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Abstract

Understanding the genetic underpinnings to complex diseases requires consideration of
sophisticated analytical methods designed to uncover intricate associations across multiple
predictor variables. At the same time, knowledge of whether single nucleotide polymorphisms
within a gene are on the same (in cis) or on different (in trans) chromosomal copies, may provide
crucial information about measures of disease progression. In association studies of unrelated
individuals, allelic phase is generally unobservable, generating an additional analytical challenge.
In this manuscript, we describe a novel approach that combines multiple imputation and random
forests for this high-dimensional, unobservable data setting. An application to a cohort of HIV-1
infected individuals receiving anti-retroviral therapies is presented. A simulation study is also
presented to characterize method performance.
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1 Introduction

Recent advances in sequencing technologies present a new opportunity to
incorporate the molecular level characteristics of an individual in clinical
decision making. However, characterizing associations among genetic poly-
morphisms and complex disease phenotypes continues to present several an-
alytical challenges. These arise due to: (1) the large number of potentially
informative genetic markers for disease and the complex, uncharacterized as-
sociations among them and (2) the unobservable nature of allelic phase in
association studies of unrelated individuals.

Several well-described methods allow for discovering associations in the
context of high-dimensional data, including semi-parametric as well as model-
based approaches. These include classification and regression trees (CART)
(Breiman et al. (1984); Zhang and Bonney (2000); Segal et al. (2001); Foulkes
et al. (2004)), multi-factor dimensionality reduction and combinatorial par-
titioning (Ritchie et al. (2001); Nelson et al. (2001)), random forests (RF)
(Breiman (2001)), multivariate adaptive regression splines (MARS) (Fried-
man (1991)), Bayesian variable selection (George (2000)), mixed modeling
(Foulkes et al. (2005)), support vector machines (Huang and Kecman (2005)),
and an alternative Bayesian approach (Lunn et al. (2006)), among others.
The strength of each approach depends highly on both the scientific hypothe-
ses under consideration and the plausible biological mechanisms for disease.
Machine learning algorithms are particularly well-suiting to uncovering com-
plex structure in high-dimensional data.

In this manuscript we consider random forests (RFs). Random forests
involve constructing an ensemble of classification or regression trees and re-
sults in variable importance scores for each predictor that are aggregated
over all trees (Breiman (2001)). Through resampling predictor variables at
each step of the growing procedure, RF's provide a natural setting to account
for collinearity among the predictors. Several recent manuscripts describe
the application of random forests for discovering associations in high dimen-
sional data settings, for example Bureau et al. (2005); Segal et al. (2004) and
Diaz-Uriarte and de Andres (2006). Straightforward implementation of the
RF methodology is achieved using the randomForest package in R. Notably,
this software includes an imputation procedure for handling missing values
in the predictor variables. We distinguish that in our setting, while genotype
data may be missing, haplotypic phase is potentially unobservable; however,
a set of haplotype pairs will be consistent with the observed genotype data
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for each individual

Multiple methods have been described for estimating haplotype frequen-
cies within a single gene and making inference between these haplotypes
and a disease phenotype. These include expectation maximization (EM)
type approaches (Excoffier and Slatkin (1995); Lake et al. (2003); Lin and
Zeng (2006)) and Markov chain Monte Carlo methods (Stephens and Smith
(2001)). However, methods that handle simultaneously the two analytical
challenges arising from high dimensional data and uncertainty in phase,
remain underdeveloped. The Bayesian approach described by Lunn et al.
(2006) is fully likelihood based and incorporates an imputation procedure
for simultaneously making inference on a large number of genotype variables
and accounting for uncertainty in phase.

We present a semi-parametric approach that combines multiple imputa-
tion and random forests (MIRF) to characterize haplotype-phenotype associ-
ations. This approach involves estimation of allelic phase, imputing data ac-
cording to these estimates and then combining the results of random forests
across multiply imputed datasets. Notably, fitting RFs requires relatively
few model assumptions. Furthermore, this combined approach can be imple-
mented easily with slight modification of existing software tools.

The data motivating our research arise from a cross-sectional study of
N = 626 individuals infected with Human Immunodeficiency Virus Type-1
(HIV-1) who are at risk for anti-retroviral therapy (ART) associated dyslipi-
demia. ARTs have demonstrated a profound effect on delaying the onset of
clinical disease and death in HIV-1 infected individuals. Unfortunately, long
term exposure to ARTSs may lead to a number of serious health complica-
tions including the accelerated onset of cardiovascular disease. We aim to
determine whether haplotypes in four candidate genes, apolipoprotein-C-I11
(ApoCIII), apolipoprotein-E (ApoE), endothelial lipase (EL) and hepatic li-
pase (HL), are associated with changes in high density lipoprotein cholesterol
(HDL-c) in this population. Ultimately, characterizing the genetic polymor-
phisms that predispose individuals to abnormal lipid profiles may provide
clinicians with the tools for making more informed treatment decisions and
appropriate interventions.
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2 Methods

Classification and regression trees (CART) allow for characterizing associa-
tions among a large number of predictor (independent) variables and a cate-
gorical or continuous response (dependent) variable. This approach involves
recursively partitioning data according to the values of the predictors in a
way that minimizes the within group impurity as described in Breiman et al.
(1984). Random forests (RFs) represent an extension of the CART method-
ology and are comprised of an ensemble of classification or regression trees
(Breiman (2001)). In this manuscript we focus on a continuous response
though straightforward extensions of the methods described can be applied
to categorical responses (e.g. case/control status). We begin in this section
by outlining our notation and providing a brief summary of RFs. We then
introduce a multiple imputation procedure for calculating random forests in
the context of phase unknown data.

2.1 Notation and Random Forests

Let Y = (y1,¥2,....yn) be a vector of responses for the n subjects in our
sample. Further suppose X; = (21, 22, ..., Tip) is a vector of p predictor
variables for individual 7, ¢ = 1,...,n. The root node of a tree consists of
the entire sample and is split into right and left daughter nodes according
the values of a predictor. The best split is generally defined as the one that
maximizes the reduction in node impurity, given by ¢(s,7) in Equation 1.
Here 7 represents node and 7, and 75 r are the left and right daughter
nodes corresponding to the split indicated by s. For a continuous Y, node
impurity is commonly defined as the mean squared error (MSE) and given by
I(r)= n—IT > icr (i — -)* where 7, is the mean response among individuals
in 7. Extensions to multi-way splits have been described, though we limit
our discussion here to the more common implementation of CART based on

binary splits.

¢(s,7) = (1) = L(7s.1) = L(7s.r) (1)

Splitting is done recursively until a stopping rule is met. Usually a node
consisting of less than 5 observations is not split further. Typically, some
nodes of the tree are then removed, a process commonly referred to as pruning
that minimizes over-fitting. In the CART setting, minimal cost-complexity
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cross validation pruning is generally used to achieve balance between model
complexity and predictive accuracy as described in Breiman et al. (1984).
The random forests procedure for determining variable importance is de-
scribed in detail in Breiman (2001) and summarized in Algorithm 1 below.
Notably, this approach does not require pruning of each tree since multiple
trees are created using bootstrapped samples. Furthermore, through sam-
pling a subset of variables at each split (step (2) of Algorithm 1), RFs allow
for capturing information on multiple, collinear variables. This method can
be applied in R using the randomForest package.

ALGORITHM 1

Initialize b = 0.

1. Let b = b+ 1. Draw a random sample of size n; with replacement
and call this a learning sample. This is about 2n/3 of the observed
sample data where n is the total number of subjects in the sample.
The remaining observations of size ny (about n/3 of data) form the
out-of-bag (OOB) data.

2. Generate an unpruned regression tree, using a randomly selected subset
of the p predictors at each node and a prespecified measure of node
purity.

3. Record the MSE for the OOB data and call this .

4. Using the OOB data, for each j =1, ..., p, permute the predictor vari-
able x; and record the MSE. Denote this by m,; and define importance
as dbj = (7Tbj — 7Tb).

5. Repeat steps (1)-(4) B times to obtain B trees and d,;,...,dg; for
jg=1,...,p. Let @\] = % Zle dy; be the jth predictor variable’s mean
importance score across all trees and let s; be the corresponding stan-
dard error.

The parameters of interest in a random forest are the mean variable im-
portance scores for a predictor variable z;, estimated by ¢; and the corre-

sponding standardized importance given by z; = 5] /s;j for j =1,...,p where
s; is the sample standard deviaion. The interpretation and use of these
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importance scores varies across studies. One approach is to treat the stan-
dardized scores as standard normal deviates and to determine significance
level according to a normal distribution as described in Breiman (2004). In
this case, appropriate adjustment for the inflation of type-1 error resulting
from testing p predictors is required. For example, the bootstrap-based re-
sampling approach to multiple testing of van der Laan et al. (2004a,b) and
Pollard and van der Laan (2004) could be applied. Alternatively, the rank
order of resulting importance scores can be reported for a single or repeated
applications of RFs as described in Bureau et al. (2005); Segal et al. (2004)
and Diaz-Uriarte and de Andres (2006). In this manuscript we focus on the
latter approach since it requires fewer assumptions and can be useful for
identifying candidate predictors for further investigation.

2.2 Accounting for uncertainty in phase

In the case that haplotype data are fully observed, application of the RF pro-
cedure described above is straightforward. For example, the (x;1, T2, ..., Tip)
can be defined as indicators for the presence of haplotypes 1,...,p, respec-
tively for individual ¢. These haplotype indicators can be within a single
gene or across multiple genes. In general, however, the x;; are unobserv-
able in data arising from unrelated individuals in which allelic phase is not
known. Specifically, if an individual is heterozygous at two or more sin-
gle nucleotide polymorphisms (SNPs) within a gene, then the corresponding
haplotype pair (referred to as diplotype) for this individual is not known
with certainty. However, haplotype frequencies can be estimated from the
observed genotype data and in turn, used to calculate posterior probabil-
ities for all haplotype pairs that are consist with an individual’s observed
genotype.

In order to address haplotype uncertainty, we propose estimating these
posterior haplotype probabilities, multiply imputing haplotype data using
these estimates and fitting a random forest for each imputation. This process
is repeated multiple times in order to account for the variability derived from
the imputation procedure. The combined imputation and RF procedure is
given in Algorithm 2 below. Note that the length of r; in step (1) equals
the size of H;, where H;y is the set of all haplotypes that are consistent with
individual ¢’s observed genotype for gene k. Furthermore, if an individual’s
haplotype is fully observable for a given gene, then r;, will reduce to a scalar
equal to 1 corresponding to this diplotype. Straightforward implementation
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of this initial step is achieved using the haplo.em() function of the R package
haplo.stats.

ALGORITHM 2

Initialize m =0

1. Apply the EM approach of Excoffier and Slatkin (1995) to arrive at
posterior haplotype probabilities for each subject in our dataset, for
each gene under consideration. Denote these individual level probabili-
ties by the vector r;; where ¢ indicates individual, k indicates gene and
the elements of this vector correspond to the posterior probabilities of
the diplotypes consistent with the individual’s observed genotype.

2. Let m = m + 1. For each individual 7 and gene k, sample a single
diplotype with probabilities r;;, until a complete data set is obtained.

3. Fit a random forest according to ALGORITHM 1 using the dataset
imputed in step (2) and record importance scores 67" and their standard

errors si', j =,...,p.
4. Repeat steps (2)-(3) M times to arrive at 531-, e ,@M and s}, ..., sM for
each predictor variable z;, j = 1,...,p.

Combining importance scores, (9\]1-, e ,@M across imputed datasets re-
quires consideration of both the between and within-imputation variance.
We use the approach described in Little and Rubin (2002) Section 5 4 to com-
bine these scores. Specifically, for each variable x;, we let Hj M= I/[ Zm 1 (9;”
be the average importance score across the M imputations and define T; =
(éjM) VM where Vjy is the sum of the within (W) and the between
(Bjy) imputation variances as given in Equation 2. The resulting 7; are
ordered and the maximum (or maximum subset) reported as potentially in-
formative. In the remainder of this manuscript, these are referred to as
adjusted variable importance scores.
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- M+1
VjM: iM i BJM

1 M
T _ m\2
WJM—M;(SJ) (2)

M
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3 A Simulation Study

A simulation study is presented to describe the performance of RFs in both
the observed and unobservable haplotype settings assuming a variety of un-
derlying biological and clinical models. Presently, to our knowledge, an alter-
native machine learning algorithm for unobservable predictors has not been
described. Thus, for the purpose of comparison, we present the results of a
more standard application of the generalized linear modeling (GLM) for un-
observable phase approach of Lake et al. (2003). This approach employs an
EM-type algorithm that iterates between estimation of haplotype population
frequencies and haplotype effects on the phenotype of interest. Straight-
forward implementation of this method is available with the haplo.glm()
function in the haplo.stats package in R. Notably, unlike machine learning
algorithms, the GLM approach is not designed specifically to uncover com-
plex structure and therefore we focus on relatively simple (2-gene) models of
associations for the purpose of illustration.

A summary of the components to each assumed model is given in Table 1
for the MIRF approach and Table 2 for the GLM approach. These include ad-
ditive models assuming independent predictors (Models 1-3), additive models
assuming haplotypes from associated genes as predictors (Models 4 and 5),
interaction models with and without main effects (Models 6 and 7) and a
conditional dependence model (Model 8). In all cases, 4 haplotypes within
each of 4 genes are simulated with frequencies of 0.2, 0.2, 0.2 and 0.4. A
continuous phenotype y is generated according to the indicated model for
i=1,...,n for n =500 as well as n = 1000, ¢; < N(0,0%). The intercept is
set equal to 0 for simplicity.
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Table 1: Simulation study results for MIRF

Observed Haplotypes Unobservable Haplotypes
Model Maxq Mazxo  Maxy2 Maxq Mazxy  Maxi 2
ADDITIVE (INDEPENDENT PREDICTORS)
MODELS
1. Single haplotype effect
yi = Bil(Hi1 € h1y) + ¢ 0.88/ - - 0.69/ - -
Condition: (1/0 =10.5 0.99 0.99

2. Two varying haplotype effects
yi = BLI(Hy1 € hag) + Bl (Hoy € hoi) +¢; | 052/ 012/  0.64/ | 031/ 011/  0.42/
Condition: 31/0 = 0.6,82/0c = 0.4 0.60 0.13 0.79 0.40 0.14 0.54

3. Two equal haplotype effects
yi = B1I(H11 € hii) + B2l (H21 € ho;) + ¢ | 0.50/ 0.50/ 0.92/ 0.39/ 0.52/ 0.55/
Condition: $1/c = B2/0c =0.5 0.54 0.46 0.95 0.46 0.50 0.70

ADDITIVE (ASSOCIATED PREDICTORS)

MODELS

4. Dependence with single haplotype effect

yi = B1I(H11 € h1i) + ¢ 0.87/ 0.01/ 0.03/ 0.59/ 0.01/ 0.02/
Condition: hy; and hg; associated, 1.00 0.00 0.06 0.91 0.01 0.02

B1/oc=0.5
5. Dependence with two haplotype effects
yi = P1I(Hi1 € hii) + B2I(Ho21 € ha;) + ¢ 0.45/ 0.55/ 0.85/ 0.41/ 0.49/ 0.46/
Condition: hj; and hg; associated, 0.53 0.49 0.98 0.46 0.51 0.70
Bi/o = pP2/c =05

MULTIPLICATIVE (INTERACTION) MODELS

6. Interaction without main effects
y; = P12l (H11 € h1i)I(H21 € ha;) + €; 0.21/ 0.28/ 0.16/ 0.19/ 0.16/ 0.01/
Condition: B12/0 = 0.5 0.27 0.44 0.35 0.17 0.22 0.06

7. Interaction with main effects
yi = PrI(H11 € hag) + Bel(Ha1 € ha;)+

Brol(Hyy € hyi)I(Ha1 € hag) + € 044/ 056/  1.00/ | 045/ 053/  0.65/
Condition: f1/0 = B2/0 =04 0.53 0.47 1.00 0.62 0.37 0.90
Bi2/0 = 0.6

CONDITIONAL MODEL

8. Conditional dependence

yi = B1I(Hi1 € h1i)+
Bi2l(H11 € hi1i)I(H21 € ho;) + € 1.00/ 0.00/ 0.38/ 0.92/ 0.02/ 0.19/

Condition: 1/c = f12/0 = 0.5 1.00 0.00 0.58 0.97 0.01 0.18

I(Hy1 € hy;) and I(Hay € hg;) are indicators for the presence of haplotypes Hq1 and Haq,
respectively in the observed haplotype pairs for genes 1 and 2 in the ith individual. The
proportions Max;, Maxy and Mazx, 2 are given in pairs corresponding to sample sizes
n = 500 and n = 1000.
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Relative rankings of haplotypes within each model across simulations are
reported in Table 1. These are based on the importance score of the RF as
discussed in Section 2.2. In this table Mazr; and Maxzy are defined as the
proportion of simulations for which Hy; or Hs; respectively has the maximum
associated ranking across all haplotypes. Maz, 5 is defined as the proportion
of simulations for which the rankings corresponding to Hy; and Hs; are both
greater than all other haplotype importance scores. Results are reported
assuming haplotypes are fully observed and under the assumption of potential
ambiguity, using MIRF and a GLM. S = 100 simulations are performed for
each model. An additional 10 samples are drawn per simulation for the
MIRF unobservable setting in order to characterize the between-imputation
variance as described in Section 2.2. The proportions Max,;, Max, and
Maz, 5 in Table 1 are given in pairs corresponding to sample sizes n = 500
and n = 1000.

Model 1 assumes a single haplotype effect among the 16 available haplo-
type variables (4 in each of 4 genes.) A moderate effect size of 0.5 is assumed.
In the fully observed setting with a sample size of n = 1000, the correct hap-
lotype is selected in 99% of the simulations. As expected, corresponding
power decreases in the unobservable setting to 91%, reflecting an efficiency
of about 92%. Models 2 and 3 assume two haplotypes, 1 in each of 2 genes
are predictive of the phenotype. In both cases, the two predictor variables
were simulated assuming independence between them. In Model 2, the effect
sizes of these two variables are assumed to differ, equalling 0.6 and 0.4 respec-
tively, while in Model 3, we assume equal effect sizes of 0.5. In this context of
two additive haplotype effects, RFs perform better with equal effects (Model
3) than with varying effects (Model 2) with power measured by Maz, o for
n = 1000 equal to 95% in the observed setting and 70% in the unobservable
setting.

Models 5 and 6 both assume correlation between two haplotypes across
two different genes. That is, these models assume that the presence of a
specific haplotype in one gene is correlated with the presence of a specific
haplotype in another gene. In Model 4, only one of these haplotypes is
additionally associated with the outcome and is assumed to have a moderate
effect size of 0.5. Model 5, on the other hand, assumes the two correlated
haplotypes are both predictive of the outcome with equal effect sizes of 0.5.
A sample size of n = 100 yields 100% and 91% power for detecting the single
effect (Model 4) in the observed and unobservable settings respectively. In
the case of two predictor variables that are correlated (Model 5), the results
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are similar to the additive model with independent predictors (Model 3).

Model 6 assumes that the presence of two independent haplotypes across
two genes are predictive of the outcome though neither haplotype alone is
predictive. Notably, RFs do not perform well in this setting of interaction
in the absence of main effects (Model 6). This finding is consistent with the
fact that trees are generated recursively by first splitting on single variables;
thus if haplotypes are not predictive singly, then they will not be detectable.
Model 7 assumes interaction in the more standard statistical sense in that
main effects as well as an interaction term are included in the model. In this
setting, reasonable power for detecting the two haplotypes (100% and 90%)
is achieved for both the observed and unobservable setting. Finally, Model
8 is a conditional model in which a haplotype in gene 1 is predictive of the
outcome and another haplotype in gene 2 is only predictive in the presence
of the haplotype in gene 1. In this case, the power is reasonable for detecting
the haplotype in gene 1 though the detection rates for the haplotype in the
second gene are greatly reduced.

Overall, application of multiple imputation in combination with RF's for
the unobservable haplotypic phase setting results in a loss of efficiency (com-
pared to RF alone) for detecting true underlying associations. This finding is
expected and a common phenomenon resulting from the loss of information
due to missing data. Interestingly, the GLM for unobservable phase performs
relatively well for these simple models. These results are provided in Table 2
and the ranks are based first on F-statistics for overall gene effects and then
Wald statistics for individual haplotype effects. Models are fitted separately
for each gene in this setting. Specifically, detection rates for Model 6 are
remarkably better in the GLM framework. As noted above, however, RFs
are not well suited to interaction in the absence of main effects.

The global null model of no association between haplotypes and the phe-
notype is also simulated S = 500 times again assuming sample sizes of
n = 500. The error rate defined as the maximum proportion of times a
single haplotype has the largest rankings across the simulations is 0.11 and
0.12 in the observed and unobservable settings respectively using RFs. A
similar error rate of 0.11 for the GLM approach was observed.
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Table 2: Simulation study results for GLM

Model

Unobservable Haplotypes

Maxq

Maxo

Mazxq 2

ADDITIVE (INDEPENDENT PREDICTORS) MODELS

1. Single haplotype effect
yi = B1I(Hi1 € h1i) + €
Condition: (1/0 =0.5

2. Two varying haplotype effects
yi = P1I(H11 € h1;) + B2I(Ha1 € ho;) + ¢
Condition: B81/0 =0.6,32/0 = 0.4

3. Two equal haplotype effects
yi = B1l(H11 € hig) + B2l (Ha1 € h2;) + ¢
Condition: f1/o = B2/0 =0.5

0.92/1.00

0.84/0.90

0.40/0.54

0.41/0.43

0.45/0.43

0.28/0.46

0.60/0.95

ADDITIVE (ASSOCIATED PREDICTORS) MODELS

4. Dependence model with single haplotype effect
yi = P1I(H11 € h1i) + €
Condition: h1; and hg; associated, 81/0 = 0.5

5. Dependence model with two haplotype effects
yi = P1I(H11 € h1;i) + B2l (Ha1 € ha;) + €
Condition: hy; and hg; associated,

B1/o = pB2/c =0.5

0.95/1.00

0.45/0.53

0.00,/0.00

0.44/0.47

0.00,/0.02

0.64/0.97

MULTIPLICATIVE (INTERACTION) MODELS

6. Interaction without main effects
yi = P12l (H11 € h1i)I(H21 € h2;) + €
Condition: B12/0 = 0.5

7. Interaction with main effects

yi = P1I(H11 € h;) + B2l(Ha1 € ha;)+
Br2I(H11 € h1;)I(H21 € h2;) + €

Condition: /0 = fB2/0 =0.4,812/0 = 0.6

0.26/0.33

0.48/0.60

0.21/0.42

0.52/0.39

0.08/0.41

0.97/0.97

CONDITIONAL MODEL

8. Conditional dependence
yi = P1I(H11 € h1i)+

B12I(Hi1 € hy;)I(H21 € ho;) + ¢
Condition: 31/c = f12/0 =0.5

1.00/1.00

0.00/0.00

0.12/0.33

11
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4 Example: ART associated dyslipidemia in
HIV

We present an application of MIRF using data on n = 626 individuals, col-
lected as part of AIDS Clinical Trials Group (ACTG) New Works Concept
Sheet 224 (NWCS224). A primary aim of this study is to identify haplo-
types within and across multiple candidate genes that are associated with an
increased risk of dyslipidemia in HIV-1-infected individuals who are on com-
bination antiretroviral therapy (ART). First stage analysis results, including
complete demographic and clinical information on this cohort are presented
in Foulkes et al. (2006).

Single nucleotide polymorphisms in each of four genes, ApoC-I11 [-482C/T
(rs2854117), -455T /C (rs2854116), intron 1 (466) G/C (rs2070669), Gly34Gly
C/T (rs4520), exon 4 Sstl 4348(5) C/G (rs5128)], ApoE [Argl12Cys T/C
(rs429358), Argl58Cys T/C (rs7412)], EL [rs12970066, Asn396Ser, rs3829632
(-1309A/G)] and HL [rs2070895, rs12595191, rs690, rs6084] and their ef-
fects on HDL-C are considered. Haplotype frequency estimates are obtained
within each racial/ethnic group separately due to potential violations of
Hardy Weinberg equilibrium when racial/ethnic groups are combined. Re-
sulting estimates are provided in Table 3. All haplotypes with estimated
frequencies of greater than 0.01 are included in analysis and those with an
estimated frequency of greater than 0.05 in at least one racial/ethnic group
is presented.

A linear multivariable model for log(HDL-C) is fitted with independent
variables for current drug exposures, race/ethnicity, gender, age, study and
use of lipid-lowering therapy. The resulting model residuals are calculated
and treated as the outcome in the RF analysis in order to assess genetic effects
after accounting for these traditional risk factors for cardiovascular disease.
Individuals excluded from analysis include those with unknown durations
of drug exposure, short washout periods or short drug exposures (n=60),
individuals for whom race/ethnicity is self-reported as other (n=13), and
those individuals with missing HDL-c (n=41).

RF's are applied after first stratifying by race/ethnicity due to potential
effect modification by race/ethnicity, as described for this cohort in Foulkes
et al. (2006). A total of M = 500 multiply imputed datasets are generated
assuming the estimated haplotype frequencies given in Table 3. The result-
ing adjusted variable importance scores T; are reported in Table 3. Inter-
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Table 3: Estimated haplotype frequencies and importance scores by
race/ethnicity

White/Non-Hispanic | Black/Non-Hispanic Hispanic
(N = 317) (N = 92) (N = 103)
Gene Haplotype® | Est Freq T Est Freq T} Est Freq T}
ApoC3
ccccece 0.006 0.04 < 0.001 - 0.007 0.75
CCGCC 0.123 0.34 0.013 0.09 0.045 0.93
CTCTC 0.034 0.40 0.052 0.32 0.010 0.30
CTCTG < 0.001 — 0.059 0.06 0.005 0.07
CTGCC 0.448 0.20 0.102 1.10** 0.358 0.03
CTGTC 0.094 0.05 0.062 0.33 0.181 1.34
TCCCC 0.134 0.16 0.579 0.69 0.194 0.43
TCCTG 0.079 1.19 0.064 0.32 0.155 0.00
ApoE
CC 0.146 0.79 0.222 0.19 0.15 1.41
TC 0.784 0.72 0.710 0.09 0.82 0.01
TT 0.069 2.24** 0.068 0.57 0.03 0.03
HL
AGCG 0.096 1.47 0.158 0.27 0.281 1.52
AGCT 0.124 0.94 0.181 0.33 0.108 0.59
AGTG 0.014 0.38 0.040 0.36 0.052 0.51
AGTT < 0.001 — 0.160 0.36 0.018 0.35
GACG 0.054 0.27 0.017 0.09 0.040 0.02
GACT 0.075 0.07 0.005 0.18 0.047 0.67
GGCG 0.184 1.71 0.069 1.18* 0.123 1.09
GGCT 0.318 1.35 0.135 0.57 0.206 1.34
GGTG 0.068 1.19 0.131 0.54 0.026 0.42
GGTT 0.050 0.27 0.080 0.36 0.057 0.01
EL
ACA 0.502 4.11* 0.750 0.46 0.470 2.75%*
AGA 0.281 2.13 0.211 0.20 0.205 4.28%*
GCA 0.201 1.80 0.027 0.41 0.325 2.42

T Haplotypes with estimated frequencies of greater than 0.05 in at least one race/ethnicity
group are presented. The number of haplotypes with frequencies greater than 0.01 across
all four genes are 38 in Whites, 36 in Blacks and 34 in Hispanics. — indicates T} is
undefined due to small sample size. * indicates largest adjusted variable importance score
within race/ethnicity group. s#* indicates second largest adjusted variable importance

score within race/ethnicity group.
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estingly, haplotypes EL-ACA, EL-AGA and ApoE-TT are the most predic-
tive of HDL-C in Whites and EL-ACA, EL-AGA and EL-GCA in Hispanics
while haplotypes within two other genes, HL-GGCG and ApoC3-CTGCC are
most predictive in Blacks. The adjusted importance statistics for EL-ACA
in Whites and EL-AGA in Hispanics were the maximum in 77% and 85%
respectively, of the imputations.

5 Discussion

In this manuscript we present a combination of two existing analytical tech-
niques, random forests and multiple imputation. Together these methods
allow for assessing a large number of potential genetic effects on a complex
trait while accounting for the unobservable nature of haplotypic phase in as-
sociation studies of unrelated individuals. In our investigation, relative vari-
able importance scores are reported and characterized for both the observed
and unobservable settings under different model assumptions. As expected,
a loss of power is observed in the context of missing haplotype information;
however, detection rates remain reasonable in relation to the standard appli-
cation of RFs. In the context of simple models of association, application of
the GLM method for unobservable phase perform relatively well.

Notably, MIRF has the advantage of requiring fewer parametric assump-
tions than traditional modeling techniques such as GLM. In addition, ma-
chine learning algorithms such as RFs are well suited to identify higher order
structure. The proposed method also allows for discovery of multiple haplo-
types associated with the disease phenotype within and across racial /ethnic
groups. In the analysis presented, stratification by race/ethnicity prior to
tree fitting was done to account for potential effect modification. While the
HWE assumption is needed to estimate posterior haplotype probabilities,
once these probabilities are determined, multiply imputing data and apply-
ing RFs does not require the HWE assumption. Since haplotypic structure
varies significantly across race/ethnicity, we recommend stratified analysis in
general.

Accounting for potential confounding and effect modification by demo-
graphic and clinical factors is an important component to the analysis of
population level data. In the example provided in Section 4, the primary
outcome of interest is a continuous variable (HDL cholesterol). We were
therefore able to apply a first stage linear regression to the data and use the
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residuals from this model fitting procedure as the outcome in the application
of MIRF'. This allows us to assess the variability explained by genetic factors
that is above and beyond traditional risk factors for disease. In general, and
in the case/control data setting, these covariates can be used as additional
predictor variables in the RF procedure.

The approach described herein is based on relative importance of hap-
lotype indicators. Alternatively, a resampling-based approach such as de-
scribed in van der Laan et al. (2004a,b) and Pollard and van der Laan (2004)
could be applied to assess significance. Resampling procedures represent a
natural approach for making inference in the context of a large number of po-
tentially informative, correlated predictors while not requiring distributional
assumptions. Notably, however, the combination of resampling and multiple
imputation would result in a computationally intensive procedure. Finally,
our presentation does not account for the error introduced from estimation of
the posterior probabilities used for resampling; however, bootstrapping the
data and re-estimating these probabilities showed minimal variation in the
estimates. The proposed extension of RF's will allow for further exploratory
investigations for high-dimensional unobservable data.
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