was never coupled to a set of controls one can artificially create
such couplings, and apply our methods, and one could average over a variety
of sensible coupling schemes. The latter shows that if the true independent
case control design simply involves sampling a set of cases and an independent
set of controls, without any coupling, then our case control weighting methods
show that one should weight each case by q0 and each control by (1 − q0)/J̄ ,
where J̄ is the number of controls divided by the number of cases. In the
discussion we show the simple extension of our methods to some variations on
these case-control designs I and II, such as pair-matched case-control designs,
case-control sampling within strata, and counter-match case control designs.
We also note here that our sampling model for O∗ corresponds with sampling
with replacement from a particular population with population distribution
P ∗0 . Such a model is appropriate if the size of the total population is large
relative to sample size n.

The estimation problem. The statistical problem is now to estimate the
parameter ψ0 = Ψ∗(P ∗0 ) of the population distribution P ∗0 ∈M∗ of (W,A, Y ),
known to be an element of some specified modelM∗, based on the case-control
data set O1, . . . , On ∼ P0.

Known or sensitivity analysis parameters/weights. We define

q0 ≡ P ∗0 (Y = 1) and q0(δ |M) ≡ P ∗0 (Y = δ |M),

as the marginal probability of being a case, and the conditional probability of
being a case/non-case, conditional on the matching variable. It is assumed that
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these probabilities are between 0 and 1. In addition, we define the quantity

q̄0(M) ≡ q0
P ∗0 (Y = 0 |M)

P ∗0 (Y = 1 |M)
= q0

q0(0 |M)

q0(1 |M)
.

We note that q̄0(M) is determined by q0 and q0(1 | M) = P ∗0 (Y = 1 | M),
and we also note that E0q̄0(M1) = 1− q0. These two quantities q0 and q̄0(M)
(for matched case-control studies) will be used to weight the cases and controls
to obtain valid estimation procedures.

In order to be able to identify the wished causal parameters, for case-control
design I, we only need to assume q0 is known, and, for matched case-control
design II, we assume q0 and q̄0(m) for each m are known. However, we note
here that for matched case-control designs one can also assume that q0 and

r0(m) ≡ P ∗0 (Y = 0,M = m)

(instead of q̄0(1 | m)) are known We note that, given r0(m), q̄0(m) is known
up till a simple to estimate nuisance parameter P (M1 = m):

q̄0(m) =
r0(m)

P0(M1 = m)
.

As a consequence, our case-control weighted estimation procedures using q0,
q̄0(m) still apply in settings in which one assumes q0 and r0(m) are known, by

replacing q̄0(m) by its estimate r0(m)
1
n

∑n

i=1
I(M1i=m)

.

Observed data model. In this article, we will assume that q0 is known,
and that, for matched case-control designs we also assume that q̄0(M), or
equivalently, q0(1 | m) = P ∗0 (Y = 1 | M = m) is known for each m. In our
accompanying technical report we show that if the ”treatment mechanism”
g∗0(a | w) = P ∗0 (A = a | W = w) is known, as it would be in a case control
study nested in a randomized trial, then we can estimate the relative risk or
odds ratio parameters without a need to know (any of) q0 or q̄0(M).

The model M∗, possibly including the knowledge q0 or q̄0(M), imply now
models for the marginal distribution of the cases (M1,W1, A1) and the marginal
distributions of the controls (M1,W

j
2 , A

j
2), j = 1, . . . , J . The model M∗

does not imply much, if anything, about the dependence structure among
(M1,W1, A1), (M1,W

j
2 , A

j
2), j = 1, . . . , J , beyond the fact that, for matched

case-control studies, all its components (i.e., the case and control observa-
tions) share a common variable M1. Let M be the model for the observed
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data distribution P0 compatible with M∗ (i.e., its marginals are specified by
P ∗0 ).

One possible and probably very common modelM is to assume that, given
the first draw (M1,W1, A1) from (M,W,A), given Y = 1, the control obser-
vations are all independent draws from the specified conditional distributions.
Note that in this latter model the marginal distributions for the case and con-
trol observations implied by P ∗ describe now the whole case-control sampling
distribution P , so that we can write M = {P (P ∗) : P ∗ ∈ M}, where P (P ∗)
is the distribution of O implied by P ∗.

Other possible models might specify in another manner, or not specify
at all, the dependence structure and could, for example, be represented as
{P (P ∗, η) : P ∗ ∈M∗, η}, where the nuisance parameter η in combination with
P ∗ describes the complete joint distribution of case and control observations
(M1, Z1), (M1, Z

j
2 : j = 1, . . . , J) compatible with its marginal distributions

implied by P ∗.
We note that knowing q0 does not put restrictions on the data generating

distribution P0 since one conditions on Y = 1, but for case-control design I
it does allow identification of the wished parameters by expressing them as a
function of the distribution of the observed case-control data-structure and q0.
Similarly, for matched case-control designs, knowing q0 and r0(·) does not put
restrictions on the data generating distribution P0 for matched case-control
designs, but it allows one to express the wished parameter as a function of the
distribution of the data and (q0, r0). It remains to be investigated if knowing
q0 and q̄0 puts a restriction on the data generating distribution for matched-
case-control designs.

1.2 Overview of article.

In Section 2 we present our general solution to the estimation problem for these
two types of case control designs I and II, which weights the cases and con-
trols with q0 and (1− q0)/J (q̄0(M)/J for case control design II), respectively,
and then applies a method developed for prospective sampling to estimate the
parameter of interest (e.g., targeted maximum likelihood estimators or esti-
mating equations for the causal effect or variable importance parameter ψ0 of
interest), as if the data was directly drawn from the population distribution
P ∗0 of interest. In other words, each estimating function for ψ∗0 or likelihood for
P ∗0 in the underlying modelM∗ maps into a ”case-control”-weighted estimat-
ing function or likelihood for the observed data model M (whatever nuisance
parameter specification P (P ∗, η) it might have beyond the description of its
marginal distributions in terms of P ∗).
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Beyond the weighting, we point out that one should aim to select the best
among these case-control weighted estimating equations/procedures for the ob-
served case-control data. In Section 3 we show the important and convenient
result that case-control weighting of the efficient procedure for the parameter
of interest (as formalized by the efficient influence curve) in the prospective
sampling model M∗ maps into the efficient procedure for the observed case-
control data modelM. This implies, in particular, that case-control weighting
of the locally efficient targeted maximum likelihood estimator developed for
prospective sampling model M∗ results in a locally efficient targeted max-
imum likelihood estimation procedure for case-control sampling. In general,
the power of our generic method is that one can map the estimation procedures
developed for prospective sampling into highly or fully efficient estimation pro-
cedures for case-control sampling. In particular, our method is now able to
fully exploit software developed for prospective sampling.

To summarize, in Section 2 and Section 3 we establish general proper-
ties of our case-control weighted mapping from estimating functions/influence
curves/gradients for the parameter of interest for model M∗ into estimating
functions/influence curves/gradients for the parameter of interest for the ob-
served data model M, showing that 1) the case-control weighting does map
each parameter-specific influence curve for the model M∗ into a parameter-
specific influence curve for model M, 2) it maps the efficient influence curve/
canonical gradient for model M∗ into the efficient influence curve/canonical
gradient for model M, and 3) that our case-control weighting inherits any
robustness of estimating functions/influence curves for model M∗.

We suggest that even in cases that q0 (or q0(1 |M) for matched case control
designs) is unknown, it is of interest to present these estimators and inferences
for an interval of possible q0-values, thereby presenting a sensitivity analysis.

As an example we show that indeed for case-control design I the case-
control weighted targeted maximum likelihood estimator is indeed a locally
efficient double robust estimator. This implementation of a targeted maximum
likelihood estimators needs to guarantee that the initial maximum likelihood
fit of the logistic regression P ∗0 (Y = 1 | A,W ) is proportional to q0, which
is a requirement for these double robust estimators to not suffer from a large
variance due to the singularity q0 ≈ 0. The latter is precisely guaranteed by
our case-control weighting method.

These double robust targeted maximum likelihood estimators rely on know-
ing the incidence probability q0 and, for case-control design II, q̄0(M), beyond
either a correctly specified model for Q∗(A,W ) = P ∗0 (Y = 1 | A,W ) or a
correctly specified model for g∗0(a | W ) = P ∗0 (A = a | W ).

In Section 4, we end this article with a discussion and point out a number
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of extensions. Various technical proofs are deferred to the Appendix.

1.3 Some relevant literature.

Case-control studies are probably one of the most commonly used designs, if
not the most used design. For example, searching for case-control analysis on
PubMed resulted in a list of 56,000 articles. Their use is not limited to pub-
lic health applications; case-control studies are also frequently performed in
econometric applications (See Manski and Lerman (1977), Manski and McFad-
den (1981), Cosslett (1981)). Logistic regression is the most commonly used
model in the literature for case-control studies. Conditional logistic regression
is the prominent method in the literature for matched case-control studies and
the statistical methodology goes back to the early 80’s.

We will discuss these two methods briefly as well as related IPTW methods,
as it goes without saying that an overview of the literature in this area is not
possible. However, our proposed general methodology is not covered by the
current literature, as far as we know.

Some of the key papers on logistic regression in standard case-control stud-
ies are Anderson (1972), Prentice and Pyke (1979), Breslow (1996), and Bres-
low and Day (1980). Breslow et al. (2000) establish asymptotic efficiency of
the standard maximum likelihood estimator ignoring the case-control sam-
pling. The most frequently cited sources for conditional logistic regression for
matched case-control studies are Breslow and Day (1980), Holford et al. (1978),
and Breslow et al. (1978). Various books considering case-control studies are
Schlesselman (1982), Collett (1991), Jewell (2004), Rothman and Greenland
(1998), and Hosmer and Lemeshow (2000), among others.

Cohort studies differ from case-control studies in that they sample exposed

(A = 1) and unexposed (A = 0) individuals rather than diseased (Y = 1) and
non-diseased (Y = 0). When cohort studies are matched, they are matched
based on the exposure variable in an effort to reduce the bias found in obser-
vational studies. There has been much work in this area, particularly in the
analysis and matching of cohort studies, by W.G. Cochran, D.B. Rubin, P.R.
Rosenbaum, and N. Thomas. A collection of this work can be found in Rubin
(2006). A thorough discussion of cohort study design can also be found in
Rothman and Greenland (1998).

The method of adding an intercept to a standard logistic regression fit,
and, in that manner, estimating effects different from the odds-ratio has been
presented in the literature (see e.g. Anderson (1972), Prentice and Breslow
(1978), Greenland (1981), Morise et al. (1996), Wachholder (1996), Greenland
(2004)).
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Matched case-control studies are most frequently handled with conditional
logistic regression models, but these designs and methods also have limitations.
Firstly, it does not allow estimation of the effect of the matching variable on
the diease (see, Schlesselman (1982), Rothman and Greenland (1998)): Any
variable used for matching cannot be studied as a risk factor, since cases and
controls are constrained to be equal with respect to the variables that are
matched. Secondly, matching can hurt the precision if the matching variable
is correlated with the exposure variable and not disease, which is often called
over-matching. Finally, as we remarked from the start, these methods are
by necessity heavily model based, while the methods presented here, relying
on knowing the case-control weights, allow double robust locally efficient esti-
mation in semiparametric models, thereby allowing the use of methods which
minimize the reliance of the inference on unknown model assumptions.

Robins (1999) discusses the approximately correct IPTW-method for esti-
mation of the unknown parameters in a marginal structural logistic regression
model for a direct effect analysis based on standard case-control data under the
assumption that the population proportion of cases, q0, is small. We also refer
to Newman (2006) for an IPTW-type approach for fitting marginal structural
models based on case-control data. Mansson et al. (2007) investigate a vari-
ety of IPTW and propensity score methods in case-control studies through a
simulation study, which includes the IPTW estimator for the logistic marginal
structural model.

Notation. We introduce now some useful notation. Let O∗ → D∗(O∗) repre-
sent an estimating function or loss function for O∗ that can thus be used to esti-
mate the parameter of interest of P ∗0 based on an i.i.d sample ofO∗. This article
is concerned with mapping this function D∗ into an estimating function of loss
function for this same parameter of interest, but now based on sampling O (i.e.,
a biased sample forO∗). Given such a functionD∗(O∗), we define a case-control
weighted version Dq0(O) ≡ q0D

∗(W1, A1, 1) + 1
J

∑J
j=1 q̄0(M1)D∗(W j

2 , A
j
2, 0) of

D∗, which is now a function of the observed experimental unit O. We define
the expectation operator P0,q0D

∗ = P0Dq0 , which thus simply takes the ex-
pectation of the case-control weighted function Dq0(O) w.r.t. P0. Similarly,
we define the empirical expectation Pn,q0D

∗ = PnDq0 as the empirical mean
of the case-control weighted Dq0 , where Pn is the empirical distribution of
O1, . . . , On. We apply this notation to both case-control designs, where for
case-control design I q̄0(M1) reduces to 1− q0.

9
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2 Case-Control weighting of estimation proce-

dures developed for prospective sampling.

Throughout this section, we will make the convention that q̄0(M) reduces to
1 − q0 in the case control design I, so that we can state our results for both
the regular case-control design I and the matched case-control design II in one
formula.

We start out with stating the theorem which proves that the case-control
weighting maps a function of O∗ into a function of the case-control data struc-
ture O, while preserving the expectation of the function.

Definition 1 (Case-control weighted function) Given a D∗(O∗) = D∗(W,
A, Y ) we define the case-control weighted version of D∗ as

Dq0(O) ≡ q0D
∗(M1,W1, A1, 1) +

1

J

J∑
j=1

q̄0(M1)D∗(M1,W
j
2 , A

j
2, 0),

where in the special case of Case Control Design I, we have q̄0(M) = 1− q0.

Theorem 1 (Unbiased estimating function mapping) Let D∗(O∗) =
D∗(W,A, Y ) be a function so that P ∗0D

∗ ≡ EP ∗
0
D∗(O∗) = 0. Then P0Dq0 = 0.

In particular, in Case Control Design I,

Dq0(0) ≡ q0D
∗(W1, A1, 1) + (1− q0)

1

J

J∑
j=1

D∗(W j
2 , A

j
2, 0)

satisfies P0Dq0 = 0.
In more generality, for any function D∗ and corresponding case control

weighted function Dq0, we have

P0Dq0 = P ∗0D
∗.

Proof. We provide the proof for case-control design II and we suppress the
index q0 in Dq0 . The same proof applies to case-control design I. First, we note
that P0q0D(M1,W1, A1, 1) =

∫
M1,W1,A1

D(M1,W1, A1, 1)P ∗0 (M1,W1, A1, Y =
1). Secondly, we note that

P0q̄0(M1)D(M1,W
j
2 , A

j
2, 0) =∫

m,w,aD(m,w, a, 0)q̄0(m)P0(M1 = m)P ∗0 (W = w,A = a |M = m,Y = 0),
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where we also need to note that P0(M1 = m) = P ∗0 (M = m | Y = 1). We have

q̄0(m)P0(M1 = m)P ∗0 (W = w,A = a |M = m,Y = 0)

=
q̄0(m)P ∗

0 (M=m|Y=1)P ∗
0 (W=w,A=a,M=m,Y=0)

P ∗
0 (Y=0,M=m)

= P ∗0 (M = m,W = w,A = a, Y = 0).

This proves that

P0D =
∫
M1,W1,A1

D(M1,W1, A1, 1)P ∗0 (M1,W1, A1, Y = 1)
+ 1
J

∑J
j=1

∫
M1,W2,A2

D(M1,W2, A2, 0)P ∗0 (M1,W2, A2, Y = 0)
= P ∗0D = 0.

This completes the proof. 2

In the next section we establish general properties of this mapping which
help us to understand the generality and optimality of the statistical approach
for dealing with case-control sampling implied by this mapping. In this section
we focus on the statistical (i.e., methodological) implications of this mapping
for the analysis of case-control data,

2.1 Preservation of robustness of case-control weighted
functions.

If a function D∗ satisfying P ∗0D(P ∗0 ) = 0 also satisfies the robustness property
P ∗0 (D(P ∗)) = 0 for any P ∗ ∈ M∗

1 ⊂ M∗ for a submodel M∗
1, then the same

robustness w.r.t. to misspecification of P ∗0 applies to Dq0 since, for P ∗ ∈M∗
1,

P0Dq0(P
∗) = P ∗0D(P ∗) = 0 .

In particular, double robust estimating functions for censored and causal
inference data structures and models M∗, as presented in general in van der
Laan and Robins (2002), are mapped into double robust case-control weighted
estimating functions.

In the remainder of this section we outline the general statistical methods
implied by the case-control weighted mapping. Estimating function method-
ology developed for prospective sampling immediately implies now, through
the case-control weighted mapping, estimating function methodology for case-
control sampling. In particular, in view of the general estimating function
theory presented in van der Laan and Robins (2002) it follows that the case
control mapping is a mapping from estimating functions (or gradients, see
van der Laan and Robins (2002)) developed for a model for P ∗0 into estimating
functions based on case-control sampling from P0. For details we refer to our
technical report, and here we suffice with an illustration.

11

van der Laan: Case-Control Designs with Known Prevalence Probability



2.2 Example: Case-control weighted double robust es-
timating function.

Let’s illustrate this estimating function method by constructing a double ro-
bust estimator of the additive causal effect ψ∗0 = E(Y1−Y0) for a nonparamet-
ric model M∗ for the distribution P ∗0 of (W,A, Y ). Let g∗0(A | M,W ) denote
the conditional distribution of A, given W , and let Q∗0(M,W,A) denote the
conditional probability of Y , given M,W,A, under P ∗0 .

The double robust efficient estimating function for sampling from P ∗0 is
given by

D∗(ψ∗, g∗, Q∗)(O∗) =

{
I(A = 1)

g∗(1 |M,W )
− I(A = 0)

g∗(0 |M,W )

}
(Y −Q∗(M,W,A))

+Q∗(M,W, 1)−Q∗(M,W, 0)− ψ∗, (1)

where g∗ and Q∗ represent candidates for the nuisance parameters g∗0 and Q∗0
of this estimating function for ψ∗0.

It is double robust in the sense that

E∗0D
∗(ψ∗0, g

∗, Q∗)(O∗) = 0 if either g∗ = g∗0 or Q∗ = Q∗0,

and in both cases one needs that g∗(1 | W )g∗(0 | W ) > 0 a.e. Let D∗(g∗, Q∗)
be defined so that D∗(ψ∗, g∗, Q∗) = D∗(g∗, Q∗)− ψ∗.

The weighted double robust estimating function for case-control data is
thus given by:

Dq0(ψ
∗, g∗, Q∗)(O) = q0D

∗(ψ∗, g∗, Q∗)(M1,W1, A1, 1)

+
q̄0(M1)

J

J∑
j=1

D∗(ψ∗, g∗, Q∗)(M1,W
j
2 , A

j
2, 0),

or we can define it as

Dq0(ψ
∗, g∗, Q∗)(O) = q0D

∗(g∗, Q∗)(M1,W1, A1, 1)

+
q̄0(M1)

J

J∑
j=1

D∗(g∗, Q∗)(M1,W
j
2 , A

j
2, 0)− ψ∗.

This estimating function is now also double robust for case control data:

E0Dq0(ψ
∗
0, g
∗, Q∗) = 0 if either g∗ = g∗0 or Q∗ = Q∗0,

and in both cases one needs that g∗(1 | W )g∗(0 | W ) > 0 a.e.
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The solution ψn of the case-control weighted estimating equation:

PnDq0(g
∗
n, Q

∗
n)− ψ∗ = 0

exists in closed form and is given by:

n =
1

n

n∑
i=1

q0D
∗(g∗n, Q

∗
n)(M1i,W1i, A1i, 1)

+
q̄0(M1i)

J

J∑
j=1

D∗(g∗n, Q
∗
n)(M1i,W

j
2i, A

j
2i, 0).

This estimator is now consistent if either g∗n consistently estimates g∗0 or Q∗n
consistently estimates Q∗0, which explains why it is called double robust.

Under some extra appropriate regularity conditions, this estimator is also
asymptotically linear and thereby has a normal limit distribution (see van der
Laan and Robins (2002) for general ”central limit” theorems for solutions
of estimating equations). In particular, if g∗n consistently estimates g∗0 and
Q∗n consistently estimates Q∗0, then, under appropriate regularity conditions,

n is asymptotically linear with influence curve Dq0(g
∗
0, Q

∗
0, ψ0) and is thus

asymptotically efficient. The estimators g∗n and Q∗n can be based on case-
control weighting of maximum likelihood estimators for the prospective model,
as presented in next subsection.

Statistical behavior of double robust estimator when cases are rare.
Inspection of this influence curve Dq0 sheds some light on the statistical be-
havior of this double robust estimator for the important case that q0 ≈ 0 is
very small. In particular, we are interested in how well one can estimate the
relative effect ψ0/q0, since ψ0 is itself very small. It follows that, in general,
the influence curve of ψn/q0 as an estimator of ψ0/q0 will blow up for small
values q0, except if it guaranteed that Q∗n = q0Q

#
n for some bounded estimator

Q#
n . Therefore, in our proposed targeted maximum likelihood or double robust

estimator we propose such estimators based on either case-control weighted lo-
gistic regression fits or intercept adjusted logistic regression fits (see Section 2
accompanying technical report).

2.3 Case-control weighted loss functions.

Our case-control weighting can also be used to map loss functions for the un-
derlying model M∗ into loss functions for the observed data model M. In
particular, we can construct a case-control weighted log likelihood loss func-
tion.
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Theorem 2 (Case Control Weighted Log-Likelihood Loss function)
Define the following case-control weighted log-likelihood loss function for the
density p∗0 of O∗ under sampling of O ∼ P0:

L(p∗, O) = q0 log p∗(M1, Z1, 1) + q̄0(M1)
1

J

J∑
j=1

log p∗(M1, Z
j
2 , 0).

In particular, in Case Control Design I, we have

L(p∗, O) = q0 log p∗(M1, Z1, 1) + (1− q0)
1

J

J∑
j=1

log p∗(M1, Z
j
2 , 0).

We have
p∗0 = arg max

p∗
E0L(p∗, O),

where the argmax is taken over all densities p∗. That is, the density maximizing
the expectation of the loss function L(p∗, O) is unique and given by the density
p∗0 of O∗.

The proof of this theorem is similar to the proof of Theorem 1 and is
therefore omitted.

2.4 Case-control weighted maximum likelihood estima-
tion.

Given a specified model M∗ for p∗0, we can estimate P ∗0 with the case-control
weighted maximum likelihood estimator:

p∗n = arg max
p∗∈M∗

n∑
i=1

L(Oi, p
∗).

The implementation of this weighted maximum likelihood estimator simply
involves assigning weights q0 to the cases, assigning weights q̄0(M1i)/J to the
corresponding J controls, and then implementing the maximum likelihood es-
timator for prospective sampling (i.e. treating the sample of cases and controls
as an i.i.d sample of P ∗0 ), thus ignoring the case control sampling.

For example, let’s consider the point treatment data structureO∗ = (M,W,
A, Y ). Consider a nonparametric model for the marginal distribution of W ,
Q∗W , a model {g∗η : η} for g∗0(A | M,W ), and a model {Q∗θ : θ} for the
conditional distribution P ∗0 (Y = 1 |M,W,A) = Q∗0(M,W,A).
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The case-control weighted maximum likelihood estimator of the marginal
distribution of W is now the weighted empirical distribution of the pooled sam-
ple (W1i, (W

j
2i : j = 1, . . . , J)). Similarly, the case-control weighted maximum

likelihood estimator of g∗0(A | W ) is given by

ηn = arg max
η

n∑
i=1

q0 log g∗η(A1i |M1i,W1i) +
q̄0(M1i)

J

J∑
j=1

log g∗η(A
j
2i |M1i,W

j
2i),

and the case-control weighted maximum likelihood estimator of Q∗0(M,W,A)
is given by

θn = arg max
θ

n∑
i=1

q0 logQ(M1i,W1i, A1i)+
q̄0(M1i)

J

J∑
j=1

log(1−Q(M1i,W
j
2i, A

j
2i)).

Indeed, it follows that each of these case-control weighted maximum like-
lihood estimators can be implemented by assigning the two weights q0 and
q̄0(M1) to the cases and controls, respectively, and apply the standard maxi-
mum likelihood estimator of the density p∗0 under prospective sampling.

Given the weighted maximum likelihood estimators Q∗1n and Q∗n, described
above, the corresponding substitution estimator of EYa = EQ∗

1
Q∗(W,a) is

given by

n(a) =
1∑n

i=1{q0 + q̄0(M1i))}

n∑
i=1

q0Q
∗
n(M1i,W1i, a)+

q̄0(M1i)

J

J∑
j=1

Q∗n(M1i,W
j
2i, a).

In particular, these estimators of EY0 and EY1 now map into an estimator

n(1)/ψn(0) of the relative risk EY1/EY0.

2.5 Case-control weighted targeted maximum likelihood
estimation.

Targeted maximum likelihood estimation is a general methodology introduced
in van der Laan and Rubin (2006) and illustrated with a variety of examples.
The case-control weighting allows us now to provide a case-control weighted
targeted maximum likelihood estimation methodology targeting the parameter
of interest.

Specifically, let D∗(P ∗0 ) be the efficient influence curve of the parameter
Ψ∗ :M∗ → IRd. Consider an initial estimator P ∗0n of P ∗0 based on O1, . . . , On

such as a case-control weighted maximum likelihood estimator according to
a working model within M∗. Let {P ∗n(ε) : ε} be a submodel of M∗ with
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parameter ε satisfying that the linear span of its score at ε = 0 includes
D∗(P ∗0n ). Let ε1n be the case-control weighted maximum likelihood estimator
of ε:

ε1n = arg maxPn,q0 log p∗0n (ε).

This yields an update P ∗1n = P ∗0n (ε1n) of the initial estimator P ∗0n . We iterate
this updating process till step k at which εkn ≈ 0 and we denote the final update
with P ∗n . By the score condition, this final estimator solves the case-control
weighted efficient influence curve:

0 = Pn,q0D
∗(P ∗n) = PnDq0(P

∗
n)

up till numerical precision (see van der Laan and Rubin (2006)). We refer
to ψn = Ψ∗(P ∗n) as the case-control weighted targeted maximum likelihood
estimator of ψ0.

One particular approach for establishing the asymptotics of this estimator
is obtained under the assumption that D∗(P ∗) = D∗(ψ∗, η∗) for some nuisance
parameter, thereby assuming an estimating function representation for the ef-
ficient influence curve. (This assumption is not necessary at all to establish the
same asymptotics: see van der Laan and Rubin (2006).) In this case, it follows
that the targeted maximum likelihood estimator ψn solves PnDq0(ψn, η

∗
n) = 0

so that one can establish asymptotic linearity of ψn and derive its influence
curve under relatively standard differentiability and empirical process condi-
tions.

In particular, if η∗n is a consistent estimator of a η∗0 satisfying P0Dq0(ψ0, η
∗
0) =

0, then under such standard conditions, asymptotic consistency and asymp-
totic linearity can be established. For example, if η∗0 = η(P ∗0 ) is the true
parameter, then ψn will have influence curve given by Dq0(ψ0, η

∗
0).

2.6 Case-control weighted targeted MLE of marginal
causal effect for case control data.

We will illustrate the targeted maximum likelihood estimator for the parameter

0 = EY1 − EY0 and the nonparametric model M∗ for the point treatment
data structure (W,A, Y ) ∼ P ∗0 .

Recall that the double robust estimating function/efficient influence curve
of Ψ under i.i.d sampling from P ∗0 is given by

D∗(g∗, Q∗)(M,W,A, Y ) =

{
I(A = 1)

g∗(1 |M,W )

I(A = 0)

g∗(0 |M,W )

}
×(Y −Q∗2(M,W,A))
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+Q∗2(M,W, 1)−Q∗2(M,W, 0)−Ψ(Q∗)

≡ D∗1(g∗, Q∗)(M,W,A, Y ) +D∗2(Q∗)(M,W ),

where Q∗ = (Q∗1, Q
∗
2) represents both the marginal distribution Q∗1 of W and

the conditional distribution Q∗2 of Y , given A,W . We note that D∗(g∗, Q∗)
can also be represented as an estimating function for ψ since D∗(g∗, Q ) =
D∗(Ψ(Q∗), g∗, Q∗), as we did above.

LetQ∗02n be an initial estimator ofQ∗20(A,W ) = P ∗0 (Y = 1 | A,W ) according
to a particular working model Qw for Q∗20: for example,

Q∗02n = arg max
Q∗

2∈Qw

n∑
i=1

q0 logQ∗2(A1i,W1i) +
q̄0(M1i)

J

J∑
j=1

log(1−Q∗2(Aj2i,W
j
2i)),

or the logistic regression based estimator Q∗n,q0 using an intercept adjustment
in terms of log q0/(1−q0) presented in Section 2 of the accompanying technical
report.

Given a model G for g∗0, let g∗n be the corresponding weighted MLE:

g∗n = arg max
g∈G

n∑
i=1

q0 log g(A1i | W1i) +
q̄0(M1i)

J

J∑
j=1

log g(Aj2i | W
j
2i).

Similarly, let Q∗1n be the nonparametric weighted MLE:

Q∗1n = arg max
Q1

n∑
i=1

q0 log dQ1(W1i) +
q̄0(M1i)

J

J∑
j=1

log dQ1(W j
2i),

where the maximum is over all discrete distributions which put mass on W1i

and W2i, i = 1, . . . , n. It follows that Q∗1n is a discrete distribution which
puts mass q0/n on W1i, i = 1, . . . , n, and puts mass q̄0(M1i))/(nJ) on W j

2i,
j = 1, . . . , j, i = 1, . . . , n.

Given any Q∗, g∗, let {Q∗2g∗(ε) : ε} be a model through Q∗2 at ε = 0 and
satisfying that the span of its score at ε = 0 includes the component D∗1(g∗, Q∗)
of the efficient influence curve of Ψ under i.i.d. sampling from P ∗Q∗,g∗ . For
example,

d

dε
log

{
Q∗2g∗(ε)

Y (1−Q∗2g∗(ε))1−Y
}∣∣∣∣∣∣∣
ε=0

= D∗1(g∗, Q∗).

This can be achieved with the following fluctuation function of Q∗2:

logitQ∗2g∗(ε) = logitQ∗2 + εZ(g∗),
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where

Z(g∗) ≡
{

I(A = 1)

g∗(1 |M,W )
− I(A = 0)

g∗(0 |M,W )

}
.

Given the estimator g∗n of g∗0, consider the fluctuation function {Q∗02ng∗n
(ε) :

ε} and let ε0n be its weighted MLE:

ε0n = arg max
ε

n∑
i=1

q0 logQ∗02ng∗n
(ε)(A1i,W1i)+

q̄0(M1i)

J

J∑
j=1

log(1−Q∗02ng∗n
(ε)(Aj2i,W

j
2i)),

which can be computed with standard logistic regression software.
The first step targeted MLE is now defined as

(g∗n, Q
∗
1n, Q

∗1
2n = (g∗n, Q

∗
1n, Q

0
2n(ε0n)).

The k-th step targeted MLE is given by (g∗n, Q
∗
1n, Q

∗k
2n = Q∗k−1

2n (εk−1
n )), where,

for k = 0, . . .

εkn = arg max
ε

n∑
i=1

q0 logQ∗k2ng∗n(ε)(A1i,W1i)+
q̄0(M1i)

J

J∑
j=1

log(1−Q∗k2ng∗n(ε)(Aj2i,W
j
2i)).

The corresponding k-th step targeted MLE of ψ0 is defined as ψkn = Ψ(Q∗kn ) ≡
Ψ(Q∗1n, Q

∗k
2n). In this particular application, it follows that convergence occurs

in one step so that ψn = Ψ(Q∗1n ).
The case-control weighted double robust estimating function for case con-

trol data is given by:

Dq0(g
∗, Q∗)(O) = q0D

∗(g∗, Q∗)(M1,W1, A1, 1)

+
q̄0(M1)

J

J∑
j=1

D∗(g∗, Q∗)(M1,W
j
2 , A

j
2, 0),

and the targeted MLE (g∗n, Q
∗
n) solves

0 =
n∑
i=1

Dq0(g
∗
n, Q

∗
n)(Oi).

Statistical inference for ψn can be derived from the corresponding estimating
equation 0 =

∑n
i=1D(ψn, g

∗
n, Q

∗
n)(Oi) solved by the targeted MLE ψn = Ψ(Q∗n).
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2.7 Double robust locally efficient targeted MLE of treat-
ment specific mean, causal relative risk and odds
ratio for case control design I.

Let Q̃∗n be defined as a standard logistic regression fit ignoring the case control
sampling. Subsequently, we map this into our estimator Q∗n,q0 of Q∗0 by adding

the intercept log c(q0) to the log odds of Q̃∗n.
We now construct an ε-fluctuation Q∗n,q0(ε) through the corresponding lo-

gistic regression fit Q∗n,q0(Y | A,W ) satisfying

d

dε
logQ∗n,q0(ε) = D∗(Q∗n,q0 , g

∗
n),

where D∗(Q∗, g∗) is the efficient influence curve of the bivariate parameter
(Ψ(Q∗)(0),Ψ(Q∗)(1)) (i.e. EY0, EY1). This can be done by adding a two
dimensional extension ε(I(A = 1)/g∗n(1 | W ), I(A = 0)/g∗n(0 | W )) to the log
odds of the logistic regression fit Q∗n,q0 .

Let

εn = arg max
ε

∑
i

q0 logQ∗(W1i, A1i) + (1− q0)
1

J

∑
j

log(1−Q∗(W j
2i, A

j
2i))

be the case control weighted maximum likelihood estimator of ε, which can be
fitted with standard logistic regression software again. The one-step targeted
MLE of Q∗0 is now defined as Q∗n ≡ Q∗n,q0(εn).

Since the update of the MLE Q∗n,q0 only depends on g∗n which does not
change, it follows that this one-step targeted MLE Q∗n already solves the case-
control weighted efficient influence curve estimating equation:

0 =
∑
i

q0D
∗(Q∗n, g

∗
n)(W1i, A1i, 1) + (1− q0)

1

J

∑
j

D∗(Q∗n, g
∗
n)(W j

2i, A
j
2i, 0)

≡
∑
i

Dq0(Q
∗
n, g
∗
n)(Oi),

so that the generally prescribed iteration for targeted MLE is not needed.
The resulting targeted maximum likelihood estimator Ψ(Q∗n) = EQ∗

W,n
Q∗n(a,

W ), with Q∗W,n = q0Q
∗
W1,n

+ (1− q0)Q∗W2,n
being the case control weighted em-

pirical distribution of the covariate vector W , solves now the double robust
estimating equation 0 =

∑
iDq0(Q

∗
n, g
∗
n,Ψ(Q∗n))(Oi) (where we now use the

estimating function representation of D∗q0), and is therefore a double robust
estimator in the sense that it is consistent and asymptotically linear if either
Q∗n is consistent or g∗n is consistent.
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The same statistical properties are now established for the corresponding
causal relative risks and odds ratios, where one uses that Q∗n = Q∗n,q0(εn), just
like Q∗n,q0 , equals q0 times a bounded estimator Q#

n so that the standard error
of this double robust targeted MLE is proportional to q0 (divided by

√
n).

3 Case-control weighting of efficient procedure

yields an efficient procedure for both case-

control designs I and II.

In this section we state and show the remarkable nice result that assigning the
case-control weights to the case-control sample and then applying an efficient
procedure developed for prospective sampling actually yields an efficient pro-
cedure. These results are presented and derived for both case-control designs.

3.1 Case-control weighted mapping maps gradients into
gradients.

Consider a target parameter Ψ∗ :M∗ → IRd at P ∗ in modelM∗. The class of
all regular asymptotically linear estimators of Ψ∗(P ∗) at P ∗ can be character-
ized by their influence curves, and their influence curves constitute the set of
gradients of the pathwise derivative of Ψ∗ at P ∗ given a rich class of parametric
fluctuations through P ∗. In particular, an estimator is asymptotically efficient
at P ∗ if and only if its influence curve equals the canonical gradient, that is,
the unique gradient which is also an element of the tangent space generated
by the scores of the class of parametric fluctuations. As a consequence of these
general and powerful results an estimation problem is essentially characterized
by the class of gradients and the canonical gradient. In particular, the class of
gradients yields the class of wished estimating functions to construct double
robust locally efficient estimators (van der Laan and Robins (2002)) and the
canonical gradient provides the fundamental ingredient of the double robust
locally efficient targeted maximum likelihood estimator.

This motivates us to identify the class of gradients, and, in particular, the
canonical gradient, of the parameter Ψ∗ in the case-control sampling model
M = {P (P ∗, η) : P ∗ ∈ M∗, η} implied by the model M∗ for the probability
distribution P ∗ of interest and possible specification of dependence as identified
by the η parameter, assuming that this parameter Ψ∗ can be identified from
case-control sampling.
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The following theorem establishes that the case-control weighting does pro-
vide a mapping from the set of all gradients of the parameter Ψ∗ :M∗ → IRd

at P ∗ in model M∗ into a set of gradients of Ψ : M → IRd defined as
Ψ(P (P ∗, η)) = Ψ∗(P ∗) at P (P ∗, η) in modelM = {P (P ∗, η) : P ∗ ∈M∗, η} for
parameters Ψ∗ which are identifiable from P (P ∗, η) (e.g. by being a function
of q0 or q̄0(M)). Since the class of all gradients of a parameter defined on a
model represents the class of all possible influence curves of regular asymp-
totically linear estimators (see e.g, Bickel et al. (1993)), this result teaches us
that the case-control weighting does map any estimation procedure developed
for ψ∗0 based on prospective data into a corresponding estimation procedure
based on case-control data, at least, from an asymptotic point of view.

In addition, since the case-control weighted mapping is 1-1, it also teaches
us that it maps into a very rich set of estimation procedures for case-control
data, if not all estimation procedures of interest: Indeed, we will show in the
next subsections that the case-control weighted gradient mapping maps, in
particular, into the optimal canonical gradient/efficient influence curve.

If the parameter of interest Ψ∗(P ∗) is only identified from P = P (P ∗, η) if
q0 and (for matched case-control designs) q̄0 is known, then one needs to define
the parameter as a parameter indexed by the known q0 and q̄0(M): Ψ∗ = Ψ∗q0 .

We start with providing a useful definition of a gradient of a pathwise
derivative.

Definition 2 We define a gradient of pathwise derivative of the parameter
Ψ∗ : M∗ → IRd at P ∗ in model M∗ as a function D∗(P ∗) satisfying for each
of the submodels {P ∗S∗(ε) : ε} ⊂ M∗ through P ∗ at ε = 0 with score S∗ at ε = 0
(within the class of submodels through P ∗ specified)

d

dε
Ψ∗(P ∗S∗(ε))

∣∣∣∣∣∣∣
ε=0

= − d

dε
P ∗D(P ∗S∗(ε))

∣∣∣∣∣∣∣
ε=0

.

Consider a parameter Ψ∗ : M∗ → IRd which is identified in model M =
{P = P (P ∗, η) : P ∗ ∈ M∗, η}, and corresponding parameter Ψ : M → IRd

defined as Ψ(P (P ∗, η)) = Ψ∗(P ∗).
By the same definition of a gradient above, a gradient of the pathwise

derivative of the parameter Ψ :M→ IRd at P = P (P ∗, η) in model M is de-
fined as a function D(P ∗, η) of O satisfying for each sub-model {P (P ∗S∗(ε), ηS1(ε)) :
ε} ⊂ M implied by a submodel {P ∗S∗(ε) : ε} through P ∗ and a nuisance sub-
model {ηS1(ε) : ε} through η indexed by S1,

Ψ∗(P ∗S∗(ε))|ε=0 = − d

dε
PD(P ∗S∗(ε), ηS1(ε))

∣∣∣∣∣∣∣
ε=0

.
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Given this definition of a gradient we obtain the following theorem.

Theorem 3 Given a P ∗ ∈ M∗, a class of sub-models {P ∗S∗(ε) : ε} ⊂ M∗

through P ∗ at ε = 0 indexed by S∗, with score S∗, we have for each of these
submodels

d

dε
PDq0(P

∗
S∗(ε))

∣∣∣∣∣∣∣
ε=0

=
d

dε
P ∗D∗(P ∗S∗(ε))

∣∣∣∣∣∣∣
ε=0

, (2)

where it is assumed that the left and right derivative exist.
By (2) it follows that any gradient D∗(P ∗) of Ψ∗ :M∗ → IRd at P ∗ ∈M∗

is mapped into a gradient Dq0(P
∗) of Ψ :M→ IRd at P = P (P ∗, η) (for each

η) in the model M.

This last statement is an immediate consequence of (2) and the fact that
Dq0(P

∗) does only depend on P = P (P ∗, η) through P ∗ (and thus not through
η), so that the derivatives along nuisance models {η(ε) : ε} are zero, as re-
quired.

We now note that under extremely weak regularity conditions, the above
definition of a gradient D∗(P ∗) of the pathwise derivative exactly agrees with
the definition of a gradient of the pathwise derivative of Ψ∗ : M∗ → IRd

in efficiency theory (e.g., Bickel et al. (1993)), and similarly for Ψ. Namely,
the equivalence follows if the second equality below holds (the first follows
since D∗(P ∗) ∈ L2

0(P ∗)): for the function P ∗ → D∗(P ∗) ∈ L2
0(P ∗) and each

submodel {P ∗(ε) : ε} (for each P ∗ ∈M∗) we have

1

ε
P ∗D∗(P ∗(ε)) = −1

ε

∫
D∗(P ∗(ε))

dP ∗(ε)− dP ∗

dP ∗(ε)
dP ∗(ε)

= −P ∗D∗(P ∗)S(P ∗) + o(1),

where S(P ∗) is the score d
dε

log dP ∗(ε)/dP ∗
∣∣∣∣
ε=0

of the submodel {P ∗(ε) : ε}.
For the interested reader, the following analogue theorem states the result

in terms of the gradient of the pathwise derivative as in efficiency theory. That
is, it provides the regularity condition under which we have that if D∗(P ∗) is
a gradient of Ψ∗ at P ∗, then Dq0(P

∗) is a gradient of the path-wise derivative
of Ψ at P (P ∗, η).

Theorem 4 Assume Ψ : M → IRd satisfies Ψ(P (P ∗, η)) = Ψ∗(P ∗) for all
P ∗ ∈M∗ and η.

Assume P ∗ → D∗(P ∗) is a gradient of the pathwise derivative of Ψ∗ :
M∗ → IRd in the sense that it satisfies for each member of a class of submodels
{P ∗S∗(ε) : ε} through P ∗ ∈M∗ at ε = 0 with score S∗

d

dε
Ψ∗(P ∗S∗(ε))

∣∣∣∣∣∣∣
ε=0

= − d

dε
P ∗D∗(P ∗S∗(ε))

∣∣∣∣∣∣∣
ε=0

,

22

The International Journal of Biostatistics, Vol. 4 [2008], Iss. 1, Art. 17

DOI: 10.2202/1557-4679.1114



and the right-hand side equals P ∗D∗(P ∗)S∗, where it is assumed the derivative
on the left and right-hand side exist.

Assume P ∗ → Dq0(P
∗) satisfies for each submodel {P (ε) = P (P ∗(ε), η(ε)) :

ε} ⊂ M through P (P ∗, η) at ε = 0 (implied by the class of submodels {P ∗S∗(ε)}
and {ηS1(ε)}) with score S(P ) that

− d

dε
PDq0(P

∗(ε))

∣∣∣∣∣∣∣
ε=0

= PDq0(P
∗)S(P ).

The latter is a regularity condition since

1

ε
PDq0(P

∗(ε)) = −1

ε

∫
Dq0(P

∗(ε))
dP (ε)− dP
dP (ε)

dP (ε)

= −PDq0(P
∗)S(P ) + o(1),

where S(P ) is the score d
dε

log dP (ε)/dP
∣∣∣∣
ε=0

of the submodel {P (ε) : ε}.
Then, Ψ : M → IRd is pathwise differentiable in the sense that for each

of the submodels {P (ε) = P (P ∗(ε), η(ε)) : ε} ⊂ M through P (P ∗, η) at ε = 0
with score S(P ) we have

d

dε
Ψ(P (ε))

∣∣∣∣∣∣∣
ε=0

= PDq0(P )S(P ),

and Dq0(P ) is a gradient of the pathwise derivative.
Thus, for each gradient D∗(P ∗) of the pathwise derivative of Ψ∗ : M∗ →

IRd satisfying the above mentioned regularity conditions, the corresponding
Dq0(P

∗) is a gradient of the pathwise derivative of Ψ :M→ IRd.

Proof. We have

Ψ(P (ε))−Ψ(P )

ε
=

Ψ∗(P ∗(ε))−Ψ∗(P ∗)

ε

= − d

dε
P ∗D∗(P ∗(ε))

∣∣∣∣∣∣∣
ε=0

+ o(1)

= − d

dε
PDq0(P

∗(ε))

∣∣∣∣∣∣∣
ε=0

+ o(1)

= PDq0(P
∗)S(P ) + o(1).

This proves that Ψ : M → IRd defined as Ψ(P (P ∗, η)) = Ψ∗(P ∗) is pathwise
differentiable at P = P (P ∗, η) ∈ M and that Dq0(P

∗) is a gradient of this
pathwise derivative. 2
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Thus, the above result shows that each gradient D∗(P ∗) for Ψ∗ :M∗ → IRd

is mapped into a gradient Dq0(P
∗) for Ψ : M = {P (P ∗, η) : P ∗ ∈ M∗, η} →

IRd defined as Ψ(P (P ∗, η)) = Ψ∗(P ∗). We note that this gradient mapping is
not affected by the particular choice (i.e., model of dependence structure of case
and control observations) of model M = {P (P ∗, η) : P ∗ ∈M∗, η} compatible
with M∗. Thus, for example, for case-control design I, our mapping from
gradients into gradients for modelM is the same for the independence model
assuming the case and controls are all independent as it is for a particular
dependence model.

A particular case is that Ψ∗ : M∗ → IRd is defined on a nonparametric
model M∗. In this case, there exists only one gradient for model M∗ so that
one just needs to determine the canonical gradient D∗(P ∗) of Ψ∗ at P ∗ and
map it into its case-control weighted version Dq0(P

∗), which, by our results in
the next section, equals the canonical gradient of Ψ at P (P ∗, η).

Remark. Since q0 is a non-identifiable parameter for both case-control de-
signs (so that knowledge of q0 does not restrict the distribution of the data
structure O), this implies that 1) for each gradient D∗(P ∗) for model M∗,
the corresponding Dq0(P

∗) is a gradient in the model M also including the
knowledge that q0 is known (even if that knowledge was not included inM∗),
or, equivalently, the class of all gradients {D∗h(P ∗) : h} at P ∗ for modelM∗ is
mapped into a class {Dh,q0 : h} of gradients at P = P (P ∗) for model M also
including q0 is known.

For matched case-control design II, if we define our parameter as Ψ∗q0 ,
indexed by q0 and q̄0(M) (treating them as known and fixed), then the case-
control weighting maps the class of all gradients of this parameter for model
M∗ into the class of gradients of this parameter for model M = {P (P ∗, η) :
P ∗ ∈ M∗, η}. If the observed data model is the same with and without the
restriction that (q0, q̄0(M)) is known in the model M∗, then the canonical
gradient in the model M will be the same as the canonical gradient of the
model also including the knowledge of (q0, q̄0(M)).
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3.2 Independence models for case-control designs I and
II to derive efficiency results.

We consider the independence model M so that M = {P (P ∗) : P ∗ ∈ M∗},
where for case-control design I, we have

dP (P ∗)(W1, A1, (W
j
2 , A

j
2 : j)) = dP ∗(W1, A1 | Y = 1)

J∏
j=1

dP ∗(W j
2 , A

j
2 | Y = 0),

(3)
and, for case-control design II, we have

dP (P ∗)(M1,W1, A1, (M1,W
j
2 , A

j
2 : j)) = dP ∗(M1,W1, A1 | Y = 1)

J∏
j=1

dP ∗(W j
2 , A

j
2 |M = M1, Y = 0).

= dP ∗M(M1)dP ∗(W1, A1 |M = M1, Y = 1)
J∏
j=1

dP ∗(W j
2 , A

j
2 |M = M1, Y = 0). (4)

Our results immediately generalize to modelsM for which the densities of
the distributions P (P ∗, η) factorize as

dP (P ∗, η) = dP1(P ∗)dP2(η),

where dP1(P ∗) is given by the independence likelihood (3) or (4), and P ∗ and
η are variation independent. This follows from the fact that such models the
tangent space contains the tangent space of the independence model, and our
proof of the wished result is based on showing that the case-control weighted
efficient influence curve is a member of the tangent space and thereby equals
the efficient influence curve for the model M.

Our results in this section show that the case-control weighting of the
canonical gradient for the prospective sampling modelM∗ yields the canonical
gradient for the parameter of interest Ψ based on case-control sampling model
M. Our results rely on the assumption that (the typically very large/semipara-
metric)M∗ corresponds with (i.e., equals the intersection of) separate models
for P ∗0 (W,A | Y = δ) for δ ∈ {0, 1} for case-control design I, and that M∗

corresponds with (i.e., equals the intersection of) separate models for P ∗0 (W,A |
Y = δ,M = m) for δ ∈ {0, 1} and m varying over the support of the matching
variable M .

As a consequence of our results, our proposed case-control weighted tar-
geted maximum likelihood estimator for variable importance and causal effect
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parameters, involving selecting estimators of Q∗0 and g∗0, under appropriate
regularity conditions guaranteeing the wished convergence of the standardized
estimator to a normal limit distribution, is efficient if both of these estimators
are consistent, and remains consistent if one of these estimators is consistent.

We note that the working-model to obtain the initial model based maxi-
mum likelihood estimators in our double robust targeted maximum likelihood
estimator is obtained by modeling the factors of

dP ∗(W,A, Y ) = dP ∗(W )dP ∗(A | W )dP ∗(Y | A,W ),

which does thus not correspond with separate models for dP ∗(W,A | Y = δ)
as we ”required” for the actual model M∗ in order to make sure that the
case-control weighted canonical gradient is a canonical gradient. In order to
understand the rational of this discrepancy we provide the following explana-
tion.

It happens to be that the efficient influence curve for our parameter of
interest Ψ for an underlying model M∗ identified by separate models for
P (W,A | Y = δ) has a double robust representation in terms of Q∗0 and g∗0,
while it does not have a double robust representation w.r.t. to say P (W,A | Y )
or factors thereof. To fully exploit this double robust representation of the ef-
ficient influence curve of our parameter of interest, one should base estimation
of the unknowns parameters of the efficient influence curve on the latter rep-
resentation, and that is why we proposed our particular double robust locally
efficient targeted maximum likelihood estimators.

Alternatively, we could use a targeted maximum likelihood estimator based
on initial estimators based on working models for P (W,A | Y = δ), δ ∈ {0, 1}:
in this manner we would obtain generalized locally efficient double robust
estimators where the double robustness is stated in terms of the models for
Q∗0 and g∗0 implied by the models for P (W,A | Y = δ).

3.3 Case-control weighting of canonical gradient yields
canonical gradient: Case Control Design I.

Firstly, we present the theorem for case-control design I.

Theorem 5 Consider case-control design I. Assume that the modelM∗ allows
independent variation of P ∗(W,A | Y = 1) and P ∗(W,A | Y = 0).

Let D∗(P ∗) be the canonical gradient of the pathwise derivative Ψ∗ :M∗ →
IRd at P ∗ ∈ M∗, let M = {P (P ∗) : P ∗ ∈ M∗} be the independence model
defined by (3), and let Ψ : M → IRd satisfy Ψ(P (P ∗)) = Ψ∗(P ∗) for all
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P ∗ ∈ M∗. Assume the regularity conditions for P ∗ → D∗(P ∗) of Theorem 4
apply so that it follows that Ψ is pathwise differentiable at P ∗ and Dq0(P

∗) is
a gradient of this pathwise derivative.

We have that Dq0(P
∗) is the canonical gradient of the pathwise derivative

of Ψ :M→ IRd.

We already knew that, if we set D∗(P ∗) equal to the canonical gradient (or
any other gradient) of Ψ∗ :M∗ → IRd, then its case-control weighted version
Dq0(P

∗) is a gradient of Ψ : M → IRd. The surprising and important extra
result is that this Dq0(P

∗) actually equals the canonical gradient. That is,
for case-control design I, the case-control weighted gradient mapping does not
only map gradients into gradients, it also maps the optimal canonical gradient
for modelM∗ into the optimal canonical gradient for the observed data model
M for case-control data.

Remark regarding q0 known in modelM∗. Since q0 is a non-identifiable
parameter based on case-control sampling (design I), assuming q0 is known in
model M∗ puts no restriction on the observed data model M. As a conse-
quence, the efficient influence curve for the parameter Ψ : M → IRd is the
same for the model M∗ in which this quantity is known as it is in the model
in which this quantity is unknown.

3.4 Example of efficient method for case-control de-
sign II based on stratified efficient method for case-
control design I.

Before we present our general analogue result for case-control design II, it
is helpful to consider an example for case-control design II. Consider the
data structure O∗ = (M,W,A, Y ) ∼ P ∗0 and let M∗ be a nonparametric
model. Consider case-control design II, in which our observed data O =
((M1,W1, A1), ((W j

2 , A
j
2) : j = 1, . . . , J)). Suppose we wish to estimate ψ∗0 =

E∗0Y1 = E∗0E
∗
0(Y | A = 1,M,W ) and that q0(δ | m) = δP ∗0 (Y = 1 | M =

m) + (1 − δ)P ∗0 (Y = 0 | M = m) is known. Recall that the efficient influ-
ence curve for this parameter Ψ∗ : M∗ → IR in model M∗ at P ∗ is given by
D∗(Q∗, g∗)−ψ∗ = I(A = 1)/g∗(1 |M,W )(Y −Q∗(M,W,A)) +Q∗(M,W, 1)−
∗.

Consider the following general approach for estimation of ψ∗0 based on data
generated by a case-control design II:
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• Apply the case-control weighted targeted MLE for case-control design
I to the subsample {i : M1i = m} to estimate the conditional version
∗
0(m) = E∗(Y1 | M = m) of the parameter ψ∗0. Thus this corresponds

with weighting the cases with q0(1 | m) = P ∗0 (Y = 1 | M = m) and the
controls with q0(0 | m) = P ∗0 (Y = 0 |M = m) and applying the standard
prospective targeted MLE based on an initial estimator of Q∗0(m, a, w) =
P ∗0 (Y = 1 | m, a, w) and g∗0(a | m,w) = P ∗0 (A = a | M = m,W = w).
By our results for case-control design I, we know that this estimator
yields a double robust locally efficient estimator of ψ0(m).

This case-control weighted targeted maximum likelihood estimator of

0(m) based on the subsample {i : M1i = m} solves the m-specific case-
control weighted efficient influence curve equation 0 = PnD

∗
m,q0

(Q∗n, g
∗
n)−

Ψ∗(Q∗n)(m) and can thus be represented as

n(m) =

∑
i I(M1i = m)Dm,q0(Q

∗
n, g
∗
n)(Oi)∑

i I(M1i = m)
, (5)

where

Dm,q0(Q
∗, g∗)(O) =

q0(1 | m)
{

I(A1=1)
g∗0(1|m,W1)

(1−Q∗(m,W1, 1)) +Q∗(m,W1, 1)
}

+ q0(0|m)
J

{
I(Aj

2=1)

g∗(1|m,W j
2 )

(0−Q∗(m,W j
2 , A

j
2, 1)) +Q∗(m,W j

2 , A
j
2, 1)

}
.

The rational behind the consistency of this estimator ψn(m) follows di-
rectly from the identity

E(Y1 |M = m) =
E0Dm,q0(Q

∗
0, g
∗
0)(O)I(M1 = m)

P0(M1 = m)
.

• Now, note that

P ∗0 (M = m) = P0(M1 = m)
q0

q0(1 | m)
.

Thus, one maps ψn(m) into an estimator of ψ0 by averaging it w.r.t. to
q0/q0(1 |M1i)Pn(M1 = m):

n =
∑
m

{
1

n

n∑
i=1

I(M1i = m)
q0

q0(1 |M1i)

}
n(m)

=
1

n

n∑
i=1

∑
m

q0

q0(1 | m)
I(M1i = m)Dm,q0(Q

∗
n, g
∗
n)(Oi),
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where we used (5).

Again, the rational of this estimator of ψ0 follows immediately from the
following derivation:

E0
∑
m

q0
q0(1|m)I(M1 = m)Dm,q0(Q

∗
0, g
∗
0)

= E0
q0

q0(1|M1)DM1,q0(Q
∗
0, g
∗
0)

= E0
q0

q0(1|M1)

{
q0(1 |M1)D∗(M1, W1, A1, 1) +

∑
j
q0(0|M1)

J D∗(M1, W
j
2 , Aj

2, 0)
}

= E0q0D
∗(M1, W1, A1, 1) + q̄0(M1)

J

∑
j D∗(M1, W

j
2 , Aj

2, 0)
= E∗0Y1,

where we suppressed the dependence of D∗ = D∗(Q∗, g∗) on Q∗, g∗.

• We conclude that this estimator ψn of ψ∗0 corresponds with solving our
proposed case-control weighted efficient influence curve equation PnDq0,q̄0−

= 0, where

Dq0,q̄0(O) = q0D
∗(M1,W1, A1, 1) +

q̄0(M1)

J

∑
j

D∗(M1,W
j
2 , A

j
2, 0).

We conclude that this general approach for estimation of ψ∗0 of applying
the case-control weighted targeted MLE ψn(m) of case-control design I to the
sub-sample {i : M1i = m} to estimate the analogue ψ∗0(m) of the parameter of
interest ψ∗0 (i.e., the same function but now applied to the conditional P ∗0 (· |
M = m)), and subsequently averaging ψn(m) w.r.t. q0/q0(1 | m)Pn(M1 = m),
corresponds with using our for case-control design II proposed case-control
weighting Dq0,q̄0 of the efficient influence curve D∗ for modelM∗. This suggests
that Dq0,q̄0 is indeed also, just as we showed for case-control design I, the
efficient influence curve. Our results below confirm this.

3.5 Case-control weighting of canonical gradient yields
canonical gradient: Matched Case Control Design.

For case-control design II, we establish the same result.

Theorem 6 Consider case-control design II. In this theorem we use the nota-
tion: Dq0,q̄0(P

∗) = q0D
∗(P ∗)(M1,W1, A1, 1)+ q̄0(M1)

J

∑
j D
∗(P ∗)(M1,W

j
2 , A

j
2, 0).

Assume that the modelM∗ allows independent variation of P ∗(W,A | Y =
δ,M = m) for δ ∈ {0, 1} and possible outcomes m of M under P ∗0 .

Let D∗(P ∗) be the canonical gradient of the pathwise derivative Ψ∗ :M∗ →
IRd at P ∗ ∈ M∗, let M = {P (P ∗) : P ∗ ∈ M∗} be the independence model
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defined by (4), and let Ψ : M → IRd satisfy Ψ(P (P ∗)) = Ψ∗(P ∗) for all
P ∗ ∈M∗.

Assume the regularity conditions for P ∗ → D∗(P ∗) of Theorem 4 apply so
that it follows that Ψ is pathwise differentiable and Dq0,q̄0(P

∗) is a gradient of
this pathwise derivative at P (P ∗) ∈M.

Then, Dq0,q̄0(P
∗) is the canonical gradient of the pathwise derivative of

Ψ :M→ IRd.

3.6 Selecting the efficient influence curve of unrestricted
target parameter.

In order to define an identifiable parameter Ψ(P (P ∗)) = Ψ∗(P ∗) of the case-
control data generating distribution, one often needs to define Ψ∗ as indexed
by the known q0 and possibly q̄0 parameters. We denote such a parameter
with Ψ∗q0 :M∗ → IRd to stress its dependence on these known fixed quantities.
Our results above for case-control designs I and II above prove that if D∗(P ∗)
is the canonical gradient of Ψ∗q0 at P ∗, then the case-control weighted Dq0(P

∗)

is the canonical gradient of Ψ : M → IRd, where Ψ(P (P ∗)) = Ψ∗q0(P
∗) for

all P ∗ ∈ M. The following theorem shows that one can typically replace
D∗(P ∗) by the canonical gradient of the path-wise derivative of the unrestricted
Ψ∗(P ∗) = Ψq(P ∗)(P

∗).

Theorem 7 Consider the two pathwise differentiable parameters Ψ∗r0 :M∗ →
IRd indexed by a fixed r0 = r(P ∗0 ) (e..g, representing q0 and q̄0), and a corre-
sponding parameter Ψ∗ : M∗ → IRd defined as Ψ∗(P ∗) = Ψ∗r(P ∗)(P

∗). Thus,
Ψ∗r0(P

∗
0 ) = Ψ∗(P0).

Assume that for all the sub-models {P ∗(ε) : ε} for which d
dε
r(P ∗(ε))

∣∣∣∣
ε=0

= 0,

we have
d

dε
Ψ∗(P ∗(ε))

∣∣∣∣∣∣∣
ε=0

=
d

dε
Ψ∗r0(P

∗(ε))

∣∣∣∣∣∣∣
ε=0

.

Assume that the fixed parameter r0 in Ψ∗r0 is locally non-identifiable at P ∗

in the model M in the sense that the tangent space at P (P ∗) ∈ M generated

by the submodels {P ∗(ε) : ε} at P ∗ for which d
dε
r(P ∗(ε))

∣∣∣∣
ε=0

= 0 equals the

tangent space at P (P ∗) ∈ M generated by all submodels used in definition of
pathwise derivative of Ψ∗r0 :M∗ → IRd.

If the conditions of Theorem 5 or Theorem 6 apply for this choice Ψ∗r0 :

M∗ → IRd, then we also have, if D∗(P ∗) is the canonical gradient of Ψ∗ at P ∗,
then the case-control weighted Dq0(P

∗) is the canonical gradient of Ψ :M→
IRd.
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Proof. This result is shown as follows. Let D∗ be the canonical gradient of
Ψ∗ : M∗ → IRd and let D∗1 be the canonical gradient of Ψ∗q0 : M∗ → IRd.
As a consequence of the first assumption, we have for all scores S of all these
submodels P ∗(ε) not changing q0 (in first order),

〈D∗, S〉P ∗ = 〈D∗1, S〉P ∗ .

So, if we restrict our class of sub-models at P ∗ in the definition of the path-
wise derivative to these sub-models in M∗ not varying r0 (which globally
corresponds with restricting M∗ to all P ∗ with r(P ∗) = r0, but path-wise
differentiability at P ∗ only depends on local thickness of model at P ∗), then we
have that the canonical gradient for the corresponding class of submodels for
the observed data model is given by the case-control weighted Dq0(P

∗) and the
latter also equals the case-control weighted D1q0(P

∗). So under this restriction
on the class of submodels through P ∗ we have equality of the two case-control
weighted canonical gradients corresponding with D∗ and D∗1. Now, by using
that this restriction on the class of submodels does not change the tangent
space for the observed data models, and therefore does not affect the canonical
gradient representation at P (P ∗) of the parameter Ψ in the observed data
modelM. Thus this Dq0(P

∗), which equals D1q0(P
∗), also equals the canonical

gradient for the class of all submodels used in the actual definition of the
pathwise derivative. This completes the proof of the theorem. 2

Since q0 is non-identifiable for case-control design I it follows that case-
control weighting of the canonical gradient of the unrestricted parameter Ψ∗

also yields the wished canonical gradient of Ψ. The same would apply for
the matched case-control design, if enforcing the restriction (q0, q0(1 | m) =
P ∗0 (Y = 1 |M = m)) inM∗ does not reduce the observed data tangent space,
but this remains to be verified.

3.7 Proof of Theorems 5 and 6.

We already know that for both designs Dq0(P
∗) (defined as Dq0,1−q0(P

∗) for
design I and defined as Dq0,q̄0 for design II) is a gradient of the pathwise
derivative of Ψ at P (P ∗). Therefore, it remains to show that Dq0(P

∗) is an
element of the tangent space T (P (P ∗)) ⊂ L2

0(P (P ∗)) defined as the closure of
the linear span of the scores of each of the submodels {P (ε) : ε} within the
Hilbert space L2

0(P (P ∗)).
In the Appendix we have a separate section establishing these results for

both designs, stating that if we select D∗(P ∗) as the canonical gradient of Ψ∗

at P ∗ and the modelM∗ allows independent variation of P (W,A | Y = δ) for
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Design I and independent variation of P (W,A | M = m,Y = δ) for Design
II, then Dq0(P

∗) is an element of the tangent space at P (P ∗) in the observed
case-control data model M.

Here we provide a summary of the proof for case-control design I in order
to provide the reader with an understanding of these results.

Since D∗(P ∗) is a canonical gradient it equals a score d
dε
dP ∗(ε)/dP ∗

∣∣∣∣
ε=0

for a particular submodel {P ∗(ε) : ε} at ε = 0, or it can be arbitrarily well
approximated by such a sequence of scores. We first consider the case that
D∗(P ∗) is itself a score.

The tangent space under the independence model for a nonparametric
model M∗ is an orthogonal sum of the Hilbert space T1(P ) = {S1(W1, A1) :
S1} of functions of (W1, A1) with mean zero, and the Hilbert space T2(P ) =
{∑j S2(W j

2 , A
j
2) : S2} with S2(W j

2 , A
j
2) having mean zero, j = 1, . . . , J . For an

actual modelM∗ these two Hilbert spaces are replaced by sub-spaces spanned
by the scores of the allowed sub-models {P ∗(ε) : ε} through P ∗. That is, T1(P )

consists of (and is generated by) functions d
dε

dP ∗(ε)
dP ∗ (W1, A1 | Y = 1)

∣∣∣∣
ε=0

, and

T2(P ) consists of (and is generated by) functions
∑
j
d
dε
dP ∗(ε)
dP ∗ (W j

2 , A
j
2 | Y = 0)

∣∣∣∣
ε=0

,

j = 1, . . . , J . We assumed that the marginal distributions P ∗(W,A | Y = 1)
and P ∗(W,A | Y = 0) are independently varied by these submodels, so that
indeed the tangent space is an orthogonal sum of T1(P ) and T2(P ).

For notational convenience, we introduce the notation ε0 = 0. LetD∗(P ∗) =
d
dε0

dP ∗(ε0)
dP ∗ (W,A, Y ) be a score. Since q0 is non-identifiable, we can assume that

p∗(ε)(Y = 1) = q0 for all ε. It follows that

q0D
∗(P ∗)(W1, A1, 1) = q0

1

p∗(W1, A1, 1)

d

dε0
p∗(ε0)(W1, A1, 1)

= q0
1

p∗(W1, A1 | Y = 1)q0

d

dε0
p∗(ε0)(W1, A1 | Y = 1)q0

= q0
1

p∗(W1, A1 | Y = 1)

d

dε0
p∗(ε0)(W1, A1 | Y = 1)

∈ T1(P ∗),

since the latter term equals q0 times a score of P (ε)(W1, A1) at ε = 0 (which
in particular has mean zero).
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Again, using that P ∗(ε)(Y = 0) = 1− q0 for all ε,

(1− q0)D∗(P ∗)(W j
2 , A

j
2, 0) = (1− q0) 1

p∗(W j
2 ,A

j
2,0)

d
dε0
p∗(ε0)(W j

2 , A
j
2, 0)

= (1− q0) 1

p∗(W j
2 ,A

j
2|Y=0)(1−q0)

d
dε0
p∗(ε0)(W j

2 , A
j
2 | Y = 0)p∗(ε)(Y = 0)

= (1− q0) 1

p∗(W j
2 ,A

j
2|Y=0)

d
dε0
p∗(ε0)(W j

2 , A
j
2 | Y = 0)

≡ (1− q0)S2(W j
2 , A

j
2),

where the latter term equals is 1 − q0 times a score of P (ε)(W j
2 , A

j
2) at ε = 0

(which, in particular, has mean zero). It follows that

(1− q0)

J

∑
j

D∗(P ∗)(W j
2 , A

j
2, 0) =

1− q0

J

∑
j

S2(W j
2 , A

j
2) ∈ T2(P (P ∗)).

This proves that for case-control design I, if D∗(P ∗) is a score, then

Dq0(P
∗)(O) = q0D

∗(P ∗)(W1, A1) +
1− q0

J

∑
j

D∗(P ∗)(W j
2 , A

j
2)

is a score itself, and thus an element of the tangent space T (P ).
Suppose now that D∗(P ∗) = limm→∞D

∗
m(P ∗) ∈ T ∗(P ∗), where Dm(P ∗) ∈

L2
0(P ∗) is a score. Then, for each m, we have Dmq0(P

∗) ∈ L2
0(P (P ∗)) is a score.

To show that Dq0(P
∗) ∈ L2

0(P ∗) is a score requires thus that the case-control
mapping D∗ → Dq0 , as a mapping from L2

0(P ∗) into L2
0(P (P ∗)) is continuous.

This is trivially established. This proves that indeed Dq0(P
∗) is an element of

the tangent space T (P (P ∗)). This completes the proof for case-control design
I.

The proof for case-control design II is more delicate and provided in detail
in the Appendix.

4 Summary, discussion and extensions.

We provide a generic approach for locally efficient estimation such as targeted
maximum likelihood estimation of any parameter based on matched and un-
matched case-control designs, which relies on specification of one or two non-
identifiable parameters/scalars q0 and, for matched case-control designs, q0(1 |
m) = P ∗0 (Y = 1 |M = m).

These non-identifiable parameters could be known or they could be set in a
sensitivity analysis, for example, in the case that these parameters are known
to be contained in a particular interval. In the Appendix below we illustrate
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how to handle the case that q0 is replaced by a user supplied estimator based
on an independent data set, and a standard error of this estimate of the true
prevalence probability is provided.

Our approach is remarkably simple since it only requires weighting the
cases by q0 and the controls by 1− q0 or q̄0(M1) and then applying a method
developed for prospective sampling. Moreover, our approach has the remark-
able convenient feature that applying the case-control weighting to an optimal
method for the prospective sample results in an optimal method for indepen-
dent and matched case-control designs.

We also showed how the case-control weighting for matched case-control
designs corresponds with applying the case-control weighting for the standard
unmatched case-control design for each sub-sample defined by a category for
the matching variable to obtain the analogue conditional parameter, condi-
tional on the matching variable category, and subsequently averaging these
results over the matching variable categories to get the wished marginal pa-
rameter. This helps us to understand that our somewhat strange looking
weights for the control observations in a matched case-control study are ac-
tually just as sensible as the much easier to understand weights for standard
case-control designs.

In our accompanying technical report we worked out the case-control weight-
ed targeted maximum likelihood estimators in a number of important applica-
tions involving estimation of variable importance and causal effect parameters.
In addition, in our accompanying technical report we showed for both types
of case-control designs how standard maximum likelihood logistic regression
fits can be adjusted by using these known quantities to estimate conditional
probabilities P ∗0 (Y = 1 | A,W ) with a standard error which is proportional to
q0 divided by the square root of the sample size, so that the acquired precision
results in stable estimators of such challenging parameters as relative risk and
odds-ratios at q0 ≈ 0.

We believe that in many applications the marginal population proportion
of cases, q0, could be known, at least within close approximation, but it does
require an effort to understand the target population the cases are sampled
from. The literature supporting the use of q0 in case-control studies goes back
more than 50 years (See Cornfield (1951), Cornfield (1956)). Even 25 years
ago, Greenland (1981) noted that “improvements in disease surveillance have
produced more reliable estimates of disease incidence in many populations.”
Another relevant publication discussing the use of q0 in case-control analysis
is Benichou and Wacholder (1994).

In matched case-control studies in which one uses a matching variable with
a large number of categories, then the value of the population proportion of
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cases within each matching category might not be known. In that case, if
the number of matching categories is large, a sensitivity analysis would likely
be too cumbersome. On the other hand, even for such matched case-control
samples, using the case-control weighting for design I might already provide
an important bias reduction so that our methods only relying on q0 will likely
still provide a useful set of tools. Off course, this would require some validation
that ignoring the matching does not cause severe bias.

During the design of a case-control study, we recommend to keep in mind
that knowing these population proportion of cases for each matching category
make the convenient and double robust efficient estimation of any causal effect
and variable importance parameter possible (through the methods presented
here) without restrictive assumptions such as the no-interaction assumption
and parametric model form for conditional logistic regression models. This
insight might help and motivate people to design case-control studies in which
the required case-control weights are known or approximately known so that
a sensitivity analysis is possible.

In addition, we note that the binary Y conditioned upon in the case-control
sampling does not need to be an outcome of interest. For example, the random
variable of interest might be a right-censored data structure O∗ = (W,A, T̃ =
min(T,C)), with T survival, C censoring, W covariates and A treatment, and
in the case-control sampling we might condition upon a person having been
observed to fail or not by time τ : Y = I(T̃ ≤ τ). In such an application the
parameter of interest might be the causal effect of A on T .

To summarize, , by knowing q0, one has available more efficient and more
robust (i.e., double robust) targeted maximum likelihood estimators, targeting
an identifiable parameter, and one does not have to restrict oneselves to odds-
ratio parameters.

We now consider a few direct extensions and applications of our method-
ology.

Frequency matching. Frequency matching in case-control studies is typ-
ically defined as running a case-control design I within each strata M = m.
In this case one can estimate any causal parameter ψ0(m) of the conditional
distribution of O∗, given M = m, by assigning weights q0(1 | m) to the cases
and q0(0 | m)/J to the corresponding J controls. Thus our methods for case-
control design I can be applied to each strata M = m. In particular, this
yields a locally efficient double robust targeted maximum likelihood estimator
of ψ0(m) for each m. In order to estimate the marginal parameter ψ0 one
would need an estimate of the marginal distribution of M , which cannot be
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identified based on knowing q0(1 | m) only, so that other knowledge will be
needed such as the marginal population distribution of M . Either way, one
can always estimate causal parameters such as E(Ya | M = m) for each m or
the corresponding variable importance measure. If the number of categories of
the matching variable is large, then a sensible strategy for estimation of ψ0(m)
is to assume a model ψ0(m) = f(m | β0) and obtain a pooled locally efficient
targeted maximum likelihood of β0 based on all observations.

Pair matching. Pair matching in case-control studies is typically described
as, for each matching category, sample a case and a set of controls. So this
description agrees with frequency matching except that the number of cate-
gories can be very large. Therefore, we should now always assume a model

0(m) = f(m | β0) and obtain a pooled locally efficient targeted maximum
likelihood of β0 based on all observations.

Without the knowledge of q0(1 | m), one would use conditional logistic
regression models, and, as noted in Jewell (2006) page 258, these methods
do not allow estimation of the association of M with Y , while if one knows
the population proportion q0(1 | m) we can estimate every parameter of the
population distribution, conditional on M = m.

Counter matching. Finally, another type of matching in case-control stud-
ies is called counter-matching, which involves sampling a control with an expo-
sure (maximally) different from the exposure of the case. Formally, we can de-
fine this sampling scheme as follows. The observation O = ((M1, Z1), (M2, Z2))
on each experimental unit is generated as 1) sample (M1, Z1) from the con-
ditional distribution of (M,Z), given Y = 1, and 2) sample (M2, Z2) from
the conditional distribution of (M,Z), given M = m∗(M1) and Y = 0, where
m∗(m) maps a particular outcome m into a counter-match m∗(m) in the out-
come space for M . Similarly, this is defined for the case that one samples J
controls counter-matched to the case. The population distribution of interest is
the distribution P ∗0 of O∗ = (M,Z, Y ) and we are concerned with estimation of
a particular parameter ψ∗0 of this distribution P ∗0 based on a counter-matched
case-control sample O1, . . . , On. In this case, given that D∗(M,Z, Y ) satisfies
P ∗0D

∗ = 0, we have
E0Dq0,q̄∗0

(O) = 0,

where the case-control weighted version of D∗ is defined as

Dq0,q̄0(O) = q0D
∗(M1, Z1, 1) + q̄∗0(M)D∗(m∗(M1), Z2, 0),
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with

q̄∗0(m) = (1− q0)
P ∗0 (M = m∗(m) | Y = 0)

P ∗0 (M = m | Y = 1)
.

Note that if m∗(m) = m is the identity function, then indeed q̄∗0 = q̄0. The
non-identifiable component of the control-weight q̄∗0 is P ∗0 (M = m∗(m), Y = 0),
or, assuming q0 is known, P ∗0 (M = m∗(m) | Y = 0), while the denominator
P ∗0 (M = m | Y = 1) = P0(M1 = m) can be empirically estimated. Since
in many applications the control observations are relatively easily accessible,
one might use a separate sample of controls to estimate these proportions
P ∗0 (M = · | Y = 0) having a certain value for the (counter-)matching variable
M among the controls. So under the condition that these weights q0, q̄

∗
0 are

known (or set in a sensitivity analysis), our results in this article can be applied
to counter-matched case-control designs by just replacing q̄0 by q̄∗0.

Propensity score matching design. A commonly used design is the fol-
lowing. One samples from the units that received treatment. For each treated
unit, one finds a matched non-treated unit, where the matching is done based
on a fit of the so called propensity score. The goal of this design is to create a
sample in which the confounders are reasonably balanced between the treated
and untreated units. This design can formally be described as follows. The
random variable of interest is O∗ = (W,A, Y ) ∼ P ∗0 , and one is typically con-
cerned with estimation of a causal effect such as E∗0{E∗0(Y | A = 1,W )−E∗0(Y |
A = 0,W )}. Let M ≡ Π∗(W ) be a summary measure of W which is suppos-
edly an approximation of the propensity score Π∗0(W ) = P0(A = 1 | W ) (e.g.,
estimated from external data). One samples (M1 = Π∗(W1),W1, Y1) from
the conditional distribution of (W,Y ), given A = 1, and one samples one or
more (M2 = Π∗(W2),W2, Y2) from the conditional distribution of (W,Y ), given
M = M1and A = 0.

One now wishes to use n i.i.d. observations on the observed experimental
unit O = ((W1, Y1), (W2j, Y2j : j)) representing a treated unit and one or more
propensity score matched untreated units to estimate the causal parameter of
interest.

Notice that we can immediately apply the methodology presented in this
article by defining the Y as the A and the matching variable M is playing
the role of Π∗(W ). As a consequence, one can use any method developed for
sampling from (W,A, Y ) by using our ”case control” weights q0 = P ∗0 (A =

1) for the treated units, and q̄0(W ) = q0
P ∗

0 (A=0|M)

P ∗
0 (A=1|M)

for the untreated units.

Thus, to correct for the biased sampling one will need to know the actual
true treatment mechanism/propensity score P ∗0 (A = 1 | W ). Thus, under
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the assumption that this propensity score is known or can be estimated based
on an external data source, one can apply any method for estimation of the
wished causal effect for standard sampling by applying these weights to the
treated and untreated units. Off course, for the sake of statistical inference
and model selection (say, based on cross-validation) one should respect the fact
that the independent and identically distributed observations are O1, . . . , On,
and not the treated and untreated units.

General biased sampling. Finally, we like to discuss the implications of
the proposed optimal case-control weighting for general biased sampling mod-
els with known probabilities for the conditioning events, where optimal refers
to the fact that the case-control weighting maps an efficient procedure for
an unbiased sample into an efficient procedure for the biased sample. The
following generalization of our method for case-control design I applies to
general biased sampling. Consider a particular target probability distribu-
tion P ∗0 representing the unbiased sampling distribution and its corresponding
random variable O∗ ∼ P ∗0 . Suppose now that the outcome space for the ran-
dom variable O∗ is partitioned by a union of events Aj, j = 1, . . . , J : i.e.
Pr(O∗ ∈ ∪jAj) = 1 and the sets Aj are pairwise disjoint. Let the experi-
mental unit for the observed data be (O1, . . . , OJ), where Oj ∼ O∗ | O∗ ∈ Aj
is a draw from the conditional distribution, given O∗ ∈ Aj, j = 1, . . . , J .
For simplicity, we enforced here equal number of draws, but this can be gen-
eralized to having different number of draws from each conditional distribu-
tion. Let q0(j) = P ∗0 (O∗ ∈ Aj) ∈ (0, 1) and suppose these probabilities are
known. Weighting observation Oj with q0(j) for j = 1, . . . , J , and applying a
method developed for the unbiased sample will yield valid estimators. We also
conjecture that under appropriate similar conditions as we assumed for case-
control sampling, this weighting will be optimal in the sense that assigning
these weights to an efficient estimation procedure for i.i.d. samples of P ∗0 will
yield an efficient estimation procedure based on the biased sampling model.
Given our interpretation of case-control weighting for matched case-control
sampling in terms of case-control weighting for standard case-control studies
conditional on the matching category, we suggest that weighting for matched
case-control sampling can be generalized to matched biased sampling in gen-
eral (say matched on a draw M1 from the first biased sampling distribution).

Another commonly employed study is a case-control sample nested within a
cohort. In addition, it is then common that one collects additional information
on the case-control sample relative to the information collected in the original
cohort sample. Our results are not covering this important problem for which
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a rich literature exist (see e.g., Robins et al. (1994)).

Appendix: Incorporating variability/uncertain-

ty in the user supplied prevalence probability

q0.

In this section we wish to illustrate that our general case-control weighted
estimation methodology directly generalizes to the case that q0 is replaced by
an estimate q̂ (based on an independent sample) with a user supplied standard
error σ. For the sake of illustration, consider the independent case-control
design and let Dq0(O | ψ) = q0D(W1, A1, 1 | ψ) + (1− q0)/J

∑
j D(W j

0 , A
j
0, 0 |

) be a case-control weighted estimating function applied to an estimating
function D(O∗ | ψ) for the parameter of interest ψ0 = Ψ(P ∗0 ) of the target
distribution P ∗0 . Let the case-control weighted estimator Ψ̂(q0, Pn) be defined
as a solution of the estimating equation

0 = PnDq0(O | ψ) =
1

n

n∑
i=1

Dq0(Oi | ψ),

where Pn denotes the empirical distribution.
The case-control weighted estimator ψn based on q̂ of ψ0 can now be rep-

resented as Ψ̂(q̂, Pn). Under regularity conditions, the estimator Ψ̂(q0, Pn)
(as consider in our article) using the true prevalence probability q0 is asymp-
totically linear with influence curve IC0 = − d

dψ0
P0Dq0(ψ0)−1Dq0(ψ0), using

short-hand notation. The actual estimator Ψ̂(q̂, Pn) can now be decomposed
as

Ψ̂(q̂, Pn)− ψ0 = Ψ̂(q̂, Pn)− Ψ̂(q̂, P0) + Ψ̂(q̂, P0)− Ψ̂(q0, P0)

≈ Ψ̂(q0, Pn)− Ψ̂(q0, P0) + Ψ̂(q̂, P0)− Ψ̂(q0, P0),

where the approximation involves a second order term of q̂ − q0 and Pn − P0.
The first difference equals (Pn−P0)IC0 +oP (1/

√
n) and is thus asymptotically

normally distribution with mean zero and covariance matrix Σ0 = E0IC0IC
>
0 .

The second difference is independent of this first asymptotically normal term
and, by the delta-method, can be approximated by q̂ − q0 times the gradient
a0 of q → Ψ̂(q, P0):

Ψ̂(q̂, P0)− Ψ̂(q0, P0) = (q̂ − q0)
d

dq0

Ψ̂(q0, P0) = (q̂ − q0)a0.
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Thus, this term behaves as a normally distributed vector with mean zero and
variance elements σ2a0, where a0 = d

dq0
Ψ̂(q0, P0). We can conclude that our

standardized estimator
√
n(Ψ̂(q̂, Pn)− ψ0) converges in distribution to

N(0,Σ + σ2a0a
>
0 ),

where Σ = E0IC0(O)IC>0 (O) is the covariance matrix of the normal limit
distribution of the estimator Ψ̂(q0, Pn) based on the known prevalence proba-
bility.

In general, this general template shows that we can incorporate the stan-
dard error σ of a user supplied estimate q̂ by simply adding the matrix σ2a0a

>
0

to the covariance matrix of our case-control weighted estimator Ψ̂(q̂, Pn) we
would use if q̂ is treated as known, where a0 is the gradient of q → Ψ̂(q, P0) at
q0.

For the sake of concreteness, we will now provide an expression of the
gradient a0 of the derivative of q → Ψ̂(q, P0) at q = q0 in the above setting.
Note that Ψ̂(q, P0) is defined as the solution in ψ of H0(q, ψ) = P0Dq0(ψ) = 0.

By the implicit function theorem, this shows that the gradient of q → Ψ̂(q, P0)
is given by:

a0 = − d

dψ0

H0(q0, ψ0)−1 d

dq0

H0(q0, ψ0)

= − d

dψ0

H0(q0, ψ0)−1P0(D1 −D0),

where we defined D1(O) = D(1,W1, A1) and D0(O) = 1
J

∑
j D(0,W j

0 , A
j
0). One

can estimate a0 by replacing the expectations by empirical means, and thereby
construct confidence intervals and p-values based on Σn + σ2ana

>
n , where Σn

is an estimator of the covariance matrix Σ0 and an is the estimator of a0.

Appendix: Extension to case-control incidence

density sampling.

An alternative commonly employed case-control sampling design involves reg-
ular case-control sampling from a population at risk at time t, where the
outcome is now defined at time t, across various time points t (see e.g., Roth-
man and Greenland (1998)). Such designs can be carried out at only a few
discrete time points or they could evolve in continuous time.

For example, one might sample breast cancer cases and controls in year
2000 among the population at risk of breast cancer, and one would repeat
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such a case-control sample at years 2001 and 2002. Note that the outcome
is now different depending on the year one samples, since being a case in the
case-control sample at year (e.g.) 2000 requires being diagnosed with breast
cancer in year 2000. Another type of example would be to sample one or more
controls at the time a case occurs among the subjects at risk right before the
case occurred.

One issue with this kind of case-control sampling is that the sampling
population might change over time due to an influx of new subjects over time,
so that the change in sampling population over time cannot only be modeled by
censoring and the occurrence of failures within a well defined target population
at the first time point. Alternatively, one defines a target population at the first
time point and one samples cases and controls at time t among the subjects in
this target population that are still at risk right before time t (i.e., the subjects
that have not failed or been censored, yet), thereby ignoring any possibly influx
of subjects over time.

We now wish to discuss some possible applications of our case-control
weighting methodology to these types of case-control sampling designs. Firstly,
the most straightforward and direct application is to treat the case-control
sample at time t as a separate case-control sample and immediately apply
our case-control weighting to estimate any parameter of the population dis-
tribution one samples from at time t. Of course, this requires a large enough
case-control sample at each time point t so that these t-specific parameters
are estimated at a reasonable precision. Note also that the knowledge of the
case-control weights now requires knowing the marginal probability of being a
case for the sampling population at time t, at each of the sampling times t. If
one is willing to assume that these t-specific parameters (e.g. causal effect of
a treatment on outcome) follow a parametric trend in t, then one can pool all
the t-specific estimates to obtain a smoother estimation procedure that might
result in significant gains in variance. For example, maybe it is appropriate
to believe that the population is stationary in time t, that is, somehow the
influx of new subjects and loss of existing subjects due to censoring or fail-
ure balances out so that the sampling population at time t does not change
over time. In that case, one might assume that the t-specific parameters are
constant in t.

We now wish to consider how we might generally apply pooling across
time while using our case-control weighting to handle such incidence density
sampling designs. Here, we will focus on a single target population so that
one is concerned with estimation of a single well defined parameter of a target
population of interest.

Consider the case that the outcome of interest is a time till event T . For
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notational convenience, we will assume that T is discrete on time points t =
0, 1, . . . , τ . Suppose that in a prospective sample one would observe O∗ = (T̃ =
min(C, T ),∆ = I(T̃ = T ), X̄(T̃ )), where C is a right-censoring time and X̄(s)
denotes the history up till time s of the time dependent process t → X(t):
X̄(s) = (X(u) : u ≤ s), where X(t) includes the indicator dY (t) ≡ I(T = t) of
the failure time event at time t. Let P ∗0 denote the probability distribution of
this right-censored data structure O∗. Suppose that the parameter of interest
is Ψ(P ∗0 ) which will typically represent a parameter of the full data distribution
of X such as a causal effect of a treatment A assigned at time 0 on the time
till event T .

In the case that the outcome is a time till a rare event one might employ a so
called incidence density case-control sampling design. That is, at time t, among
the population at risk defined by all the individuals with R(t) = I(T̃ ≥ t) = 1,
one samples a case from the conditional distribution of O∗, given dY (t) = 1
and R(t) = 1, and one samples one or more controls from the conditional
distribution of O∗, given dY (t) = 0 and R(t) = 1. Note that one can replace
dY (t) by the observed data quantity dY (t) = I(T̃ = t,∆ = 1). Let’s denote
the observed data structure sampled at time t, consisting of a case and one or
more controls, as

Ot = (O1t, O0tj, j = 1, . . . , J),

where O1t denotes the data structure on the case and O0tj denotes the data
structure on the j-th control. Suppose one samples n(t) i.i.d observations of
Ot at time t, t = 0, . . . , τ , resulting in a total sample Oti, i = 1, . . . , n(t),
t = 0, . . . , τ .

Let R(t)D(t, O∗) be an estimating function or loss function for the prospec-
tively sampled unit O∗, t = 0, . . . , τ . An estimating function or loss function
based on sampling O∗ itself can always be represented as

∑
tR(t)D(t, Ō∗(t)),

where Ō∗(t) = X̄(min(t, C)) denotes the observed history up till time t, which
is assumed to include the censoring event if it occurs before time t. Specifically,
we have

D(O∗) =
∑
t

E(D | X̄(min(t, C)))− E(D | X̄(min(t− 1, C)))

=
∑
t

R(t)
{
E(D | X̄(min(t, C))− E(D | X̄(min(t− 1, C)))

}
,

where X̄(min(t, C)) represents the history one observes up till time t, and
thus it is assumed that X̄(min(t, C)) also includes observing the censoring
event time C if C occurs before time t

The following lemma shows how the case-control weighting can be applied
to this t-specific estimating function of O∗ which typically represents just one
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term R(t)D(t, O∗) of the full estimating function D(O∗) =
∑
tR(t)D(t, O∗)

one would use if one would sample O∗ prospectively.

Lemma 1 Define

Dq0(t, Ot) ≡ q0(t)D(t, O1t) + q̄0(t)
1

J

J∑
j=1

D(t, O0tj),

where

q0(t) ≡ P ∗0 (dY (t) = 1, R(t) = 1)

q̄0(t) ≡ P ∗0 (dY (t) = 0, R(t) = 1).

We have
E0Dq0(t, Ot) = E∗0R(t)D(t, O∗).

In particular, if we redefine q0(t) = P (dY (t) = 1 | R(t) = 1) and q̄0(t) =
1− q0(t), then

E0Dq0(t, Ot)P
∗
0 (R(t) = 1) = E∗0R(t)D(t, O∗).

If censoring is non-informative, then the weights q0(t) = P ∗0 (dY (t) = 1 |
R(t) = 1) = P ∗0 (dY (t) = 1 | T ≥ t) reduce to the marginal hazard of T at
time t. Thus, if censoring is non-informative, then this case-control weighting
would require knowing the marginal failure time distribution of T .

Proof of Lemma. We have

E0Dt(Ot) = E0q0(t)D(t, 1, O∗1) + q̄0(t)
1

J

J∑
j=1

D(t, 0, O∗0j)

=
∫
D(t, 1, O∗1)q0(t)P ∗0 (O∗ | dY (t) = 1, R(t) = 1)

+
1

J

J∑
j=1

∫
D(t, 0, O∗)q̄0(t)P ∗0 (O∗ | dY (t) = 0, R(t) = 1)

=
∫
O∗
D(t, 1, O∗)P ∗0 (O∗, dY (t) = 1, R(t) = 1)

+
1

J

J∑
j=1

∫
O∗
D(t, 0, O∗)P ∗0 (O∗, dY (t) = 0, R(t) = 1)

=
∫
O∗,R(t)

R(t)D(t, 1, O∗)P ∗0 (O∗, dY (t) = 1, R(t))

+
∫
O∗,R(t)

R(t)D(t, 0, O∗)P ∗0 (O∗, dY (t) = 0, R(t))

=
∫
O∗,dY (t),R(t)

R(t)D(t, dY (t), O∗)P ∗0 (O∗, dY (t), R(t)).
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This proves the lemma. 2

Even though one only applies the t-specific component R(t)D(t, O∗) of the
full estimating function to the case, the following lemma shows that one can
often use the control observation sampled at time t for the later time point
estimating functions without any need for weighting or coupling them to the
case sampled at time t.

Lemma 2 Assume E0(D(s,O∗) | R(s) = 1) = 0 for all s. Given a t, for
s > t, we have for the control observations O0t

E0R(s)D(s,O0t) = 0

Proof. We have for s > t

E0R(s)D(s, O0t) = E0(R(s)D(s, O∗) | R(t) = 1, dY (t) = 0)
= E0(E0(R(s)D(s, O∗) | R(s), R(t) = 1, dY (t) = 0) | R(t) = 1, dY (t) = 0)
= E0(P0(R(s) = 1 | R(t) = 1, dY (t) = 0)
×E0(R(s)D(s, O∗) | R(s) = 1, R(t) = 1, dY (t) = 0) | R(t) = 1, dY (t) = 0)
= P0(R(s) = 1 | R(t) = 1, dY (t) = 0)
×E0(E0(R(s)D(s, O∗) | R(s) = 1) | R(t) = 1, dY (t) = 0)
= P0(R(s) = 1 | R(t) = 1, dY (t) = 0)E0(D(s, O∗) | R(s) = 1)
= 0.2

Thus, given an estimating function D(O∗ | ψ) =
∑
tR(t)D(t, O∗ | ψ) for the

parameter ψ∗0 based on sampling from P ∗0 , an estimating equation for the total
sample from the actual biased sampling data generating distribution P0 can
now be constructed as:

0 =
∑
t

n(t)∑
i=1

q0(t)D(t, O1ti) + q̄0(t)
1

J

J∑
j=1

D(t, O0tji | ψ)

+
∑
t

n(t)∑
i=1

∑
s>t

1

J

∑
j

R(s)D(s,O0sji | ψ).

The last term represents the non-coupled contributions of the control obser-
vations at time points after the time point t at which the control unit was
sampled. Here q0(t) = P (dY (t) = 1 | R(t) = 1) and q̄0(t) = P (dY (t) =
0 | R(t) = 0) = 1 − q0(t). If the estimating function is indexed by nuisance
parameters, then these need to be estimated.
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Not conditioning on being at risk. In the above form of incidence density
sampling, sampling a case corresponds with conditioning on a subject being
at risk and being a true case at time t (i.e., a failure at time t). In the
following lemma we employ the same design but in which sampling a case
corresponds with only conditioning on having an observed event at time t, and
thus not conditioning on being at risk at time t. The advantage of this type of
design is that one can now case-control weight the complete estimating function
D(O∗) =

∑
tR(t)D(t, O∗) one would use in prospective/unbiased sampling of

O∗. The lemma provides the correct case control weighting and it is now a
direct corollary of our case-control weighting results established in this article.

Lemma 3 Let dY (t) = I(T̃ = t,∆ = 1). Let O1t be a draw from con-
ditional distribution of O∗, given dY (t) = 1, and let O0tj be i.i.d draws
from the conditional distribution of O∗, given dY (t) = 0, j = 1, . . . , J . Let
Ot = (O1t, (O0tj : j)) be the total observation consisting of a case and J con-
trols.

Given a function O∗ → D(O∗), define

Dq0(t, Ot) ≡ q0(t)D(O1t) + q̄0(t)
1

J

J∑
j=1

D(O0tj),

where

q0(t) ≡ P0(dY (t) = 1)

q̄0(t) ≡ P0(dY (t) = 0).

We have
E0Dq0(t, Ot) = E∗0D(O∗).

Thus, given an estimating function D(O∗ | ψ) =
∑
tR(t)D(t, O∗ | ψ) for

the parameter ψ∗0 based on sampling from P ∗0 , an estimating equation for the
total sample from the actual biased sampling data generating distribution P0

can now be constructed as

0 =
∑
t

n(t)∑
i=1

q0(t)D(O1ti | ψ) + q̄0(t)
1

J

J∑
j=1

D(O0tji | ψ),

q0(t) = P (dY (t) = 1) and q̄0(t) = P (dY (t) = 0) = 1− q0(t). If the estimating
function is indexed by nuisance parameters, then these need to be estimated.

If there is censoring, then, even if censoring is independent, q0(t) is also
a function of the censoring mechanism for the prospective data structure O∗,
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which might be viewed as a disadvantage of such weights. Again, we note that
the case-control weighting requires knowing these marginal incidence prob-
abilities q0(t) across all time points t to which one applies the case control
sampling.

Matched case-control incidence density sampling. Since the weights
of our lemmas are directly implied by our case-control weights used in this
article, it is also clear how we can generalize the above lemmas to matched
case-control incidence density sampling in which one matches the controls by
also conditioning on a matching variable being equal to the matching variable
of the case.

An example: Estimation of conditional hazards based on incidence
density case-control sampling. Consider a target population of individ-
uals, and suppose that the data structure O∗ on a sampled individual consists
of baseline covariates W , a treatment variable A, and a right-censored sur-
vival time T , so that O∗ = (W,A, T̃ = min(T,C),∆ = I(T̃ = T ). Suppose
we are concerned with estimation of an intensity E(dY (t) | F̄ (t), A,W ) of the
counting process Y (t) = I(T̃ ≤ t,∆ = 1) w.r.t to history F̄ (t), A,W , where
F̄ (t) represents the failure and censoring history up till time t. If censor-
ing is conditionally independent of T given A,W , then this intensity equals
I(T̃ ≥ t)E(I(T ∈ dt) | T ≥ t, A,W ), that is, it equals the conditional haz-
ard of T , given A,W . It is common to assume a Cox-proportional hazards
or logistic regression model, depending on T being continuous (or finely dis-
crete) or discrete. For the sake of illustration, let’s consider a parametric
model αβ(t | F̄ (t), A,W ) for this intensity E(dY (t) | F̄ (t), A,W ) indexed by
a finite dimensional parameter β. Under sampling from O∗ it is known how
to construct a good estimator of β0. In particular one can apply maximum
likelihood estimation where the likelihood for a single observation O∗ is given
by

∏
t Pβ(dY (t) | W,A, F̄ (t)) in which

Pβ(dY (t) | W,A, F̄ (t)) =
αβ(t | W,A, F̄ (t))dY (t)(1− αβ(dY (t) | W,A, F̄ (t))1−dY (t)

represents the Bernoulli likelihood corresponding with the model αβ. Let
R(t)Dβ(t, dY (t),W,A, F̄ (t)) be defined as t-specific term R(t) logPβ(dY (t) |
W,A, F̄ (t)) of the log-likelihood

∑
tR(t) logPβ(dY (t) | W,A, F̄ (t)) of O∗.

Consider now a case-control incidence density sampling design in which
at time t one samples a case from the conditional distribution of O∗, given
that dY (t) = 1, R(t) = 1, and one or more controls from the conditional
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distribution of O∗, given that dY (t) = 0, R(t) = 1. Let Ot = (O1t, (O0tj : j))
denote the coupled case and control observations. As above, let n(t) denote
the number of such observations one samples at time t: Oti, i = 1, . . . , n(t).
For notational convenience, let’s assume that one samples a single control for
each case: i.e., J = 1. As case-control weighted log-likelihood, augmented
with the control observation contributions for later time points, we obtain:

Ln(β) =
∑
t

n(t)∑
i=1

q0(t)Dβ(t, 1,W1ti, A1ti, F̄1ti(t))

+q̄0(t)Dβ(t, 0,W0ti, A0ti, F̄0ti(t))

+
∑
t

n(t)∑
i=1

∑
s>t

R(s)Dβ(s, 0,W0ti, A0ti, F̄0ti(s)).

The time-specific case-control weights are q0(t) = P (T̃ = t,∆ = 1 | T̃ ≥ t)
and q̄0(t) = 1− q0(t). If censoring C is independent of T , then q0(t) = P (T =
t | T ≥ t) is the marginal hazard of T . One can now apply standard maximum
likelihood estimation to this log-likelihood, which can be carried out with
standard software.

This case-control weighted log-likelihood can also be written down for a
semi-parametric Cox-proportional hazards model, and, again, the correspond-
ing maximum likelihood estimator can be found by using standard maximum
likelihood estimation software developed for fitting a Cox-model based on
prospective sampling.

Finally, in an anologue fashion we can now obtain case-control weighted
targeted maximum likelihood estimators of particular parameters of this in-
tensity such as marginal causal effects of A on T , but we reserve this for future
work.

Appendix: Tangent space results proving case-

control weighted canonical gradient of prospec-

tive sampling model equals canonical gradient.

Our results in this section show that the case-control weighted canonical
gradient for the prospective sampling model M∗ yields the canonical gra-
dient for the parameter of interest Ψ in the actual case-control sampling
model. These results rely on the following assumption. The (typically very
large/semiparametric) model M∗ corresponds with (i.e., equals the intersec-
tion of) separate models for P ∗0 (W,A | Y = δ) for δ ∈ {0, 1} for case-control
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design I, and, for case-control design II,M∗ corresponds with (i.e., equals the
intersection of) separate models for P ∗0 (W,A | Y = δ,M = m) for δ ∈ {0, 1}
and m varying over the support of the matching variable M . As a consequence
of this canonical gradient representation our proposed case-control weighted
targeted maximum likelihood estimator, involving selecting estimators of Q∗0
and g∗0, under appropriate regularity conditions guaranteeing the wished con-
vergence to a normal limit distribution, is efficient if both of these estimators
are consistent, and remains consistent if one of these estimators is consistent.

The results are stated in an incremental fashion thereby building up the
proof of the final wished result. As a consequence, most stated results do not
require a proof but can be straightforwardly verified.

Tangent space for case-control design I. We start out with presenting
the tangent space for case-control design I.

Theorem 8 (Tangent space for case-control design I) Consider case-
control design I and the independence model M described by (3),

dP (P ∗)(O) = P ∗(W1, A1 | Y = 1)
∏
j

P ∗(W j
2 , A

j
2 | Y = 0),

and let T ∗(P ∗) denote the tangent space at P ∗ in model M∗. The tangent
space at P (P ∗) in model M is given by

TI(P
∗) ={

S∗(W1, A1, 1)− E∗(S∗ | Y = 1) +
∑
j{S∗(W j

2 , A
j
2, 0)− E∗(S∗ | Y = 0)}

}
,

where S∗ varies across T ∗(P ∗).

Since this tangent space is expressed in terms of the tangent space of the
underlying model M∗ we now need to understand the tangent space of M∗.
The following theorem fully characterizes this tangent space for models M∗

described by separate models for P (W,A | Y = δ) for δ ∈ {0, 1}.

Theorem 9 (Tangent space for underlying model M∗) Consider the
data structure O∗ = (W,A, Y ) and model M∗ for its probability distribution.
We make the following assumption onM∗: LetM∗ = ∩δM∗(δ), whereM∗(δ)
is a model for P ∗0 (W,A | Y = δ) indexed by (possibly infinite dimensional)
parameter θ(δ), for each δ ∈ {0, 1}, and assume that θ(δ) for different choices
of δ are variation independent parameters.

48

The International Journal of Biostatistics, Vol. 4 [2008], Iss. 1, Art. 17

DOI: 10.2202/1557-4679.1114



If the marginal distribution q0(δ) = P (Y = δ) of Y is known in modelM∗,
then, we can represent T ∗(P ∗) as

T ∗(P ∗) =
∑
δ

T ∗δ (P ∗), (6)

where the latter sum-space is an orthogonal sum, and T ∗δ (P ∗) denotes the tan-
gent space generated by θ(δ), which can be represented as

T ∗δ (P ∗) = {I(Y = δ) (S∗(W,A, δ)− E(S∗ | Y )) : S∗ ∈ T ∗(P ∗)} .

If q0(δ) is unknown and modelled, then

T ∗(P ∗) = L2
0(P ∗Y )⊕

∑
δ

T ∗δ (P ∗), (7)

where L2
0(P ∗Y ) is the Hilbert space of functions of Y with mean zero and finite

variance w.r.t. P ∗. We also note that for a S∗ ∈ L2
0(P ∗), the projection of S∗

on T ∗δ (P ∗) is given by

Π(S∗ | T ∗δ (P ∗)) = I(Y = δ) (S∗(W,A, δ)− E(S∗ | Y )) ,

and the projection of S∗ onto T ∗(P ∗) described by the orthogonal decomposition
(7) is given by

S∗ = E(S∗ | Y ) +
∑
δ

Π(S∗ | T ∗δ (P ∗)).

Tangent space for case-control design II. We now present the tangent
space for matched case-control design II.

Theorem 10 (Tangent space for case-control design II) Consider case-
control design II and the independence model M described by (4),

dP (P ∗)(O) = P ∗(M1)P ∗(A1,W1 | Y = 1,M1)
∏
j

P ∗(Aj2,W
j
2 | Y = 0,M1),

and let T ∗(P ∗) denote the tangent space at P ∗ in model M∗. The tangent
space at P (P ∗) in model M is given by

TII(P ∗) = L2
0(M1)⊕{

S∗(Z1, 1)− E∗(S∗ |M = M1, Y = 1) +
∑
j{S∗(Z

j
2 , 0)− E∗(S∗ |M = M1, Y = 0)}

}
,

where S∗ varies across T ∗(P ∗), Z1 = (M1,W1, A1) and Zj
2 = (M1,W

j
2 , A

j
2).
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Since this tangent space is characterized in terms of the underlying tangent
space T ∗(P ∗) for modelM∗ we now fully characterize the latter tangent space
for models M∗ described by separate models for P ∗(W,A | M = m,Y = δ)
for the different values of m and δ.

Theorem 11 (Tangent space for model M∗ including matching vari-
able) We make the following assumption on the model M∗: Suppose that
M∗ = ∩m,δM∗(m, δ), where M∗(m, δ) is a model for P ∗0 (W,A | M = m,Y =
δ) indexed by (e.g., infinite dimensional) parameter θ(m, δ), for each δ ∈ {0, 1}
and possible outcome m for M , and it is assumed that θ(m, δ) are variation
independent parameters.

If q0(δ | m) = P (Y = δ | M = m) is known and the marginal distribution
of M is unspecified in model M∗, then, we can represent T ∗(P ∗) as

T ∗(P ∗) = L2
0(M)⊕

∑
m,δ

T ∗m,δ(P
∗), (8)

where the latter sum-space is an orthogonal sum, and T ∗m,δ(P
∗) denotes the

tangent space generated by θ(m, δ), which can be represented as

T ∗m,δ(P
∗) = {I(M = m,Y = δ) (S∗(m,W,A, δ)− E(S∗ |M,Y )) : S∗ ∈ T ∗(P ∗)} .

If the conditional distribution q0(δ | m) of Y , given M , is unknown and
modeled, then

T ∗(P ∗) = L2
0(P ∗M)⊕ T ∗(q0)⊕

∑
m,δ

T ∗m,δ(P
∗), (9)

where T ∗(q0) denotes the tangent space generated by the scores of the param-
eters of q0(δ | m). We also note that for a S∗ ∈ L2

0(P ∗), the projection onto
T ∗m,δ(P

∗) is given by

Π(S∗ | T ∗m,δ(P ∗)) = I(M = m,Y = δ) (S∗(m,W,A, δ)− E(S∗ |M,Y )) ,

and, under the assumption that q0(δ | m) is unspecified, the projection of S∗

onto T ∗(P ∗) described by the orthogonal decomposition (9) is given by

S∗ = E(S∗ |M) + {E(S∗ | Y,M)− E(S∗ |M)}+
∑
m,δ

Π(S∗ | T ∗m,δ(P ∗)).

50

The International Journal of Biostatistics, Vol. 4 [2008], Iss. 1, Art. 17

DOI: 10.2202/1557-4679.1114



Special score for case-control design I. We will later show that the case-
control weighted canonical gradient is in the tangent space TI(P

∗) by selecting
a special choice S∗ ∈ T ∗(P ∗) defined in the next result. The following result
shows that this special choice is indeed a member of T ∗(P ∗).

Result 1 Let O∗ = (W,A, Y ) ∼ P ∗0 ∈ M∗ and assume that the tangent
space T ∗(P ∗) at P ∗ ∈ M∗ is given by orthogonal decomposition (7). Given a
D∗ ∈ T ∗(P ∗), we have

S∗(W,A, Y ) = q0(Y ) {D∗(W,A, Y )− E∗(D∗ | Y )}
∈ T ∗(P ∗).

The same applies if q0(0) is replaced by q0(0)/J .

Proof. Firstly, we note that for each δ, Π(D∗ | Tδ(P ∗)) ∈ T ∗(P ∗), and by
linearity of the space Tδ(P

∗) (i.e., closure under multiplication by scalar) we
have that q0(δ)Π(D∗ | T ∗δ (P ∗)) ∈ T ∗(P ∗). By linearity of T ∗(P ∗), it follows
thus that ∑

δ q0(δ)Π(D∗ | T ∗δ (P ∗))
=
∑
δ q0(δ)I(Y = δ) (D∗(W,A, δ)− E∗(D∗ | Y ))

= q0(Y ) (D∗(W,A, Y )− E∗(D∗ | Y ))
= S∗(W,A, Y )
∈ T ∗(P ∗).

This completes the proof. 2

Special score for case-control design II. For case-control design II, we
need a similar result.

Result 2 Consider the model O∗ = (M,W,A, Y ) ∼ P ∗0 ∈M∗ and let T ∗(P ∗)
denote the tangent space at P ∗ ∈ M∗ and assume it satisfies orthogonal de-
composition (9). Given a D∗ ∈ T ∗(P ∗), we have

S∗m(M,W,A, Y ) ≡ I(M = m)q0(Y | m) {D∗(m,W,A, Y )− E∗(D∗ |M,Y )}
∈ T ∗(P ∗). (10)

The same result applies if we replace q0(0 | m) by q0(0 | m)/J .
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Proof. Firstly, we note that for each m, δ, Π(D∗ | Tm,δ(P ∗)) ∈ T ∗(P ∗), and
by linearity of the space Tm,δ(P

∗) (i.e., closure under multiplication by scalar)
we have that q0(δ | m)Π(D∗ | T ∗m,δ(P ∗)) ∈ T ∗(P ∗). By linearity of T ∗(P ∗), it
follows thus that∑

δ q0(δ | m)Π(D∗ | T ∗m,δ(P ∗))
=
∑
δ q0(δ | m)I(M = m,Y = δ) (D∗(m,W,A, δ)− E∗(D∗ |M,Y ))

= I(M = m)q0(Y | m) (D∗(m,W,A, Y )− E∗(D∗ |M,Y ))
= S∗m(M,W,A, Y )
∈ T ∗(P ∗).

This completes the proof. 2

Case-control weighted score equals a score, case-control design I.
We are now ready to establish our wished results showing that the case-control
weighted canonical gradient of the prospective sampling model is an element
of the tangent space for the observed data model M.

Theorem 12 (Case-control weighted score is a score, Design I) Con-
sider case-control design I, its independence model M described by (3), and
assume the tangent space T ∗(P ∗) of M∗ at P ∗ satisfies the orthogonal decom-
position (7).

If D∗ ∈ T ∗(P ∗), then

Dq0(O) = q0D
∗(W1, A1, 1) +

(1− q0)

J

∑
j

D∗(W j
2 , A

j
2, 0) ∈ TI(P ∗).

Specifically, if we set

S∗(W,A, Y ) = q0(Y ) {D∗(W,A, Y )− E∗(D∗ | Y )} ∈ T ∗(P ∗),

where q0(Y ) = I(Y = 1)q0 + I(Y = 0)(1− q0)/J , then

Dq0(O) = S∗(W1, A1, 1)− E∗(S∗(W,A, Y ) | Y = 1)

+
∑
j

{S∗(W j
2 , A

j
2, 0)− E∗(S∗(W,A, Y ) | Y = 0)}.

(Here, we use the fact for J = 1, E∗(S∗ | Y = 1) + E∗(S∗ | Y = 0) = 0.)

This establishes the wished corollary stating that the case-control weighted
canonical gradient for the prospective sampling model yields the canonical
gradient for the case-control sampling model M.
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Corollary 1 Consider case-control design I, its independence model M de-
scribed by (3), and assume the tangent space T ∗(P ∗) of M∗ at P ∗ satisfies the
orthogonal decomposition (7).

Suppose that D∗(P ∗) is the canonical gradient of Ψ∗ : M∗ → IRdΨ∗, and
let Ψ :M→ IRd at P (P ∗) ∈M, satisfy Ψ(P (P ∗)) = Ψ∗(P ∗).

Assume that the corresponding case-control weighted Dq0 (satisfies the reg-
ularity conditions such that it) is a gradient for Ψ at P (P ∗). Then Dq0 is the
canonical gradient of Ψ at P (P ∗).

Case-control weighted score is a score, Case-Control Design II. We
establish the same type result for case-control design II.

Theorem 13 (Case-control weighted score is a score, Design II) Con-
sider case-control design II, its independence model M described by (4), and
assume the tangent space T ∗(P ∗) of M∗ at P ∗ satisfies the orthogonal decom-
position (9).

For any D∗ ∈ L2(P ∗), we have

Dq0,q̄0(O) ≡ q0D
∗(M1,W1, A1, 1) + q̄0(M1)

1

J

∑
j

D∗(M1,W
j
2 , A

j
2, 0)

=
∑
m

q0

q0(1 | m)
I(M1 = m)D∗m,q0 ,

where

D∗m,q0(O) ≡ q0(1 | m)D∗(m,W1, A1, 1) +
q0(0 | m)

J
D∗(m,W j

2 , A
j
2, 0).

For each m, and D∗ ∈ T ∗(P ∗), we have

I(M1 = m)D∗m,q0 ∈ TII(P
∗)

so that it follows that
Dq0,q̄0(P

∗) ∈ TII(P ∗).
Let q0J(δ | m) = q0(1 | m)δ + (1− δ)q0(0 | m)/J . Specifically, if we set

S∗m(M,W,A, Y ) = I(M = m)q0J(Y | m) {D∗(m,W,A, Y )− E∗(D∗ |M,Y )} ,

which is an element of T ∗(P ∗) by (10) above, then

I(M1 = m)D∗m,q0(O) = S∗m(M1,W1, A1, 1)− E∗(S∗m |M,Y = 1)

+
∑
j

{S∗m(M1,W
j
2 , A

j
2, 0)− E(S∗ |M,Y = 0)}

∈ TII(P
∗).
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Here we use that for any D∗ ∈ L2
0(P ∗),

q0(1 | m)E∗(D∗ |M = m,Y = 1) + q0(0 | m)E(D∗ |M = m,Y = 0) = 0.

This gives us the wished result.

Corollary 2 (Case-control weighted canonical gradient is a canonical
gradient, Design II) Consider case-control design II, its independence model
M described by (4), and assume the tangent space T ∗(P ∗) ofM∗ at P ∗ satisfies
the orthogonal decomposition (9).

If D∗(P ∗) is the canonical gradient of Ψ∗ :M∗ → IRd at P ∗, then

Dq0,q̄0 ≡
∑
m

q0

q0(1 | m)
I(M1 = m)D∗m,q0

∈ TII(P
∗).

Thus, under the conditions for which which Dq0,q̄0(P
∗) is a gradient of

Ψ : M → IRd at P (P ∗) ∈ M, satisfying Ψ(P (P ∗)) = Ψ∗(P ∗) for specified
parameter Ψ∗ : M∗ → IRd, we also have that Dq0,q̄0(P

∗) is the canonical
gradient of Ψ at P (P ∗).
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