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Abstract

Standard statistical analyses of observational data often exclude valuable information from
individuals with incomplete measurements. This may lead to biased estimates of the treatment
effect and loss of precision. The issue of missing data for inverse probability of treatment
weighted estimation of marginal structural models (MSMs) has often been addressed, though little
has been done to compare different missing data techniques in this relatively new method of
analysis. We propose a method for systematically dealing with missingness in MSMs by treating
missingness as a cause for censoring and weighting subjects by the inverse probability of
missingness. We developed a series of simulations to systematically compare the effect of using
case deletion, our inverse weighting approach, and multiple imputation in a MSM when there is
missing information on an important confounder. We found that multiple imputation was slightly
less biased and considerably less variable than the inverse probability approach. Thus, the lower
variability achieved through multiple imputation makes it desirable in most practical cases where
the missing data are strongly predicted by the available data. Inverse probability weighting is,
however, a superior alternative to naive approaches such as complete-case analysis.
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1 INTRODUCTION

In observational studies, estimation of the causal effect of a treatment may
be biased either because of confounding, selection bias, or because of missing
information. In longitudinal studies with a time-varying exposure, this is
further complicated as time-varying covariates frequently act as both con-
founders and intermediate variables, and missing information is likely.

Marginal structural models (MSMs) have been proposed as an unbiased
alternative to traditional regression models for estimating the causal effect of
a time-varying exposure in the presence of time-varying confounding (Robins
et al., 2000). MSMs are particularly useful for the analysis of observational
drug data (Robins et al., 2000; Hernán et al., 2000). However, more com-
monly than not, some individuals in longitudinal studies have missing covari-
ate information, and omission of an important variable from the probability
of treatment model can lead to biased inference (Brumback et al., 2004). In
general, inappropriate handling of the missing data in the analysis can lead
to incorrect conclusions, either because of biased treatment effect estimates
or reduced power (or both). Recently, a survey of the handling of missing
data in the analyses of 63 randomized trials published in general medical
journals found that 65% used complete-case analysis, while fewer than 4%
used a more sophisticated approach such as multiple imputation (Wood et al.,
2004).

Multiple imputation and inverse probability weighting are two approaches
to handling missing data that provide unbiased estimates under relatively
weak assumptions. A recent comparison of the methods in a cross-sectional
setting found the performance of these methods to be similar, with multiple
imputation only slightly more efficient than the inverse weighting (Carpenter
et al., 2006).

We propose a method of accounting for missing confounding data that
respects the assumed causal structure of the problem using inverse weight-
ing. We use a series of Monte Carlo simulations on a problem of moderate
complexity to compare different missing data techniques in MSMs. More
specifically, we investigate the impact of varying levels of missingness of a
confounding variable, and of different assumptions regarding the nature of
missingness under three missing data strategies: complete-case analysis, our
inverse probability weighting method, and multiple imputation. We allow
missing data only in the confounding variable, as previous research has shown
that this is the only variable without which the treatment model in the MSM
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cannot be estimated without introducing bias in the estimate of treatment ef-
fect (Lefebvre et al., 2008). We consider only scenarios where time-dependent
confounding is observed, as this is the context in which MSMs or other related
approaches are necessary (Robins et al., 2000; Petersen et al., 2006).

This paper is organized as follows: In Section 2 we develop the problem
and proposed approaches for missing data. MSMs are introduced in Section
2.1 and missing data mechanisms and strategies for dealing with missing
information in analyses are discussed in Sections 2.2-2.4. Details of the sim-
ulation study can be found in Section 3, with results presented in Section
4. We applied the three methods considered in Section 3, namely complete-
case, inverse probability weighting, and multiple imputation, to examine the
effects of each method in a practical setting in Section 5. In the example, the
effect of beta blocker use following an acute myocardial infarction on mor-
tality is investigated using the General Practice Research Database. Section
6 discusses and concludes.

2 MARGINAL STRUCTURAL MODELS

AND MISSING DATA

2.1 Marginal structural models

A marginal structural model (Robins et al., 2000) is a model for the marginal
expectation of a counterfactual outcome under a specified static treatment
regime. For example, if Y is a continuous outcome and A is a time-varying
treatment, then an MSM is specified as

E[Ya] = f(a) (1)

where a refers to the history of treatment A and f is a defined function, typ-
ically a linear combination of components of a. To estimate the parameters
of a MSM, we first fit a model for the probability of receiving treatment.
The treatment model is then used to weight individuals by the inverse prob-
ability of receiving the observed treatment (given history) in an unadjusted
model for the outcome as a function of treatment. Stabilization of the inverse
probability of treatment weights is commonly used to reduce the variability
of MSM estimates that can arise when some combinations of covariates are
rare (Sturmer et al., 2005). If the treatment model is correctly specified, the
estimate of the marginal effect of treatment has a causal interpretation.
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As with all models for observational data, MSMs require strong assump-
tions to be appropriately specified (Robins et al., 2000). Specifically, we
require no unmeasured confounding (sequential randomization), time order-
ing (exposure precedes outcome) and consistency (Mortimer et al., 2005;
Brumback et al., 2004). Also, we require that all treatments are possible
(i.e., the probability of receiving treatment is neither zero nor one) given
the covariates (the experimental treatment assumption) (Robins et al., 2000;
Mortimer et al., 2005).

2.2 Missing data mechanisms

To draw meaningful inference from a study with missing data requires as-
sumptions regarding the nature of the missingness. The strongest assump-
tion that could be made is that the data are missing completely at random
(MCAR), meaning that the probability of an observation being missing does
not depend on any variables, observed or otherwise (Little and Rubin, 2002).
A weaker assumption is that the data are missing at random (MAR); this
requires that the probability of an observation being missing depends on ob-
served covariates only, but that – conditional on the observed covariates –
the probability does not depend on the true value of the unobserved vari-
able (Little and Rubin, 2002). When the probability of an observation being
missing does depend on its true, unobserved value or on the values of some
other unmeasured variables, the data are said to be not missing at random
(NMAR) or informatively missing.

As noted above, a common approach to missing information is to use
only individuals with complete data (“complete-case” analysis). Complete-
case analysis and mean imputation only produce unbiased parameter esti-
mates if data are MCAR (Little and Rubin, 2002). Even when data are
MCAR, complete-case analysis uses the available information inefficiently,
which reduces power. Single imputation by the mean or the last observed
measurement, on the other hand, produce standard errors that underesti-
mate the variability of the estimates as they do not take into account the
missing information.

To clarify the issues under study, assume that the data were generated
from a structure as described by the directed acyclic graphs (DAGs) in Fig-
ures 1 and 2. A DAG provides a visual representation of the causal structure
of a dataset, where an arrow (directed edge) from one variable (node) into
another indicates that the first variable causes changes in the second (Pearl,

3

Moodie et al.: MSMs and Missing Data Techniques: A Comparative Study



1995). DAGs are acyclic, that is, one cannot begin at a variable and follow
the arrows through the graph to return to that variable; that is, information
flows in one direction rather than in cycles. DAGs encode the conditional
dependencies between variables and may be used to determine the variables
on which to condition in order to achieve unbiased effect estimation (see, for
example Greenland et al. (1999); VanderWeele and Robins (2007)).

LC (0) LC (1) A(1)A(0) Y

V(0)

M(1)

LC = Confounder 
A  = Treatment
Y  = Outcome

Figure 1: Directed acyclic graph (DAG) of the complete data under the
missing completely at random assumption.

Specifically, we assume a simple longitudinal setting in which there are
two discrete time points, T = 0, 1, and we consider a single confounding
variable LC(T ), treatment A(T ), and response Y . We use V (0) to de-
note the predictor of the outcome, and M(1) to denote an indicator of
missingness for the confounder LC(1). Missing data are considered only
in the confounding variable LC(1). We therefore consider the sequence
(LC(0), A(0), V (0),M(1), LC(1), A(1), Y ). Figure 1 describes the situation
when LC(1) is MCAR; that is, M(1) is external to the causal system, and
subjects with missing data can be seen as a random sub-sample of the data.
Figure 2 describes the MAR case; here, missingness at time 1 is caused by
V (0), which is also a cause of outcome, and by A(0). The data generation for
the NMAR situation may be conceived as identical to the MAR case (Figure
2), but V (0) is now unmeasured. This is a simplification of the more general
missing data problem; however, in the context of causal inference it is helpful
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LC (0) LC (1) A(1)A(0) Y

V(0)

M(1)

LC = Confounder 
A  = Treatment
Y  = Outcome

Figure 2: Directed acyclic graph (DAG) of the complete data under the miss-
ing at random (V (0) observed) and the not missing at random assumptions
(V (0) unobserved).

to assume a causal structure for the missingness. This causal structure can
be thought of as a form of selection bias (Hernán et al., 2004).

2.3 Missing data techniques: inverse probability
weighting

Inverse probability of missingness weighting is not a new approach to miss-
ing data. However, it is only relatively recently that improvements to its
efficiency (Robins and Rotnitzky, 1992; Robins et al., 1994) have brought
it greater attention and utility. This technique is particularly natural to
consider in a MSM setting, as it is similar to the weighting by the inverse
probability of observed treatment that is performed when estimating param-
eters of MSMs.

In a simple regression setting, inverse probability weighting proceeds by
calculating the probability of having complete data for each individual in the
study and then performing a regression where the individual contributions
are weighted by the inverse probability of having complete data (conditional
on covariates). The probability that an individual observation is complete is
typically estimated via a logistic regression model, which requires the data
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to be MCAR or MAR.
Extending this idea to the longitudinal setting of MSMs, the probability of

having complete data up to a given interval is calculated for each interval for
each person, and a full weight is calculated, where the full weight is composed
of the product of two weights, one which takes into account the probability
of receiving the observed treatment and the other which accounts for the
probability of having missing data. This approach is essentially the same as
the use of inverse probability of censoring weighting considered, for example,
by Hernán et al. (2000) and others. (See Bodnar et al. (2004) for a clear
illustration of the technique in a two-interval example where information is
lost due to drop-out or censoring.) These weights are then used in the MSM
to, at least heuristically, attempt to approximate the results of an unblinded
randomized controlled trial with no missing information (Cole et al., 2003;
Hernán et al., 2001). This method also bears close analogy to an approach
to dynamic treatment regimes using MSMs that was recently proposed by
Hernán et al. (2006). To compare two dynamic regimes using MSMs, Hernán
et al. proposed censoring subjects when they deviate from one of the two
regimes. Our approach treats missing observations as deviating from one of
the regimes under study, and censors at that time point.

We considered a second approach for the NMAR situation. When it
was assumed that V (0) was unmeasured but that V (0) caused changes in
Y , we used Y in the inverse probability weighting models as a proxy for
the unmeasured V (0). This approach may seem counter-intuitive, in that
Y is being used to predict A although Y follows A temporally and causally;
however, the outcome is frequently used to predict other variables in multiple
imputation (Moons et al., 2006). Further, the approach seems less unusual
when Y is thought of as a surrogate for (or strong correlate of) V (0).

2.4 Missing data techniques: multiple imputation

Multiple imputation has been recognized as an attractive method for han-
dling missing data, and has become more practical in the last several years as
functions to perform the imputation in both cross-sectional and longitudinal
settings have become more widely available in statistical packages (Schafer,
1999). Multiple imputation proceeds by generating m complete data-sets
where missing values in the incomplete, observed data-set are filled, typi-
cally via a regression method. Each of the m data-sets is then analyzed
using the same model and estimation method. The estimates from the m
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analyses are then combined to produce a single estimate that incorporates
the usual sampling variability as well as the variability due to the missing
data (Rubin, 2004). Conventional wisdom suggests taking m = 5 (see, for
example, Schafer (1999)), however with the increased power and speed of
computers, there is often little to be lost by considering a larger number of
completed data-sets.

Multiple imputation does not require data to be MAR (Schafer, 1999),
as the imputation phase of the analysis is distinct from the analysis phase.
However if data are NMAR, considerable subject-area knowledge is required
to create a reasonable model for the distribution of the missing variables.
Provided the model used to impute the missing values is correctly speci-
fied, estimates from an analysis using multiple imputation are consistent.
Herein lies the greatest challenge of multiple imputation: the specification of
the model to use for the data augmentation may be difficult, particularly if
the data contain missing covariates of different types (e.g., Normal, skewed,
discrete and so on). Much of the standard software for imputation is not
well-suited to handle discrete data.

Other more sophisticated approaches to missing data such as the EM al-
gorithm have many of the desirable properties of multiple imputation and
inverse probability weighting (Dempster et al., 1977). However, these may
be difficult to implement under general distributional assumptions for the
observed data. Multiple imputation and inverse probability of missingness
weighting are both very flexible can be used for virtually any statistical prob-
lem where MAR may be assumed.

3 SIMULATION STUDY

We developed a simulation study to investigate complete-case analysis, in-
verse probability weighting, and multiple imputation in MSMs over increas-
ingly problematic scenarios of missingness, examining both the degree of
missingness and each of the three missingness mechanisms.

Marginal structural models find their strengths in the analysis of repeated
measures data, where variables may introduce confounding and be interme-
diate variables. When variables act in this dual fashion, the use of standard
regression models may cause considerable bias in the estimated treatment
effect (Blais et al., 1996).

Sample sizes of 250, 500, and 1000 were used. We consider analyses
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where 10, 20, and 50% of the data were removed assuming MCAR, MAR,
and NMAR. Thus, the three methods of analysis were employed for the
three different sample sizes, in each of the nine possible degree and type of
missingness pairs.

All simulations were performed in R version 2.31. Multiple imputation
was carried out using the mice package (Van Buuren and Oudshoorn, 2000).

Simulation: data generating models
For the MCAR simulations, data were generated according to the causal
structure in Figure 1 using the following conditional models:

LC(0) ∼ N (10, 1) (2)

A(0) ∼ Bernoulli(pA(0)) (3)

V (0) ∼ N (3, 1) (4)

LC(1) ∼ N (LC(0) + β0A(0), 1) (5)

A(1) ∼ Bernoulli(pA(1)) (6)

Y ∼ N (LC(1) + β1A(1) + 6V (0), 1) (7)

where the treatment effect parameters are β0 = −7.5, β1 = −5.1; the treat-
ment probabilities are pA(0) = expit(−2.7+0.25LC(0)), pA(1) = expit(−2.7+
.25LC(1) + 0.1A(0)). The missingness mechanism is completely at random,
so that

M(1) ∼ Bernoulli(pNA)

with the fraction of missing information given by pNA ∈ {0.1, 0.2, 0.5}.
For the MAR and NMAR simulations, data were generated according to

the causal structure in Figure 2 using the conditional models (2)-(7), with
the missingness mechanism now given by

pNA = 1− expit(α− V (0) + A(0))

for α ∈ {5.10, 4.15, 2.45}; the values of α were selected to give approximately
10, 20, and 50% missing data, respectively. In the NMAR setting, we assume
V (0) is unavailable to the analyst.

Simulation: data analysis models
The MSM requires models for the treatment mechanism at each time interval.
For both MCAR and MAR simulations, the following mean models were

8

The International Journal of Biostatistics, Vol. 4 [2008], Iss. 1, Art. 13

DOI: 10.2202/1557-4679.1106



assumed in a pair of logistic regressions: (i) A(0) depends on LC(0) and
(ii) A(1) depends on LC(0), A(0), V (0), and LC(1). Note that the model
for A(1) includes an additional variable, V (0), that is a risk factor for the
outcome but is not a cause of the treatment being modeled. This model
conditions on the available past information and is therefore both a natural
and a useful model to consider, as the inclusion of predictors of the outcome in
the treatment model improves the accuracy of the treatment effect estimates
(Lefebvre et al., 2008).

The inverse probability weighting approach to missing data for the MSM
further requires a model for the missingness mechanism. In the MCAR and
MAR settings, inverse probability weighting models the missingness mecha-
nism via a logistic regression of M(1) on LC(0), A(0), and V (0).

In the NMAR setting, where V (0) is not available to the analyst, the
most natural model to consider is that which conditions only on the past,
that is, a logistic model regressing M(1) on LC(0) and A(0). However, if
knowledge of the causal structure (the DAG) was available, the analyst might
attempt to reduce the bias induced by data being missing not at random
by including variables that are correlated with the missing covariate. For
example, in examining Figure 2, we observe that V (0) predicts Y . The
response Y could, therefore, be considered a surrogate for V (0). Simulations
in which the probability of having complete data is fit as a logistic regression
of M(1) on LC(0), A(0), and Y were also therefore considered in an additional
set of NMAR simulations.

In contrast to the inverse probability weighting approach, multiple im-
putation requires the analyst to specify which variables are to be used as
regressors in the imputation model. In cross-sectional settings, current re-
search (Moons et al., 2006) for multiple imputation suggests using all avail-
able data (including the response) to predict the missing values. We take
this approach, using LC(0), A(0), V (0), A(1), and Y to impute LC(1). In
the NMAR setting, LC(1) is imputed using a linear model which depends on
LC(0), A(0), A(1), and Y .

4 SIMULATION RESULTS

In all tables, the bias (average deviation from the known, data-generating
parameter value over the 1000 simulations) and the root mean squared error
(rMSE, or the square root of the sum of the variance of the estimates over
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the 1000 simulations and the squared bias) of the treatment effect estimates
at both time points are used to summarize the performance of the three
approaches to missing data.

Table 1 presents the results from the MCAR case. In this and subsequent
tables, IPW-Y refers to the inverse probability weighting approach using Y
in the weighting model. We note that all methods give essentially unbiased
results; the rMSE is lowest for multiple imputation, with the other methods
providing similar, slightly larger rMSEs.

Table 2 presents the results from the MAR case. Not surprisingly, the
complete-case results show significant bias and larger rMSE than the other
approaches. Inverse probability weighting gives slightly larger bias and rMSE
than does multiple imputation, which is essentially unbiased.

Table 3 presents the results from the NMAR case. The complete-case
results show significant bias in the estimate of the treatment effect of A(0),
but relatively little bias in the estimate of A(1). Multiple imputation is
essentially unbiased, and estimates are less variable than complete-case esti-
mates. Not surprisingly, inverse probability weighting – whose missingness
model is misspecified in that it does not include the (unobserved) predictor
of missingness V (0) – performs poorly. In fact, inverse probability weighting
estimates are comparable to complete-case estimates, demonstrating consid-
erable bias in the estimate of the treatment effect of A(0), which predicts
missingness, but little bias in the estimate of the effect of A(1). The bias of
treatment effect estimates that arises under NMAR settings using complete-
case analyses and inverse probability weighting is exaggerated in instances
where treatment predicts missingness. This observation is backed up by fur-
ther simulations in which missingness occurred in the second interval rather
than first and was predicted by A(1) in place of A(0) (results not shown).

We wished to further explore the possibility of achieving comparable
results using inverse probability weighting and multiple imputation under
NMAR. To that end, we performed another simulation using the same dis-
tributional assumptions as above, and included an additional variable, V ∗,
in the model which was simulated as a function of V (0):

V ∗ ∼ N (2 + .85V (0), 1).

See Figure 3. Table 4 presents the results from the NMAR case. Including
a surrogate for the unmeasured predictor of missingness that is external to

10

The International Journal of Biostatistics, Vol. 4 [2008], Iss. 1, Art. 13

DOI: 10.2202/1557-4679.1106



Table 1: Bias and root mean squared error (rMSE) of treatment effects es-
timated with full data (no missing values), a complete-case analysis (CC),
multiple imputation (MI), and inverse probability weighting (IPW) under a
missingness mechanism of data missing completely at random (MCAR). Sum-
maries based on 1000 simulated data-sets, for sample sizes n = 250, 500, 1000
and the fraction of missing data equal to 10, 20, or 50%.

n % NA Full data CC MI IPW
Bias rMSE Bias rMSE Bias rMSE Bias rMSE

A(0)
250 10 0.008 0.852 -0.005 0.893 0.008 0.850 -0.002 0.894

20 0.005 0.835 0.010 0.961 0.005 0.836 0.018 0.968
50 0.038 0.824 0.069 1.202 0.038 0.819 0.079 1.217

500 10 0.027 0.577 0.025 0.611 0.028 0.577 0.027 0.611
20 -0.020 0.568 -0.023 0.643 -0.019 0.566 -0.023 0.647
50 0.017 0.586 0.011 0.856 0.018 0.586 0.016 0.866

1000 10 0.011 0.412 0.007 0.438 0.012 0.411 0.008 0.438
20 0.005 0.407 0.008 0.454 0.005 0.408 0.011 0.457
50 -0.020 0.401 -0.025 0.564 -0.020 0.401 -0.027 0.571

A(1)
250 10 -0.032 0.556 -0.028 0.588 -0.035 0.556 -0.032 0.586

20 0.004 0.573 0.010 0.659 0.007 0.571 0.013 0.662
50 -0.025 0.568 -0.013 0.906 -0.022 0.565 -0.025 0.926

500 10 -0.001 0.363 0.003 0.376 -0.002 0.360 0.003 0.377
20 -0.007 0.373 -0.008 0.424 -0.007 0.370 -0.008 0.430
50 -0.007 0.372 -0.028 0.595 -0.002 0.379 -0.027 0.596

1000 10 0.000 0.253 -0.003 0.268 -0.002 0.253 -0.002 0.269
20 -0.012 0.243 -0.015 0.279 -0.014 0.243 -0.016 0.279
50 0.005 0.253 0.013 0.367 0.003 0.257 0.015 0.368
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Table 2: Bias and root mean squared error (rMSE) of treatment effects
estimated with a complete-case analysis (CC), multiple imputation (MI),
and inverse probability weighting (IPW) under a missingness mechanism of
data missing at random (MAR). Summaries based on 1000 simulated data-
sets, for sample sizes n = 250, 500, 1000 and the fraction of missing data
approximately equal to 10, 20, or 50%.

n % NA CC MI IPW
(mean) Bias rMSE Bias rMSE Bias rMSE

A(0)
250 9.9 0.413 0.949 0.003 0.834 0.011 0.963

20.1 0.666 1.094 0.007 0.826 0.022 1.033
50.0 1.035 1.545 0.015 0.834 0.203 1.746

500 10.0 0.422 0.749 0.004 0.606 0.001 0.679
20.2 0.674 0.898 0.012 0.557 0.033 0.701
50.0 1.048 1.328 0.000 0.569 0.061 1.314

1000 10.0 0.442 0.604 0.021 0.406 0.028 0.448
20.1 0.663 0.794 0.002 0.409 -0.001 0.526
50.0 1.003 1.140 -0.009 0.399 -0.014 0.913

A(1)
250 9.9 -0.003 0.626 0.008 0.592 0.020 0.670

20.1 -0.005 0.651 -0.001 0.583 0.021 0.763
50.0 -0.008 1.000 -0.019 0.635 0.081 1.480

500 10.0 0.013 0.393 0.009 0.375 0.023 0.418
20.2 -0.004 0.415 0.002 0.382 -0.011 0.501
50.0 -0.026 0.543 -0.011 0.370 0.005 0.983

1000 10.0 -0.001 0.254 -0.008 0.249 0.002 0.266
20.1 -0.016 0.266 -0.008 0.248 -0.005 0.319
50.0 -0.011 0.362 0.007 0.259 -0.010 0.742
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Table 3: Bias and root mean squared error (rMSE) of treatment effects
estimated with a complete-case analysis (CC), multiple imputation (MI),
inverse probability weighting (IPW), and inverse probability weighting using
response Y as a surrogate for the unobserved variable V (0) in the model for
missingness (IPW-Y ) under a missingness mechanism of data missing not at
random (NMAR). Summaries based on 1000 simulated data-sets, for sample
sizes n = 250, 500, 1000 and the fraction of missing data approximately equal
to 10, 20, or 50%.

n % NA CC MI IPW IPW-Y
Bias rMSE Bias rMSE Bias rMSE Bias rMSE

A(0)
250 10.0 0.418 0.969 0.004 0.856 0.425 0.972 0.186 0.943

20.0 0.635 1.145 -0.027 0.871 0.635 1.144 0.247 1.057
49.9 1.006 1.558 -0.007 0.890 1.001 1.557 0.387 1.704

500 10.0 0.462 0.784 0.032 0.611 0.464 0.786 0.228 0.709
20.2 0.649 0.920 -0.017 0.608 0.649 0.921 0.258 0.765
49.9 1.036 1.324 -0.006 0.608 1.041 1.325 0.450 1.242

1000 10.0 0.387 0.586 -0.019 0.429 0.386 0.586 0.141 0.478
20.2 0.672 0.823 0.000 0.446 0.674 0.826 0.291 0.598
50.0 1.034 1.197 -0.011 0.432 1.036 1.202 0.422 0.944

A(1)
250 10.0 0.011 1.097 0.036 1.059 0.010 1.079 -0.288 1.192

20.0 0.067 1.205 0.090 1.088 0.071 1.163 -0.410 1.367
49.9 0.056 1.502 0.067 1.134 0.065 1.418 -0.519 1.926

500 10.0 -0.015 0.759 -0.004 0.742 -0.016 0.747 -0.325 0.861
20.2 0.007 0.844 0.032 0.767 0.005 0.817 -0.485 1.037
49.9 -0.018 1.004 0.013 0.755 -0.024 0.937 -0.736 1.529

1000 10.0 0.035 0.548 0.047 0.531 0.036 0.538 -0.257 0.623
20.2 0.020 0.556 0.039 0.536 0.021 0.537 -0.477 0.774
50.0 -0.022 0.737 0.032 0.543 -0.017 0.695 -0.691 1.195
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the causal pathway of treatment, covariates, and response in the imputation
model makes very little difference to the estimates obtained after correcting
for missing data by multiple imputation. In inverse probability weighting, on
the other hand, including a surrogate of a predictor of missingness reduces
bias of treatment effect estimates with either effectively no change or a slight
increase in efficiency of the estimates, as evidenced by the comparable or
smaller rMSEs.

LC (0) LC (1) A(1)A(0) Y

V(0)

M(1)

LC = Confounder 
A  = Treatment
Y  = Outcome

V*

Figure 3: Directed acyclic graph (DAG) of the complete data under the not
missing at random assumption (V (0) unobserved, but a correlate of V (0),
V ∗, is observed).
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Table 4: Bias and root mean squared error (rMSE) of treatment effects un-
der multiple imputation (MI), multiple imputation (MI-V ∗) using V ∗ in the
imputation model, inverse probability weighting (IPW), and inverse prob-
ability weighting using V ∗ as a surrogate for the unobserved variable V (0)
in the model for missingness (IPW-V ∗) under a missingness mechanism of
data missing not at random (NMAR). Summaries based on 1000 simulated
data-sets, for sample sizes n = 250, 500, 1000 and the fraction of missing data
approximately equal to 10, 20, or 50%.

n % NA MI MI-V ∗ IPW IPW-V ∗

Bias rMSE Bias rMSE Bias rMSE Bias rMSE
A(0)

250 10.0 -0.027 0.887 -0.026 0.885 0.395 0.992 0.229 0.945
20.0 0.007 0.860 0.009 0.860 0.683 1.167 0.427 1.056
50.1 -0.044 0.894 -0.041 0.897 0.967 1.536 0.633 1.459

500 10.0 -0.027 0.640 -0.027 0.640 0.373 0.761 0.209 0.704
20.1 -0.025 0.608 -0.023 0.608 0.629 0.907 0.379 0.770
49.9 -0.006 0.589 -0.004 0.588 1.000 1.293 0.628 1.109

1000 10.0 0.024 0.523 0.023 0.524 0.004 0.529 0.003 0.536
20.1 0.030 0.514 0.026 0.513 -0.004 0.546 -0.001 0.557
50.1 0.077 0.534 0.073 0.535 0.018 0.656 0.015 0.711

A(1)
250 10.0 0.037 1.077 0.035 1.074 0.007 1.096 0.010 1.110

20.0 0.050 1.033 0.045 1.031 0.021 1.099 0.021 1.122
50.1 0.091 1.146 0.087 1.143 0.049 1.418 0.065 1.519

500 10.0 0.037 0.771 0.037 0.770 0.024 0.790 0.027 0.797
20.1 0.051 0.754 0.050 0.753 0.029 0.782 0.033 0.810
49.9 0.043 0.752 0.042 0.749 -0.024 0.954 -0.011 1.046

1000 10.0 -0.019 0.433 -0.019 0.433 0.407 0.596 0.244 0.504
20.1 -0.005 0.431 -0.004 0.432 0.669 0.819 0.410 0.635
50.1 -0.037 0.450 -0.036 0.449 1.000 1.171 0.637 0.916

5 EXAMPLE: MORTALITY AFTER ACUTE

MYOCARDIAL INFARCTION

We employed the three methods of handling missing data considered in the
simulations of the previous section, namely complete-case, inverse probability
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weighting, and multiple imputation, to investigate the effect of beta blocker
use after an acute myocardial infarction on mortality using the General Prac-
tice Research Database (GPRD).

5.1 Methods

The GPRD is a large clinical database based on information generated from
general practices in the United Kingdom. The GPRD has been previously
validated for studies of pharmacological effects on blood pressure (Delaney
et al., 2008). Using this database, a cohort was constructed which included
all members of the database who survived a first acute myocardial infarction
between 1 January, 2002, and 31 December, 2004. Cohort inclusions criteria
were 90-day survival post myocardial infarction (see Zhou et al. (2005) for
a discussion of this approach to cohort selection criteria), age of 20 years
or older, and participation in the GPRD for at least three years to ensure
adequate time for data collection.

The treatment variables were defined as: A(0) was exposure to beta block-
ers in the 45 days after an acute myocardial infarction and A(1) was exposure
to beta blockers in following 45 days, i.e. 46 to 90 days after myocardial in-
farction. The outcome of interest, Y , was all-cause mortality between 90
days and one year after the acute myocardial infarction. Subjects were fol-
lowed for one year after myocardial infarction or until the occurrence of the
outcome (death).

Blood pressure is a time-varying confounder, LC , that may mediate the
relationship between treatment after myocardial infarction and the outcome,
death. Both systolic and diastolic blood pressure were considered. Due to
the irregular recording of blood pressure in the GPRD, it was not possible
to obtain blood pressure measurements immediately after acute myocardial
infarction or at exactly 45 days after recovery from the myocardial infarction.
Instead, we approximate these values with LC(0), the mean of all blood pres-
sure recordings in the 90 days prior to myocardial infarction and LC(1), the
mean of all blood pressure recordings in the 45 days following the myocardial
infarction. Missing data are common, and many participants did not have
any blood pressure readings in either interval (Delaney et al., 2008). The
postulated DAG for this GPRD example is given in Figure 4.

The ratios of the odds of death associated with beta blocker use were
estimated via a marginal structural model, using three methods of accounting
for missing data: complete-case, multiple imputation, and inverse probability
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LC (0) LC (1) A(1)A(0) Y

V(0)

M(1)

LC = Blood pressure (systolic 
and diastolic) 

A  = Treatment (beta blocker use)
Y  = Outcome (death 91 days to 

one year post acute 
myocardial infarction)

V = Confounding variables (e.g. 
sex, age, smoking status)

M = Missing blood pressure 
measurement indicator

M(0)

Figure 4: Postulated Directed acyclic graph (DAG) of the GPRD data under.

weighting. Baseline risk factors for all-cause mortality, such as age, sex,
smoking, alcohol use, obesity, number of hospitalizations in the past year and
serious medical conditions (e.g. cancer and respiratory disease), were included
in the probability of treatment models. Similarly, models that were rich in
baseline covariates were used to estimate the probability of having missing
blood pressure data for the inverse probability weighting approach, and to
model blood pressure itself in multiple imputation. Confidence intervals were
calculated via bootstrap using 1000 resamples of the data.

5.2 Results

There were 7749 individuals who met the cohort inclusion criteria and, among
these, 469 deaths. After myocardial infarction, 600 individuals used beta
blockers within 45 days of the acute myocardial infarction but not after that
(A(0) = 1, A(1) = 0), 605 individuals used beta blockers only in the second
interval (A(0) = 0, A(1) = 1), and 3582 individuals used beta blockers in
both intervals (A(0) = A(1) = 1).

There was considerable missing information on blood pressure: 2489
(32%) had no blood pressure measurements recorded, while a further 2497
(32%) and 1270 (16%) had missing values exclusively at the first or second
interval, respectively. The resulting estimates of the effect of beta blocker
treatment on all-cause mortality are presented in Table 5.
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Table 5: Estimates of the effect of treatment with beta blockers on all cause
mortality (Y ) as found by marginal structural modelling (estimating via in-
verse probability of treatment weighting). Missing blood pressure data are
accounted for by three methods: complete-case, inverse probability weight-
ing, and multiple imputation.

Missing data approach Rate ratio 95% CI
Effect estimates of A(0)
Complete-case 1.02 0.66 to 2.48
Inverse probability weighting 0.88 0.54 to 2.12
Multiple imputation 0.68 0.59 to 1.15
Effect estimates of A(1)
Complete-case 0.92 0.39 to 1.67
Inverse probability weighting 0.79 0.34 to 1.41
Multiple imputation 0.73 0.49 to 1.02
Post-MI treatment with beta blockers
RCT meta-analysis(Freemantle et al., 1999) 0.77 0.69 to 0.85

The average causal effect of treatment with beta blockers after acute my-
ocardial infarction is well-studied; an estimate derived from a meta-analysis
of randomized controlled trials conducted over a (single) similar time period
(Freemantle et al., 1999) is used as a point of comparison for the average
causal effect of treatment post-myocardial infarction. The trials included in
the meta-analysis were conducted in very broad post-myocardial infarction
populations and, therefore, the meta-analysis average effect was estimated
in a population that was likely relevant and comparable to the individuals
captured by the GPRD.

Inverse probability weighting and multiple imputation both provide esti-
mates that are closer to the randomized trial meta-analysis estimates than
complete-case approach, which yields estimates of the effect of the drug on
all-cause mortality that are closer to the null value of 1.0. There appears to
be little difference in this example between accounting for missing data with
inverse probability weighting versus multiple imputation in terms of the un-
biasedness of the estimates, however the multiple imputation approach gave
narrower confidence intervals.
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6 DISCUSSION

Accounting for missing information on key variables is an important com-
ponent of all observational analyses. Both inverse probability weighting and
multiple imputation are readily implemented in standard statistical software
packages (such as R and SAS) and yield improved estimates over naive ap-
proaches (such as complete case analyses) in the context of marginal struc-
tural model analyses.

The need to carefully account for missing data in order to prevent biased
estimates in epidemiologic studies is well known (Wood et al., 2004; Schafer,
1999). However, previous investigations into the consequences of improper
handling of missing data have not considered the case of marginal structural
models. Marginal structural models rely on different assumptions than stan-
dard regression models (Robins et al., 2000) and it is not clear how analytic
approaches developed for the latter will perform in the context of the former.

We have demonstrated the use of multiple imputation and inverse weight-
ing to address missing data in the context of marginal structural models.
When the missingness is completely at random, all methods give similar re-
sults. Unfortunately, it is seldom the case that data are MCAR. However,
when the mechanism for data missingness is not completely at random and
yet is well understood – i.e., when data are MAR – multiple imputation was
slightly less biased and considerably less variable than the inverse probability
approach. Thus, the lower variability achieved through multiple imputation
makes it desirable in most practical cases.

In the simulations considered in this study, baseline measures of the con-
founding variables were available to the analyst. This may have provided
multiple imputation with an advantage over inverse probability weighting
as the baseline confounder was predictive of the missing variable. The goal
of multiple imputation is to model the missing value while inverse proba-
bility weighting focuses on predicting the missing data mechanism (Schafer
and Graham, 2002). In other situations, such as those where strong predic-
tors of the missing values are not present or the missingness mechanism is
well-understood, inverse probability weighting may perform better relative
to multiple imputation. In cases where the missingness mechanism is not
well-understood or is unlikely to be strongly predicted by the available co-
variates, a doubly-robust procedure (Bang and Robins, 2005) that does not
require correct modelling of the missing data mechanism (and requires no
modelling of the missing values themselves) may be preferable.
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It is important to note that our simulations are based on a small number
of time points and a single, non-time-varying outcome. This is not an unre-
alistic setting, as many applications of marginal structural models occur in
a two-interval context. However, when the number of observation periods is
substantial, the potential for feedback between the intermediate/confounding
variables and the exposure may be more important and our results may not
generalize to these cases. It may, for example, be difficult to correctly model
a covariate that is missing for a number of intervals, as is required by multi-
ple imputation. On the other hand, a small number of data points that are
missing at early intervals may lead to considerable loss of information since
the inverse probability weighting approach requires censoring of individuals
at the first instance of a missing value.

Inverse probability weighting has a natural and intuitive appeal in the
context of marginal structural models, where one attempts to make valid
inference from complex data without requiring full specification of the likeli-
hood of the data. However our results suggest that in cases where the missing
data are strongly predicted by the available data, inverse weighting cannot
be recommended over multiple imputation. Nevertheless, inverse probabil-
ity weighting remains a superior alternative to more naive approaches to
accounting for the presence of missing data.
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